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Abstract 

 
Stock-separation of highly mobile Clupeids (sprat - Sprattus sprattus and herring - 

Clupea harengus) using otolith morphometrics was explored. Analysis focused on 

three stock discrimination problems with the aim of reassigning individual otoliths to 

source populations using experiments undertaken using a machine learning 

environment known as WEKA (Waikato Environment for Knowledge Analysis). Six 

feature sets encoding combinations of size and shape together with nine learning 

algorithms were explored. To assess saliency of size/shape features half of the 

feature sets included size indices, the remainder encoded only shape. Otolith sample 

sets were partitioned by age so that the impact of age on classification accuracy 

could be assessed for each method. In total we performed 540 experiments, 

representing a comprehensive evaluation of otolith morphometrics and learning 

algorithms. Results show that for juveniles, methods encoding only shape performed 

well, but those that included size indices held more classification potential. However 

as fish age, shape encoding methods were more robust than those including size 

information. This study suggests that methods of stock discrimination based on early 

incremental growth are likely to be effective, and that automated classification 

techniques will show little benefit in supplementing early growth information with 

shape indices derived from mature outlines. 
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1 Introduction 

 
Otoliths are the calcium carbonate structures forming the inner ear of many 
vertebrates. Teleost fish have three types of otoliths, the larger sagittal otolith being 
the most commonly used for aging and classification studies, as they are easier to 
prepare, observe, and measure (Campana and Casselman 1993). Otolith 
morphology varies markedly between species, however separate stocks of the same 
species, often identical physically, can sometimes be discriminated through subtle 
differences in otolith morphometrics. Expert otolith readers have drawn on otoliths to 
discriminate between: different ages or cohorts (Burke et al. 2008; Burke et al. 
2009); sex (Cardinale et al. 2004); diet (Gagliano and McCormick 2004) and of 
course stock (Begg and Brown 2000; Begg et al. 2001; Brophy and Danilowicz 2002; 
Mérigot et al. 2007; Duarte-Neto et al. 2008). Some of these distinctions are more 
complex and more important to fisheries management (Begg et al. 2005), which 
requires accurate measurements of stock composition/mixing, or stock movement, to 
inform decision making (Stransky 2005). 

 

Shape analysis forms a major part of otolith science, and many studies have 
analysed shape with a view to separating stocks. Methods include statistical analysis 
of general shape parameters such as circularity, eccentricity, area, perimeter length, 
form-factor, and annular growth increments. (Burke et al. 2008; Burke et al. 2008; 
Paul et al. 2013; Keating et al. 2014). In some cases these measurements are 
supplemented with, or normalised by, measures such as fish length or weight 
(DeVries et al. 2002; Stransky 2005; Mérigot et al. 2007). Otolith boundaries are also 
extracted and represented, or encoded in different ways (transformed) prior to 
analysis with methods such as Fourier transforms (Begg and Brown 2000; Galley et 
al. 2006; Bani et al. 2013); and Elliptical Fourier transforms (Campana and 
Casselman 1993; Burke et al. 2008; Duarte-Neto et al. 2008). Other methods of 
otolith boundary representation include Wavelets (Parisi-Baradad et al. 2005), 
Curvature-Scale-Space (Begg et al. 2005; Parisi-Baradad et al. 2005) and the more 
recent Shapelet transform method (Lines et al. 2012; Mapp et al. 2013; Hills et al. 
2014). 

 

Unlike previous studies, where otolith morphology has been used to achieve stock 
separation, here we approach the problem of fish stock discrimination from a 
machine learning standpoint, applying tools used for pattern classification in other 
biological fields, such as microscopy image analysis (Shamir et al. 2010), and 
(human) bone age classification (Bagnall and Davis 2014). Machine learning 
methods have been used previously for otolith age classification (Fablet and Le 
Josse 2005; Bermejo et al. 2007), and underlying methods have been used for stock 
separation with varying success. 

 

The aim of this study is not focused on the absolute classification accuracy of stock 
identification per se. Rather we compare the viability of morphometric methods that 
include, and those that exclude, size information as representations of otolith 
boundary, in an attempt to assess their potential efficacy for application in fish stock 
management. To do this three methods of otolith boundary representation (or ‘data 
transforms’) were compared: Elliptical Fourier Descriptors; Curvature Scale Space; 
and a method that represents otolith boundary as basic shape indices (e.g. area, 
perimeter length). The methods for comparison were chosen based on their prior 



application, and the immutability of transform methods (or parameters), regardless of 
the data to be transformed. 

 

The Waikato Environment for Knowledge Analysis, (WEKA (Hall et al. 2009)) is a 
freely available library of machine learning tools which are widely adopted by the 
machine learning community, and which have previously been used for otolith 
classification (Hills et al. 2014). The library comprises many statistical and modelling 
tools together with learning algorithms. WEKA provides a framework allowing the 
construction of large numbers of classifiers, using different learning algorithms that 
can be used alone or can be integrated into other software packages. For this study 
we make extensive use of WEKA's library to build multiple classifiers of otolith 
shape, using the following learning algorithms which represent the spectrum of 
classifier types: Naive Bayes, Bayesian Networks, Logistic, HyperPipes, J48/C4.5, 
Random and Rotation Forests, Nearest Neighbour, and Support Vector Machines 
(Brownlee 2013). 

 

To investigate whether otolith shape or size has more potential to discriminate 

between the otolith characteristics of different stocks, we conducted three stock- 

discrimination experiments: Separation of Irish-Sea and Celtic-Sea herring; 

Separation of North-Sea/Thames Herring; and separation of North-Sea/Western- 

Channel sprat. Each problem was subdivided into single-age sets so that each 

experiment was carried out within a single age-class. Otoliths from herring captured 

in the Irish/Celtic Seas belong to one of two spawning stocks: Autumn spawning 

(Irish-Sea) and autumn/winter spawning (Celtic-Sea). Irish and Celtic Seas stocks 

have previously shown to be separable using otolith morphology (Burke et al. 2008). 

Herring caught in the southern North-Sea may belong to one of two stocks: Thames 

herring (spring spawning) and North-Sea herring (autumn/winter spawning). As with 

The Celtic/Irish herring these have been previously shown to be separable using 

otolith morphology (Mapp et al. 2013). Two spawning components compose the third 

set: Western Channel sprat, spawning in spring and captured in the English 

Channel; and North-Sea sprat which spawn in the spring to late summer and were 

captured in the southern North-Sea. 

 

2 Materials and methods 

 
Machine learning aims to build generic models (classifiers) with which to classify 
further otolith samples. Each classifier is constructed using training data and a 
learning algorithm. Whilst the algorithms are sometimes called classification 
algorithms, they perform no classification themselves. Rather they are used to build 
the classifiers, which are then used to classify new (otolith) samples from the test 
data. 

 

A graphical representation of dataflow through our system is shown in Figure 1, 

which shows the flow from each source dataset (where images are already 

represented as rotation-normalised outlines), through boundary transformation, 

model construction and testing. 



Whilst this study combines several complex methods of otolith boundary 
representation and data classification, in-depth knowledge of each of the methods is 
not required, and description of all transform methods and classification algorithms in 
detail would not be feasible. We therefore give brief overviews of methods used in 
the relevant sections, and refer to previous texts for further detail of methods. 

 

 
2.1 Otolith Datasets 

 
We were able to source three matched datasets of clupeid otolith images (one sprat, 
and two herring), each representing discrete paired spawning stocks which cannot 
easily be discriminated visually (e.g. by visual inspection of external morphology), 
two of which (herring sets) have previously been reported as having distinct otolith 
morphology (Burke et al. 2008; Mapp et al. 2013). 

 

 
 

Age- 
Set 

Contents of Set Samples Reference & Notes 

BB0 Age-0 Herring set. 
Celtic/Irish Sea 

40/class Trawls conducted by the 
Agri-Food and BioSciences 

BB1 Age-1 Herring set. 
Celtic/Irish Sea 

13/class 
Institute (AFBI) & the Marine 
Institute (MI) (Burke et al. 
2008) 

 

S0 Age-0 Sprat set. 40/class ICES Surveys 2013/2014. 
  North-sea/Western Channel (ICES 2013; ICES 2014). 

S1 Age-1 Sprat set. 25/class Age-0 set partially created 

  North-sea/Western Channel from age-1 samples using 

S2 Age-2 Sprat set. 
North-sea/Western Channel 

S3 Age-3 Sprat set. 
North-sea/Western Channel 

11/class 

13/class 

trace of the age-0 annuli 

 

H2 Age-2 Herring set. 11/class ICES survey 2008/2009. 
  North-sea/Thames (Mapp et al. 2013) 

H3 Age-3 Herring set. 
North-sea/Thames 

27/class  

H4 Age-4 Herring set. 
North-sea/Thames 

21/class  

H5 Age-5 Herring set. 
North-sea/Thames 

15/class  

 

Table 1: Table showing species, provenance and number of each ‘age-set’ and their sources. ‘Age- 

set’ is the descriptive identifier given to each set, e.g. BB1 refers to the age-1 partition of the Celtic- 

Sea/Irish-Sea Herring. See text for further explanations. 

 

Each datasets was subdivided into single-age subsets, creating ten ‘age-sets’ (Table 

1, Figure 1). This creates ten smaller stock discrimination problems which are 

assessed during this study. For example, we attempt to separate age-0 sprat from 

the North-Sea and Western Channel using each of the described transform methods 

combined with each machine learning algorithm, attempt to separate age-1 sprat 

from the North-Sea/Channel using each method etc. 



2.2 Segmentation/Boundary extraction 

 
Boundaries were extracted from otolith images using simple supervised thresholding, 

scripted in MATLAB software. Images were converted to greyscale and binarised 

using an automatically chosen threshold (Otsu 1975). Further refinement was 

attempted using histogram back-projection (Swain and Ballard 1991) with strict 

confidence thresholds. The resulting mask was then displayed, and the process 

supervisor could make interactive adjustments e.g.: change the initial threshold; 

discard the histogram refinement; or manually amend the mask. In extreme cases 

where the outline is poorly defined, the supervisor outlined the entire otolith 

manually. Due to otolith image variability across datasets, it was not possible to 

construct a uniform process to perform adequately on all sets without pre/post 

supervision. The sample sets were captured and processed by different research 

groups, and stored/preserved using a variety of techniques. Image capture was 

performed under variable lighting conditions and using different equipment, which is 

not currently standardised between otolith laboratories. Examples of image variability 

are shown in Figure 2. 

 
Masks are flipped and/or rotated so that the ventral edge is uppermost, the otolith 

rostrum to the left of the image. The major axis of the mask is calculated using 

MATLAB's ‘regionprops’ function, and used to align images so that all are normalised 

for rotation. Whilst this is the standard method of normalising outlines for Elliptical 

Fourier analysis, performing the normalisation prior to boundary extraction ensured 

that the same boundary orientation was used for each of the transform methods. 

This avoids any potential transform bias based on orientation of the boundary. 
 

Once standardised, each mask was processed using a morphological ‘closing’ to 

remove noise and smooth the edges. The boundaries were extracted by performing 

a logical XOR function between the denoised masks and their morphological dilation 

with a 3x3 structuring element (Gonzales and Woods 2002) which removes interior 

pixels. This results in 4-connected boundaries (where all pixels are adjacent to each 

other orthogonally) which were superimposed over the original images and displayed 

(so that corrections could be made). Otolith boundaries were then stored for further 

processing as series of ordered coordinate pairs, ordered anti-clockwise from the 

upper-leftmost points of the boundaries. 

 

 
2.3 Transform Selection and methods 

 
Before attempting to build classifiers with which to separate classes, it is often 

advantageous to represent otoliths in a more manageable manner through data 

transformation. An obvious first transform is to simply represent the images digitally, 

and then extract the outline of each otolith (Section 2.2). Using further data 

transforms allows representation of the otolith boundaries in different ways, often 

simplifying or reducing the information presented. For example, a simple method 



(tested in this study) measures shape indices such as the length and width, thus 

representing each otolith by just two numbers. 

 
Three ‘static’ or ‘non-data-adaptive’ transformation methods previously used for 

otolith shape analysis were selected (Bagnall et al. 2006). Static transforms are 

defined as those where the transformed version of each boundary is dependent only 

on that instance of transformation, and not on other samples in the dataset. For 

example, Principle Component analysis (PCA (Pearson 1901)) relies on knowledge 

of other samples and their classes in order to set parameters by which to transform 

each individual instance, and are therefore ‘data-adaptive’ or ‘non-static’. 

 
The application of individual transform methods to each of the single-age otolith sets, 

creates multiple ‘train/test’ sets which were used to build classifiers using a selection 

of learning algorithms. In total sixty train/test sets were created using these methods. 

This constitutes six sets for each of the ten single-age ‘age-sets’, seen under 

‘train/test sets’ in Figure 1. Half of the train/test sets held size or size and shape data 

(size-inclusive sets), the remaining half contained only shape data (size-exclusive 

sets). 

 

 
2.3.1 Curvature Scale-Space (CSS) 

 
Curvature Scale Space (Mokhtarian and Mackworth 1992) forms the basis for 

contour based shape descriptors as part of the MPEG-7 standard (Bober 2001; 

Zhang and Lu 2003; Zhang and Lu 2003). As such it is an ideal starting point for 

boundary based shape classification of otoliths and has been used for several other 

studies in this field (Abbasi et al. 1999; Parisi-Baradad et al. 2005; Jalba et al. 2006). 

Research has shown that CSS encoding can be an effective and robust (to noise, 

scale and rotation) method of matching query images to database instances, when 

combined with global parameters such as circularity and eccentricity (Abbasi et al. 

1999; Amanatiadis et al. 2011). 
 

The CSS process iteratively smooths a boundary contour until it is entirely convex. 

As each concavity disappears during the smoothing process, its location is recorded 

as both the point along the boundary from which it disappeared, and the smoothing 

iteration or ‘evolution’ which removed it. This produces a set of variables which can 

be projected onto the original boundary to show approximation of location and 

magnitude of boundary concavities. A simplified example of this projection 

(landmarking) can be seen in Figure 3 (smaller concavities not landmarked). 

 
For the purpose of this study we used a built-in-house CSS transform system (Mapp 

et al. 2013). Boundaries were first subsampled to five-hundred points, and 

transformed by the system using methods described by (Abbasi et al. 1999). This 

produced a set of maxima coordinate-pairs (distance along boundary, evolution 



magnitude) for each otolith, which were fully invariant to scale (size-exclusive). We 

constructed two datasets from the resulting transformed boundaries using only the 

largest seventeen (by evolution magnitude) maxima. As the learning algorithms 

require an equal number of indices per instance we only used the minimum number 

of maxima (17) held by any transformed boundaries in that image-set. The methods 

of ordering the data in the train/test sets are given below and an example shown in 

Table 2: 

 
 bou – CSS maxima co-ordinate pairs; ordered according to point along the 

boundary. (see Table 2) 

 evo – CSS maxima co-ordinate pairs; ordered according to evolution 
magnitude. 

 

Set of maxima feature-pairs extracted from example in Figure 3 
 

(27,81), (57,271), (108,58), (169,139), (218,121), (265,74), (323,68), (340,125), 
(365,89), (401,159), (447,113) 

 

ordering: by boundary (bou) 
27, 81, 57, 271, 108, 58, 169, 139 ... 
ordering: by evolution magnitude (evo) 
57, 271, 401, 159, 169, 139, 340, 125 ... 

 

 

Table 2: Showing the CSS feature pairs (point along boundary, evolution magnitude) for the boundary 

(top); the ordering of the pairs using boundary order, and evolution magnitude ordering methods 

(bottom). 

 
 

2.3.2 Elliptical Fourier Descriptors (EFDs) 

 
Elliptical Fourier descriptors are commonly used for class-separation by otolith 

boundary, and many studies use this method for stock discrimination (Bird et al. 

1986; Doering and Ludwig 1990; Castonguay et al. 1991). Burke et al. (2008) 

successfully discriminate two populations of herring using selected elliptical Fourier 

coefficients. However in contrast to Burke et al. (2008) we did not perform any 

statistical selection of harmonics/coefficients, as this was performed by the learning 

algorithms we employed. 

 
To transform the boundaries a modified version of MATLAB scripts for generating 

EFDs (available on the MATLAB file exchange website (Manurung 2011)) was used, 

generating harmonics for each boundary. As boundaries were pre-normalised for 

rotation at the extraction phase, we needed only normalise for translation, and 

normalise coefficients for scale. 

 
Each otolith boundary, when reconstructed using its first fifty Fourier harmonics, 

showed a mean pixel disparity between reconstruction and original boundary contour 

<1. We therefore generated only the first fifty harmonics for each outline and 

recorded the transformed boundaries both before and after scale-normalisation, so 



that both size-variant and size-invariant harmonics could be assessed. We use the 

generated harmonics to construct two train/test sets (per age-set) for classification: 

 

 Fou50 – First fifty Fourier Harmonics, non-normalised for scale (size- 
inclusive) ordered H1C1, H1C2, H1C3, H1C4, H2C1, ... , H50C4. Where H = 
Harmonic; C = Coefficient. 

 Fou50n – First fifty Fourier harmonics; ordered as above but normalised for 
scale. (size-exclusive) 

 

 

2.3.3 Shape Parameters (SPa) 

 
Each age-set was transformed using simple shape/size measurements of the 

boundary and its enclosed region (SPa transform). The majority of this study is 

conducted using MATLAB, and so we use the built-in region properties function 

(‘regionprops’) to generate the following metrics from the otolith mask (the ‘filled’ 

boundary): Perimeter Length; Area (of the enclosed region); Convex Area (the area 

of the convex hull); Solidity (Area/Convex Area); Height (of the calculated bounding 

box); Width (of the calculated bounding box); Extent (Area/(Height*Width)); Major 

Axis Length; Minor Axis Length; Eccentricity (ratio of the distance between the foci of 

the ellipse and major axis length) and Equivalent Diameter (of a circle with the same 

area). We discard any variables generated by the regionprops method which are not 

mentioned, as they are either unusable for classification or hold redundant data. Two 

train/test sets (per age set) were compiled using the transformed series. Each set 

contained size information for the boundaries (size-inclusive) and are denoted: 

 
 Box – Sub-selection of the SPa transform; Retaining only Height and Width. 

 

 STAT – Full Statistic block; ordered: Perimeter, Area, ConvexArea, Solidity, 

Height, Width, Extent, MajorAxisLength, MinorAxisLength, Eccentricity, 

EquivDiameter. 

 

 
2.4 Learning Algorithms 

 
The Train/test sets were used to build and test classifiers using a number of 

available algorithms to compare and assess the transformation methods. Whilst 

Curvature Scale Space has a unique matching algorithm, we proceeded to classify 

CSS transformed otoliths using the same algorithms as for the other train/test sets 

(created using EFDs/SPa) so that we directly compared transform methods and not 

the associated matching algorithm. 

 
Learning algorithms by which to train classifiers were selected from the Waikato 

Environment for Knowledge Analysis (WEKA (WEKA 2002)) and implemented using 



MATLAB's java interface. In this process each otolith from a set was removed 

sequentially, Classifiers trained using remaining otoliths in that set (the training set), 

before the removed otolith (the test set) was classified. This process, known as 

‘leave one out cross validation’ (LOOCV) is widely accepted as good practice within 

the machine learning community. 

 
There are a number of algorithms available. Each algorithm learns from, or 

processes, training data in its own way. Learning algorithms fall into two predominant 

categories, ‘supervised’ and ‘unsupervised’ learning. As with previous studies we 

concentrate on supervised learning, meaning that the class membership of otoliths in 

the training set is known by the learning algorithms we use. We build 540 classifiers 

using each of the 60 train/test sets described in conjunction with each of the 

following nine learning algorithms (using each algorithms default settings), they are 

denoted as: 

 
 NB – Naive Bayes (Lewis 1998) 

 BN – Bayesian Networks (Friedman et al. 1997) 

 Log – Logistic Regression (Le Cessie and Van Houwelingen 1992) 

 HP – HyperPipes (WEKA 2002) 

 J48 – J48/C4.5 (Quinlan 1993) 

 RaF – Random Forest (Breiman 2001) 

 IBk – k-Nearest Neighbours (Aha et al. 1991) 

 SMO – Support Vector machine (Platt 1999) 

 RoF – Rotation Forest (Rodriguez et al. 2006) 
 

Classification algorithms are further grouped according to similarity of methods used 

to construct classifiers. The algorithms above were chosen to cover a range of the 

classifier groups. Both Naive Bayes and Bayesian Networks algorithms belong to the 

Bayesian group of classifiers, which construct classifiers by explicitly applying Bayes' 

Theorem. Logistic Regression belongs to the regression group, which iteratively 

refines the classifier measures of error in predictions made by the classifier. 

Hyperpipes and k-Nearest Neighbour algorithms are instance based methods, also 

called memory-based as they compare new instances to those within the training 

data to calculate similarities with ‘previous’ cases. J48, Random forest and Rotation 

Forest are decision tree algorithms. Each constructs classifiers that make series of 

‘decisions’ based on new instances' variables (harmonic coefficients, CSS maxima 

etc.). Additionally, random and rotation forest algorithms also qualify as Ensemble 

Methods, where multiple (potentially) weaker classifiers are used independently, and 

where a further decision based on their predictions is used to classify the new 

instance. Finally Support Vector Machines are a kernel method where input data is 

used to create a higher dimensional information space which is then used to classify 

new instances. 



2.5 Statistical Testing 

 
To test whether otolith age, or retaining size information during transformation 

returns distinct results, we performed statistical testing on our results using two 

methods. 

 
Mann-Whitney U-tests were performed for results for each age-set (p>0.05). Size- 

inclusive transform results are assigned to one group, and size-exclusive results to 

the other group. Tests that reject the null hypothesis show significant difference 

between size-inclusive and size-exclusive methods for that age-set. 

 
N-way analysis of variance testing was performed, to determine which factors 

(learning algorithm, otolith age, boundary transformation) significantly impact 

classification accuracies. Associated post-hoc testing is used to graphically 

represent ANOVAN results. 

 

3 Results 
 
 

3.1 Relative Performance of Learning Algorithms 

 
When comparing learning algorithms across ages, no recognisable patterns were 

found, and results do not show any significant difference between learning 

algorithms used for modelling the data using any of our age-sets, and can be seen in 

Table 3 (p=0.7107). Figure 4 shows results of ANOVAN post-hoc testing for the 

learning algorithms across all age categories, and the average result (across 

learning algorithms) for classification of each train/test set is shown in Table 4. 
 
 

 Sum Sq d.f. Mean Sq F Prob>F 

age 55176.3 5 11035.3 81.93 0.0000 
transform 2795.5 5 559.1 4.15 0.0011 
algorithm 731.1 8 91.4 0.68 0.7107 
age*transform 18335.9 25 733.4 5.45 0.0000 
age*algorithm 2894.0 40 72.4 0.54 0.9911 
transform*algorithm 3324.1 40 93.1 0.62 0.9688 

Error 56034.5 416 134.7   

Total 142390.0 539    
 

Table 3: Results of N-way analysis of variance (ANOVAN) of all results across: otolith age, boundary 

transform method, and learning algorithm. Also shown are interaction tests between factors. 



3.2 Size-inclusive Vs Size-exclusive Transforms 

 
Table 3 shows that different boundary transform methods produce classifiers which 
return significantly different stock separation accuracies (p=0.00). Further variance 
testing of results shows that groupings of size-inclusive and size-exclusive transform 
results are also statistically distinct across all age categories (p=0.00). Checkmarks 
in Table 4 show age-sets that reject the null hypothesis (p>0.05) and therefore show 
significant difference between size-inclusive and size-exclusive transform results. 
These sets are plotted in Figure 5 and Figure 6 using solid markers; whilst those that 
accept the null hypothesis (that results between groups are indistinct) are shown 
using ‘open’ markers (both at p>0.05). 

 

 BB0 BB1 S0 S1 S2 S3 H2 H3 H4 H5 

bou 64.3 46.2 56.9 57.3 49.5 47.9 49.0 49.0 54.2 54.4 
evo 68.8 56.4 64.4 64.2 50.0 53.0 52.5 52.3 46.6 54.1 
Fou50n 81.5 54.7 60.1 68.0 47.5 63.2 42.9 49.0 54.2 53.3 
Fou50 81.9 61.1 61.7 76.7 34.8 53.4 50.5 45.5 43.9 52.6 
Box 98.5 79.5 65.0 85.8 56.6 46.2 46.0 45.7 47.6 45.9 
STAT 98.8 77.4 65.1 83.6 57.6 43.6 43.3 47.5 53.2 47.8 

Size Exc 71.5 52.4 60.5 63.2 49.0 54.7 48.1 50.1 51.7 54.0 
Size Inc 93.1 72.6 63.9 82.0 49.7 47.7 46.6 45.4 48.2 48.8 

U-test           

(5%)           
 

Table 4: Table showing average classification results (averaged over algorithms) for each train/test 

set. Checkmarks show age-sets where size-inclusive and size-exclusive methods were distinct from 

one another using U-tests (p>0.05). Also shown are average classification accuracies over size 

inclusive/exclusive methods for each age-set. 

 

Figure 5 shows the average rank of size-inclusive and size-exclusive methods by 

age for each of the single-age image sets. For the younger age-sets, size-inclusive 

transform methods produce significantly better results than size-exclusive, or shape- 

only methods. As the age of the samples increases, the average rank of size- 

inclusive transforms increases while the rank of exclusive methods decreases; this 

proceeds until exclusive (shape only) methods perform better on average (have 

lower ranks) than size-inclusive methods. 

 
However, whilst at age-3 to age-5, size-exclusive methods perform better than size- 

inclusive methods, the results themselves are not significantly different (between 

size inclusive/exclusive methods). Figure 6 shows average classification accuracy by 

age for each of the image sets. Whilst at higher ages size-exclusive methods do 

appear to perform better (than size-inclusive methods), the results are not as 

significant as those for younger image sets and perform only marginally better than 

random assignment of class. 



3.3 Relative Performance by Otolith Age 

 
N-way analysis of variance including interaction tests (Where potentially interacting 

factors are adjoined by a * in Table 3), shows strong interaction between transform 

method and sample age (p=0.00), whilst age itself shows as contributing most to 

classification accuracy. Interaction between age and transform methods is 

comparable (p=0.00) when transform methods are grouped into size 

inclusive/exclusive classes, and results of size inclusive/exclusive post-hoc testing 

can be seen in Figure 7 (combined and modified for clarity) where it can be seen that 

as age increases, the relative positions of size-inclusive and size-exclusive 

transforms reverse. 

 
Figure 8 illustrates post-hoc ANOVAN testing by age. It shows that classification of 

younger otoliths (ages 0/1) returns results statistically distinct from each other and 

from results using older samples (age 2+). Results of age 2+ test are indistinct (from 

each other). 

 

4 Discussion 

 
Our results show significant differences between size-inclusive and size-exclusive 

transform methods for otolith discrimination, depending on the age-category of 

otoliths modelled, demonstrating that type of transform must be considered when 

modelling otolith boundaries. We also show that the age of the sample otoliths 

impacts results when single-age sets are used to construct and test classifiers 

regardless of the classification methods used in this study. Analysis of our learning 

algorithms was limited given the difference in sizes of our age-sets; however we 

demonstrate that no significant difference exists between algorithms for these 

particular problem sets. Further analysis using consistent dataset sizes may yield 

better results in this area. 

 
Results for the age-0 and age-1 sets show a significant difference between size- 

inclusive and size-exclusive transformation methods. Specifically, size based 

methods achieve up to 100% accuracy for age-0 herring (using individual 

classification algorithms), and averaging as high as 93.0% across all learning 

algorithms for size-inclusive transform methods on the same age-set. These results 

are far better than for size-exclusive transforms of the same set which achieved up 

to 91.3% and averaged 71.8%. This disparity in results between size-inclusive and 

size-exclusive methods can be seen across all age-0 and age-1 sets; indicating that 

for younger otolith samples, size is perhaps a more useful metric for stock 

discrimination. 

 
Differences in the shape and size of otoliths as they grow are regulated by both 

endogenous and exogenous factors (Lombarte et al. 2003; Vignon and Morat 2010; 

Mille et al. 2015), with a tendency towards increasingly complex shape as the fish 



ages. Our study shows clear differences in classification potential between using 

shape, and classification using size indices, subject to age of the samples. This 

observation supports previous studies where exogenous factors (such as separate 

spawning grounds) were found to influence early growth, with later growth being 

constrained by endogenous factors (Lombarte et al. 2003). Endogenous effects are 

more likely to influence shape-based classification performance of more mature 

specimens, potentially introducing additional boundary curve complexity (Vignon 

2012; Sadighzadeh et al. 2014) as a result of secondary growth (Morales-Nin 2000). 

 
The use of size may be an obvious method when distinguishing between stocks that 

spawn at different times of the year, where we expect age-specific inter-class sizes. 

However, even when metrics recorded using the SPa transform method were 

normalised (by otolith length), we achieve similar result patterns and accuracies. For 

the Irish/Celtic Sea dataset, the larger otoliths of the two classes (Celtic-Sea herring) 

are from fish that spawn later in the year than the smaller class (Irish-Sea) but have 

a much faster initial growth rate. Further investigation is therefore required to 

determine the age at which size-inclusive methods become incapable of separating 

spawning components for this particular discrimination problem. 

 
Whilst for age-0 and age-1 sets we return favourable results, both in terms of 

classification accuracy and disparity between inclusive/exclusive methods; we find 

that as sets increase in age, classification accuracies reduce, becoming comparable 

to random assignment of class. For the eldest of our age categories size-inclusive 

and size-exclusive transform methods do appear to perform differently, however 

statistical testing using the full result suite shows that these too are indistinct. Shape 

may therefore be the primary factor to consider for stock classification using otolith 

outlines for older fish, but further testing should be carried out in this area, as after 

age partitioning, the datasets used in our study were small and inconsistent in size 

across ages-categories. Testing using larger sets may not show such a large drop in 

classification accuracies, and may clearly credit or discredit the change from size- 

inclusive to size-exclusive methods, both for the stocks studied here, and for 

additional stocks and/or species. 

 
In machine learning, parameter calculations should be performed using a separate 

training set (Ambroise and McLachlan 2002; Cawley and Talbot 2010). Failure to use 

a separate set to calculate parameters risks building classifiers that only represent 

the data used to create them (over-fitting), rather than building generic classifiers. 

For example, when constructing a classifier using PCA the components should be 

calculated using a single set of data (otoliths), and the classifier built using a second 

set (using the components calculated using the first set). Testing the constructed 

classifier is then carried out using a third set. By using only static transform methods 

in this study, the need to calculate parameters was avoided. This was an important 

consideration as our age partitioned datasets are small. Further division required 

during validation of non-static methods would result in smaller sets with which to 

build and test classifiers, reducing robustness. 



Results achieved using EFDs for the age-0 partition of the Irish/Celtic Sea herring 

set (Burke et al. 2008) did not match their published figure of 97%. However, this is 

largely down to two factors. First we used only a portion of the original dataset, and 

we split the portion further into two single age-sets; whereas the results reported by 

Burke et al. (2008) were based on the larger age-0 set, boosted by age-0 ring traces 

from the age-1 otoliths. Second we remove test instances from the set prior to 

parameter selection (regression analysis) and to building classifiers; whilst the 

original work performs parameter selection on the full set (including test samples). 

The validation in this work therefore reduces accuracy, but goes some distance to 

reduce over-fitting classifiers to the training set, and would produce classifiers which 

are more reliable when classifying further otolith samples. Our results are consistent 

with those in the previous work however, confirming that it is certainly possible to 

separate stocks of juvenile herring using Fourier analysis. 

 
The variable numbers of samples per class during these tests may introduce some 

bias among test results, whereby smaller training sets produce less robust 

classifiers. However, when compared with previous classifications of the same 

dataset (Mapp et al. 2013) Curvature Scale Space methods performed to a similar 

degree when separated into single-age experiments, showing no significant change 

in accuracy, despite the training sets used here being only a fraction of the number 

used previously. Further experiments using larger training sets may yield increased 

classification accuracies however, and may show the curvature transform method to 

be an important tool when classifying datasets containing otoliths from older fish. 

 
Whilst most of our results appear to be correlated with tests on other sets; our age-0 

sprat tests return much lower classification accuracies, and size-inclusive/exclusive 

methods are not statistically distinct. This is despite the set being the same size as 

BB0 (40 instances per class). This may be due to one class of the set being 

comprised of age-0 ring traces from age-1 otoliths, in the absence of available age-0 

samples for that task. The drop in accuracies may be down to several reasons in this 

instance: accuracy of outlining; or visible rings being inconsistent or uncorrelated 

with age-0 growth. Further, age-0 ring extraction has yet to be validated for this 

species (Torstensen et al. 2004). 

 
Results from the single age testing show a significant reduction in classification 

accuracies as the age of otoliths used to build and test classifiers increases, 

regardless of the methods used to transform the otolith data. However the class 

sizes of age 2, 3 and 5 sets used in this study were relatively small, and therefore, 

classification accuracies may be impacted by insufficient training set sizes. Further 

testing with larger datasets is required to establish whether either method is able to 

perform with adequate certainty to allow clear stock discrimination in older fish, or 

whether clear results are the reserve of younger otoliths. 

 
Poor quality of images is often a significant problem for shape orientated studies 

(Gonzales and Woods 2002) and introduced additional complexity in this study. 



Initial segmentation/outlining of samples proved difficult due to difference in otolith 

storage/preparation, and without a great deal of supervision from an expert reader 

would not have been possible. The variability of otolith image capture methods, 

therefore, introduces additional complexity that may be reduced or eradicated by 

improving the quality of images and increased standardisation. 

 

5 Conclusions 

 
We show that separation of young clupeids is possible using size-inclusive or size- 

only transformations with little or no feature selection. Whilst classification of juvenile 

otoliths is certainly possible using complex transformations such as Fourier or 

Curvature Scale Space, the addition of simple measurements such as otolith length, 

height or aspect-ratio, or refraining for performing scale normalisation of Fourier 

harmonics, may increase classification accuracies. The importance of early growth 

for classification supports methods where early incremental growth are used for 

stock separation. 

 
The age of otoliths used for classification studies is likely to impact classification 

accuracies. Experiments using mixed age otoliths may suffer due to the differing 

defining feature (shape or size) depending on otoliths age composition of the 

dataset. This impact may be overcome by separating samples and applying separate 

classification methods, or potentially by performing size-inclusive tests using inner 

ring traces for the older otoliths, where ring extraction has been validated. 
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Figure 1: Experimental data flow through, from normalised otolith outlines (datasets) to classification 

results. Each age-set was transformed using each transform method to create individual train/test 

sets for each age-set (60 in total). Each train/test was used in turn with each of the algorithms to build 

and test classifiers using leave one out cross validation (LOOCV). 

 

Figure 2: Three examples with overlaid boundary. Showing variability in image qualities obtained for 

this study. Samples from (l-r) (Burke et al. 2008), (ICES 2013), (Mapp et al. 2013). The left image 

shows consistent background and a well-defined otolith edge. The central image shows an instance 

of severe background texturing. On the right an image showing examples of foreground noise, as 

bubbles trapped in the storage medium. 

 

Figure 3: Image showing the CSS feature points extracted; as point along boundary, and annotated 

with evolution (curvature) magnitude. Only the eleven points with largest evolution magnitude are 

shown in this example. 

 

Figure 4: Learning algorithms – Results of post-hoc ANOVAN testing showing marginal mean 

classification accuracies for different learning algorithms. 

 

Figure 5: Average rank of size-inclusive and size-exclusive transform methods for each age-set. Tests 

where size-inclusive/exclusive results are statistically different (5%) are shown using solid markers. 

 

Figure 6: Average classification result of size-inclusive and size-exclusive transform methods for each 

age-set. Tests where size-inclusive/exclusive results are statistically different (5\%) are shown using 

solid markers. 

 

Figure 7: Results of post-hoc ANOVAN testing showing interaction between sample age and 

transform grouping (size-inclusive/exclusive). Modified/coloured for clarity, size-inclusive results (red), 

size-exclusive (blue). 

 

Figure 8: Results of post-hoc ANOVAN testing showing sample age impact on classification 

accuracies. Age 0/1 tests are statistically distinct from one another. 



 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 



 

 



 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 



 

 



 
 



 
 


