6 research outputs found

    Investigating the RFAM paradox: The pseudoknot explanation

    Get PDF
    Short abstractInternational audienceIn this short note, we investigate the responsibility of pseudoknotted (PK) foldings in the observed incapacity of an MFE folding method (RNAfold) to predict the structure of certain families of RNA within RFam. We considered the difference Delta in predicted free-energy obtained by respectively considering and omitting PK conformations, which we showed could be reliably used as an indicator for the presence of pseudoknots (84.5% AUC, while 88.3% of PK families have positive values). We furthered our analysis, investigating the top 15 families associated with positive values of Delta associated with non-PK consensus structures in RFAM, and found evidence of the presence of PK in the literature for at least 11 of them. However a large proportion of poorly predicted families remain associated with low Delta values, and additional explanations need be explored for their poor predictions

    Prediction of RNA Secondary Structure Including Kissing Hairpin Motifs

    Get PDF
    Theis C, Janssen S, Giegerich R. Prediction of RNA Secondary Structure Including Kissing Hairpin Motifs. In: Moulton V, Singh M, eds. Algorithms in Bioinformatics. 10th international workshop (WABI 2010), proceedings. Lecture Notes in Bioinformatics. Vol 6293. Berlin: Springer; 2010: 52-64.We present three heuristic strategies for folding RNA sequences into secondary structures including kissing hairpin motifs. The new idea is to construct a kissing hairpin motif from an overlay of two simple canonical pseudoknots. The difficulty is that the overlay does not satisfy Bellman's Principle of Optimality, and the kissing hairpin cannot simply be built from optimal pseudoknots. Our strategies have time/space complexities of O(n^4)/O(n^2), O(n^4)/O(n^3), and O(n^5)/O(n^2). All strategies have been implemented in the program pKiss and were evaluated against known structures. Surprisingly, our simplest strategy performs best. As it has the same complexity as the previous algorithm for simple pseudoknots, the overlay idea opens a way to construct a variety of practically useful algorithms for pseudoknots of higher topological complexity within O(n^4) time and O(n^2) space

    Graphical methods in RNA structure matching

    Get PDF
    Eukaryotic genomes are pervasively transcribed; almost every base can be found in an RNA transcript. This is a surprising observation since most of the genome does not encode proteins. This RNA must serve an important regulatory function – important because producing non-coding RNA is an energy intensive process, and in the absence of strong selection one would expect it to disappear. RNA families with common functions have specifically conserved structural motifs, which are directly related to the functional roles of RNA in catalysis and regulation. Because the conserved structures depend on base-pairing, similar RNA structures may have little or no detectable sequence similarity, making the identification of conserved RNAs difficult. This is a particularly serious problem when studying regulatory structures in RNA. In many cases, such as that of cellular internal ribosome entry sites, although we can identify RNAs that have similar regulatory responses, it is difficult to tell whether the RNAs have common structural features using current methods. Available tools for identifying common structures based on RNA sequence suffer from one or more of the following problems: they do not consider pseudoknots, which are important in many catalytic and regulatory structures; they do not consider near minimum free energy structures, which is important as many RNAs exist as an ensemble of structures of nearly equal energy; they require many examples of known structures in order to train a computational model; they require impractical amounts of computational time, precluding their use on long sequences or genomic scale; or they use a similarity function that cannot identify RNAs as having similar structure, even when they are from one of the well characterized known classes. The approach presented here has the potential to address all of these issues, allowing novel RNA structures that are shared between RNAs with little or no sequence similarity to be discovered. This provides a powerful tool to investigate and explain the pervasive transcription observed in eukaryotic genomes

    Computational Design and Experimental Validation of Functional Ribonucleic Acid Nanostructures

    Get PDF
    In living cells, two major classes of ribonucleic acid (RNA) molecules can be found. The first class called the messenger RNA (mRNA) contains the genetic information that allows the ribosome to read and translate it into proteins. The second class called non-coding RNA (ncRNA), do not code for proteins and are involved with key cellular processes, such as gene expression regulation, splicing, differentiation, and development. NcRNAs fold into an ensemble of thermodynamically stable secondary structures, which will eventually lead the molecule to fold into a specific 3D structure. It is widely known that ncRNAs carry their functions via their 3D structures as well as their molecular composition. The secondary structure of ncRNAs is composed of different types of structural elements (motifs) such as stacking base pairs, internal loops, hairpin loops and pseudoknots. Pseudoknots are specifically difficult to model, are abundant in nature and known to stabilize the functional form of the molecule. Due to the diverse range of functions of ncRNAs, their computational design and analysis have numerous applications in nano-technology, therapeutics, synthetic biology, and materials engineering. The RNA design problem is to find novel RNA sequences that are predicted to fold into target structure(s) while satisfying specific qualitative characteristics and constraints. RNA design can be modeled as a combinatorial optimization problem (COP) and is known to be computationally challenging or more precisely NP-hard. Numerous algorithms to solve the RNA design problem have been developed over the past two decades, however mostly ignore pseudoknots and therefore limit application to only a slice of real-world modeling and design problems. Moreover, the few existing pseudoknot designer methods which were developed only recently, do not provide any evidence about the applicability of their proposed design methodology in biological contexts. The two objectives of this thesis are set to address these two shortcomings. First, we are interested in developing an efficient computational method for the design of RNA secondary structures including pseudoknots that show significantly improved in-silico quality characteristics than the state of the art. Second, we are interested in showing the real-world worthiness of the proposed method by validating it experimentally. More precisely, our aim is to design instances of certain types of RNA enzymes (i.e. ribozymes) and demonstrate that they are functionally active. This would likely only happen if their predicted folding matched their actual folding in the in-vitro experiments. In this thesis, we present four contributions. First, we propose a novel adaptive defect weighted sampling algorithm to efficiently solve the RNA secondary structure design problem where pseudoknots are included. We compare the performance of our design algorithm with the state of the art and show that our method generates molecules that are thermodynamically more stable and less defective than those generated by state of the art methods. Moreover, we show when the effect of fitness evaluation is decoupled from the search and optimization process, our optimization method converges faster than the non-dominated sorting genetic algorithm (NSGA II) and the ant colony optimization (ACO) algorithm do. Second, we use our algorithmic development to implement an RNA design pipeline called Enzymer and make it available as an open source package useful for wet lab practitioners and RNA bioinformaticians. Enzymer uses multiple sequence alignment (MSA) data to generate initial design templates for further optimization. Our design pipeline can then be used to re-engineer naturally occurring RNA enzymes such as ribozymes and riboswitches. Our first and second contributions are published in the RNA section of the Journal of Frontiers in Genetics. Third, we use Enzymer to reengineer three different species of pseudoknotted ribozymes: a hammerhead ribozyme from the mouse gut metagenome, a hammerhead ribozyme from Yarrowia lipolytica and a glmS ribozyme from Thermoanaerobacter tengcogensis. We designed a total of 18 ribozyme sequences and showed the 16 of them were active in-vitro. Our experimental results have been submitted to the RNA journal and strongly suggest that Enzymer is a reliable tool to design pseudoknotted ncRNAs with desired secondary structure. Finally, we propose a novel architecture for a new ribozyme-based gene regulatory network where a hammerhead ribozyme modulates expression of a reporter gene when an external stimulus IPTG is present. Our in-vivo results show expected results in 7 out of 12 cases

    Kisses, ambivalent models and more: Contributions to the analysis of RNA secondary structure.

    Get PDF
    Janssen S. Kisses, ambivalent models and more: Contributions to the analysis of RNA secondary structure. Bielefeld: Universitätsbibliothek; 2014.The full functional role of RNA in all domains of life is yet to be explored. Deep sequencing technologies generate massive data about RNA transcripts with functional potential. To decipher this information, bioinformatics methods for structural analysis are in demand. With this thesis at hand, we want to improve current secondary structure prediction in different respects. The introductory chapter explains ADP with a focus on its comfortable, but atypical style of specifying algorithms. Then, we present five contributions to the analysis of RNA secondary structures. 1. It is the nature of models to abstract and simplify reality in order to master its complexity. Chapter 3 is an in depth analysis of four popular computational models of RNA secondary structure (Programs RNAshapes and RNAalishapes). 2. The secondary structure of RNA is too dynamic to be described by a single structure and in turn, there is no single optimal secondary structure. Thus, we compute the most likely abstract shape of a given RNA sequence. Improvements of the algorithms for computing the likelihood of abstract shapes are discussed in Chapter 4, specifically with regards to computational speed (Program RapidShapes). 3. For computational complexity reasons, models of RNA structures commonly exclude crossing base-pairs, the so-called "pseudoknots", from the secondary structure. In Chapter 5, we introduce a heuristic for mastering a frequent type of pseudoknots: "kissing-hairpins" (Program pKiss). 4. In Chapter 6 we revisit the old algorithmic idea of outside-in computation for the new programming framework Bellman’s GAP. This broadens the arsenal of rapid prototyping algorithms for RNA and other sequential problems. It adds "outside" and "MEA" functionality to RNAshapes and RNAalishapes. 5. Covariance Models representing RNA families assume a single consensus secondary structure for a set of related RNAs and serve as statistical tools to search for additional members. In Chapter 7, we evaluate CM scorings that are more structurespecific than the standard sequence-to-model alignments. Furthermore, we introduce a technique to incorporate "ambivalent" consensus structures into covariance models (Program aCMs). The results of this work are available at the Bielefeld Bioinformatic Server. The RNA Studio (http://bibiserv.cebitec.uni-bielefeld.de/rna) supports ready to use web-submissions, web-services and cloud computing for the programs developed in this thesis. debian packages foster a simple way to install our software on your local machine. Developers can benefit from our algorithmic analyses or use our sources for rapid prototyping as a primer for new implementations: http://bibiserv.cebitec.uni-bielefeld.de/fold-grammars
    corecore