1,822 research outputs found

    Evaluation, Analysis and adaptation of web prefetching techniques in current web

    Full text link
    Abstract This dissertation is focused on the study of the prefetching technique applied to the World Wide Web. This technique lies in processing (e.g., downloading) a Web request before the user actually makes it. By doing so, the waiting time perceived by the user can be reduced, which is the main goal of the Web prefetching techniques. The study of the state of the art about Web prefetching showed the heterogeneity that exists in its performance evaluation. This heterogeneity is mainly focused on four issues: i) there was no open framework to simulate and evaluate the already proposed prefetching techniques; ii) no uniform selection of the performance indexes to be maximized, or even their definition; iii) no comparative studies of prediction algorithms taking into account the costs and benefits of web prefetching at the same time; and iv) the evaluation of techniques under very different or few significant workloads. During the research work, we have contributed to homogenizing the evaluation of prefetching performance by developing an open simulation framework that reproduces in detail all the aspects that impact on prefetching performance. In addition, prefetching performance metrics have been analyzed in order to clarify their definition and detect the most meaningful from the user's point of view. We also proposed an evaluation methodology to consider the cost and the benefit of prefetching at the same time. Finally, the importance of using current workloads to evaluate prefetching techniques has been highlighted; otherwise wrong conclusions could be achieved. The potential benefits of each web prefetching architecture were analyzed, finding that collaborative predictors could reduce almost all the latency perceived by users. The first step to develop a collaborative predictor is to make predictions at the server, so this thesis is focused on an architecture with a server-located predictor. The environment conditions that can be found in the web are alsDoménech I De Soria, J. (2007). Evaluation, Analysis and adaptation of web prefetching techniques in current web [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1841Palanci

    WEB MINING IN E-COMMERCE

    Get PDF
    Recently, the web is becoming an important part of people’s life. The web is a very good place to run successful businesses. Selling products or services online plays an important role in the success of businesses that have a physical presence, like a reE-Commerce, Data mining, Web mining

    A taxonomy of web prediction algorithms

    Full text link
    Web prefetching techniques are an attractive solution to reduce the user-perceived latency. These techniques are driven by a prediction engine or algorithm that guesses following actions of web users. A large amount of prediction algorithms has been proposed since the first prefetching approach was published, although it is only over the last two or three years when they have begun to be successfully implemented in commercial products. These algorithms can be implemented in any element of the web architecture and can use a wide variety of information as input. This affects their structure, data system, computational resources and accuracy. The knowledge of the input information and the understanding of how it can be handled to make predictions can help to improve the design of current prediction engines, and consequently prefetching techniques. This paper analyzes fifty of the most relevant algorithms proposed along 15 years of prefetching research and proposes a taxonomy where the algorithms are classified according to the input data they use. For each group, the main advantages and shortcomings are highlighted. © 2012 Elsevier Ltd. All rights reserved.This work has been partially supported by Spanish Ministry of Science and Innovation under Grant TIN2009-08201, Generalitat Valenciana under Grant GV/2011/002 and Universitat Politecnica de Valencia under Grant PAID-06-10/2424.Domenech, J.; De La Ossa Perez, BA.; Sahuquillo Borrás, J.; Gil Salinas, JA.; Pont Sanjuan, A. (2012). A taxonomy of web prediction algorithms. Expert Systems with Applications. 39(9):8496-8502. https://doi.org/10.1016/j.eswa.2012.01.140S8496850239

    Web Caching and Prefetching with Cyclic Model Analysis of Web Object Sequences

    Get PDF
    Web caching is the process in which web objects are temporarily stored to reduce bandwidth consumption, server load and latency. Web prefetching is the process of fetching web objects from the server before they are actually requested by the client. Integration of caching and prefetching can be very beneficial as the two techniques can support each other. By implementing this integrated scheme in a client-side proxy, the perceived latency can be reduced for not one but many users. In this paper, we propose a new integrated caching and prefetching policy called the WCP-CMA which makes use of a profit-driven caching policy that takes into account the periodicity and cyclic behaviour of the web access sequences for deriving prefetching rules. Our experimental results have shown a 10%-15% increase in the hit ratios of the cached objects and 5%-10% decrease in delay compared to the existing schem

    Techniques of data prefetching, replication, and consistency in the Internet

    Get PDF
    Internet has become a major infrastructure for information sharing in our daily life, and indispensable to critical and large applications in industry, government, business, and education. Internet bandwidth (or the network speed to transfer data) has been dramatically increased, however, the latency time (or the delay to physically access data) has been reduced in a much slower pace. The rich bandwidth and lagging latency can be effectively coped with in Internet systems by three data management techniques: caching, replication, and prefetching. The focus of this dissertation is to address the latency problem in Internet by utilizing the rich bandwidth and large storage capacity for efficiently prefetching data to significantly improve the Web content caching performance, by proposing and implementing scalable data consistency maintenance methods to handle Internet Web address caching in distributed name systems (DNS), and to handle massive data replications in peer-to-peer systems. While the DNS service is critical in Internet, peer-to-peer data sharing is being accepted as an important activity in Internet.;We have made three contributions in developing prefetching techniques. First, we have proposed an efficient data structure for maintaining Web access information, called popularity-based Prediction by Partial Matching (PB-PPM), where data are placed and replaced guided by popularity information of Web accesses, thus only important and useful information is stored. PB-PPM greatly reduces the required storage space, and improves the prediction accuracy. Second, a major weakness in existing Web servers is that prefetching activities are scheduled independently of dynamically changing server workloads. Without a proper control and coordination between the two kinds of activities, prefetching can negatively affect the Web services and degrade the Web access performance. to address this problem, we have developed a queuing model to characterize the interactions. Guided by the model, we have designed a coordination scheme that dynamically adjusts the prefetching aggressiveness in Web Servers. This scheme not only prevents the Web servers from being overloaded, but it can also minimize the average server response time. Finally, we have proposed a scheme that effectively coordinates the sharing of access information for both proxy and Web servers. With the support of this scheme, the accuracy of prefetching decisions is significantly improved.;Regarding data consistency support for Internet caching and data replications, we have conducted three significant studies. First, we have developed a consistency support technique to maintain the data consistency among the replicas in structured P2P networks. Based on Pastry, an existing and popular P2P system, we have implemented this scheme, and show that it can effectively maintain consistency while prevent hot-spot and node-failure problems. Second, we have designed and implemented a DNS cache update protocol, called DNScup, to provide strong consistency for domain/IP mappings. Finally, we have developed a dynamic lease scheme to timely update the replicas in Internet

    AN INDISCERNIBILITY APPROACH FOR PRE PROCESSING OF WEB LOG FILES

    Get PDF
    World Wide Web has a spectacular growth not only in terms of the number of websites and volume of information, but also in terms of the number of visitors. Web log files contain tremendous information about the user traffic and behavior. A large amount of pre processing is required for eliminating the noise and is one of the challenging tasks in web usage mining. This paper proposes an indiscernibility approach in rough set theory for pre processing of web log files

    Web Page Prediction for Web Personalization: A Review

    Get PDF
    This paper proposes a survey of Web Page Ranking for web personalization. Web page prefetching has been widely used to reduce the access latency problem of the Internet. However, if most prefetched web pages are not visited by the users in their subsequent accesses, the limited network bandwidth and server resources will not be used efficiently and may worsen the access delay problem. Therefore, it is critical that we have an accurate prediction method during prefetching. The technique like Markov models have been widely used to represent and analyze user2018;s navigational behavior (usage data) in the Web graph, using the transitional probabilities between web pages, as recorded in the web logs. The recorded users2018; navigation is used to extract popular web paths and predict current users2018; next steps

    Web-log mining for predictive web caching

    Full text link
    • …
    corecore