1,517 research outputs found

    Simulation of the deflected cutting tool trajectory in complex surface milling

    Get PDF
    Since industry is rapidly developing, either locally or globally, manufacturers witness harder challenges due to the growing competitivity. This urges them to better consider the four factors linked to production and output: quality, quantity, cost and price, quality being of course the most important factor which constitutes their main concern. Efforts will be concentrated—in this research—on improving the quality and securing more accuracy for a machined surface in ball-end milling. Quality and precision are two essential criteria in industrial milling. However, milling errors and imperfections, duemainly to the cutting tool deflection, hinder the full achieving of these targets. Our task, all along this paper, consists in studying and realizing the simulation of the deflected cutting tool trajectory, by using the methods which are available. In a future stage, and in the frame of a deeper research, the simulation process will help to carry out the correction and the compensation of the errors resulting from the tool deflection. The corrected trajectory which is obtained by the method mirror will be sent to the machine. To achieve this goal, the next process consists—as a first step—in selecting a model of cutting forces for a ball-end mill. This allows to define—later on—the behavior of this tool, and the emergence of three methods namely the analytical model, the finite elements method, and the experimental method. It is possible to tackle the cutting forces simulation, all along the tool trajectory, while this latter is carrying out the sweeping of the part to be machined in milling and taking into consideration the cutting conditions, as well as the geography of the workpiece. A simulation of the deflected cutting tool trajectory dependent on the cutting forces has been realized

    Compensation of a ball end tool trajectory in complex surface milling

    Get PDF
    This work is consecrated to the minimising of machining errors based on a method for the compensation of the trajectory to be machined in hemispherical milling. This compensation is found to be necessary because of the tool deflection due to the cutting forces. In order to remedy to the machining errors, caused by this deflection, a compensation method has been proposed. The latter is inspired from the mirror method, since the compensated position is going to be determined as being the trajectory reflection, deviated onto the mirror. The advantage of this proposed method is that it takes into account the three deflections dx, dy and dz, respectively to the directions X, Y and Z. After that, two-parallel machinings, separated by a groove and achieved absolutely in the same conditions and with the same tool, are carried out, on the same complex part. The first machining is with compensation, but the second is without compensation. The coordinates of the two obtained surfaces are recorded by a 3D measuring machine. The comparison of the two-surfaces shows the presence of an important correction of the tool trajectory, and reveals a similarity between the part obtained by simulation and the one conceived in CAM

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life

    Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches

    Get PDF
    Thin-wall parts are common in the aeronautical sector. However, their machining presents serious challenges such as vibrations and part deflections. To deal with these challenges, di erent approaches have been followed in recent years. This work presents the state of the art of thin-wall light-alloy machining, analyzing the problems related to each type of thin-wall parts, exposing the causes of both instability and deformation through analytical models, summarizing the computational techniques used, and presenting the solutions proposed by di erent authors from an industrial point of view. Finally, some further research lines are proposed

    Quasistatic deflection analysis of slender ball-end milling cutter

    Get PDF
    This work was supported by the National Natural Science Foundation of China (Grant No. 51975333), Jinan University and Institute Innovation Team Program (Grant No. 2020GXRC025), and Taishan Scholars Project of Shandong Province (ts201712002).Peer reviewedPostprin

    Prediction of machining accuracy based on geometric error estimation of tool rotation profile in five-axis multi-layer flank milling process

    Get PDF
    In five-axis multi-layer flank milling process, the geometric error of tool rotation profile caused by radial dimension error and setup error has great influence on the machining accuracy. In this work, a new comprehensive error prediction model considering the inter-layer interference caused by tool rotation profile error is established, which incorporates a pre-existing prediction model dealing with a variety of errors such as geometric errors of machine tool, workpiece locating errors, and spindle thermal deflection errors. First, a series of tool contact points on the tool swept surface in each single layer without overlapping with others are calculated. Second, the position of the tool contact points on the overlapped layers is updated based on the detection and calculation of inter-layer interferences. Third, all evaluated tool contact points on the final machined surface are available for completing the accuracy prediction of the machined surface. A machining experiment has been carried out to validate this prediction model and the results show the model is effective

    A Survey on Cutting Parameter and Tool Path on Tool Deflection of Ti-6Al-4V Alloy in High-Speed Milling

    Get PDF
    Spherical inclined surfaces are sometimes experienced in the machining of segments in enterprises, for example, aircraft, aerospace, automotive, and accuracy apparatus assembling. Tool path, created by various cutting techniques, result in different cutting forces and deflection values that may prompt poor surface quality and dimensional deviation. In modern manufacturing producing, it is useful to make known their impacts on machinability. In this thesis, ideal cutting parameter values in ball end-milling processing of Ti-6Al-4V with three covered cutters has been investigated. The parameters thought about are cutting velocity, feed rate, cutting speed, and tool path style. The second point of the study is to decide the impacts of tool movement styles in ball end processing of inclined surfaces. Thus, the best parameter inside the chose cutting parameters and cutting styles for both inclined surfaces and distinctive coatings was venture over. As far as instrument coatings, the most quickly falling apart covering was TiC covering for cutting strengths in both inclined surfaces and for device deflection in spherical inclined surface. Moreover, the results showed that by measuring tool deflection different problems such as dimensional deviation could be controlled

    Anticipatory Online Compensation of Tool Deflection Using a Priori Information from Process Planning

    Get PDF
    Removing excess material from build-up welding by milling is a critical step in the repair of blades from aircraft engines. This so-called recontouring is a very challenging machining task. Shape deviations often result from the deflection of tool and workpiece due to process forces. Considering the individuality of repair cases, compensation of those deflections by process force measurement and online tool path adaption is a very suitable method. However, there is one caveat to this reactive approach. Due to causality, a corrective movement, following a force variation, is always delayed by a finite reaction time. At this moment, though, the displacement has already manifested itself as a deviation in the machined surface. To overcome those limitations and to improve compensation beyond the reduction of control delays, this study proposes a novel approach of anticipatory online compensation. Flank-milling experiments with abrupt changes in the tool-workpiece engagement conditions are conducted to investigate the limitations of reactive compensation and to explore the potential of the new anticipatory approach
    corecore