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Abstract  

Cluster analysis of functional data is finding increasing application in the field of medical 

research and statistics. Here we introduce a functional version of the forward search 

methodology for the purpose of functional data clustering. The proposed forward search 

algorithm is based on the functional spatial ranks and is a data-driven non-parametric method. 

It does not require any preprocessing functional data steps, nor does it require any dimension 

reduction before clustering. The Forward Search Based on Functional Spatial Rank (FSFSR) 

algorithm identifies the number of clusters in the curves and provides the basis for the 

accurate assignment of each curve to its cluster. We apply it to three simulated datasets and 

two real medical datasets, and compare it with six other standard methods. Based on both 

simulated and real data, the FSFSR algorithm identifies the correct number of clusters. 

Furthermore when compared with six standard methods used for clustering and classification 

it records the lowest misclassification rate. We conclude that the FSFSR algorithm has the 

potential to cluster and classify functional data. 
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1. Introduction 

In many medical applications, the observed data may be assumed to have arisen from a 

continuous curve or higher dimensional surface that is described by some function. Thus the 

glucose levels as measured by a continuous glucose monitor or the tracings generated by an 

electroencephalogram of a patient are both examples where a continuous function may be 

used to help describe the underlying data. 

 

In both of these examples a single function is assumed to underlie the data for an individual 

patient so that for a sample of patients there is a sample of functions in which the data are 

observed at particular points. In this regard the function is the element of interest [1] and 

analysis of the shape of these functions can help inform decisions on classification and 

prediction [2,3]. 

 

Functional data analysis describes the statistical methods and techniques that are used to 

explore functional data [1]. The random variable is a functional, that is, a space of functions, 

defined on some continuous interval such as time [1,2]. Thus each realization of the variable 

is a function providing infinitely dimensional data, and the space of functions is generally 

assumed to be a Hilbert space [4]. Although our concern here will be with univariate 

functional data, sometimes multivariate functional data may be of interest [1,5,6]. In practice, 

whichever the type of data, the functions are often sampled at a finite set of points.  

 

In many situations, we need to know the hidden structure that explains how these curves and 

functions vary from one group to another. Thus, in the study of childhood obesity, growth 

curves of body measurements may be used to group children using a cluster method [7]. One 



4 
 

such cluster method, k-means clustering, has been used to identify patterns of multi-morbidity 

and check whether these patterns are stable over time for a cohort of older people [8]. 

 

For many of the cluster methods used on functional data, the number of clusters is assumed to 

be fixed a priori. This makes determining the optimal number of clusters in the functional 

data important and motivates this research. Thus, the method proposed here can be used to 

identify the number of clusters and is a development on the forward search originally used to 

identify outliers in multivariate data [9, 10] and later, as a clustering method [11].  

 

Here we use a forward search based on functional spatial ranks to analyze functional data. 

This extends previous work that introduced the forward search based on spatial ranks for the 

cluster analysis of multivariate data [12]. The functional forward search introduced here is 

based on the random start forward search [13], and can be considered a new raw-data method 

that obviates the need for dimension reduction, since it performs the clustering directly on the 

discrete observation of the curves or functions. 

 

It is a non-parametric method that can be used to determine the number of clusters, and 

assign each curve to its cluster. When compared with existing methods using different 

numerical examples from real data, it is shown to be an effective tool in clustering analysis. 

 

The paper is organized as follows. In section 2, we discuss the curse of dimensionality in the 

traditional random start forward search method and the potential of using the forward search 

based on functional spatial ranks. In section 3, we propose the functional forward search 

algorithm based on functional spatial ranks. In section 4, we compare the proposed method 
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with other functional data clustering methods using numerical examples before ending with 

the discussion in section 5.  

 

2. The curse of dimensionality in the traditional forward search 

The term ‘‘curse of dimensionality’’ was introduced by Bellman [14]. It refers to all 

problems caused by the analysis of high-dimensional data and, in general, arises from a 

relative sparsity of observations. For example, in order to run the traditional forward search 

algorithm based on Mahalanobis distances, we need to choose an initial subset S(m), with m 

= d+1 for some dimension, d. Practically, this is not difficult if the number of available 

observations is large compared to the number of variables, although the traditional forward 

search algorithm becomes less efficient as the dimension d grows. 

 

In contrast, when the number of observations is small compared to the number of variables it 

is not possible to estimate the variance-covariance matrix so the algorithm cannot proceed. 

Strictly, the traditional forward search based on Mahalanobis distances [11] cannot be applied 

to functional data owing to the random variables taking values into an infinite dimensional 

space. However, in practice the data consist of curves that have been sampled at a finite set of 

points, hence it is still possible to use forward search methods providing the dimension, d is 

less than the underlying sample size. 

 

The forward search, like all multivariate methods based on Mahalanobis distances, suffers 

when the dimension grows. Since it starts with subsets of size d + 1 it is unable to identify 

clusters of a size less than d. Thus, when both the number of variables is very big and some 

of the clusters are of a small size, this algorithm will lead to information loss about the 

number of clusters to be determined.  
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In contrast, using a forward search based on spatial ranks for clustering multivariate data 

overcomes this issue [12], as it can be started with subsets of any size since the rank of any 

observation 𝐱 ∈  ℝd with respect to a single data point is always 1, [12]. Similarly, we can 

use the non-parametric forward search based on the functional spatial ranks for clustering 

functional data, even though functional data is intrinsically different from multivariate data. 

This algorithm is described in more detail in the next section. 

 

3. The Functional Forward Search Based on Functional Spatial Ranks 

In this section we propose a functional forward search algorithm based on functional spatial 

ranks. Part of the novelty of this algorithm is that unlike the traditional forward search 

algorithm it works with functional data. Furthermore as a raw data method it determines the 

number of clusters from the data without any need for parameter estimation. A key element is 

the need to extend 𝑠𝑖𝑔𝑛(𝐱) and 𝑅𝑎𝑛𝑘(𝐱) naturally from ℝ𝑑 to any infinite-dimensional 

Hilbert space ℍ. We start with a review of the relevant literature before defining the 

functional sign and spatial ranks function. 

  

3.1 The Functional Spatial Rank 

A spatial approach to multivariate and functional data appeared as early as 1983, when the 

spatial median was used for robust location estimation for two dimensional spatial data [15]. 

The development of non-parametric geometrical approaches led to the introduction of 

multivariate spatial quantiles [16] and the multivariate spatial depth function [17]. 

 

The functional spatial depth (FSD), proposed by Chakraborty and Chaudhuri [18], extends 

the notion of spatial depth from d-dimensional multivariate space ℝ𝑑 into infinite 
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dimensional spaces. As a result, the multivariate spatial depth function, 𝑆𝐷(𝐱) = 1 −

‖𝔼{(𝐱 − 𝐗) ‖𝐱 − 𝐗‖⁄ }‖, where 𝑆𝐷(𝐱) is the spatial depth of 𝐱 ∈ ℝ𝑑 with respect to the 

probability distribution of a random vector 𝐗 ∈ ℝ𝑑, can be extended naturally to any Hilbert 

space ℍ. Thus, for any 𝐱 ∈ ℍ and a random element 𝐗 ∈ ℍ, the 𝐹𝑆𝐷(𝐱) is defined based on 

same expression as SD, where ‖. ‖ is the usual norm in ℍ and the expectation 𝔼 is estimated 

based on the Bochner integral [18, 19].  

 

The spatial depth function has been used to provide a nonparametric description of functional 

data, by using the functional version of spatial depth to identify some nonparametric 

descriptive features such as sample median and quantile curves [20]. 

 

The functional spatial median has been of particular interest to investigators. For example, 

Cardot et al [21] used an averaged stochastic gradient algorithm to compute the functional 

spatial median in a Hilbert space in a fast way. And this functional spatial median has been 

used as a robust measure of center for a data set of electricity loading curves [22]. The 

kernelized functional spatial depth (KFSD) has been proposed [23] for the classification of 

functional data. It is based on the functional spatial depth introduced by Serfling and 

Wijesuriya [17]. In addition, the functional K-nearest neighbour classifier has been used in 

this work as a benchmark procedure. 

 

Suppose that 𝓧 is a random variable with values in an infinite dimensional space or 

functional space. For instance, the stochastic process 𝓧 = {𝓧 (t); 𝑡 ∈ 𝒯}; where 𝒯 ⊂ ℝ is a 

good example for the functional variable 𝓧, which takes values in some Hilbert space ℍ of 

functions defined on some set 𝒯, where 𝒯 represents an interval of time, of wavelengths or 

any other subset of ℝ [1]. We now define the functional spatial rank. Suppose that 
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{𝐗1(𝑡), 𝐗2(𝑡), … , 𝐗𝑛(𝑡)} is a functional dataset based on the functional random variables 

{𝓧1(𝑡), 𝓧2(𝑡), . . . , 𝓧𝑛(𝑡)} that take values in ℍ, and 𝑡 is defined on some continuous 

interval 𝒯, then the population functional spatial rank function for the curve 𝐱(𝑡) ∈ ℍ is 

defined as:  

 𝐹𝑆𝑅𝐹(𝐱(𝑡)) = 𝔼 [
𝐱(𝑡) − 𝐗(𝑡)

‖𝐱(𝑡) − 𝐗(𝑡)‖
]                                             (1)  

where ‖𝐱(𝑡)‖ is the 𝑙2 norm: 

 ‖𝐱(𝑡)‖ = {∫ {𝑥(𝑡)}2
𝒯

 𝑑𝑡}
1

2⁄

,                                                       (2)  

for an infinite dimensional space. 

 

In practice, the curves are observed at a finite set of points, so that there are discrete 

observations for each sample path 𝐗𝑖(𝑡) at a finite set of knots {𝑡𝑖𝑗: 𝑗 = 1, … , 𝑚𝑖}. Thus we 

have 𝐗𝑖(𝑡) = {X(𝑡𝑖1), X(𝑡𝑖2), … X(𝑡𝑖𝑚𝑖
)}, and for shorthand X𝑖𝑗 = X(𝑡𝑖𝑗). Here, we consider 

regularly sampled curves, where the evaluation points 𝑡 ∈ 𝒯 are fixed for each curve, with 

the same length and knots, so that {𝑡𝑖𝑗: 𝑗 = 1, … , 𝑚} and 𝑖 = 1, … , 𝑛. The corresponding 𝑙2 

norm of 𝐹𝑆𝑅𝐹𝑛
 denoted by 𝐹𝑆𝑅𝑁𝐹𝑛

 is given by ‖𝐹𝑆𝑅𝐹𝑛
(𝐱(𝑡))‖. Thus, if 

{𝐗1(𝑡), 𝐗2(𝑡), … , 𝐗𝑛(𝑡)} is the set of curves regularly sampled at a finite set of observations, 

then the sample functional spatial rank of 𝐱(𝑡) with respect to 𝐗1(𝑡), 𝐗2(𝑡), … , 𝐗𝑛(𝑡) is given 

by: 

𝐹𝑆𝑅𝐹𝑛
(𝐱(𝑡)) =  

1

𝑛
∑

𝐱(𝑡) − 𝐗𝑖(𝑡)

‖𝐱(𝑡) − 𝐗𝑖(𝑡)‖

𝑛

𝑖=1

  .                                             (3) 

 

As a vector the functional spatial rank provides information on the centrality of an observed 

curve and its direction. The 𝑙2 norm‖𝐹𝑆𝑅𝐹𝑛
(𝐱(t))‖, which is bounded to lie in the interval 
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[0,1), provides a measure of “distance” of 𝐹𝑆𝑅𝐹𝑛
(𝐱(t)) from the spatial median of the 

functional data. Thus, when the ‖𝐹𝑆𝑅𝐹𝑛
(𝐱(t))‖ is close to zero, the 𝐱(t) will be close to the 

spatial median. In contrast, if ‖𝐹𝑆𝑅𝐹𝑛
(𝐱(t))‖ is close to one, the 𝐱(t) could be an outlier 

curve and potentially provides the basis for an approach to outlier detection. 

 

Clearly it requires deciding upon a suitable cut-off for an outlier and one approach is to trim 

the sample of a proportion of curves with the highest 𝐹𝑆𝑅𝑁𝐹𝑖
(𝐱(t)). Thus trimming the 

sample of the top 1%, 2%, 5%, and 10%, has been used to investigate the stability of the 

clusters when a parametric model-based clustering approach has been used [24,25].  

 

A simpler approach is to derive the cut-off, C based on the upper whisker of the boxplot of 

FSRNFi
(𝐱(t)) using the formula C =  Q3 + (1.5 ∗  IQR) where Q3 is the upper quartile and 

IQR is the interquartile range (Q3 − Q1) when Q1 is the lower quartile. Those curves with 

FSRNFi
(𝐱(t)) exceeding C are then considered outliers and this is the approach used here. 

 

In principle, the functional spatial ranks can be applied for both regularly and irregularly 

sampled curves, where the functional spatial ranks are supposed to be calculated in general 

concept using the integrations instead of the summations quantities, then with a formal 

procedures and methods we can estimate the integral functions and get the estimated values 

of the functional spatial ranks. Alternatively, we may use some smoothing functions or spline 

coefficients to get equaled length of the irregularly sampled curves, and then we can use the 

above equations to obtain the functional spatial ranks of the irregularly sampled curves. 
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3.2. Functional Spatial Ranks Classifier 

Before introducing the forward search algorithm we consider the problem of classifying 

functional data to particular clusters. In general, it is important to assess whether the curves 

have been appropriately assigned to a cluster and whether they remain unassigned to any 

cluster. A further problem that may arise with some algorithms classifying functional data is 

when some curves are assigned to more than one cluster. 

Clearly it is desirable to have a mechanism of assigning each curve in the functional data to 

an appropriate cluster. Here we use a nonparametric classifier based on the functional spatial 

ranks that is applied after determining the number of clusters. Assuming we have k groups of 

observations, with population distributions F1,F2,…,Fk,  we may assign 𝐱(𝑡) to the group in 

which the 𝑙2 norm of the functional spatial ranks based on Fi is smallest such that 

  

𝐹𝑆𝑅𝑁𝐹𝑖
(𝐱(𝑡)) = min

1≤𝑗≤𝑘
𝐹𝑆𝑅𝑁𝐹𝑗

(𝐱(𝑡))                                               (4) 

 

where 𝑖 ≠ 𝑗, 1 ≤ 𝑖 ≤ 𝑘. Thus the forward search algorithm that follows identifies the number 

of clusters then applies the classifier in (4) to assign each curve to the most suitable cluster. 

 

3.3 The Forward Search Based on Functional Spatial Rank (FSFSR) Algorithm 

Let 𝑆(𝑚) be a subset from the observed curves of size m. Define the functional spatial ranks 

of an individual curve corresponding to the subset 𝑆(𝑚)  as, 

 

𝑟𝑖(𝑚) =  
1

𝑚
∑

𝐗𝑖(𝑡) − 𝐗𝑗(𝑡)

‖𝐗𝑖(𝑡) − 𝐗𝑗(𝑡)‖

𝑚

𝑗∈𝑆(𝑚)

 ,                                                (5) 
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where 𝑖 = 1, … , 𝑛.  The functional forward search algorithm with functional spatial ranks 

(FSFSR) is as follows: 

 

1. Selecting random starting points the search is started with an initial subset S(𝑚) with 

size m = 3.  

2.  Calculate the functional spatial ranks 𝑟𝑖(𝑚) of the curves in the subset 𝑆(𝑚). 

3.  Compute 𝑟𝑚𝑖𝑛(𝑚), where 𝑟𝑚𝑖𝑛(𝑚) = min ∥ 𝑟𝑖(𝑚) ∥;  𝑖 ∉ 𝑆(𝑚), where ‖. ‖ is the 

Euclidean norm, such that ∥ 𝑟𝑖(𝑚) ∥ =  √𝑟𝑖(𝑚)1
2 + 𝑟𝑖(𝑚)2

2 + ⋯ + 𝑟𝑖(𝑚)𝑡
2. 

4.  Grow the subset 𝑆(𝑚) to 𝑆(𝑚 + 1) by taking 𝑚 + 1 curves 𝑿𝑖(𝑡)’s, which 

correspond to the smallest 𝑚 + 1  norms ∥ 𝑟𝑖(𝑚) ∥’s, , where ‖. ‖ is the Euclidean 

norm as defined in step 3. Set 𝑚 = 𝑚 + 1. 

5. Repeat 2−4 until 𝑚 = 𝑛 − 1. 

6. Plot 𝑟𝑚𝑖𝑛(𝑚) against the corresponding subset sizes, 𝑚 to get the forward plot and 

identify the number of clusters. 

7. Identify the subset size by finding the highest 𝑟𝑚𝑖𝑛(𝑚) around each peak and set 𝑚 as 

the cluster size. To specify the membership of each group, we may stop the search at 

each peak and set the curves included in 𝑚 as the cluster’s membership. 

8. Apply the functional spatial ranks classifier in section 3.2 to confirm the assignment 

of each curve and allocate the unassigned/incorporated curves to the proper group. 

 

When the curves in 𝑆(𝑚) belong to the same cluster, the ∥ 𝑟𝑖(𝑚) ∥ for a curve 𝐗𝑖(𝑡) in that 

cluster is expected to be smaller than that for a curve from a different cluster. Furthermore as 

𝑆(𝑚) grows, we expect to see a jump in the magnitude of the rank function when the nearest 

point to 𝑆(𝑚) is from a different cluster. So, we may determine the number of clusters and 

their sizes in the functional data using the forward plot based on the functional spatial ranks. 
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4. Numerical Examples 

In this section we apply the FSFSR algorithm proposed in 3.2 to some numerical examples. 

The first three examples are simulated data generated from three different models. The final 

two examples use data from real datasets. 

 

To assess the performance of the FSFSR algorithm, it is important to recognize that the 

algorithm both identifies the number of clusters and assigns all the data to an appropriate 

cluster. Thus any performance metric must capture both of these elements and penalise the 

performance when either it identifies an incorrect number of clusters or wrongly assigns data 

to a cluster. Thus, we use the following misclassification rate, which is similar to the 

classification error proposed by Meila [26]. 

 

For n data points, suppose there are r true classes T = {T1, T2, …, Tr}, and k clusters based on 

the clustering algorithm C = {C1, C2, …, Ck}. And define the two vectors A and B such that  

A ={1,2,...,k} and B = {1,2,...,r}. Then the misclassification rate, H can be defined as  

H = 1 − (
1

𝑛
) 𝑚𝑎𝑥 ( ∑ |𝐶𝑖 ∩ 𝑇𝑗|

(𝑖,𝑗)∈𝐴×𝐵

)                                        (6) 

 

with the condition that if the two terms|𝐶𝑖 ∩ 𝑇𝑗| and |𝐶𝑡 ∩ 𝑇𝑢| appear in the sum then i=t if 

and only if j=u. This guarantees the rows and columns of the matrix A × B contribute at most 

one element to the summation. Consequently, the term |𝐶𝑖 ∩ 𝑇𝑢| is set to zero if the term 

|𝐶𝑖 ∩ 𝑇𝑗|is one of the terms that maximizes the sum in parentheses. For k = 1, the sum would 

contain only one term. 
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The adjusted Rand Index (ARI) is also popular metric used for measuring the performance of 

clustering algorithms and it has been included here for completeness [27]. In contrast to H, 

which compares clusters by matching sets, the ARI compares clusters by counting the pairs 

of points in which the clusters agree or disagree. It also corrects for the expected value of the 

unadjusted Rand Index, where the expected value is based on a random choice of entries in 

the contingency table when the column and row totals are fixed.  

 

For comparison, we considered six other methods for identifying the number of clusters and 

cluster sizes. Note in what follows the term in brackets, after the method name, corresponds 

to the function and package in R. The first method is model-based clustering (mclust) [28] 

based on a Gaussian mixture model (GMM) [29]. The number of clusters is determined by 

the model which returns the largest Bayesian information criterion (BIC).  For the second 

method, the K-means [30], the number of clusters needs to be set in advance, and here it 

corresponds to the number which returns the largest CH index [31]. The third method is the 

high dimensional data clustering method (HDDC) [32]. It is a model-based clustering method 

also based on the GMM, where the number of clusters corresponds to the model which 

returns the largest BIC. The fourth method is the mixtures of probabilistic principle 

component analysers (MixtPPCA) [33] which again uses the model with the largest BIC to 

determine the number of clusters. The partitioning around medoids (PAM) [34] is the fifth 

method considered. Here the number of clusters is selected based on the optimum average 

silhouette width [35]. Finally, the sixth method is the functional high dimensional data 

clustering method (FunHDDC) which is an adaptive method that uses the functional data 

directly and chooses the number of clusters based on the largest BIC value [36]. 
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The first five methods were implemented as a raw-data method with discretized data and as a 

filtering method based on 10 spline coefficients. All six methods were applied to the three 

simulated and two real datasets and compared with the FSFSR algorithm using the number of 

clusters identified, H [26] and ARI [27]. 

 

For the K-means [30] and HDDC [32] methods the initial partitioning of the data points is 

random, which may result in the values of the performance measures varying between 

different runs of the algorithm. For these cases, the algorithms were repeated 1000 times and 

the average over the repetitions has been calculated.   

 

4.1 Simulated Data Examples 

The first simulated data (model 1) consists of two groups. The first group includes curves that 

are generated from the process:   

𝑋(𝑡) = 𝑚0(𝑡) + 𝑒(𝑡),                                                                (7) 

 

with mean function 𝑚0(𝑡) = −35(1 − 𝑡)𝑡1.4 and 𝑒(𝑡) is a Gaussian process with mean 0 and 

𝐶𝑜𝑣(𝑋(𝑠), 𝑋(𝑡)) = 0.3 exp(−|𝑠 − 𝑡|/0.4). Here, 𝑡 is a sequence of numbers between 0 and 

1 with length 100. The second group consists of the generated curves from the process: 

𝑌(𝑡) = 𝑚1(𝑡) + 𝑒(𝑡),                                                                (8) 

 

where the mean function 𝑚1(𝑡) = −35𝑡(1 − 𝑡)1.4, with both Gaussian process 𝑒(𝑡) and 

𝐶𝑜𝑣(𝑋(𝑠), 𝑋(𝑡)) are defined as in 𝑋(𝑡) in (6). So, the mixture model 𝑍(𝑡) consists of the two 

groups 𝑋(𝑡) and 𝑌(𝑡) such that, 𝑍(𝑡) = 𝑝 𝑌(𝑡) + (1 − 𝑝) 𝑋(𝑡), where 𝑝 is the mixing 

proportion, which is the probability of an individual curve being generated by specific  

process. 
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A mixing proportion of 0.25 was used to generate the two clusters with a sample size n =160 

curves. The black curves, in figures 1(a), represent the first group, and the red curves 

represent the second. In figure 1(b), the mean function of model 1 is given. As the sample 

size is 160 and the mixing proportion is 0.25, the first cluster includes 40 curves and the 

second cluster includes 120 curves. Panel (c) of figure 1 gives the forward plot of the 

simulated functional data based on the functional spatial ranks.  It can be seen from panel (c), 

there are two maxima at sizes m=38 and 120, which suggests the data have been correctly 

divided into two groups. To identify the membership of the two clusters, we stopped the 

algorithm at m = 38 and m = 120. Before applying the classifier in step 7 of the algorithm, 

two curves remained unassigned. These were assigned to each cluster after applying the 

classifier resulting in two clusters of size 39 and 121 respectively. Comparing the clusters 

label with the simulated classes label 159 curves out of 160 have been assigned correctly. 

This gives an H of 0.00625, and an ARI of 0.973.  

 

In table 1 the performances of all the algorithms are summarized. Many of the algorithms 

identified the correct number of clusters and achieved perfect classification. However, three 

algorithms (mclust, HDDC and MixtPPCA) when implemented as raw-data methods with 

discretized data returned an incorrect number of clusters. This affected their respective 

misclassification rates and adjusted Rand indices. 

 

In the second model, there are also two groups. The first group consists of curves generated 

from the process similar to (7) but with a different mean function: 𝑚0(𝑡) = −35(1 − 𝑡)𝑡3 +

4|sin (25𝜋𝑡)| and 𝑒(𝑡) is the same Gaussian process as defined in process (7). The second 

group is a smoothing of the curves of the first group, and it consists of spline approximations 
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(with 8 knots) of the trajectories in the first group. This in fact makes it more difficult to 

discriminate the overlap between the two clusters. Similarly, we set n =160 and the mixing 

proportion to 0.25. 

 

 

(a) Model 1 curves     (b) Mean function 

 

(c) Forward plot based on functional spatial ranks   

 

Fig. 1: Simulated data, Model 1: (a) the observed curves with two groups, (b) the mean 

function, (c) the forward plot based on functional spatial ranks. 
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Clustering method 
No. of 

clusters 
Cluster sizes H ARI 

FSFSR (a) 2 39, 121 0.00625 0.97331 

GMM (mclust) “BIC” (a) 1 160 0.25000 0.00000 

GMM (mclust) “BIC” (b) 2 40, 120 0.00000 1.00000 

Kmeans based on CH index (a)* 2 40, 120 0.00000 1.00000 

Kmeans based on CH index (b)* 2 40, 120 0.00000 1.00000 

HDDC “BIC” (a)* 4 10, 26, 38, 86 0.24141 0.53795 

HDDC “BIC” (b)* 2 40, 120 0.00019 0.99973 

MixtPPCA “BIC” (a) 1 160 0.25000 0.00000 

MixtPPCA “BIC” (b) 2 40, 120 0.00000 1.00000 

PAM “Silhouette width” (a) 2 40, 120 0.00000 1.00000 

PAM “Silhouette width” (b) 2 40, 120 0.00000 1.00000 

FunHDDC “BIC” 2 39, 121 0.00625 0.97331 

 

Table 1: Comparison of different clustering approaches applied to Model 1. When a method 

is followed by letter in parentheses it denotes the following: (a) = raw-data methods with 

discretized data; (b) = filtering methods using spline coefficients from10 splines. 

*results are based on the mean of 1000 repetitions. 

 

Figure 2(a) shows the simulated curves from the first cluster (black) and second cluster (red). 

The corresponding mean functions are shown in figure 2(b). The forward plot based on the 

functional spatial ranks is shown in figure 2(c). Again we can clearly see two peaks around 

m=40 and 117, and three curves (81, 120 and 148) have not been assigned to a cluster before 

the classification step. Applying the classifier assigns all 3 curves to S(m=117), thus resulting 

in two clusters of sizes 40 and 120. Furthermore all 160 curves have been classified correctly 

so H is 0 and the ARI is 1. In table 2 it can be seen that including FSFSR 7/12 algorithms 

identified the correct number of clusters. In 3/7 which identified the correct number of 

clusters, H was above 0.31 and the ARIs were between 0.02 and 0.04. 
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(a) Model 2 curves     (b) Mean function 

 

  (c) Forward plot based on functional spatial ranks 

 

Fig. 2: Simulated data, Model 2: (a) the observed curves with two groups, (b) the mean 

function, (c) the forward plot based on functional spatial ranks. 
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Clustering method 
No. of 

clusters 
Cluster sizes H ARI 

FSFSR (a) 2 40, 120 0.00000 1.00000 

GMM (mclust) “BIC” (a) 2 40, 120 0.00000 1.00000 

GMM (mclust) “BIC” (b) 1 160 0.25000 0.00000 

Kmeans based on CH index (a)* 2 40, 120 0.00000 1.00000 

Kmeans based on CH index (b)* 2 79, 81 0.39443 0.04004 

HDDC “BIC” (a)* 5 9, 19, 30, 40, 62 0.29649 0.43703 

HDDC “BIC” (b)* 1 160 0.25000 0.00000 

MixtPPCA “BIC” (a) 1 160 0.25000 0.00000 

MixtPPCA “BIC” (b) 1 160 0.25000 0.00000 

PAM “Silhouette width” (a) 2 40, 120 0.00000 1.00000 

PAM “Silhouette width” (b) 2 63, 97 0.40625 0.01967 

FunHDDC “BIC” 2 29, 131 0.31875 0.03015 

 

Table 2: Comparison of different clustering approaches applied to Model 2. When a method 

is followed by letter in parentheses it denotes the following: (a) = raw-data methods with 

discretized data; (b) = filtering methods using spline coefficients from10 splines. 

*results are based on the mean of 1000 repetitions. 

 

For the third model, we combine the two previous models so there are three clusters. The first 

cluster consists of the generated curves from the process defined in (7) but with a different 

mean function: 𝑚0(𝑡) = −35(1 − 𝑡)𝑡1.4 + 4|sin (25𝜋𝑡)|, with both the Gaussian process 

𝑒(𝑡) and 𝐶𝑜𝑣(𝑋(𝑠), 𝑋(𝑡)) defined as in 𝑋(𝑡) in (6). The second cluster is a smoothing of the 

curves of the first cluster, and it is made of spline approximations (with 8 knots) of the 

trajectories in the first cluster. The third cluster is derived from (8) in model 1. 

 

The three simulated clusters have sizes 30, 50 and 80. Figures 3(a) and 3(b) show the 

respective simulated curves for the clusters and their mean functions. In figure 3(c), the 

forward plot again demonstrates that the functional forward search algorithm has identified 
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the correct number of clusters. There are three peaks at m=30, 49 and 79. In addition, there 

are two unassigned curves and the classifier in step 7 assigns both of them to cluster S(m=49) 

giving three clusters of sizes to 30, 51 and 79. Out of 160 curves in the sample, 159 curves 

have been assigned correctly, resulting in an H of 0.00625 and ARI of 0.978. 

 

A comparison with the other algorithms is provided in table 3. It can be seen that the FSFSR 

algorithm is the only algorithm which identifies the correct number of clusters with near 

perfect classification. In contrast, the other algorithms suffer significant misclassification 

rates although the adjusted Rand indices are less affected with many returning a value of 

0.764. 
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(a) Model 3 curves    (b) Mean function 

 

(c) Forward plot based on functional spatial ranks 

 

 

Fig. 3: Simulated data, Model 3: (a) the observed curves with three groups, (b) the mean 

function, (c) the forward plot based on functional spatial ranks. 

 

  

0 50 100 150

0
.6

0
.7

0
.8

0
.9

1
.0

Subset size m

r m
in
(m

)



22 
 

Clustering method 
No. of 

clusters 
Cluster sizes H ARI 

FSFSR (a) 3 30, 51, 79 0.00625 0.97843 

GMM (mclust) “BIC” (a) 1 160 0.50000 0.00000 

GMM (mclust) “BIC” (b) 2 80, 80 0.68750 0.76379 

Kmeans based on CH index (a)* 2 80, 80 0.68750 0.76379 

Kmeans based on CH index (b)* 2 80, 80 0.68750 0.76379 

HDDC “BIC” (a)* 8 
7, 12, 13, 14, 

16, 22, 28, 48 
0.67942 0.54742 

HDDC “BIC” (b)* 2 80, 80 0.68750 0.76379 

MixtPPCA “BIC” (a) 1 160 0.50000 0.00000 

MixtPPCA “BIC” (b) 2 80, 80 0.68750 0.76379 

PAM “Silhouette width” (a) 2 80, 80 0.68750 0.76379 

PAM “Silhouette width” (b) 2 80, 80 0.68750 0.76379 

FunHDDC “BIC” 2 80, 80 0.68750 0.76379 

 

Table 3: Comparison of different clustering approaches applied to Model 3. When a method 

is followed by letter in parentheses it denotes the following: (a) = raw-data methods with 

discretized data; (b) = filtering methods using spline coefficients from10 splines. 

*results are based on the mean of 1000 repetitions. 

 

 

4.2 Real Data Examples 

In this section we apply the FSFSR algorithm to two real datasets. The first dataset is known 

as the ECG data and is taken from the UCR Time Series Classification and Clustering 

Archive [37]. The dataset consists of 200 electrocardiograms from 2 groups of patients 

sampled at 96 time points, in which 133 are classified as normal and 67 as abnormal. The 

data consist of the ECG signals recorded between two electrodes during one heartbeat. The 

abnormal ECGs reflect a cardiac pathology known as a supraventricular premature beat. 
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The second dataset, known as the ‘DistalPhalanxOutlineCorrect’ data (hereon referred to as 

the Distal data) is also taken from the UCR Time Series Classification and Clustering 

Archive [38, 39]. It is designed to test the efficacy of hand and bone outline detection by an 

image processing algorithm. The outlines of the three bones of the middle finger in each 

image are summarized by a univariate series of 80 data points representing Euclidean 

distances of different points around the outline from a central point. Here, we consider the 

test sample of 276 images. There are two classes based on whether the bones have been 

correctly delineated by the image processing algorithm (115) or not (161) as determined by 

human evaluation. 

 

Figure 4(a) shows the observed curves for the ECG data, and the forward plot based on 

functional spatial rank. From figure 4(b), two clusters are evident with peaks at 58 and the 

other at 120. This suggests that some of the observations have not been captured by either 

cluster. In order to identify the membership of each cluster, the forward search was stopped at 

the first peak (m = 58) to identify the subset S(m=58). Similarly, stopping the search at m = 

120 identifies the second cluster S(m=120). Before applying the classifier in step 7 of the 

algorithm, 15 curves have been incorporated in both clusters and 37 curves have not been 

assigned to any cluster. Applying the functional spatial ranks classifier to these 52 curves 

classifies each curve to a unique cluster. As a result H is 0.235 and the ARI is 0.264. 

 

 

Table 4 gives the results for all the methods applied to the ECG data. It is clear that only the 

FSFSR algorithm gives the correct number of clusters (2) and has the lowest H (23.5%). 

Despite identifying an incorrect number of clusters, for many of the other methods the ARI is 

more favourable than the FSFSR algorithm. None is above 0.39 and this would suggest poor 

classification by all the algorithms; however, interpretation of the ARI is not straightforward 
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as the baseline expected value for the Rand index varies as the contingency table varies 

[40,41]. 

 

(a) ECG curves   (b) Forward plot based on functional 

         spatial ranks 

 

Fig. 4: ECG data: panel (a) is the observed curves with two groups and panel (b) is the 

forward plot based on the functional spatial ranks. Two clusters are evident at subsets with 

sizes 58 and 120. 

 

The Distal data curves for the 276 images are given in Figure 5(a). It is clearly seen that there 

is a high level of similarity between the two classes, which makes the distinction between 

them difficult. Figure 5(b) displays the forward plot based on the functional spatial rank for 

the Distal data. Two clusters are evident with two clear peaks at 67 and the other 175. Before 

applying the classifier in the algorithm, 36 curves remain unassigned to a cluster and 2 curves 

have been incorporated in both clusters. After step 7, each of these 38 curves has been 

assigned to a single appropriate cluster and H for the algorithm is 0.236. 
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Clustering method 
No. of 

clusters 
Cluster sizes H ARI 

FSFSR (a) 2 58, 142 0.23500 0.26405 

GMM (mclust) “BIC” (a) 1 200 0.33500 0.00000 

GMM (mclust) “BIC” (b) 3 97, 41, 62 0.31500 0.37860 

Kmeans based on CH index (a)* 3 111, 35, 54 0.32489 0.31411 

Kmeans based on CH index (b)* 3 117, 48, 35 0.32000 0.32874 

HDDC “BIC” (a)* 3 36, 51, 113 0.36217 0.32400 

HDDC “BIC” (b)* 5 58, 14, 20, 17, 91 0.39474 0.37243 

MixtPPCA “BIC” (a) 3 104, 61, 35 0.30000 0.36854 

MixtPPCA “BIC” (b) 4 97, 39, 26, 38 0.37000 0.38710 

PAM “Silhouette width” (a) 3 109, 55, 36 0.32000 0.33304 

PAM “Silhouette width” (b) 4 118, 47, 19, 16 0.32500 0.33866 

FunHDDC “BIC” 1 200 0.33500 0.00000 

 

Table 4: Comparison of different clustering approaches applied to the ECG dataset. When a 

method is followed by letter in parentheses it denotes the following: (a) = raw-data methods 

with discretized data; (b) = filtering methods using spline coefficients from10 splines. 

*results are based on the mean of 1000 repetitions. 

 

It is clear from Figure 5(a) that one curve of the curves (number 220), which starts from the 

upper left and travels in a different direction from the other curves is a potential outlier. From 

the data, the cut-off, C for outliers equals 0.9586 and for this curve, 𝐹𝑆𝑅𝑁𝐹𝑖
(𝐱𝟐𝟐𝟎(t)) = 

0.9726. On this basis, curve 220 may be considered an outlier in the Distal dataset. 
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(a) Distal data curves (b) Forward plot based on functional 

spatial ranks 

 

Fig. 5: Distal data: panel (a) is the observed curves with two groups and panel (b) is the 

forward plot based on the functional spatial ranks. Two clusters are evident at subsets with 

sizes 67 and 175.   

 

 

Table 5, gives the results for the Distal data and as can be seen, only five methods including 

the FSFSR algorithm gave the correct number of clusters (2). The FSFSR algorithm again 

records the lowest H (23.6%). For the ARI, mclust method based on 10 spline coefficient has 

the highest ARI with 0.104 but identified 4 clusters.  
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Clustering method 
No. of 

clusters 
Cluster sizes H ARI 

FSFSR (a) 2 211, 65 0.23551 0.00512 

GMM (mclust) “BIC” (a) 1 276 0.41667 0.00000 

GMM (mclust) “BIC” (b) 4 140, 14, 53, 69 0.49275 0.10492 

Kmeans based on CH index (a)* 2 95, 181 0.38406 0.04816 

Kmeans based on CH index (b)* 2 103, 173 0.35542 0.07892 

HDDC “BIC” (a)* 5 40, 119, 28, 27, 62 0.53986 0.08396 

HDDC “BIC” (b)* 5 147, 64, 16, 46, 3 0.50362 0.06951 

MixtPPCA “BIC” (a) 6 69, 55, 32, 38, 6, 76 0.63406 0.07866 

MixtPPCA “BIC” (b) 3 75, 174, 27 0.46014 0.02750 

PAM “Silhouette width” (a) 2 173, 103 0.36957 0.06328 

PAM “Silhouette width” (b) 2 180, 96 0.37319 0.05888 

FunHDDC “BIC” 1 276 0.41667 0.00000 

 

Table 5: Comparison of different clustering approaches applied to the Distal dataset. When a 

method is followed by letter in parentheses it denotes the following: (a) = raw-data methods 

with discretized data; (b) = filtering methods using spline coefficients from 10 splines. 

*results are based on the mean of 1000 repetitions. 

 

 

Discussion 

In this paper we have proposed a new forward search algorithm for clustering functional data. 

It is an extension to the forward search methodology based on spatial ranks that has been 

introduced for the multivariate case [12]. It may be used to identify the number of clusters in 

the underlying functional data and does not require any preprocessing of the data, nor the 

need to perform data registration or dimension reduction before clustering.  Furthermore it 

may be used in cases when the number of variables exceeds the number of observations or 

when the cluster size is less than the number of variables – this contrasts traditional forward 

searches based on Mahalanobis distances. 
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An important element of the algorithm is the inclusion of a classifier. This allows the 

classification of all curves to an appropriate cluster, even when in the early steps some have 

either not been assigned or have been assigned to more than one cluster.  

 

As the FSFSR algorithm both identifies clusters and classifies functional data, any reasonable 

comparison should be with methods that are also capable of clustering and classifying. 

Equally, it is important that the metric used to gauge performance also adequately captures 

both clustering and classifying. To this end we used the misclassification rate, H which 

penalizes methods that identify an incorrect number of clusters as well as assessing the error 

in classification and the adjusted Rand index (ARI) which is a popular metric used in 

classification and clustering. 

 

For the simulated examples the algorithm was able to identify correctly the number of 

clusters and the number of simulated curves in each cluster with an H of no more than 

0.0063. Indeed for the third, more complex simulated example, it was the only algorithm to 

correctly identify the number of clusters with a near perfect H and ARI score.  

 

For the two real examples the FSFSR algorithm identified the correct number of clusters and 

had the lowest H amongst all the methods. However in the last example it also had one of the 

poorest ARI scores and illustrates some of the shortcomings when using these metrics for 

comparing algorithms. It is clear from the real data examples that when an incorrect number 

of clusters are returned, H penalizes algorithms more severely than the ARI. In contrast, the 

ARI adjusts for correct classification by chance which should, in principle, give it an 

advantage over H [26,40,41]. However, since the baseline expected Rand index may be 
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different between two different partitions of the data, it is not clear if two algorithms were to 

return similar values for the ARI that this would represent equivalence in performance [26, 

40,41]. Thus comparing performances can be difficult using this metric. 

 

One of the limitations in the proposed algorithm is that, in order to identify the subset size 

correspondence to each peak in the trajectories of the random starts, we have to find the 

highest 𝑟𝑚𝑖𝑛(𝑚) around each peak and set 𝑚 as the cluster size. Currently, we stop the search 

at each peak, and then identify the subset size and its membership. However, there is the 

potential to automate this process using ideas contained in [42] and this requires further 

research. 

 

Several authors have demonstrated the use of the forward search based around a Mahalanobis 

distance metric to detect outliers on multivariate data [43-48]. Distributional results are 

known for the Mahalanobis distance and the minimum Mahalanobis distance allowing 

inferential statements to be made. In particular, percentile envelopes that contain most of the 

data may be estimated so that outlier points lie outside the enveloped region. In contrast, the 

forward search proposed here has been developed in a nonparametric framework. This makes 

it more difficult to use envelopes from order statistics based on distributional assumptions 

and approximations for unscaled distances and asymptotic results and requires further 

research. 

 

When there are a large number of clusters the proposed forward search may produce too 

many peaks and this may make it difficult to determine the number of clusters and their sizes. 

Furthermore, the selection of random starting points as used here can result in multiple peaks 
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which makes it hard to identify small clusters; hence, a more effective divisive strategy can 

instead be used [43-48]. 

 

Although spatial ranks are invariant under orthogonal transformations they are not invariant 

under general affine transformations of the data, thus the proposed algorithm is not affine 

invariant. An affine invariant version of the algorithm could be formulated based on affine 

invariant spatial ranks [49] and this could improve the results if the scales of the clusters were 

different for instance.  However, this would make the algorithm computationally expensive 

and greatly increase the process time and as a result we did not use any affine invariant 

versions of spatial ranks here.  

 

The treatment of outliers is important in cluster analysis as their presence may indicate the 

existence of clusters or populations not specified in the initial analysis. Equally they may 

arise due to errors in recording of some form. Potentially both can distort the process of 

cluster identification and data classification and, in the case of model-based approaches, bias 

the estimates of associated parameters. This has led some investigators to propose methods 

such as ‘trimming’ the data of outliers as part of the analysis [24,25]. 

 

The first part of the FSFSR algorithm, the forward search, identifies the number of clusters 

and their constituents. In some cases, some of the data may remain unclassified at this stage 

of the algorithm, as in the case of the Distal dataset. These unclassified data tend to have 

functional spatial rank norms (𝐹𝑆𝑅𝑁𝐹𝑖
(. )) that are larger than the classified data and further 

away from the spatial median. Although the FSFSR algorithm assigns these curves to an 

appropriate cluster, the implicit assumption is that the forward search has identified the 



31 
 

correct number of clusters. Without further investigation some of these curves could be 

unidentified outliers and indicate, potentially, the existence of other clusters. 

 

Here we used the calculated upper whisker of the box plot distribution as the threshold for 

outliers and this identified one potential outlier in the Distal dataset. Although the source of 

the outlier is unclear, in itself it would be insufficient to conclude that it arose from another 

population. Other approaches to the detection and treatment of outliers have been described 

and this remains an active area of research [24,25,43,50]. 

 

In this study, both simulated and real datasets were used to compare the proposed algorithm 

with existing methods. One drawback when dealing with real data is that the identification of 

‘true clusters’ is often not as clearly defined as in simulated datasets. Thus, errors in the 

reference classes, and the intrinsic dependence of the reference classification on the problem 

at hand, may diminish the effectiveness of this approach as a benchmarking procedure 

[51,52]. 

 

In this study we have proposed the FSFSR algorithm and demonstrated its potential as a 

clustering and classifying method for functional data. A more extensive evaluation of its 

performance across a greater range of examples is clearly necessary. However, as a data-

driven non-parametric method, the approach proposed here is free from assumptions on the 

underlying   distributions of the data and we believe it represents a significant development in 

functional data analysis. 
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