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Abstract: This work is consecrated to the minimising of machining errors 
based on a method for the compensation of the trajectory to be machined in 
hemispherical milling. This compensation is found to be necessary because of 
the tool deflection due to the cutting forces. In order to remedy to the 
machining errors, caused by this deflection, a compensation method has been 
proposed. The latter is inspired from the mirror method, since the compensated 
position is going to be determined as being the trajectory reflection, deviated 
onto the mirror. The advantage of this proposed method is that it takes into 
account the three deflections dx, dy and dz, respectively to the directions X, Y 
and Z. After that, two-parallel machinings, separated by a groove and achieved 
absolutely in the same conditions and with the same tool, are carried out, on the 
same complex part. The first machining is with compensation, but the second is 
without compensation. 
 The coordinates of the two obtained surfaces are recorded by a 3D 
measuring machine. The comparison of the two-surfaces shows the presence of 
an important correction of the tool trajectory, and reveals a similarity between 
the part obtained by simulation and the one conceived in CAM. 
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1 Introduction 

In high-precision industrial machining environments, the machined surface quality and 

precision constitute important criteria at the time of machining. This precision may be 

altered by some machining errors. Among these errors, the one induced by the thermal 

effect can be mentioned. Huang and Hoshi (2000) have proposed an effective method of 

fixture design to reduce the machining errors caused by the cutting heat in face milling. 

Liu et al. (2010) afforded us with detailed processes for machining an aspheric surface 

which used a four-axis desktop ultraprecision and the optimisation of compensation 

cutting has used the Taguchi method. Concerning the tool wear Matsumura and Ono 

(2008) have suggested a compensation method for the wear or the deterioration of the 

tool cutting edge. A large portion of the dimensional errors is caused by positioning 

errors in the axes of motion on a machine-tool. Fines and Agah (2008) have fulfilled the 

application of artificial neural networks to the problem of calculating these error 

compensation values. In this context, Wan et al. (2008) have proposed an effective model 

that includes machine-tool, fixture and datum errors, within a unified framework, by 

means of a differential motion methodology. Furthermore, they present a compensation 

model of fixture errors, datum errors and the deviation of the tool coordinates. 

In the framework of ball-end milling, a machining error compensation, caused by the 

tool deflection, is proposed. Several methods, allowing the compensation of the tool 

trajectory, following its deflection, are proposed in the literature. Indeed, Budak and 

Altintas (1994) present an approach aiming to optimise the cutting condition, with the 

purpose to limit, to the maximum, the machining errors, in order to correct them  

 

 



   

 

   

   

 

   

   

 

   

       
 

 

    

 

 

   

   

 

   

   

 

   

       
 

afterwards. Law and Geddam (2001, 2003) try to measure and control the cutting forces 

or the deflection errors in real-time. Their method requires important means to establish a 

control system, and carry out the necessary modification on the machine. 

Another approach consists in compensating the tool trajectory, with the modification 

of this trajectory, following the prediction or the measuring of the machining errors. The 

latter can be estimated with a neural networks (Cho et al., 2006) or by an 

analytic/numerical model of the tool deflection (Cho et al., 2003; Suh et al., 1996). 

In this context, a new method, tending to compensate the tool trajectory, has been 

proposed. This approach is inspired from the mirror method (Dépince and Hascoët, 2006; 

Seo, 1998), since the compensated position is going to be found out as being the 

reflection of the trajectory deviated onto the mirror. 

Indeed, the same principle will be adopted. However, this method is going to be 

generalised simultaneously in the three directions X, Y and Z, by taking into account the 

three flexions dx, dy and dz. The latter are determined according to the cutting forces FX, 

FY and FZ. 

In this work, the different steps to follow are going to be presented one by one, in 

accordance with their chronological succession, in order to end, finally, at the effective 

machining. 

After the elaboration of the cutting forces model (Smaoui et al., 2008), all the interest 

is focused on the study of the tool deflection, due to these forces, with the finite elements 

method. This method consists in studying the tool deflection, in the three directions under 

the effect of the forces FX, FY and FZ applied simultaneously. It also consists in presenting 

the proposed compensation method. At this level, the problem consists in determining the 

deflected trajectory, on which the mirror method will be applied. So, the simulation of the 

deflected trajectory is going to be done, according to the average force between  

two-consecutive nodes. The whole of nodes form the CAM trajectory. The forces cited 

above depend on the inclination angle  according to the X axis, measured 

instantaneously by the tangent. 

The deflected trajectory is the vector formed by the CAM trajectory, deviated by the 

average forces and calculated previously. The choice of the average forces is justified by 

the inability to indicate, with precision, the force-intensities at the level of each CAM 

point. These force-intensities can be comprised only between a minimum and a 

maximum. 

A compensation algorithm, inspired from the mirror method, is going to be adopted. 

It will allow to correct the tool deflected trajectory, all along the part. 

The coordinates, which constitute the corrected tool trajectory, are sent afterwards to 

the CAM software (MasterCam©), to control the machine. 

Finally, two-parallel machinings, separated by a groove and executed absolutely in 

the same conditions and with the same tool, will be carried out on the same complex part, 

the first with compensation while the second is done without compensation. 

The coordinates of the two obtained surfaces will be taken by a 3D measuring 

machine. The difference between these two-surfaces corresponds to the deflection 

average value, occurring in that area. It was ineluctably shown that the compensated 

surface has improved of the deflection value, which makes it considerably and effectively 

nearest to the surface conceived in CAM. 



   

 

   

   

 

   

      

      
 

    

 

 

   

   

 

   

   

 

   

       
 

2 Calculation and simulation of the cutting tool deflection error 

2.1 Cutting forces model 

The cutting forces model is based upon the discretisation of the tool, into a series of 

elementary discs, all along the axial depth. The local radius R(z) of the elementary disc, 

or of each circumference, can be given under the following form: 

22R z R R z  (1) 

With R the tool radius and ‘z’ the height of each disc (Figure 1). 

The elementary cutting forces can be calculated at any point P, the middle of each 

discretised section, in the two-directions. The first is an axial direction, following the Z 

axis in Nz increments. Each one bears the index, i(i = 1, 2, …, N), counted from the point 

O. The second is an angular discretisation in N  increments, counted from the Y axis. 

Each increment bears the index j (j = 1, 2, …, N ). 

Figure 1 Cutting forces applied to the tool (see online version for colours) 

 

The total cutting force for the j position is: 
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matrix of the transfer from ( , , , ).S C R T A  to C (O, X, Y, Z) such as: 



   

 

   

   

 

   

   

 

   

       
 

 

    

 

 

   

   

 

   

   

 

   

       
 

sin sin cos cos sin

sin cos sin cos cos

cos 0 sin

S

C

T  (3) 

Nf is the number of the tool teeth. KR, KT and KA are respectively the specific coefficients: 

radial, tangential and axial, empirically defined.  is the angle of width of cut 
bzf  is the 

feed per tooth. 

First of all, this model is applied in the case of a plane surface, to end at a 

generalisation, carried out in the case of concave or convex inclined surfaces (Smaoui  

et al., 2008). 

The study of this part milling will be afterwards elaborated, while taking into account 

the nature of the trajectory to be machined, and of the machining direction. It also takes 

into account the tool geometrical parameters, such as the axial and the radial depth of cut. 

2.2 Determination of the specific coefficients 

In order to determine the specific coefficients, in the three directions: tangential, radial 

and axial, respectively noted KR, KT and KA, the cutting forces FX, FY and FZ must be, first 

of all, measured. These parameters are bound by a model of cutting forces (Milfelner and 

Cus, 2003). 

Figure 2 Different slopes to test (see online version for colours) 

   

These coefficients necessarily vary according to the slope of the trajectory to be 

machined, and also according to the cutting conditions such as: feed per tooth fzb, the 

cutting speed Vc and the depth of cut: axial Ad and radial Ar. Indeed, the changing of one 

of these parameters implies new coefficients. 

For this reason, the specific coefficient behaviour is going to be defined according to 

the inclination angle of the surface to be machined, counted from the horizontal. A series 

of tests will be carried out, beginning with the machining of a surface of 75° of 

inclination, and diminishing each time of an angle of 15°, until the horizontal state, as 

indicated in Figure 2. 



   

 

   

   

 

   

      

      

    

 

 

   

   

 

   

   

 

   

       
 

The adopted trajectory is a zigzag one: the tool carries out several go-and-backs, 

following X and –X, which respectively correspond to an upward cut and a downward 

cut. 

However, the specific coefficients KR, KT and KA cannot be determined without 

having recourse to matrix of a reverse passage [T]–1, which allows the passage from the 

elementary cutting forces dFX, dFY and dFZ in the Cartesian coordinate system  

C (O, X, Y, Z) towards the elementary cutting forces in the local coordinate system  

( , , , )S C R T A  such as: 

1

, , , ,R T A X Y ZdF T dF  (5) 

1
sin sin cos cos sin

sin cos sin cos cos

cos 0 sin

R X

T Y

A Z

dF dF

dF dF

dF dF

 (6) 

The specific coefficients KT, KR and KA are determined from the following equation 

(Milfelner and Cus, 2003): 
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A ball-end cutting tool, 16mm in diameter, having two-teeth (Nf = 2) and an angle of 

helix i0 = 9°, has been used. The part to be machined is made of steel, type XC38 (C35). 

The cutting conditions are defined by an axial depth of cut Ad = 1 mm, a radial width of 

cut Ar = 3.873 mm, a feed by tooth fzb = 0.1 mm/tooth, and a spindle speed equal to 4,000 

rpm, on a high speed milling machine (HSM). 

The cutting forces for the extreme angles of inclination, measured by a dynamometer 

platform (Kistler 9275B). Signals are analysed, due to the software Dynoware©. Figure 3 

shows cutting forces for  = 0° and  = 75°. 

A magnified length, sampled from the cutting forces strips for this dynamometer 

surface, corresponding to  = 0, and compared to the simulations obtained by MATLAB© 

software, is presented in Figure 4. 

Figure 4 depicts that there is a correlation between the results obtained in simulation, 

and those obtained by the dynamometric plate. 

The purpose of these series of tests, achieved for the different surfaces, and according 

to different inclinations, is to determine the specific coefficients variation, according to 

these slopes. This variation is presented in Figure 5. 

 

 

 

 



   

 

   

   

 

   

   

 

   

       
 

 

    

 

 

   

   

 

   

   

 

   

       
 

Figure 3 Variation of the cutting forces for the different angles of inclination in C (O, X, Y, Z) 
(see online version for colours) 

 

 

 

 



   

 

   

   

 

   

      

      

    

 

 

   

   

 

   

   

 

   

       
 

Figure 4 Simulated and measured cutting forces (see online version for colours) 

 

Figure 5 Variation of the specific coefficients according to the angle of inclination (see online 
version for colours) 
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The variation of the specific coefficients must be introduced in the simulation program. 

For this reason, a curve of tendency is necessary, in order to find out the theoretical 

expression of the coefficients KR, KT and KA according to the angle of inclination . 

7 06 5 – 0.0013 4 0.0899 3 – 2.7111 2 27.9 500AK E  (7) 

1 05 5 0.0036 4 – 0.3341 3 14.867 2 – 325.78 3600TK E  (8) 

3 05 5 0.0062 4 – 0.5215 3 20.971 2 – 409.27 3400RK E  (9) 

2.3 Calculation of the cutting tool deflection 

In order to end at the compensation step, it is necessary to know how to determine the 

tool deflected trajectory, which is the deviated CAM trajectory. For this, it is necessary to 



   

 

   

   

 

   

   

 

   

       
 

 

    

 

 

   

   

 

   

   

 

   

       
 

simulate the tool deflected trajectory, according to the average force between  

two-successive nodes. 

First, the cutting forces model has been applied on a plane surface. Second, it was 

compared to an experimental result, which has resulted in a perfect correlation. After, this 

same model has been generalised, in the case of an inclined surface, and another circular 

surface, but, by adopting each time a change of reference, depending on the angle of 

inclination (Smaoui et al., 2008). 

The principle of this method consists, first of all, in determining the angle of 

inclination , for each segment joining these two-nodes (Figure 6), and in calculating the 

average force between two-successive nodes 

Figure 6 Average cutting force determined all along the trajectory (see online version  
for colours) 

 

Once the cutting forces all along the tool trajectory are determined, the pertinent choice 

goes towards the finite elements method, in order to determine the tool deformation. It’s a 

matter of applying a well determined force on the extremity of the tool in the X direction. 

So, it is necessary to find out its deflection in the three directions X, Y and Z. Then, the 

force directions is changed in the Y way then in the Z way, and deduce, once more, the 

tridimensional deflection value according to the force intensity. 

The tool behaviour is presented further to the force exerted, following the X direction 

(F = 1,000 N) (Figure7). 

The total deflection is the sum of all the deflexions, due to the forces FX, FY and FZ, 

applied simultaneously, following X, Y and Z axis, deduced by the finite elements 

method. It is presented as follows: 

4 6 7
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whole of nodes, constituting the CAM trajectory, are deviated according to the average 

cutting forces, calculated instantaneously, all along the cutting tool trajectory, swept 

during the machining. The CAM trajectory is instantaneously replaced by the points, 

which form the deflected (adopted) trajectory coordinates. It is this same trajectory which 

is going to be corrected by the mirror method before machining. 

Figure 7 Deflection ( )
XFdx  following the X axis for F = 1,000 N (see online version  

for colours) 

 

3 Compensation method 

In order to compensate this deflection, a new process reveals to be necessary. The method 

proposed is based upon the tool trajectory modification. It is inspired from the mirror 

method (Hascoët et al., 1997). The latter is an iterative method, conceived for a contour 

machining, where the deflection is concentrated in the normal direction of the tool 

(Dépince and Hascoët, 2006). In this way, the mirror method is limited to a 

compensation, following only one direction, and so neglects the tangential direction. In 

this study, the deflection occurs on three directions X, Y and Z. Hence, the need to a new 

method, able to remedy to this deflection. 

The method proposed here, considers the two-trajectories: one is desired (CAM), 

having the coordinates (xdesired, ydesired, zdesired), and the other is deflected. A first stage 

consists in compensating the trajectory of the values dx, dy and dz, in the symmetrically 

opposite direction, according to the deflected trajectory. Figure 8 presents a simplified 

diagram of the compensated method for only one direction dx among the three mentioned 

directions dx, dy and dz. For this new position, a variation of the axial depth of cut Ad, of 

the radial width of cut Ar and of the feed by tooth fzb, respectively to the three directions 
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X, Y and Z, will appear. For this reason, the cutting forces and the new corresponding 

deflections, have to be, once more, calculated. These steps are going to be repeated  

i-times, in an iterative way, until the deflections will be inferior to a tolerance already 

fixed at the beginning of this procedure. For this example, the tolerance interval is fixed 

to 0.005 mm. In this way, it becomes possible to reach the optimal trajectory, which will 

be imposed to the cutting tool (ximposed, yimposed, zimposed). This vector will be sent to the 

MasterCam© software, in order to achieve the part machining, according to the new 

coordinates. 

Figure 8 Compensation method (see online version for colours) 

 

4 Application of the compensation method 

We want to carry out the milling of a complex workpiece, having six-shapes of surfaces, 

with a length L = 220 mm and a width l = 78 mm, as indicated in Figure 9. 

The same tool used here, is a ball-end tool of a ray equal to 8 mm, having two-teeth 

(Nf = 2) and an angle of helix i0 = 9°. This tool fits in the workpiece with a feed of a value 

fzb = 0.1 mm/tooth and an axial depth of cut Ad = 1 mm. 

Figure 9 Workpiece to be machined in 3D (see online version for colours) 

  



   

 

   

   

 

   

      

      

    

 

 

   

   

 

   

   

 

   

       
 

The two-finish tests: with and without compensation, are going to be realised on the same 

part. That is why, the two-test surfaces are going to be separated by a groove  

(12 mm width and 1 mm depth), so the two-machinings will be carried out under the 

same conditions (Figure 10). 

Figure 10 Separation of the two-surfaces (see online version for colours) 

 

 

The cutting forces are calculated according to the nature of the trajectory part to be 

machined (flat, inclined…), and following the machining direction (following X or –X). 

Figure 11 shows the cutting forces evolution, following the tool-end trajectory. This 

trajectory is obtained from the coordinates of the points transferred from the software 

MasterCam©. It is of a zigzag type: the tool carries out several go-and-backs, following X 

and –X. This respectively corresponds to an upward cut and a downward cut. The cutting 

forces are drawn in black for the X machining, and in red for the –X machining. 

After simulating the cutting forces, the tool deflection is determined according to the 

average forces, all along the trajectory swept on the surface. The coordinates of the nodes 

forming the deflected (adopted) trajectory, are gathered in a vector. It is on this trajectory 

that the correction of the tridimensional trajectory is going to executed with the mirror 

method. This leads to find the compensated trajectory, which is going to be sent towards 

the machine (Figure 12), by means of a numerical control file (NC) generated by 

MasterCam©. 

 



   

 

   

   

 

   

   

 

   

      
 

 

    

 

 

   

   

 

   

   

 

   

       
 

Figure 11 Cutting forces simulation in longitudinal milling, (a) FX (b) FY (c) Fz (see online 
version for colours) 
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Figure 12 The tool trajectory compensated in both directions (see online version for colours) 

 

The coordinates of the points forming this path, will be sent to MasterCam©. So, the new 

compensated tool trajectory could be simulated. The two-NC files, containing the 

compensated and non-compensated trajectories, are sent to the machine, in order to tackle 

the machining in compensation. 

5 Results 

The two-compensated and non-compensated surfaces are measured on a 3D measuring 

machine (DEA GAMMA RECORD). 

In order to confirm the validity and the precision of the compensation program, the 

compensated trajectory is going to palpate in order to determine the coordinates of the 

points constituting this trajectory (Figure 13). 

Figure 13 Measurement of the geometry obtained by the two-tests (see online version  
for colours) 

 



   

 

   

   

 

   

   

 

   

       
 

 

    

 

 

   

   

 

   

   

 

   

       
 

The coordinates noted down on the part, in the two-machined zones, (with and without 

compensation), made is possible to deduce a variable and important gain in the different 

tested zones represented in Figure 14. 

Figure 14 Geometrical characteristics of the different tested zones 

 

For the same coordinate in X, The difference in amplitude (Z) for a sampling of the  

two-compensated and non-compensated surfaces constitutes the amplitude of the 

correction thus obtained. The latter is listed in Table 1. This geometrical difference, 

between the two-compensated and non-compensated surfaces, should normally be the 

nearest possible to the deflection simulated theoretically, in the same area. This area is 

theoretically located between two very successive nodes. 

A second validity measurement has been achieved on the convex zone (zone 4), 

supposed to be 16 mm in diameter. Four-samplings of coordinates have been carried out 

following X: (141.8543; 155.1659; 161.9415; 170.4063), which corresponds respectively 

to a theoretical deflection equal to (–0.0002; 0.1126; 0.1107; 0.0011) in the X direction 

and (0.0078; 0.0142; 0.0142; 0.0001) in the Z direction. 

An average deflection of the order of 0.056 has consequently been remarked. 

Table 1 Geometrical correction obtained for the case of a downward cut 

Zone Value of the correction Estimated theoretical deflection 

1 –0.002 –0.002 

2 0.014 0.014 et 0.015 

3 0.011 0.007 et 0.014 

4 0.009 Between 0.006 and 0.01 

5 –0.019 Between –0.017 and 0.017 

6 0.003 0.03 

The touch probe has noted down an average diameter of 60.345 mm in the  

non-compensated area. However, for the compensated zone, the touch probe has recorded 



   

 

   

   

 

   

      

      
 

    

 

 

   

   

 

   

   

 

   

       
 

a diameter of 60.236 mm, as indicated in the two following diagrams, given by 

Metrolog© software. 

Inspection Inspection 

# 193 CIRCLE Ref. Sys 1 # 194 CIRCLE Ref. Sys 1 

X 336.7665  X 336.7433  

Z 30.3189  Z 30.3311  

DM 60.3454  DM 60.2365  

ROUNDNSS 0.0574  ROUNDNSS 0.0224 

It is to be noted that, on one hand, the deflection in the X direction exerts a certain 

influence on the obtained curvature, since it is more important. On the other hand, and 

thanks to the recorded values, the radius value of the compensated zone is estimated to 

30.173. Nevertheless, the radius value of the other non-compensated zone is of the order 

of 30.118. 

Figure 15 Tool deflection recorded in the direction of X (see online version for colours) 

 

So, it becomes possible to deduce from this, that the difference between these two-radii is 

equal to 0.054. This corresponds to the average value of the deflection occurring in this 

zone (Figure 15). 

These results suitably concord with the values expected in simulation. 

These results unequivocally confirm the results provided in this work and the 

precision of the methods chosen. 

6 Conclusions 

In this paper, a compensation method of the trajectory error is presented in order to be 

machined, which is based on the cutting tool deflection. The elementary cutting force has 

been calculated, for each discretised section, by means of the specific cutting force 



   

 

   

   

 

   

   

 

   

       
 

 

    

 

 

   

   

 

   

   

 

   

       
 

coefficients, in the local spherical reference ( , , , ).S C R T A  These coefficients have been 

extracted from the experimental results. Their theoretical expressions, according to the 

trajectory inclination, are injected in the compensation program. The tool, used here, is 

16mm in diameter, and the piece to be machined is made of steel type XC38 (C35). 

The tool deflection, caused by these forces, has been studied once their simulation has 

been realised. This study is a preliminary step which makes it possible to carry out a 

correction of the trajectory, according to the machining tolerance. 

Thus, the results obtained by the finite elements method are going to be used, in order 

to calculate the tool deflection in the three-directions according to the applied forces FX, 

FY and FZ. 

After that, a compensation method has been proposed for a change of the tool 

trajectory. The new coordinates of the points, which constitute the new trajectory, are 

exported towards the CAM software. This method has been applied in the case of a 

complex part machining. The simulation results have shown the advantage of the 

approach proposed since it has allowed to correct the machining errors and ended at an 

optimal trajectory respecting the machining tolerances. 

Finally, two-parallel machinings, separated by a groove, have been achieved, on the 

same complex part and carried out absolutely in the same conditions, and with the same 

tool. The first machining corresponds to trajectory with compensation and the second to 

trajectory without compensation. 

The coordinates of the two obtained surfaces are read by a 3D measuring machine. 

The comparison, between these two-surfaces, confirms the similarity in the results 

obtained by the two-methods, one with compensation and the other conceived in CAM. 
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