1,037 research outputs found

    Results from the PARADIGM registry

    Get PDF
    Funding Information: This work was supported by the Korea Medical Device Development Fund grant funded by the Korean government (Ministry of Science and ICT; Ministry of Trade, Industry and Energy; Ministry of Health & Welfare, Republic of Korea; and Ministry of Food and Drug Safety; Project Number: 202016B02) and funded in part by a generous gift from the Dalio Institute of Cardiovascular Imaging and the Michael Wolk Foundation. This work was also supported by the National Research Foundation of Korea [RS‐2022‐00165404, 2022R1A5A6000840, 2020R1I1A1A01073151]. The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. Publisher Copyright: © 2023 The Authors. Clinical Cardiology published by Wiley Periodicals, LLC.Background and Hypothesis: The recently introduced Bayesian quantile regression (BQR) machine-learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coronary artery disease (CAD) using the BQR model in a vessel-specific manner. Methods: From the data of 1,463 patients obtained from the PARADIGM (NCT02803411) registry, we analyzed the lumen diameter stenosis (DS) of the three vessels: left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). Two models for predicting DS and DS changes were developed. Baseline CV risk factors, symptoms, and laboratory test results were used as the inputs. The conditional 10%, 25%, 50%, 75%, and 90% quantile functions of the maximum DS and DS change of the three vessels were estimated using the BQR model. Results: The 90th percentiles of the DS of the three vessels and their maximum DS change were 41%–50% and 5.6%–7.3%, respectively. Typical anginal symptoms were associated with the highest quantile (90%) of DS in the LAD; diabetes with higher quantiles (75% and 90%) of DS in the LCx; dyslipidemia with the highest quantile (90%) of DS in the RCA; and shortness of breath showed some association with the LCx and RCA. Interestingly, High-density lipoprotein cholesterol showed a dynamic association along DS change in the per-patient analysis. Conclusions: This study demonstrates the clinical utility of the BQR model for evaluating the comprehensive relationship between risk factors and baseline-grade CAD and its progression.publishersversionepub_ahead_of_prin

    Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis : From the PARADIGM Registry

    Get PDF
    Background Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography-determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. Methods and Results Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume 651.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher-ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78-0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52-0.67]; Duke coronary artery disease score, 0.74 [0.68-0.79]; ML model 1, 0.62 [0.55-0.69]; ML model 2, 0.73 [0.67-0.80]; all P<0.001; statistical model, 0.81 [0.75-0.87], P=0.128). Conclusions Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP

    Bayesian analytical approaches for metabolomics : a novel method for molecular structure-informed metabolite interaction modeling, a novel diagnostic model for differentiating myocardial infarction type, and approaches for compound identification given mass spectrometry data.

    Get PDF
    Metabolomics, the study of small molecules in biological systems, has enjoyed great success in enabling researchers to examine disease-associated metabolic dysregulation and has been utilized for the discovery biomarkers of disease and phenotypic states. In spite of recent technological advances in the analytical platforms utilized in metabolomics and the proliferation of tools for the analysis of metabolomics data, significant challenges in metabolomics data analyses remain. In this dissertation, we present three of these challenges and Bayesian methodological solutions for each. In the first part we develop a new methodology to serve a basis for making higher order inferences in metabolomics, which we define as the testing of hypotheses that are more complex than single metabolite hypothesis tests. This methodology utilizes informative priors that are generated via the analysis of molecular structure similarity to enable the estimation of metabolite interactomes (or probabilistic models) which are organism-, sample media-, and condition-specific as well as comprehensive; and that can serve as reference models for studying perturbations in metabolic systems. After discussing the development of our methodology, we present an evaluation of its performance conducted using simulation studies, and we use the methodology for estimating a plasma metabolite interactome for stable heart disease. This interactome may serve as a reference model for evaluating systems-level changes that occur with acute disease events such as myocardial infarction (MI) or unstable angina. In the second part of this work, we present the challenge of developing diagnostic classification models which utilize metabolite abundances and that do not overfit relatively small sample sizes, especially given the high dimensionality of metabolite data acquired using platforms such as liquid chromatography-mass spectrometry. We use a Bayesian methodology for estimating a multinomial logistic regression classifier for the detection and discrimination of the subtype of acute myocardial infarction utilizing metabolite abundance data quantified from blood plasma. As heart disease is the leading cause of global mortality, a blood-based and non-invasive diagnostic test that could differentiate between MI types at the time of the event would have great utility. In the final part of this dissertation we review Bayesian approaches for compound identification in metabolomics experiments that utilize liquid chromatography-mass spectrometry which remains a challenging problem

    Risk factors based vessel-specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry

    Get PDF
    Background and HypothesisThe recently introduced Bayesian quantile regression (BQR) machine-learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coronary artery disease (CAD) using the BQR model in a vessel-specific manner. MethodsFrom the data of 1,463 patients obtained from the PARADIGM (NCT02803411) registry, we analyzed the lumen diameter stenosis (DS) of the three vessels: left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). Two models for predicting DS and DS changes were developed. Baseline CV risk factors, symptoms, and laboratory test results were used as the inputs. The conditional 10%, 25%, 50%, 75%, and 90% quantile functions of the maximum DS and DS change of the three vessels were estimated using the BQR model. ResultsThe 90th percentiles of the DS of the three vessels and their maximum DS change were 41%-50% and 5.6%-7.3%, respectively. Typical anginal symptoms were associated with the highest quantile (90%) of DS in the LAD; diabetes with higher quantiles (75% and 90%) of DS in the LCx; dyslipidemia with the highest quantile (90%) of DS in the RCA; and shortness of breath showed some association with the LCx and RCA. Interestingly, High-density lipoprotein cholesterol showed a dynamic association along DS change in the per-patient analysis. ConclusionsThis study demonstrates the clinical utility of the BQR model for evaluating the comprehensive relationship between risk factors and baseline-grade CAD and its progression.ope

    Scalable Feature Selection Applications for Genome-Wide Association Studies of Complex Diseases

    Get PDF
    Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.Siirretty Doriast
    corecore