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ABSTRACT 

Huang, Jiajie. Ph.D., Purdue University, August 2016. Graphical Methods in RNA Struc-
ture Matching. Major Professor: Michael Gribskov. 
 
 
Eukaryotic genomes are pervasively transcribed (1); almost every base can be found in 

an RNA transcript. This is a surprising observation since most of the genome does not 

encode proteins. This RNA must serve an important regulatory function � important be-

cause producing non-coding RNA is an energy intensive process, and in the absence of 

strong selection one would expect it to disappear.   

 

RNA families with common functions have specifically conserved structural motifs, 

which are directly related to the functional roles of RNA in catalysis and regulation. Be-

cause the conserved structures depend on base-pairing, similar RNA structures may 

have little or no detectable sequence similarity, making the identification of conserved 

RNAs difficult.  This is a particularly serious problem when studying regulatory structures 

in RNA.  In many cases, such as that of cellular internal ribosome entry sites (2), alt-

hough we can identify RNAs that have similar regulatory responses, it is difficult to tell 

whether the RNAs have common structural features using current methods.  Available 

tools for identifying common structures based on RNA sequence suffer from one or 

more of the following problems: they do not consider pseudoknots, which are important 
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in many catalytic and regulatory structures; they do not consider near minimum free 

energy structures, which is important as many RNAs exist as an ensemble of structures 

of nearly equal energy; they require many examples of known structures in order to 

train a computational model; they require impractical amounts of computational time, 

precluding their use on long sequences or genomic scale; or they use a similarity func-

tion that cannot identify RNAs as having similar structure, even when they are from one 

of the well characterized known classes.  The approach presented here has the potential 

to address all of these issues, allowing novel RNA structures that are shared between 

RNAs with little or no sequence similarity to be discovered.  This provides a powerful 

tool to investigate and explain the pervasive transcription observed in eukaryotic ge-

nomes (1). 
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CHAPTER 1. INTRODUCTION 

1.1 RNA structure: base pairing and structural elements 

The traditional definition of RNA secondary structure is built on base interactions, e.g. 

base-pairing and base-pair stacking. There are two types of base-pairs: canonical and 

non-canonical base-pairs. Canonical base pairs include Watson-Crick base-pairs (A::U 

and G::C) and wobble base-pairs (mostly G::U, sometimes I::A, I::U, or I::C); the wobble 

base-pairs and mismatch pairs are referred to as non-canonical base pairs (3,4). Base-

pair stacking refers to the situation in which two or more base-pairs stack on top of one 

another. Base-pairing and base-pair stacking produce stems, which are double-helical 

regions with at least two consecutive base-pairs. Unpaired bases form loops (Figure 1.1), 

which are single regions usually composed of at least three unpaired bases. Loops are 

typically divided into several types, depending on their position and topology of the un-

paired regions: hairpin loops (also called stem loops), bulge loops, internal loops, multi-

loops (also called junction loops) (Figure 1.1). Stems and loops are basic structural ele-

ments in RNA secondary structures. Pseudoknots are another relevant structural ele-

ment. A pseudoknot is formed when bases in the loop of a stem interact with bases out-

side of this stem and form another stem (Figure 1.1). There are many variations of 

pseudoknots depending on the topology of the stems, the classical type being H-type 

pseudoknots (5) (Figure 1.2). Other types include kissing hairpins and hairpin-bulge 
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pseudoknots (Figure 1.2). Pseudoknots are found in many functional RNA molecules, 

including self-splicing introns, tmRNA, and RNase P RNA, etc., and they are considered 

to be important RNA structural elements, and are often associated with catalytic func-

tions (6). 

1.2 RNA�� ������ ��	� 

Prior to the exciting discovery of catalytic RNA molecules four decades ago, people were 

reluctant to look beyond RNA's role as an information carrier in cellular systems. In the 

1970s, Sidney Altman found, while studying tRNA biosynthesis, that the RNA component 

of ribonuclease P (RNase P) is essential for its enzymatic function, which is to cleave the 

mature tRNA part from the precursor sequence (7,8). Independent research by Thomas 

Cech revealed that the RNA component of the ribosome is essential for protein synthe-

sis (9,10). Altman and Cech shared the 1989 Nobel Prize in Chemistry because of their 

discovery of catalytic RNA molecules. This was the beginning of the unveiling of R
���

double life, with later breakthroughs identifying additional catalytic and regulatory RNA 

molecules. In addition to rRNA, tRNA, and RNase, there are many other examples of 

functional RNAs, such as transfer-messenger RNA, self-splicing introns, riboswitches, 

attenuators, miRNA or siRNA in RNA interference, and CRISPR RNA. The emerging facts 

have shown that RNA is not only the intermediate molecule between DNA and protein 

but also a key player in many biochemical reactions (11).  
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1.2.1 RNA world hypothesis  

The exciting breakthroughs in studies of functional RNAs have also given birth to the 

���� ����	
 ���������� �� �� ���������� �� ��� ������� �� ���� �� ����� (12). Under this 

hypothesis, in a very primitive system RNA plays the roles of both storing information 

and catalyzing biochemical reactions, with no DNA or protein required. For example, the 

disrupted function of miRNAs, or the differential expression of long non-coding RNAs, 

plays an important role in the initiation of human cancer (13). In addition, the RNA com-

ponent in telomerase (14), is the major player in enzymatic functions. Research on func-

tional RNAs have become relevant topics for studies in life science; the application of 

functional RNAs have become powerful tools in curing human diseases.  

Ribosome/tRNA 

The ribosome, tRNA, and mRNA, together form a protein synthesis factory. The ribo-

some is a sub-cellular component that can be found in all living cells. It consists of two 

subunits, large and small, each of them contains both RNAs and proteins. The RNA in the 

ribosome is called rRNA, which is the key component for ribosome function. Messenger 

RNA (mRNA), is an RNA chain transcribed from DNA. The protein coding sequence in 

mRNA is a sequence of nucleotide triplets called codons. Transfer RNA (tRNA), is an RNA 

�������� ���	�	 ���� �� ��
 ���� �� ��� ����� 	���������� ����� ��� ������  �! ��� ���

�������� ��	 �����	��� ���������� �� ����� "�� ���� ����
 �� ��� ���#������ �� �����	

������� ����$ ��� ������ ����
 ��	 ��� ������ ����
 �� ��� ���#���eaf are called anti-

��	�� ��� ��	 ������	�� ���$ ��� ��� ��������� ������
 �� ��� ��� ��	�� ��� �����	 %
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��� ��� � ��� ��� ��	
� ��� ���	�����
�� ��	��	�� ��	 ���	� � ���� ��� ��� ����

(9,10). The anticodon loop contains a triplet of nucleotides called the anticodon. tRNA 

can be attached to amino acids; a tRNA molecule with a specific anticodon can only be 

attached to a specific amino acid. Translation is accomplished by the complementarity 

between anticodons and codons. In the ribosome, the small subunit binds to the mRNA, 

and the large subunit gathers the amino acids carried by tRNA and assembles the poly-

peptide chain according to the order of triplet codons specified by mRNA. Ribosomes 

from different domains, for example, eukaryotes and prokaryotes, differ in size in each 

particle in the subunits; however, they share a conserved core with common folded RNA 

structures and carry the same function: protein biosynthesis (11).  

 

RNase P 

Ribonucleases (RNase) are enzymes that catalyze the cleavage and degradation of RNA 

molecules. Most RNases are proteins; however, RNase P is a ribozyme, which means it 

contains a catalytic RNA molecule. RNase P catalyzes the generation of mature tRNAs by 

cleavage of pre-tRNAs (12,13). RNase P is found in all three kingdoms of life (bacteria, 

eukaryotes, and archaea), and in protein-synthesizing organelles (mitochondria and 

chloroplasts). The RNase P holoenzyme consists of both RNA and protein, with RNA act-

ing as the catalytic core and the protein providing support for the enzyme function. In 

RNase P, the structure of the catalytic RNA is conserved across three kingdoms of life 

(14). However, the protein differs in structural complexity: bacteria < archaea < eukary-

otes, and some RNase P proteins in eukaryotes are responsible for catalytic function as 
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well (15). The interesting functional variation in the RNA and protein in RNase P, across 

�������� ��	��� 
��� 
��� ��� ��� ��������� �� ��� ���� 
�	��� ����������� ��� �� ���

major player in basic cellular processes such as transcription and translation.  

 

Group I & II introns/spliceosome 

Group II self-splicing introns are a group of ribozymes found in all three kingdoms of life. 

They catalyze their own cleavage from host genes, such as tRNA, rRNA, and mRNA in 

chloroplasts and mitochondria. Group II introns contain 6 domains, labeled I to VI, with 

domain V being structurally conserved and functionally critical (15). The spliceosome is a 

complex cellular machine that catalyzes mRNA splicing in eukaryotes by removal of in-

trons from the pre-mRNA sequence. The spliceosome catalyzes splicing through mecha-

nism identical to the Group II intron. It is composed of ~60 to 150 different proteins and 

5 small nuclear RNA (snRNA) molecules: U1, U2, U4, U5, and U6, with U2 and U6 in the 

active site (16). The spliceosome U2/U6 snRNA is highly similar to domain V in Group II 

introns, in both sequence and structure. The similarities between the spliceosome and 

Group II introns in function, sequence, and structure, has led to the hypothesis that the 

spliceosome has evolved from Group II self-splicing introns (16). Another group of self-

splicing introns, called the Group I introns, catalyze their own excision from tRNA, rRNA, 

and mRNA precursors in a variety of organisms including bacteria and eukaryotes (16). 

The active site of Group I intron is a conserved core composed of two helical domains 

made from paired RNA regions (P): P4-P5-P6 and P3-P7-P9 (17,18).  
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tmRNA 

Transfer-messenger RNA, tmRNA, is a bacterial RNA molecule with a dual function as 

both a tRNA and an mRNA. tmRNA forms the tmRNP complex with Small Protein B 

(SmpB) and performs trans-translation. When an mRNA lacking stop codons is being 

translated, the ribosome may get stalled and produce a truncated polypeptide. tmRNA 

releases the stalled ribosome, adds a proteolysis-inducing protein tag to the end of the 

truncated protein, and facilitates the degradation of the mRNA involved in the stalled 

ribosome (19). The functional core of the tmRNA structure is composed of a tRNA-like 

domain (TLD) and a mRNA-like domain (MLD), connected by a pseudoknot-rich domain 

(PKD). The MLD contains a short open reading frame (ORF) encoding the degradation-

inducing protein tag (a short polypeptide chain that guides degradation by housekeep-

ing proteases), with resume and stop codons surrounding the ORF. The tmRNA resumes 

and then finishes translation of the nonstop mRNA by moving the ribosome onto the 

resume codon in the tmRNA and continuing translation of the proteolysis-inducing pro-

tein tag encoded by the ORF (20). The structure of tmRNA has been obtained by com-

parative sequence analysis of aligned tmRNA sequences from multiple organism based 

on covariance in base pairing (21,22). Although there is no available full-length tmRNA 

structure at the atomic level, crystal or cryo-EM structures of TLD have been solved re-

cently (23,24).  

 

 

 



7 
 

 

Attenuator/riboswitch 

Attenuators are base-������ ��	 �
����� ����� �� �� �� ������
��� ������� ������

of bacterial genes that sense environmental change and regulate gene expression ac-

cording to environmental conditions. Environmental conditions include temperature 

and the concentrations of metabolites and macromolecules (23). The major types of at-

tenuators include riboswitches, T-boxes, peptide leaders, ribosomal protein leaders, and 

binding sites of terminators, and anti-terminator proteins (24). Riboswitches are among 

the most well-known attenuators. Riboswitches are natural RNA aptamers (an unpaired 

region of RNA sequence with high affinity to a specific metabolite) that are found in 

both Gram-positive and Gram-negative bacteria (25). Riboswitches are embedded in the 

�� ������
��� ������ ����� �� ����� ����
��� �� �� ��������� �� �������� �����
����

and control the transcription or translation of metabolites by switching their structure 

upon the binding of a regulatory ligand. The metabolic pathways that are affected in-

clude biosynthesis of vitamins, metabolism of amino acids, and metabolism of nucleo-

bases (26). A typical riboswitch contains two parts: an RNA aptamer and an expression 

platform (a folded region of the RNA functioning as a transcription terminator). The ap-

tamer is highly conserved across species for the same class of riboswitches. The aptamer 

selectively binds to the metabolites and changes the structure of the expression plat-

form upon binding. This forms a terminator stem that terminates transcription by bind-

ing a terminator protein, or sequesters the ribosome-binding site and prevents initiation 

of translation (17). Riboswitches are ancient mechanisms for regulation of gene expres-

sion (18).  
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miRNA/siRNA 

Micro-RNAs (miRNA), or small interfering RNAs (siRNA), are short (miRNA, ~21-25 nu-

cleotides, siRNA, ~20-24 nucleotides) regulatory RNA molecules that are responsible for 

sequence-specific gene silencing, which is also known as RNA interference (RNAi) (27). 

MiRNAs are derived from precursor RNA molecules, which are transcribed from ge-

nomic regions encoding the genes to be silenced; these precursor molecules are stem-

loop structures, and part of their sequences contain the sequence of the miRNA. By con-

trast, siRNAs are derived either from infecting viruses or artificial synthesis, (exogenous), 

or derived from aberrant transcripts (endogenous)(28-30). The processing of both miR-

NAs and siRNAs include multiple steps: processing into small RNA duplexes by an 

RNaseIII enzyme called Dicer, unwinding into single stranded RNAs (ssRNAs), loading of 

one strand into the RNA-induced silencing complex (RISC), guiding of the RISC to the 

target transcript (complementary to the ssRNA), and degradation of the target tran-

script by a family of endonucleases in the RISC called Argonaute (31). Because of its use 

for knocking down expression of target genes, RNAi induced by siRNAs and miRNAs have 

multiple uses including high-throughput studies of gene regulation, cure of viral infec-

tions, and hopefully, development of other disease therapeutics. For example, RNAi can 

be used to silence genes that are differentially expressed in tumor cells as cancer thera-

peutics.  
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1.2.2 RNA structure and function conservation 

Functional RNA molecules are folded into complex structures and involved in multiple 

important cellular processes, such as transcriptional and translational regulation (19). 

The function of these RNA molecules depends on the presence of conserved motifs. As 

only a small number of functional RNA species have been catalogued so far, the majority 

of functional RNA motifs are yet to be identified. For example, in the human ENCODE 

(Encyclopedia of DNA Elements) project, the function of most of the small RNAs are yet 

to be confirmed (25).  

In DNA and protein, traditional approaches used to detect conserved functional motifs 

are based on sequence similarity; however, the low sequence similarity in functional 

RNAs makes it difficult to identify functional motifs in RNA based on sequence similarity 

alone (21). Despite the possible lack of sequence conservation, RNAs with similar func-

tions typically have conserved secondary or tertiary structures (22), which offers an al-

ternative approach for identifying functional elements in RNA � conserved structural 

motif identification.  

Unlike DNA and protein, in which conserved motifs are encoded on the primary se-

quence level, regulatory and catalytic motifs in RNA are base-paired structures.  The 

topological arrangement of these structures, for instance the nesting of stems, multi-

loops, and pseudoknots, is critical to the structure and function of the molecule. RNAs 

with similar functions, for example those in RNase P, the ribosome, or self-splicing in-

trons, typically have strongly conserved topologies (15,26-28).  The importance of iden-
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tifying RNAs with similar topologies is therefore comparable to the importance of se-

quence alignments in identifying conserved protein and DNA structures. One of the no-

table aspects of RNA structure is the importance of pseudoknots. For example, in the 

self-cleaving ribozyme in Hepatitis Delta Virus (HDV), a double-pseudoknotted structure 

forms the catalytic core which is critical for viral infection (6) (Figure 1.4); in Group I Self-

Splicing Introns, pseudoknots form the catalytic core of the splicing reaction (29,30). 

Therefore, the identification of conserved topologies that include pseudoknots may be 

critical to identifying biologically important structures.   

 

1.3 Current approaches to study of RNA structures  

1.3.1 Experimental 

1.3.1.1 Individual RNA molecules: X-ray, NMR, and chemical/enzymatic probing 

Common experimental approaches for study of RNA structures include biophysical tools 

such as X-ray crystallography, NMR spectroscopy, and probing using enzymes or chemi-

cals. RNA structures can be accurately determined by crystallographic or NMR ap-

proaches, but these approaches remain very difficult � only a few hundred large RNA 

structures have been determined, and most of these belong to one of only a few classes. 

RNA structure probing, also known as RNA structure footprinting, in which RNA struc-

tures are cleaved at specific positions, e.g., at paired or unpaired regions, can be used to 

determine which bases in a structure are paired, but not the bases to which they pair. 

Chemical probing approaches include DMS probing, CMCT probing, Kethoxal probing, 
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and SHAPE. Enzymatic probing of RNA structures uses nucleases such as RNase V1, S1 

nuclease, RNase T1, RNase T2, etc. Chemical or enzymatic probing is followed by primer 

extension and gel electrophoresis to determine the location of cutting, and with the 

known base specificity of the reagent, the information of pairing of a specific base can 

be indirectly inferred. The procedures of chemical or enzymatic probing will be intro-

duced below.  

 

DMS/CMCT/Kethoxal 

Dimethyl sulfate (DMS), is a chemical reagent that modifies A bases and C bases by 

methylation of their base-pairing faces. Base-pairing protects the bases from methyla-

tion. Using DMS methylation followed by primer extension and gel electrophoresis, the 

unpaired As or Cs on an RNA sequence can be detected, as the primer extension stops 

at the DMS-methylated base (31). Similar to DMS, chemical reagents that modify other 

RNA bases also have been applied in RNA structure probing. 1-cylcohexyl-(2-

morpholinoethyl) carbodiimide Metho-p-toluenesulfonate (CMCT) modifies unpaired Us 

by alkylation (32,33). Kethoxal modifies unpaired Gs by alkylation (34). One drawback of 

these chemical probing methods is that they are only sensitive to one or two bases; 

therefore, sometimes these three chemicals are combined for a complete analysis of 

RNA local structures (35). The data obtained by DMS/CMCT/Kethoxal probing can be 

used as constraints in RNA structure prediction for higher accuracy (36).  However, 

probing using the different chemicals needs to done separately, and combining data 
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from multiple experiments creates noise. Moreover, differences in experimental condi-

tions affect the RNA structure.  

 

SHAPE 

Selective 2�-Hydroxyl Acylation and Primer Extension (SHAPE), is an approach that uses 

the selective chemical reactivity of the RNA ribose hydroxyl group for identification of 

base-paired and non-base-paired regions in RNA. The chemical reactivity of the RNA ri-
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hydroxyl reactive chemical reagent, such as N-methylisatoic anhydride (NMIA); the 

chemically reactive bases are then visualized and quantified by primer extension and gel 

electrophoresis, which identifies the pairing status of specific bases. Using SHAPE, quan-

titative nucleotide-resolution local RNA structures or maps of paired bases can be ob-

tained (37,38). Similar to the application of DMS/CMCT/Kethoxal probing data in RNA 

structure prediction (36), the base pairing information obtained from SHAPE experi-

ments can be used as pseudo-free energies and incorporated into nearest neighbor 

model based energy minimization to improve structure prediction accuracy (39).   
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Enzymatic probing 

Similar to chemical probing, enzymatic probing is performed by digesting RNA with nu-

cleases with different specificities, such as for unpaired regions (S1 nuclease, RNase T1, 

RNase T2, RNase A, RNase U2) or paired regions (RNase V1) (40).   

In general, a major challenge for all the probing approaches is that the probed structure 

is an average of the repertoire of structures, which may not be the conformation of a 

real structure, since multiple conformations could exist simultaneously. Another issue 

with the probing approaches is that they might not be accurate as they are usually done 

on extracted RNA, which differs from the RNA in living cells. The in vivo environment is 

more complex than the in vitro environment; change in solution conditions, and the 

binding of metal ions and proteins could change the RNA structure drastically. Further-

more, the success rate of the probing experiment is highly sensitive to the reaction time 

of the reagent, as over digestion creates fragmented RNA sequences with low specificity 

in the following sequencing, and insufficient time can cause no digestion at all. In addi-

tion, the experimental procedures, such as cell lysis and RNA extraction, further de-

crease the stability of RNA structures and create fragments of RNA sequences that adds 

to the noise (41).  
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1.3.1.2 Multiple RNA molecules: transcriptome chemical/enzymatic probing and high-

throughput sequencing 

While classical chemical/enzymatic probing focused on only one RNA at a time, simulta-

neous or genome-wide probing of multiple RNAs has emerged in recent years. In these 

experiments, chemical or enzymatic probing is performed on the transcriptome, fol-

lowed by quantification using high-throughput sequencing. These experiments provide 

not only a new approach to RNA structure determination, but also provide high-

throughput data that improves computational methods for RNA structure prediction.  

  

PARS/FragSeq 

Examples of high-throughput enzymatic probing include parallel analysis of RNA struc-

ture (PARS) in yeast (42) and fragmentation sequencing (FragSeq) in mouse (43). In 

these experiments, transcripts were digested with structure-specific enzymes; single-

stranded or double-stranded positions were identified by subsequent sequencing, as the 

sequencing could reveal the positions of specific enzyme cutting.  

DMS-seq/SHAPE-seq 

Examples of high-throughput chemical probing include DMS-seq (44) and SHAPE-seq 

(45). In these experiments, transcripts are treated with chemicals probing unprotected 

bases, with or without base specificity. The limitations of probing methods still exist, 

such as the inaccuracy of RNA structures due to the averaging of conformations, and the 

noise created by the inability to control in the extent of reaction with the probing rea-



15 
 

 

gent. Moreover, pursuit of high throughput data may sacrifice the accuracy of RNA 

structures, as it is difficult to customize the experimental conditions for each RNA.  

 

1.3.2 Computational 

Other than experimental strategies, RNA structure analysis heavily relies on two compu-

tational approaches � structure prediction and covariance analysis.  

1.3.2.1 RNA conformational free-energy parameters for structure prediction 

The prediction of RNA secondary structures is based on prediction of the minimal free 

energy (MFE) structure. The energy minimization is based on a nearest-neighbor model, 

which computes the free energy of bases using information about adjacent paired, or 

stacked, bases (46). The nearest neighbor model is an approximation of the RNA folding 

stability of RNA secondary structures. In the nearest neighbor model, the stability of an 

RNA sequence is calculated by combining the experimentally determined thermody-

namic parameters of structural elements such as helices, loops, and pseudoknots, fol-

lowing a set of thermodynamic rules. In the nearest neighbor model, an RNA duplex is 

decomposed into a series of base-pair doublets, and its free energy is calculated as the 

sum of the free energies of those doublets, plus additional terms such as duplex (helix) 

initiation/termination and penalties for some unstable structures, such as loops, stems 

ending in A::U or U::A base-pairs, or hairpin loops formed by only C bases (47-49). The 

original thermodynamic parameters, which were obtained from melting experiments 

dating back to the 1970s (50-52), have been extended as more experimental data be-
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came available in the 1990s (48,53). In the 2000s, chemical probing constraints were 

incorporated into the thermodynamic parameters, which increased the accuracy of RNA 

structure prediction (36). A database collecting the existing thermodynamic parameters 

was established in 2010 (54). 

 

1.3.2.2 RNA structure prediction programs 

In RNA folding, the primary assumption is that the most favorable structure is the one 

with the minimum free energy (MFE). However, RNA structures are dynamic and have 

interconverting states in folding. In addition, RNA structures are affected by environ-

mental conditions such as salt concentration, temperature, and binding of proteins. An 

RNA structure is an ensemble of structures with near-MFE energies and different con-

formations (55). Given the number of possible conformations within an energy range, 

obtaining all the possible near-MFE structures is computationally expensive. Dynamic 

programming (DP) algorithms (56-61) using experimentally-determined nearest-

neighbor thermodynamic parameters (54) (see chapter 1.3.1.2 for more details) are 

widely used to calculate minimum and near-minimum free energies of RNA folding. To 

limit the number of predicted conformations, some programs incorporate the McCaskill 

partition function algorithm to sample RNA conformations from the Boltzmann distribu-

tion by probability. UNAFold (3,62,63) is one of the most popular dynamic program-

ming-based RNA structure prediction approaches. UNAFold computes the thermody-

namically optimal structure using dynamic programming; this work can be extended to 
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identify suboptimal structures within a range of free energy of the optimal folding. 

RNAstructure (64-66) and ViennaRNA (67-69) are also based on dynamic programming, 

and have incorporated partition function calculation for computation of base-pairing 

probabilities. Another example of a partition function-based program is Sfold (70,71), 

which calculates a centroid structure based on the base-pairing probabilities of a Boltz-

mann ensemble. Programs such as CONTRAfold (72,73), CentroidFold (74) and IPknot  

(75), calculate base-pairing probabilities using conditional log-linear models (CLLM), a 

grammar-based method similar to stochastic context-free grammars (SCFG).  

In general, dynamic programming based programs cannot predict pseudoknots due to 

computational complexity. The prediction of pseudoknots requires calculation of non-

nested base-pairs, which is a NP-hard problem (76). To solve this problem, some pro-

grams have limited the range of parameters in their dynamic programming algorithms, 

or applied heuristics to predict only certain types of pseudoknots. These programs in-

clude RNAPKplex (77) in the ViennaRNA package, ProbKnot in the RNAstructure package 

(78), DotKnot (79,80), and pKiss (81,82).  

In general, due to memory and time limitations, dynamic programming based programs 

do not predict pseudoknots; however, some program suites have extended secondary-

structure prediction to include pseudoknots by incorporating various heuristics into 

their algorithms. ViennaRNA includes the program RNAPKplex (77), which decomposes a 

secondary structure into two parts and separately calculates the minimum free energy 

of each part. The two parts include a pseudoknot-free structure that includes accessible 

(unpaired) bases, and an additional stem formed within the accessible region to form a 
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pseudoknot with a stem in the pseudoknot-free structure. The calculation of pseu-

doknot energy is recursive and with complexity O(n6), and n is the length of sequence of 

base-pair number; when the length of the accessible region limited to w, the computa-

tional time for RNAPKplex is O(n3 + n2w4). RNAPKplex decomposes a secondary structure 

into two parts, a pseudoknot-free structure with unpaired bases, and an additional stem 

formed using the unpaired bases to form a pseudoknot with a stem in the pseudoknot-

free structure, and computes the free energies separately. ProbKnot calculates a maxi-

mum expected accuracy structure based on the partition function, and that structure 

may or may not contain pseudoknots. DotKnot predicts pseudoknots by assembly of 

high probability base-pairs and evaluation of those base-pairs using pre-determined 

pseudoknot energy parameters. pKiss predicts pseudoknots using heuristics. DotKnot 

has a high precision, around 80%, in predicting pseudoknots in short RNA sequences, 

while ProbKnot has a high precision, ranging between 60% and 80%, and a fluctuating 

recall, ranging between 50% and 90%, in longer RNA sequences. Due to the limitations 

in parameters or computations, these programs predict only certain types of pseu-

doknots, and their precision or recall still has some space for improvement, such as in-

corporation of pseudoknot energy parameters in further experiments.   

 

1.3.2.3 Phylogenetic approaches  

Another computational approach to determining RNA structure is phylogenetic analysis, 

which is based on the assumption that the sequence of functional RNAs remains un-
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changed or changes simultaneously when compared to their surrounding regions. In 

phylogenetic approaches, homologous sequences from a diverse set of organisms are 

aligned, and bases in each sequence occupying the same column in the alignment are 

identified. There are two types of phylogenetic approaches: phylogenetic footprinting 

(83) and covariance analysis (84,85). Phylogenetic footprinting identifies conserved re-

gions by comparing a candidate sequence to orthologous sequences in different species. 

The conserved regions are the identical regions in the global alignment across ortholo-

gous sequences, which are considered to be paired in the folded RNA sequence. It is 

convenient to identify conserved regions using phylogenetic footprinting, however, the 

conserved regions sometimes could be short (5-10 bases), when compared to the entire 

region being scanned (1000 bases), and might be covered by the non-functional regions. 

Covariance analysis works in a similar way, but the comparison is between species that 

are less related, and thus have less sequence conservation. Covariance is a phenomenon 

in which changes in the sequence at two separate positions coincide to maintain the 

base-paired structure. A certain number of base-pairs are consistently found in multiple 

sequence alignments, and change in one base causes corresponding changes in another 

so as to maintain base-pairing (86). Covariance approaches require the alignment of a 

set of sequences; these sequences usually come from the same gene of interest in relat-

ed species.  Base-paired regions can be identified as sequence positions that show com-

plementary base changes, for instance, an A�C base change is associated with a U�G 

base change at the base-paired position.  This is usually detected by calculating the mu-
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tual information between positions in the aligned sequences (87). Covariance analysis is 

a major approach to use to validate the existence of predicted structures (84,85).  An 

example of covariation is shown in Figure 1.5. Despite its advantages, covariance se-

quence analysis requires that homologous sequences be available for different species, 

and that the RNA sequences being examined to be highly conserved to discriminate the 

functional regions from the non-functional regions, which is not always the case. Fur-

thermore, it can be computationally expensive if the region being searched is on the ge-

nomic level.   

 

1.4 Visualization of RNA structures 

Many approaches are available for visualization of RNA secondary structures. Simple 

approaches focus on annotation of RNA base-pairing, and some of them include the free 

energy information of RNA structures. The most widely used visualization methods in-

clude stem-loop diagrams, circle plots, dome plots, energy dot plots, the Vienna format 

notation from ViennaRNA package, the Connect format notation from the UNAFold pro-

gram suite, and the BPSEQ format notation. The details about these representations will 

be presented below.  

The first four simple representations mentioned above offer straight-forward visualiza-

tion of RNA secondary structures. In stem-loop diagrams, the RNA sequence is plotted 

as a curved line with unpaired regions as loops and stems as ladders. The circle plot is a 

base-pairing annotation proposed by Nussinov in 1978 (88), where the RNA sequence is 
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represented as a circle with the position of each base indicated by dots. Two dots are 

connected by a line if the two corresponding bases are paired. The dome plot shows the 

sequence as a line with positions of the paired bases connected by arcs (also called 

domes). Therefore, the plot of a stem with multiple base-pairs has multiple domes. For 

simplification, multiple domes in the same stem can be represented by a single arc. The 

energy dot plot was proposed by Zuker for representing RNA secondary structures, and 

their predicted free energies, predicted by mfold (3,63). In the energy dot plot, the se-

quence is plotted against itself, with the position of each base-pair shown as a colored 

dot. One plot usually contains several alternative structures including the minimum free 

energy (MFE) structure. For better visualization, each alternative structure is labeled 

with its free energy and colored differently. See Figure 1.6 for an example of these sim-

ple visualizations of RNA structures.  

The remaining three approaches mentioned in the beginning of this section, which are 

the Vienna format notation, the Connect format notation, and the BPSEQ notation, pro-

vide annotation of the defaults of base-pairing in RNA structure. The Vienna format no-

tation, proposed in the ViennaRNA package (89), is also known as the dot-bracket repre-

sentation. In the Vienna format, each base in an RNA secondary structure is represented 

as either a dot (unpaired) or half of a bracket (paired). In the Vienna format, one or mul-

tiple alternative structures for one RNA sequence are shown, and the difference be-

tween alternative structures can be shown by the differences between dots and brack-

ets. The Connect format notation, an RNA structure representation proposed in mfold 

(3,63), also describes one or more structures corresponding to one sequence. It starts 
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with the name of the sequence and the free energy of one alternative structure (if avail-

able), followed by the base-pairing information for each base: the base content, its pre-

ceding base, its following base, and the base it is paired to. The BPSEQ formation nota-

tion is a succinct variation of the Connect format. See Figure 1.10 for an example of an 

RNA structure in these three formats.  

 

1.5 Comparison of RNA structures  

Graphical representation of RNA structures is intended for efficient representation and 

comparison of structures. RNA structures have been commonly represented as tree 

graphs, but only secondary structures (not pseudoknots) can be included (58,90-93). 

Another graphical representation approach has been implemented in the RNAshapes 

package by the Giegerich group (94-96), which represents RNA structures as abstract 

shapes. Shape abstraction retains nesting and adjacency in the structure, but removes 

information such as helix length, aiming for efficient computation. This approach is de-

scribed in detail below. These approaches, however, do not include pseudoknots in ei-

ther the representation or the analysis. The Schlick group proposed the RNA-As-Graphs 

(RAG) method, which represents RNA structures either as tree graphs (without pseu-

doknots) or dual graphs (with pseudoknots) (97-100). 
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1.5.1 RNAshapes 

The RNAshapes package represents RNA structures within a certain folding space as ab-

stract shapes, in which multiple base-pairs or unpaired bases are represented by single 

symbols, aiming for efficient RNA structure comparisons (94-96). In RNAshapes, un-

paired regions are displayed as underscores, and stacking regions are displayed as pairs 

of brackets. According to the level of abstraction, several abstraction variations are 

available. In higher levels of abstraction some information describing nesting and adja-

cency is removed. Figure 1.7 shows an example with the lowest level of abstraction. The 

RNAshapes approach is limited to pseudoknot-free structures.  

 

1.5.2 RNA-As-Graphs 

The RNA-As-Graphs (RAG) method represents RNA structures as tree graphs without 

pseudoknots (Figure 1.8) or dual graphs with pseudoknots included (Figure 1.9) (97-100). 

An RAG is quantified by numerical descriptors, such as the eigenvalue spectrum of the 

Laplacian matrix, as a measurement of graph compactness and connectivity, and topo-

logical numbers as measurement of graph isomorphism (97,100). These numerical de-

scriptors provide limited ability to identify similar structures. They have never been 

shown to be able to group RNAs into structural/functional classes, or to identify sub-

graphs nested within larger graphs (> 10 vertices), as a typical graph of RNA structure 

may have up to 20 vertices. 
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Figure 1.6 Simple representations of RNA structure.The diagrams show two predicted 
structures: the predicted minimum free-energy (MFE) (-27.10 kcal/mol) structure, and a 
near-MFE (-23.78 kcal/mol) structure predicted for Staphylococcus aureus tRNA-
Isoleucine (102) using UNAFold (63). (A) The stem-loop diagrams of the two alternatives 
structures, created by the RNAstructure online server (64); (B) The circle plots of the 
MFE and near-MFE structures, created by Matlab; (C) The dome plot of the MFE and 
near-MFE structures, created by Matlab; (D) The energy dot plot of the MFE (red) and 
near-MFE structures (black), created by UNAFold (63).  
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(A)  
 

>tRNA.1QU2.fa 

GGCUUGUAGCUCAGGUGGUUAGAGCGCACCCCUGAUAAGGGUGAGGUCGGUGGUUCAAGUCCACUCAGGCCCAC 

((((((.......(((((((.((((.(((((((.((....)).)))..)))))))).)).)))))))))))... (-27.10) 

(B)  
 

[_[_[_[_[_]_]_]_]_]_ 

Figure 1.7 RNAshapes representation. This figure shows the secondary structure repre-
sented in (A) ViennaRNA format and (B) RNAshapes format (least abstraction level), re-
spectively. In RNAshapes format, the unpaired regions are represented as underscores 
and stacking regions as square brackets.   
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Figure 1.9 RAG dual graph representation. A 3'-terminal pseudoknot in strawberry chlo-
rotic fleck associated virus is determined by comparative sequence analysis (103). This 
figure shows the secondary structure as a stem-loop diagram (A), created by Pseudo-
Viewer3.0 (101), RAG dual graph (B), sequence (C), and ViennaRNA format (D), respec-
tively. In the RAG dual graph, stems (stacking regions with more than 1 base-pair) are 
represented as vertices and loops (unpaired regions) as edges. The corresponding stems 
in (A) and vertices in (B) are labeled with the same numbers.  
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Figure 1.10 Storage formats of RNA structures. (A) ViennaRNA format: each unpaired 
base is represented as a dot, and paired bases as a pair of matching brackets. (B) Con-
nect format: the header line contains the sequence length, the free energy of a folding, 
and the sequence id. The following lines show the position of the base, base identity, 
position of the previous base, position of the following base, position of base that this 
base is paired to (0 if the base is unpaired), and a redundant index of this base which is 
the same as the first column. (C) BPSEQ format: a simplified version of Connect format, 
everything is the same except that it only contains the columns of the position of the 
base, base identity, and the position of base that this base is paired to.    
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(A)  
 

>tRNA.1QU2 

GGCUUGUAGCUCAGGUGGUUAGAGCGCACCCCUGAUAAGGGUGAGGUCGGUGGUUCAAGUCCACUCAGGCCCAC 

((((((.......(((((((.((((.(((((((.((....)).)))..)))))))).)).)))))))))))... 

 

 

(B)  
 

74 dG = -27.30 tRNA.1QU2     
1 G 0 2 71 1 
2 G 1 3 70 2 
3 C 2 4 69 3 
4 U 3 5 68 4 
5 U 4 6 67 5 
6 G 5 7 66 6 
7 U 6 8 0 7 
8 A 7 9 0 8 
9 G 8 10 0 9 
10 C 9 11 0 10 
                  ... 
68 G 67 69 4 68 
69 G 68 70 3 69 
70 C 69 71 2 70 
71 C 70 72 1 71 
72 C 71 73 0 72 
73 A 72 74 0 73 
74 C 73 0 0 74 
 
 
 
 

(C)  
 

74 dG = -27.30 tRNA.1QU2     
1 G 71  
2 G 70  
3 C 69  
4 U 68  
5 U 67  
6 G 66  
7 U 0  
8 A 0  
9 G 0  
10 C 0  
           ... 
68 G 4  
69 G 3  
70 C 2  
71 C 1  
72 C 0  
73 A 0  
74 C 0  

 

Figure 1.10 
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CHAPTER 2. XIOS RNA GRAPH MATCHING 

2.1 RNA XIOS graphs and XIOS format 

As mentioned in the previous chapter, currently existing methods for RNA structure 

matching, either lack the ability to include pseudoknots, or are incapable of grouping 

RNAs into structural/functional classes. In order to deal with these limitations of current 

methods, we have developed a graph theoretic method that aims for efficient pattern 

matching of RNA structures.  

 

2.1.1 XIOS graphical representation  

One way to compare the topological relationships in the RNA structures is to identify 

conserved structural motifs within a group of RNA molecules using a graphical represen-

tation. We have developed the RNA XIOS graph theoretic approach (104) in which stems 

are represented as vertices, and stem-stem topological relationships as edges. Four 

types of edges are possible: eXclusive (two stems cannot form simultaneously because 

they share the same range of the sequence), Included (one stem is nested in another), 

Overlapping (two stems form a pseudoknot, i.e., bases in the loop region of one stem 

interact with bases outside the stem, which generates another stem), and Serial (two 

neighboring stems form simultaneously and have no overlap) (Figure 2.1).  
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The XIOS graph approach has several advantages. (1) It can incorporate multiple struc-

tures into one graph, allowing the representation of a near-MFE ensemble in a single 

graph; studying the set of structures in an ensemble not only allows the detection of 

switch-like structures that change upon the binding of ligands (105), but also helps to 

identify pseudoknots (106). (2) XIOS graphs are designed to represent pseudoknots, 

which are one of the four possible relationships defined between stems.  (3) All biologi-

cally possible XIOS graphs, and hence all biologically possible topologies, can be enu-

merated, and this enumerated set used to rapidly identify conserved structures (see Ta-

ble 2.1).  

2.1.2 XIOS format  

The XIOS graphs are described in XML (Extensible Markup Language) format. Figure 2.2 

shows an example of a XIOS file of RNase P RNA from A.fulgidus.  

� An XIOS file contains four blocks: information (metadata), stem list, edge list, and 

adjacency matrix.  

� The information block contains the RNA graph id, its functional category, and se-

quence information.  

� The stem list shows each stem with its starting and ending positions in the se-

quence, followed by an optional Vienna RNA display.  

� The edge list is a triangular matrix showing Include (i) or Overlapping (o) rela-

tionships (edges) between stems (vertices).  
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� The adjacency matrix is a square matrix showing the relationships, X, I, O, and S, 

between all of the stems.  

 

2.2 Motif library generation: enumerating a comprehensive set of RNA topologies 

We have developed a structural motif library, which is an exhaustive enumeration of all 

possible RNA structural motifs. Each motif, a graph with a fixed number of stems, is rep-

resented by a XIOS graph and assigned a canonical DFS code. The current structural mo-

tif library contains 55,728 motifs in total, which represents all physically non-redundant 

motifs containing from 1 to 7 stems (Table 2.1). The motifs in the library contains either 

I, O, and S edges. The set of motifs with N stems is generated by generation of all the 

permutations of an ordered set of 2N numbers, and removal of redundant graphs with 

isomorphism. Two graphs are considered to be isomorphic if they have the same num-

ber of vertices and the ways of the vertices being connected are the same. Graph iso-

morphism is important because we can use it to identify identical graphs and thus iden-

tify similar RNA functions. Graph isomorphism is identified by canonical labeling termed 

minimum depth-first search (DFS) code using the gSpan (104,107) approach. For further 

details on the motif library generation, refer to Chapter 3.  

 

2.3 RNA graph matching using DFS lexicographical ordering  

With the XIOS graphical representation, one is able to compare RNA structures based on 

topology; however, graph matching is an NP-complete problem. Thus, an efficient graph 
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enumeration and matching technique is required. Inspired by the DFS lexicographical 

ordering (107) of gSpan, we have modified this approach to match XIOS graphs.    

In the gSpan approach, a graph can be canonically represented by enumerating its verti-

ces and edges following lexicographical rules. This canonical enumeration is the DFS 

code. Two graphs with the same DFS code are isomorphous (107). Figure 2.3 shows an 

example of the DFS code for a XIOS RNA graph.  

 

2.4 RNA fingerprint generation and XPT format  

2.4.1 RNA fingerprint and its generation  

Structural motifs are an intrinsic property of an RNA structure. We define the RNA 

structural fingerprint (or simply, fingerprint), as a list of the structural motifs found in a 

specific RNA structure. In terms of the XIOS graph, the fingerprint is a list of its sub-

graphs. Figure 2.4 shows an example of RNA fingerprint.  

Figure 2.5 shows a flow chart of RNA fingerprint generation for a RNA XIOS graph. We 

have developed a subgraph random sampling algorithm that identifies the subgraphs in 

a XIOS graph. The identified subgraphs are then encoded as DFS codes to allow match-

ing of motifs with the same DFS code. When a certain number of iterations is reached or 

specific conditions are satisfied, the fingerprint generation stops (Chapter 3.3.2), and a 

list of identified motifs is written into a fingerprint file (the XPT file).  
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2.4.2 XPT format   

Similar to the XIOS files, we have defined XPT files, which are also written in XML format. 

Figure 2.6 is an example of the XPT file of RNase P RNA from A.fulgidus. An XPT file con-

tains four blocks: query, fingerprint, database, and motif list. The query block contains 

the RNA graph id, and the number of its vertices and edges. The fingerprint block shows 

the statistics of the fingerprint computation, including iterations, run time, and the ver-

sion of the program used. The database block shows the id of the motif library used. The 

motif list shows each motif (subgraph) identified in the XIOS graph: the motif id, corre-

sponding DFS code, the first iteration of iterations of the motif being sampled in random 

subgraph sampling (Chapter 3), total number of iterations of the motif being sampled, 

and total number of different mappings (one mapping is one combination of vertices 

composing the motif) of the motif in the RNA graph. The DFS code is rewritten as a hex-

adecimal code for simplification.  
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Figure 2.1 XIOS graph stem-stem relationships. Edges show the relationship between 
two stems, and may be one of four types: X (mutually exclusive), I (included or nested), 
O (overlapping or pseudoknotted), or S (serial or adjacent). The bold lines indicate the 
sequence, and the thin lines indicate the base-pairing between specific regions on the 
sequence. A and B are two stems. In the left-most panel, the dotted lines indicate the 
alternative base-pairings that form stem B, other the base-pairing in solid lines that form 
stem A.   
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Figure 2.2 XIOS format.   

<XIOS> 
<information> 

<sequence> 
<id>A.fulgidus</id> 
<doc>RNase P RNA</doc> 
<unformatted>CGGCGGUGGGCGGCUGACCGAAAGGAGGAAAGUCCCCCCACCC
GCUGUGGCGGAAGGCCCCUGAGAAGGGGCGGAGGAGGAACAGAAACGAGACCGGUG
CGGGGAAAUGCGAUGAUUCCGCAAGGAUGAGGUCACCCGCUCCGGAUGAAACGGCC
UCCUCCCCGCCGGGUGCAACGCGUAAGCGGCUCAGUCUAAUGCCGCCGGAACAGAA
GGGGGCUUACUACCGCCA</unformatted> 

</sequence> 
</information> 
 
<stem_list> 
     0 115.0 [   1   8   222 229 ]      ((((((((   )))))))) 
     1 105.5 [   9  14   197 202 ]        ((((((   )))))) 
     2  21.5 [  18  19    24  25 ]            ((   )) 
     3 125.0 [  30  38   212 219 ]     (((.(((((   )))))))) 
     4 105.0 [  39  43   167 171 ]         (((((   ))))) 
     5 107.5 [  49  53   162 166 ]         (((((   ))))) 
     6  64.5 [  57  62    67  72 ]        ((((((   )))))) 
     7 117.0 [  73  81   153 161 ]     (((((((((   ))))))))) 
     8 118.5 [  94 105   132 144 ]  ((((((((((((   )).)))))))))) 
     9 121.5 [ 117 119   124 126 ]           (((   ))) 
    10 179.5 [ 175 177   182 184 ]           (((   ))) 
</stem_list> 
 
<edge_list> 
     0:  1i  2i  3i  4i  5i  6i  7i  8i  9i 10i 
     1:  2i  3o  4i  5i  6i  7i  8i  9i 10i 
     2: 
     3:  4i  5i  6i  7i  8i  9i 10i 
     4:  5i  6i  7i  8i  9i 
     5:  6i  7i  8i  9i 
     6: 
     7:  8i  9i 
     8:  9i 
     9: 
    10: 
</edge_list> 
 
<adjacency> 
        0  1  2  3  4  5  6  7  8  9 10 
     0  -  i  i  i  i  i  i  i  i  i  i 
     1  j  -  i  o  i  i  i  i  i  i  i 
     2  j  j  -  s  s  s  s  s  s  s  s 
     3  j  o  s  -  i  i  i  i  i  i  i 
     4  j  j  s  j  -  i  i  i  i  i  s 
     5  j  j  s  j  j  -  i  i  i  i  s 
     6  j  j  s  j  j  j  -  s  s  s  s 
     7  j  j  s  j  j  j  s  -  i  i  s 
     8  j  j  s  j  j  j  s  j  -  i  s 
     9  j  j  s  j  j  j  s  j  j  -  s 
    10  j  j  s  j  s  s  s  s  s  s  - 
</adjacency> 

</XIOS> 
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Figure 2.4 Example of an RNA fingerprint. All 3-vertex subgraphs (corners) in a 6-vertex 
RNA graph (center) are shown. The subgraphs comprise the 3-fingerprint of the RNA 
graph. 
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Figure 2.6 XPT format. The DFS code is rewritten as a hexadecimal code for simplifica-
tion.    

<XIOS_fingerprint> 
 

<query> 
<query_id>rnasep_m.A_fulgidus.xios</query_id> 
<query_vertex>11</query_vertex> 
<query_edge>38</query_edge> 

</query> 
 
<fingerprint> 

<iteration>10000</iteration> 
<program>fingerprint_random.pl v1.1.2.16</program> 
<time_elapsed>25.422513</time_elapsed> 

</fingerprint> 
 
<database> 

<database_id>2_to_7_stems_topologies.removed_not_true.mini_dfs.
txt.removed_redundant.with_label.motif.storable</database_id> 

</database> 
 
<motif_list> 

<motif_n>4</motif_n> 
<motif> 

            <id>7_11091</id> 
            <count>634</count> 
            <first_observed>42</first_observed> 
            <encoded_dfs>0428414c61657081858954a1a538c1</encoded_dfs> 
            <mapping>18</mapping> 
        </motif> 
        <motif> 
            <id>7_30045</id> 
            <count>628</count> 
            <first_observed>6</first_observed> 
            <encoded_dfs>0428414c61657081858954a1a518</encoded_dfs> 
            <mapping>21</mapping> 
        </motif> 
        <motif> 
            <id>7_36615</id> 
            <count>581</count> 
            <first_observed>14</first_observed> 
            
<encoded_dfs>0428414c61657081858994a1a5a9ad38c1</encoded_dfs> 
            <mapping>15</mapping> 
        </motif> 
        <motif> 
            <id>7_35341</id> 
            <count>565</count> 
            <first_observed>23</first_observed> 
            <encoded_dfs>0428414c61657081858934a118</encoded_dfs> 
            <mapping>22</mapping> 
        </motif> 
    </motif_list> 

</XIOS_fingerprint> 
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Table 2.1 Topological Motif Library.  

 

 

 

 

 

 

 

Number of Stems Unique Topologies 
1 1 
2 2 
3 8 
4 46 
5 368 
6 3,914 
7 51,390 

total 55,728 
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CHAPTER 3. ACCURATE CLASSIFICATION OF RNA STRUCTURES USING TOPOLOGICAL 
FINGERPRINTS 

While RNAs are well known to possess complex structures, functionally similar RNAs of-

ten have little sequence similarity. While the exact size and spacing of base-paired re-

gions vary, functionally similar RNAs have pronounced similarity in the arrangement, or 

topology, of base-paired stems. Furthermore, predicted RNA structures often lack pre-

dicted pseudoknots (a crucial aspect of biological activity), and are only partially correct 

or incomplete. A topological approach addresses all of these difficulties. In this work we 

describe each RNA structure as a graph that can be converted to a topological spectrum 

(RNA fingerprint). The set of subgraphs in an RNA structure, its RNA fingerprint, can be 

compared with the fingerprints of other RNA structures to identify and correctly classify 

functionally related RNAs. Topologically similar RNAs can be identified even when a 

large fraction, up to 30%, of the stems are omitted, indicating that highly accurate struc-

tures are not necessary. We investigate the performance of the RNA fingerprint ap-

proach on a set of eight highly curated RNA families, with di-verse sizes and functions, 

containing pseudoknots, and with little sequence similarity � an especially difficult test 

set. In spite of the difficult test set, the RNA fingerprint approach is very successful (AUC 

> 0.95). Due to the inclusion of pseudoknots, the RNA fingerprint approach both covers 

a wider range of possible structures than methods based only on secondary structure, 



50 
 

 

and its tolerance for incomplete structures suggests that it can be applied even to pre-

dicted structures. 

3.1 Introduction  

Once seen as a simple scaffold, RNA is now known to play important regulatory and cat-

alytic roles. RNA is involved in processes including transcriptional regulation (108), RNA 

maturation and modification (8), and RNA splicing (10). The structural motifs in RNA that 

are responsible for its functions are evolutionarily conserved; however, unlike DNA and 

protein, for which conserved functional motifs can be identified based on sequence sim-

ilarity, the functional motifs in RNA may have little or no sequence similarity (109), and 

instead conserve patterns of base-pairing (stems) and topological relationships between 

base-paired regions, for instance nesting of stems, multi-loops, and pseudoknots 

(26,110). This topological view of RNA structure has been discussed by Giegerich et al. 

who point out that, in a family of RNAs with the same function, the global arrangements 

of structural elements (topology) are conserved, but there is considerable variation in 

the length of stems, presence of bulge loops and unpaired bases, and type of base-pairs. 

Therefore, in the study of RNA functions, it may be more relevant to look at global topo-

logical patterns than individual base-pairs (94,95). RNAs with similar functions, for ex-

ample those in ribonuclease P (RNase P), the ribosome, or self-splicing introns, typically 

have strongly conserved topologies (15,26,28,111). One of the notable topological as-

pects of RNA structure is the importance of pseudoknots in many classes of molecules. 

For example, in Hepatitis Delta Virus (HDV), a double-pseudoknotted structure con-

tained in a self-cleaving ribozyme is a key factor in HDV infection (112); in Group I self-
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splicing introns, the catalytic core is formed by pseudoknots (29); in ribosomal RNA, 

pseudoknots at the catalytic site are the key structures that mediate microbial re-

sistance to antibiotics (113) and stimulate viral frame-shifting (114).  

As only a small number of functional RNA classes have been identified, we believe that 

the majority of regulatory and functional RNA motifs are yet to be identified. Eukaryotic 

genomes are pervasively transcribed (1); almost every base can be found in an RNA 

transcript. This is surprising since, in most genomes, protein-coding sequences comprise 

only a small fraction of the genome. Much of this RNA is therefore likely to be regulatory 

in nature, and will almost certainly contain functionally important structures, including 

pseudoknots.  

Just as conserved structural topologies are important for RNA function, the identifica-

tion of novel conserved topologies provides an approach to discovering the functions of 

currently unknown classes of biologically important RNAs. An analogy can be made to 

the importance of sequence alignment and database searching programs in identifying 

novel proteins and DNA regulatory elements. While typical functional RNA structures 

are pseudoknotted, the current computational approaches to RNA structure comparison 

only consider structures without pseudoknots. Because of their importance to RNA 

function, we believe that incorporating pseudoknots in structural comparisons is critical 

to identifying biologically important classes of molecules. In this paper we propose a 

straightforward approach to comparing RNA structural topologies, including pseu-

doknots, and identifying known and unknown conserved topologies.  
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Waterman (115) introduced the first graphical representation of RNA structure, the 

tree-graph. The tree-graph representation was extended by Shapiro et al. to an abstract 

tree where the nodes represent structural elements (90-92), and this coarse-grained 

representation was implemented in the ViennaRNA package (89). Fontana et al. imple-

mented the homeomorphically irreducible tree (HIT) that represents an RNA secondary 

structure as a contracted topology in which each node represents a structural element 

weighted by size (93). Shu et al. have developed the element-contact graphs (ECGs) with 

size-weighted nodes as well (116)� ����� ���� 	
�
�
���� �������� ���� �� 	�� ������

index(116,117), the Wiener index, and Balaban index, to measure graph connectivity. 

Although the ECGs framework was shown to be able to identify small ncRNAs such as 

miRNAs, no evidence is shown for its ability to classify larger RNAs (for example, 23S 

rRNA are usually over 1000nt long) with low sequence similarity. The RNAshapes pack-

age (94,95) of Giegerich et al., which represents RNA structures as abstract shapes and 

aims for efficient RNA structure comparisons, has been shown useful in topologically 

clustering RNA families; however, RNAshapes does not perform well on families with 

pseudoknots (96). Building on this work, Heyne et al. developed a graph-based pipeline 

called GraphClust (118) for fast clustering of RNA molecules. In this approach, RNA sec-

ondary structures are generated by the RNAshapes package from input sequences, en-

coded by graphs preserving nucleotide connectivity, and clustered by a graph kernel, 

the Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) (119).  However, given 

data sets of small RNA sequences (sequence length < 400nt, similarity up to 80%) the 
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precision and recall of GraphClust only reaches around 85%. In addition, these ap-

proaches do not include pseudoknots in either the representation or the analysis.  

The Schlick group has developed the RNA-As-Graphs method, which represents RNA 

structures as tree graphs, without pseudoknots, or dual graphs, with pseudoknots (97-

100). Numerical descriptors have been applied to comparison of these RNA topological 

patterns. The eigenvalue spectrum of the Laplacian matrix measures graph compactness 

and connectivity; ��, the second eigenvalue of the Laplacian matrix (120,121), measures 

RNA graph similarity. The Schlick group used several structural invariants, including �� 

and linear comb�������� �	 
 ��� � ��� ��������� ��� ����� �	 ��� ����������� �	 ���

Laplacian matrix), for categorizing the structural similarity of RNA graphs, and for pre-

dicting whether randomly generated RNA topologies are similar to biological examples 

(RNA-like). These numerical descriptors, however, have never been shown to be able to 

group RNAs into structural/functional classes. Moreover, these approaches, which rely 

on a small number of numeric descriptors, cannot identify similarity between specific 

substructures nested within fairly large graphs (for instance graphs of the size of RNase 

P RNA, which may have up to 20 vertices). 

There are several aspects of RNA structure that make it particularly hard to identify top-

ologically similar structures. Structures from the same functional family may have little 

or no sequence similarity; they typically have a similar arrangement of stems (topology), 

but different local base-pairing; our knowledge of the structures may be incomplete due 

to lack of a high-quality three-dimensional structure or structural prediction; structures 

may lack biologically important pseudoknots since tractable computational approaches 
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based on dynamic programming often do not include these important features; or in the 

case of graph comparison, the computation itself may require infeasible amounts of 

time. The RNA XIOS graph (104) explicitly represents serial, nested, pseudoknotted, and 

mutually exclusive stems, but finding topologically similar RNA structures requires iden-

tifying isomorphous subgraphs common to one or more structures. The approach we 

describe here builds on the XIOS approach, addresses the problems described above, 

and provides a feasible approach to identifying biological RNAs with topologically similar 

structures. We demonstrate the utility of this approach by classifying a representative 

set of pseudoknot-including RNA structural families that have very low levels of se-

quence similarity � the high accuracy of the classification indicates that this approach 

can be broadly applied to identifying RNAs with conserved topologies, whether their 

function is known or unknown. 

 

3.2 Materials and methods  

3.2.1 Curated RNA families 

A set of curated RNA structures have been collected from the literature and a variety of 

biological databases (106) and is extended in this work (Table 3.3). This set of known 

structures has been carefully selected to contain pseudoknots, to cover a broad range of 

lengths, and to have been the subject of extensive expert curation by the biological 

community. This curated set includes 206 structures of transfer RNA, Ribonuclease P 

RNA, transfer-messenger RNA, group I and group II self-splicing introns, and 5S, 16S and 

23S ribosomal RNA. The structures in this curated set have been reviewed to ensure 
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they reflect expert opinion on the correct structure, and to ensure that the reported 

structures are as accurate as possible given existing experimental data such as X-ray 

crystallography (122,123) and covariance analysis (85). The curated structures have 

been screened to ensure that all structures are full-length, and no pair of structures has 

greater than 50% sequence identity. Multiple families of the curated structures contain 

pseudoknots. While several large databases of RNA structures exist, for instance Rfam 

(124) and RNAStrand (125), these databases suffer from a number of disadvantages that 

make them difficult to use as a gold standard. Among the problems in these extensive 

datasets are the lack of pseudoknots in many structures, a lack of consensus expert 

opinion on the correct structures, the presence of families for which only a family con-

sensus structure is available (rather than individual structures for each RNA), high levels 

of sequence identity within families, and the presence of incomplete structures, or 

structures in which single stranded regions (or other regions judged to be unimportant) 

have been removed.  

 

3.2.2 XIOS graphs 

In a XIOS graph, RNA stems are shown as vertices and the relationships between stems 

are shown as edges (104). Edges may be one of four types: X � mutually exclusive (stems 

with base conflicts, such as those in two alternative structures that use the same RNA 

sequence); I � included (nested); O � overlapping (pseudoknotted); S � serial (adjacent) 

(Figure 2.1). Because there are exactly four classes, and each pair of stems can have one 

and only one type of relationship, we can omit S relationships without loss of generality 
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(any pair of vertices without an edge have an implicit S edge). In this work, none of the 

structures have X edges; the graphs therefore have only two edge types, I and O. Figure 

3.5 shows the XIOS graph representation of the Hepatitis D Virus (HDV) ribozyme RNA.  

 

3.2.3 Curated XIOS graphs 

Table 3.3 shows the vertex number, edge number, and average degree of the XIOS 

graphs of the curated RNA structures. Graph matching is highly dependent on the size of 

the graph (described by the number of vertices and edges) and the average degree of 

the vertices in the graph; the characteristics of the curated RNA structures differ signifi-

cantly between families making this a representative set for RNAs in general.   

 

3.3 Results 

This work focuses on the topological similarity between RNA structures, that is, similari-

ty in the relative location and nesting of stems, and the location of pseudoknots. In prin-

ciple, this should provide the broadest range of matching since individual structures of-

ten differ in the length of stems and the length of single-stranded regions between 

stems.  As mentioned before, the sequences themselves can be even more variable with 

little or no sequence conservation detectable, even between RNAs with similar struc-

tures.  Topologically similar substructures in a pair of RNAs correspond to isomorphous 

subgraphs in their respective XIOS graphs. The maximal common subgraph (MCS) repre-

sents the greatest possible topological match between RNAs, similar to the maximal 

alignment between two sequences. But the MCS is difficult to identify because of the 



57 
 

 

large size of biologically important structures; e.g., the 23S rRNA can have more than 50 

stems (126). Finding the MCS of a set of graphs, corresponding to the largest conserved 

topological motif in a group of RNA structures, is an NP-hard problem (127), making the 

computational identification of the MCS time consuming. In order to decrease the inef-

ficient scaling inherent in graph matching, we characterize each graph as a set of smaller 

subgraphs. We call this set of subgraphs the RNA topological fingerprint, or more simply, 

the RNA fingerprint. There are two key elements needed to determine an RNA finger-

print: a comprehensive dictionary of RNA topological motifs, and an approach to identi-

fying the motifs that are present in a XIOS graph.  

 

3.3.1 Enumerating a comprehensive set of RNA topologies 

We have exhaustively enumerated a non-redundant set of all physically possible RNA 

topological motifs containing from one to seven stems (Table 2.1). The graphs in this set 

are all IO-connected, that is, all vertices (stems) can be reached by traversing I and O 

edges. Briefly, a complete set of topologies for an N-stem RNA structure can be created 

by generating all the permutations of an ordered set of 2N numbers; the numbers rep-

resent N objects (stems), numbered 1 to N, each with two instances (corresponding to 

the two base-paired halves of the stem). For three stems (N=3), the ordered unpermut-

ed set would be (1, 1, 2, 2, 3, 3), with each pair of matching numbers representing the 

two base-paired halves of a stem. The unpermuted set, above, would thus correspond 

to three serial stems, and a permuted set such as (1, 2, 3, 2, 3, 1) would indicate a pair 

of pseudoknotted stems, 2 and 3, found within the loop of stem 1.  
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Obviously, this procedure generates multiple copies (isomorphs) of some topologies, for 

instance (1, 2, 2, 3, 3, 1) and (3, 1, 1, 2, 2, 3), as well as some graphs that are not con-

nected (for instance the unpermuted set, above). Some of the isomorphs can be elimi-

nated by imposing two restrictions. First, the graph must be connected, and second, the 

first instances (left half stem) of each object (stem) must occur in numerical order. Even 

these restrictions do not entirely eliminate permutations that correspond to isomorphic 

XIOS graphs. For instance, the sets (1, 2, 1, 3, 3, 2) and (1, 2, 2, 3, 1, 3) are mirror images 

of each other, and correspond to the same XIOS graph. These symmetry-related topolo-

gies are detected and removed using the gSpan (104,107) approach. In gSpan, a graph is 

described using a canonical labeling called the minimum DFS code; Isomorphic graphs 

are guaranteed to have identical minimum DFS codes.  

Using this approach, we have enumerated a library of all unique physically possible RNA 

topologies with 2 to 7 stem structures (Table 2.1). Because the minimum DFS code pro-

vides a unique description for each topology, we index the motif library with a com-

pressed version of the minimum DFS code. The index of any structure within the library 

can be easily determined by simply determining its minimum DFS code.  

The topologies in the library are not independent; two unique 5-stem XIOS graphs, for 

instance, may share a common 4-stem subgraph as shown in Figure 3.1. In this situation, 

we say that the 4-stem subgraph is the parent of both 5-stem graphs because they each 

have had one stem added to the parent subgraph (Figure 3.1). When comparing topo-

logical motifs, subgraphs that share a parent are clearly more similar than subgraphs 

that only share a grandparent or great-grandparent. The topological motif library in-
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cludes all the parent and child relationships between the enumerated graphs in order to 

allow for partial matching.  

 

3.3.2 Determining RNA fingerprints using random sampling 

A XIOS graph corresponding to a single structure can be characterized by the set of 

fixed-size subgraphs it contains. This set of constituent subgraphs is the RNA fingerprint 

(Figure 2.4), which can be thought of as a subgraph spectrum that is characteristic of a 

specific topology. Currently we use a library comprising all 7-stem and smaller sub-

graphs; this number has been chosen to cover both large and small biological structures, 

without requiring excessive computation. For even a relatively small graph, for instance 

a graph with 25 to 30 vertices, exhaustively enumerating the complete set of 7-vertex 

subgraphs within it can be time consuming. The subgraph sampling approach we de-

scribe here allows the determination of the fingerprint in reasonable time on parallel 

hardware. Briefly, given a XIOS graph, we randomly sample a fixed number, currently 

seven, of connected vertices from the graph (Table 3.1). Sampling continues until a suit-

able termination condition is met, typically when all observed subgraphs have been in-

dependently sampled 10 times. In each iteration, one subgraph is sampled and uniquely 

identified by its minimum DFS code, which is used as a reference to identify the sub-

graph in the RNA structural motif library. The complete fingerprints of 151 RNA struc-

tures computed by an exhaustive method (not shown) have been used to validate the 

correctness of the RNA fingerprints computed by random sampling (Figure 3.2).  
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3.3.3 RNA fingerprints identify topologically similar RNA structures 

The set of subgraph motifs sampled in a query graph is its simple fingerprint. We define 

the extended fingerprint as the simple fingerprint plus all of the ancestral subgraphs (i.e., 

parent, grandparent, etc., see Figure 3.1) of the simple fingerprint motifs. In this section 

we use both the simple fingerprint and the extended fingerprint to identify RNAs with 

similar topologies. The average numbers of motifs in simple and extended fingerprints 

are shown in Figure 3.6. 

Consider the simple or extended fingerprints, X and Y, of RNA RX and RNA RY; X = {x1, x2, 

x3 ,..., xm} and Y = {y1,,y2, y3 ,..., yn} where x1, x2, x3 ,..., xm and y1,,y2, y3 ,..., yn are the sub-

graph motifs found in RNAs RX and RY. We have evaluated five similarity functions (Table 

3.2) for their ability to identify topologically similar structures.  

Figure 3.3 shows the classification performance of the different similarity functions as 

measured by Receiver Operating Characteristic (ROC) curves (128). Jaccard Similarity 

works best in the classification of RNA structures, with an area under the ROC curve 

(AUC) greater than 0.95 for the extended fingerprint. The increase in AUC from 0.870 for 

the simple fingerprint to 0.952 for the extended fingerprint using Jaccard Similarity indi-

cates that the inclusion of parent subgraphs substantially improves the detection of 

topologically similar structures. The classification performance of Jaccard Similarity us-

ing the extended fingerprint on different RNA classes is around 0.95 for all groups ex-

cept for 16S rRNA and group II introns (Table 3.4). Figure 3.4 shows the ability of the ex-

tended-Jaccard similarity to effectively classify the test structures into functional groups.  

As can be seen in the upper triangle of Figure 3.4, the level of sequence similarity is very 
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low between these structures and would be insufficient for correct clustering (not 

shown). The 23S rRNAs form a single group, and also share some similarity with 16S 

rRNAs, which may be explained by the topological similarity of the two subunits of rRNA 

(126). The 5S rRNAs form two separate groups, one with archaeal and eukaryotic nucle-

ar structures, and the other with bacterial structures. Self-splicing introns, especially the 

Group II Introns, share a high topological similarity with the 23S and 16S rRNAs. The ac-

curacy of the classification confirms that our topological approach can identify topologi-

cally similar RNAs, and potentially functionally similar RNAs, as well. In addition, a 

neighbor-joining tree (129) (Figures 3.4, 3.7 and 3.8), using the  extended-Jaccard simi-

larity, correctly groups almost all the curated RNA families into the correct categories, 

with only one Group I Intron falling onto a branch outside of its curated group (Figure 

3.4, tree on the right side).  

 

3.3.4 Similarity of incomplete graphs can be detected using RNA fingerprints 

In most cases, topological comparisons must be based on predicted structures, because 

three-dimensional structures or high-quality comparative structures are usually unavail-

able. Although structures with pseudoknots can be predicted (75,81,106,130,131), such 

predicted structures will typically be inaccurate or incomplete. It is highly desirable that 

a similarity function be able to correctly identify similar RNAs, even when their struc-

tures are incomplete. To test the effects of graph incompleteness on the extended-

fingerprint Jaccard Similarity function, incomplete RNA graphs were generated by ran-

domly removing a percentage (10%, 30%, 50%, 60%, and 70%, respectively) of the verti-



62 
 

 

ces (stems) in the curated structures (Figure 3.3F). The extended-fingerprint Jaccard 

Similarity can identify similar structures when only 70% of the original stems are present 

(AUC=0.810), and performs better than random even when only 30% of the stems re-

main. In addition, since pseudoknots are important structural motifs in RNAs, for the 

149 RNA structures that have pseudoknots, we generated incomplete RNA graphs by 

first removing all the pseudoknot-forming vertices (stems), and continuing removing 

random vertices until 30% of vertices were removed. The extended-fingerprint Jaccard 

Similarity correctly identifies similar structures with pseudoknots removed (AUC=0.915, 

data not shown). 

  

3.3.5 Fingerprint similarity is not an artifact of graph size 

The structures within each curated family generally have very similar numbers of stems. 

Indeed, one can classify the structures into the correct groups using graph size alone 

(not shown). It is essential, therefore to consider whether the results in Figures 3.3 and 

3.4 are merely due to the similarity in sizes. In order to test the effect of size, we have 

created a test data set in which the graphs have been expanded to the same size (num-

ber of vertices) by randomly adding additional vertices and edges to the graphs. In order 

to ensure that these expanded graphs are typical of real biological structures we use a 

procedure in which we sample substructures from the set of curated structures, and add 

them to the curated graphs. In order to do this, we created a database (decoy database) 

of the 2 to 5 stem motifs found in the curated structures, and randomly added these 
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subgraphs to the curated structures according their frequency in the entire curated set 

(which should reflect the biological background distribution). 

We selected a set of 177 RNA graphs containing up to 25 vertices from the curated data 

set (Table 3.3), and created an expanded set by embedding subgraphs, randomly select-

ed according to probability of occurrence, from the decoy database into these RNA 

graphs until each RNA graph contained 30 vertices. As a control, we also created a decoy 

set of graphs with 30 vertices, by random embedding of subgraphs from the decoy da-

tabase only, i.e., graphs with no information from real biological structures except the 

frequency of occurrence of subgraphs in the known structures. Both the expanded and 

the decoy graph sets should be completely free of size effects since they all have exactly 

the same number of stems. The two sets were mixed and graphs compared using the 

Extended Fingerprint Jaccard Similarity. There is only a minor decrease in performance 

(Table 3.5, Extended Fingerprint Jaccard Similarity: AUC = 0.840) when compared to the 

results obtained from the classification of the original dataset (Figure 3.3, Extended Fin-

gerprint Jaccard Similarity: AUC = 0.952). As expected, the decoy set of graphs have AUC 

values close to 0.5, indicating that the decoy structures are random with respect to each 

other.  

 

3.3.6 Runtime analysis 

Determination of whether a query RNA graph contains a subgraph isomorphic to a spe-

cific graph in the structural motif library, is an NP-complete problem (127). The brute-

force comparison requires comparing the query RNA graph with every graph in the li-
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brary, and its computational complexity is �����), where n is the number of graphs in 

the library (55,728), and m is the number of edges in the query graph. The subgraph 

random sampling algorithm can be parallelized by simultaneously running independent 

instances on multiple processors. The algorithm identifies the fingerprint of all 206 cu-

rated RNA graphs in a reasonable time, especially when it is run on multiple cores (Fig-

ure 3.9). The average runtime for calculating the fingerprint of RNAs in each functional 

family is shown in Table 3.6.   

 

3.4 Discussion 

A great deal of work has focused on identifying similar RNAs based on the comparison of 

RNA secondary structures. This is readily accomplished using approaches such as tree 

edit distance (93,132) or string related measures such as those used in RNAshapes (94). 

Other approaches include the information of sequence alignment and folding of RNA 

sequences, for example, Saito et al. developed an algorithm that clusters RNAs by all 

possible sequence alignments, and all possible secondary structures computed from dy-

namic programming and partition function calculations (55,133,134). This approach cor-

rectly discriminated short RNA sequences (around 100 bases) from different families. 

Unfortunately, secondary structures, and in particular minimum free energy predicted 

structures based on dynamic programming approaches, do not predict pseudoknots, 

which are important in biological structures. Even if predicted pseudoknots are availa-

ble, it is not simple to add them to tree or string based methods because of their non-

nested nature. In addition, structure matching methods based on dynamic programming 
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have the additional problem of determining gap penalties; it is not at all clear how to 

weight insertions and deletions in RNA structures.  

Statistical algorithms, such as kernel methods, have been developed to classify RNA se-

quences and structures. Kin et developed a marginalized kernel to measure RNA se-

quence similarity (135), and this kernel was later implemented by Karklin et al. to meas-

ure the similarity of RNA secondary structures represented by dual graphs (97,136); Liu 

et al. developed a fuzzy kernel to cluster the secondary structure ensemble generated 

from a single sequence (137). The GraphClust pipeline developed by Heyne et al. en-

codea RNA sequence-structure information into graphs and measures RNA graph simi-

larities using a decomposition kernel and computing the summed similarity of pairs of 

neighborhood subgraphs (138). However, no pseudoknotted structures were included in 

these approaches. Sakakibara et al. developed a stem kernel that could discriminate be-

tween functional RNA sequences and randomly shuffled sequences using structural fea-

tures including pseudoknots (139); however, no result was shown in which the stem 

kernel could discriminate between sequences from different functional RNA groups, in 

addition, the randomly shuffled sequences they generated only retain nucleotide com-

position, while preserving dinucleotide composition is known to be important in gener-

ating randomized negative controls for predicted RNA structures (140,141).  In sum-

mary, none of these approaches have demonstrated that they can succeed on the diffi-

cult test case presented here: classifying a diverse set of functional families, with diverse 

sizes, containing pseudoknots, and with little sequence similarity. 
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Topological methods have the dual advantage of easily representing pseudoknots and 

not requiring an insertion/deletion penalty. In the RNA-As-Graphs method 

(97,99,100,142), RNA topolo���� ��� ��������	�
 ��	��� �� �	��� ������ ���	���	 �����


����	�� �� �
��� ������ ���	� ����
����	��� ��� et al. suggested summarizing the 

topological properties of an RNA graph using the eigenvalue of the Laplacian matrix 

(constructed from the adjacency and degree matrices of the graph). They have devel-

oped a database, with all mathematically possible RNA graphs enumerated, including 

�����	��� ������ ���� �	���	���� ���������	���� �����
 �� � 	����
 !��� ���parative 

��������� ��
 �������� ������ ���thematically possible RNA structures that have not 

��	  ��� ���������	���� � �����
�� "���� �����	��� ������ �� 	������� 
�	�# ��������

������ �� 	�� 
�	� ��� ���� ������!��
 �� ��	��� ����-���� �� ����-RNA-����  � �����-

ing regression analysis on their Laplacian eigenvalue spectra. These approaches, which 

target the identification of novel RNA topologies, however, are not sufficient for match-

ing specific RNA functional families.  

Graph matching is a computationally intensive process that scales exponentially with 

the size of graph (in general, graph matching is an NP-hard process) (143). The RAG da-

tabase, however, only includes dual graphs up to 9 vertices and tree graphs up to 10 

vertices (142), which can cover RNA topologies only up to about 200nt, while functional 

RNA molecules can include dozens of stems/loops, especially with the current advance 

in high-throughput technologies, and long non-coding RNAs including hundreds of 

stems/loops are not uncommon (144). Moreover, in a follow-up study, the dis-

crimination between structures predicted to be RNA-like (naturally existing) and not 
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non-RNA-like was not impressive; out of 42 newly discovered RNA topologies, only 24 of 

them had been predicted as RNA-like, while 18 of them had been predicted to be non-

RNA like (142).   

The XIOS graph is a topological graph approach (104) that specifically distinguishes 

pseudoknots as a distinct type of edge. In addition to incorporating pseudoknots (O 

edge, Overlapping), one of the most important characteristics in RNA structure, the XIOS 

approach also includes embedding (I edge, Included) and juxtaposition (S edge, Serial), 

which are the two of the RNA structural principles in the RNAshapes framework. The 

increased number of edge-����� �� �	
� ������� ����� ������� �� ����� ������ �� ��-

ample using gSpan; however, the time required to find the maximal common subgraph 

in two moderately large RNA graphs, for instance with twenty to thirty stems in each 

graph, is prohibitive using exhaustive approaches such as gSpan. Using the XIOS ap-

proach, we can easily enumerate a complete set of biologically possible RNA graphs, 

permitting the construction of a complete dictionary of all graphs that may occur in a 

RNA molecule up to a specified size. This allows us to characterize any RNA topology in 

terms of the spectrum of subgraphs it contains, its RNA fingerprint, and to identify topo-

logically similar RNA structures based on their fingerprints. This approach is successful 

with known RNA families, and is relatively insensitive to both the completeness of the 

RNA graph, and the presence of extraneous added vertices in the graph. Similarities be-

tween RNA structures in the same family are still detectable when the graphs are ex-

panded to the same size, indicating that the ability to identify topologically similar struc-

tures is not simply an artifact of the similar sizes of RNAs within known families. These 
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characteristics of RNA fingerprint matching are highly important in real-world settings 

where comparisons are made between predicted structures in which only 60 - 80% of 

the true stems may be correctly predicted (131,145), and a substantial number of mis-

predicted stems may be present.  As mentioned before, no previously reported RNA 

structure comparison method has shown that it can accurately identify/classify RNAs 

according to topological similarity using the particularly difficult set of pseudoknot con-

taining graphs used here. 

Exhaustively enumerating the set of subgraphs present in a XIOS graph is time consum-

ing because each subgraph in the entire motif database must be separately tested 

against the query to determine whether there is a match. Because the dictionary of sub-

graphs is large (55,728 graphs with seven or fewer stems), a brute force approach is 

slow. In this work we suggest a sampling approach to enumerating the subgraph spec-

trum. The computational complexity of motif sampling depends on both the size and 

structure of the query graph, and on the number of vertices sampled in each iteration. 

As most of RNA XIOS graphs are highly connected, an increase in graph size can result in 

a large increase in the time required to completely sample the fingerprint. Fortunately, 

the motif sampling is completely parallelizable; any number of processors can inde-

pendently sample subgraphs from the query, and the time required per query graph is 

modest. Furthermore, our results suggest that a complete fingerprint may not be neces-

sary; that even incomplete fingerprints (such as fingerprints derived from structures 

where part of the structure has been removed) are sufficient to identify topologically 
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similar structures. The question of whether absolutely every subgraph has been detect-

ed, which a sampling strategy cannot guarantee, is therefore somewhat moot. 

Experimental determination of RNA structures by X-ray crystallography or NMR is diffi-

cult, and a relatively small number of complete structures are available. Instead, struc-

tures are often predicted using a combination of biochemical information (chemical 

modification, nuclease sensitivity, and mutational sensitivity), secondary structure pre-

�������� ��� 	
��������� ������������ ������������� �
�� ������� �� ������� �tructures 

that are incomplete (missing important stems) or inaccurate (containing stems that do 

not exist, or are unimportant in the function of the RNA). It is therefore important that 

the structural/topological comparison be robust with respect to incompleteness or error 

in the structures, a salient characteristic of the RNA fingerprint comparison we describe 

here. The extended-fingerprint Jaccard Similarity correctly identifies topologically similar 

RNAs across a broad range of sizes, and biological functions, but its potential application 

is far more general.  RNA structure prediction is commonly judged to be 60 to 80 per-

cent accurate (75,78,146). The ability of the RNA fingerprint to correctly identify/classify 

structural topologies even when 30% or more of the true stems are removed (Figure 

3.3F), suggests that this approach can be applied to broadly search for topologically 

similar structures based on structures predicted from sequence (work in progress).  
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Figure 3.1 Parent-Child relationships. The parent graph is a 4-stem motif; two different 
child graphs are created by adding one stem to the parent graph.   
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Figure 3.2 Scaling of sampling with graph size.  Fingerprints for 151 RNA graphs in the 
curated set were determined multiple times (10 times per RNA graph) by random sam-
pling. Numbers above the dots indicate the number of different graphs with the same 
size (vertex number); each dot represents the average iterations needed to determine 
the complete fingerprint for this specific size group, with bars showing the maximum 
and minimum iterations as well.  
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Figure 3.3 Classification performance of similarity functions. Pairwise similarities were 
calculated, using the indicated similarity functions, for all RNAs in the curated dataset 
and ranked from high to low. A pair of RNAs from the same curated family is considered 
a positive match; otherwise they are considered to be a negative match. In all panels, 
the dashed line indicates the simple fingerprint, and the solid line the extended finger-
print.  The AUC for the simple and extended fingerprints, respectively, are indicated in 
parentheses, below. (A) Intersection Similarity (AUC simple, 0.759; extended, 0.746), (B) 
Cosine Similarity (0.867; 0.753), (C) Dice Similarity (0.821; 0.864), (D) Hamming Similarity 
(0.789; 0.834), and (E) Jaccard Similarity (0.870; 0.952). (F) Classification after random 
removal of vertices from RNA graphs. All RNAs (except for tRNA and 5S rRNA which are 
too small for 70% stem removal) are included.  The five lines show ROC curves with dif-
fering fractions of stems removed (AUC in parentheses): (0) no stem removal 
(AUC=0.909), (1) 10% stem removal (0.844), (2) 30% stem removal (0.810), (3) 50% stem 
removal (0.691), and (4) 70% stem removal (0.605). 
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Figure 3.3  



74 
 

 

 

Figure 3.4 Extended-fingerprint Jaccard similarity between biological RNAs. Upper trian-
gle. Sequence identity. Lower triangle. Extended-fingerprint Jaccard Similarity of all the 
curated RNA structures (see Figure 3.7 and Table 3.7 for IDs). Sequence identity is 
shown in color, ranging from 0 (blue) to 1 (red) at steps of 0.1. A neighbor-joining den-
drogram calculated according to the extended-fingerprint Jaccard similarity is shown on 
the right side of the heat map.  
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Figure 3.6 Numbers of motifs in Simple and Extended Fingerprints. The average number 
of motifs in the Simple Fingerprint (upper pink bars, determined by subgraph sampling) 
or the Extended Fingerprint (lower blue bars, determined by combining sampled sub-
graphs and all the ancestral subgraphs cataloged in the motif library) in different RNA 
families a shown beside the corresponding bar. Error bars show the standard deviation 
of number of motifs. 
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Figure 3.7 Heat map dendrogram. (Same as Figure 3.4, but with RNA names shown) This 
figure shows the heat map dendrogram of sequence similarity (upper-left triangle) and 
fingerprint similarity (Extended Jaccard Similarity, lower-right triangle) of all the curated 
RNA structures (represented by IDs followed by their names, corresponding to Table 
3.7). Similarity is shown in different colors, ranging from 0 (blue) to 1 (red) at steps of 
0.1. A neighbor-joining tree calculated according to the fingerprint similarity is shown on 
the right side of the heat map (branching showing the tree topology but branch lengths 
are not the true distances between nodes). 
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Figure 3.9 Runtime analysis of the subgraph random sampling algorithm. 
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Table 3.1 Subgraph random sampling pseudocode. 

Algorithm: Subgraph Random Sampling 
Input: Query graph G = ( V, E ), subgraph size n 
Output: Sampled subgraph S = ( Vs, Es ) 
 
Select a random vertex vi � V 
Initialize the set of vertices Vs = { vi } 
Initialize the set of edges Es = { } 
 
WHILE | Vs | < n DO 
    Identify NVs , the vertices adjacent to Vs 
    IF NVs == { } DO 
        BREAK 
    ELSE DO 
        Select a random vertex vj from NVs 
        Update Es = Es � { ( vi, vj ) } � vi, vj � Vs 
        Update Vs = Vs � { vj } 
    END IF 
END WHILE 
RETURN subgraph S = (Vs, Es) 
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Table 3.2 RNA fingerprint similarity functions. X and Y are fingerprints of the two struc-
tures being compared. 
 

Similarity Function Definition 
Intersection ����� �� � 	� 
 �	 

Cosine (147) ����� �� �
	� 
 �	

�	�		�	
 

Dice (148,149) ���� �� �
�	� 
 �	
	�	 � 	�	

 

Hamming (150) ����� �� � 	����� � ������	 

Jaccard (151) ����� �� �
	� 
 �	
	� � �	
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Table 3.3 Curated RNA structures.  Curated RNA structures with graph characteristics 
(vertex number, edge number, average degree, and curation description).  
 

RNA Family N Vertices Edges Average Description 

tRNA 16 7.5(0.9) 15.2(3.9) 4.0(0.5) 

Transfer RNAs with resolution 

< 3 Å from the Protein Data 

Bank (PDB) (123,152). Base 

pairing information calculated 

with RNAView (153). The fol-

lowing PDB IDs are included: 

1C0A, 1F7U, 1GAX, 1H4S, 

1QF6, 1QTQ, 1QU2, 1TTT, 

2BTE, 2CSX, 2DXI, 2FMT, 

2ZM5, 2ZUF, 2ZZM, 3EPH.  

RNase P 

RNA 
29 16.7(3.1) 72.8(26.0) 8.5(1.7) 

Representative Ribonuclease P 

RNA structures from the clas-

ses enumerated by Ellis and 

Brown (27). Secondary struc-

tures and pseudoknots were 

assigned according to Ellis and 

Brown (154).  
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Table 3.3 continued  
 

tmRNA 49 14.0(2.5) 44.3(14.4) 6.2(1.2) 

Transfer-messenger (10Sa) 

RNA. Aligned tmRNA sequenc-

es and structural assignments 

were obtained from Mao et al 

(155). 

Group I In-

tron RNA 
36 17.4(3.6) 26.2(9.4) 2.9(0.7) 

Group I Self-Splicing Intron 

RNA. Sequences and structural 

assignments were obtained 

from the Comparative RNA 

Web site (156); the shortest 

and longest 10% in length 

were removed to avoid in-

complete or poorly annotated 

sequences. Containing 3 sub-

groups: b (bacteria), e (eukar-

yotic nucleus), and m (eukary-

otic mitochondria). 
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Table 3.3 continued  
 

Group II 

Intron RNA 
19 21.0(4.8) 42.9(17.7) 4.0(0.7) 

Group II Self-Splicing Intron 

RNA. Sequences and structural 

assignments were from the 

5S rRNA 30 4.6(0.5) 5.1(1.0) 2.2(0.2) 

5S Ribosomal RNA sequences 

and structural assignments 

were obtained from CRW Site 

(156). Containing 3 subgroups: 

a (archaea), b (bacteria), e 

(eukaryotic nucleus).  

16S rRNA  20 51.9(14.7) 171.6(74.0) 6.3(1.2) 

16S Ribosomal RNA sequences 

and structural assignments 

were obtained from CRW Site 

(156). Containing 4 subgroups: 

b (bacteria), c (eukaryotic 

chloroplast), e (eukaryotic nu-

cleus), and m (eukaryotic mi-

tochondria). 
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Table 3.3 continued  
 

23S rRNA 7 50.4(8.4) 95.0(19.2) 3.7(0.1) 

23S Ribosomal RNA sequences 

and structural assignments 

were obtained from CRW Site 

(156). Containing 1 group: m 

(eukaryotic mitochondria). 
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Table 3.4 Classification performance of Extended Fingerprint Jaccard Similarity for 8 cu-
rated families.  
 

RNA Family Area Under Curve (AUC) 

5S rRNA 1.000 

16S rRNA 0.988 

23S rRNA 0.989 

RNase P 0.964 

group I Intron 0.812 

group II Intron 0.935 

tRNA 1.000 

tmRNA 0.985 

total 0.961 
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Table 3.5 Classification performance for expanded graphs using different similarity func-
tions. The value outside of parentheses is area under curve (AUC) for expanded graphs 
from curated structures; the value inside of parentheses is AUC for decoy graphs, which 
are considered random and used as controls.   
 

Similarity Function SimFP total (decoy only) ExtFP total (decoy only) 

Intersection Similarity 0.699 (0.501) 0.694 (0.481) 

Cosine Similarity 0.666 (0.524) 0.654 (0.560) 

Dice Similarity 0.806 (0.517) 0.827 (0.500) 

Hamming Similarity 0.698 (0.542) 0.721 (0.563) 

Jaccard Similarity 0.794 (0.515) 0.840 (0.524) 
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Table 3.6 Run time analysis. This table shows the average runtime (unit: seconds, 
rounded to the nearest integer) versus different number of cores for the subgraph sam-
pling algorithm to calculate the fingerprints in each functional RNA family. The runtime 
reduces as the number of cores increases. 
 

 

 

 

 

  

# of cores 
Family 1 2 4 8 12 24 48 

16S 59289 30113 14916 11563 5598 4267 2976 
23S 3638 2533 1088 465 389 192 211 
5S 0 0 0 0 0 0 1 
g1 3323 1837 880 549 327 232 194 
g2 3265 1728 884 509 300 219 196 

rnasep 190229 97012 45339 32373 18631 14114 10434 
tRNA 1165 540 269 175 101 75 52 

tmRNA 3627 1822 967 662 331 221 204 
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Table 3.7 Complete list of curated RNA structures used in this study. For Group I and II 
Introns and 5S, 16S, and 23S rRNAs, the subclasses are represented by single letters as 
follows: a (archaea); b (bacteria); c (cellular components); e (eukaryotic nuclei); m (mi-
tochondria). For RNase P RNA, the subclasses are represented by single or double letters 
as follows: ar, and m (archaea); a1, a2, a3, a4, a5, ax, b, and c (bacteria). The number of 
bases in the sequence, the number of vertices, number of edges, and number of pseu-
doknots are listed under N_base, N_vertex, N_edge, and N_pknot.  
 
ID Class Sub-

class 
Genus Species Suffix N_b

ase 
N_ve
rtex 

N_e
dge 

N_pk
not 

1 tRNA NA NA NA 3EPH 68 9 23 9 
2 tRNA NA NA NA 2ZM5 75 9 23 9 
3 tRNA NA NA NA 1TTT 75 10 23 9 
4 tRNA NA NA NA 1GAX 74 7 13 5 
5 tRNA NA NA NA 1QTQ 74 7 13 5 
6 tRNA NA NA NA 1QU2 74 7 13 5 
7 tRNA NA NA NA 2BTE 82 7 13 5 
8 tRNA NA NA NA 2FMT 76 7 13 5 
9 tRNA NA NA NA 2ZUF 77 7 13 5 
10 tRNA NA NA NA 2CSX 74 7 13 5 
11 tRNA NA NA NA 1F7U 74 7 13 5 
12 tRNA NA NA NA 1C0A 76 7 13 5 
13 tRNA NA NA NA 1H4S 76 7 14 5 
14 tRNA NA NA NA 1QF6 75 8 17 5 
15 tRNA NA NA NA 2ZZM 87 7 13 4 
16 tRNA NA NA NA 2DXI 74 7 13 4 
17 tmR

NA 
NA Gracilaria tenuis-

tipitata 
AY673996 396 6 11 1 

18 tmR
NA 

NA Odontella sinensis TRW-2839 371 7 16 1 

19 tmR
NA 

NA Porphyra purpurea TRW-2787 323 8 19 1 

20 tmR
NA 

NA Leuconos-
toc 

mesen-
teroides 

AF375574 307 12 27 5 

21 tmR
NA 

NA Staphylo-
coccus 

epider-
midis 

AF375586 311 11 23 4 

22 tmR
NA 

NA Chlorobium tepidum TRW-
194439 

404 13 27 4 

23 tmR
NA 

NA Campylo-
bacter 

lari TRW-
306263 

359 13 35 4 
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Table 3.7 continued  

24 tmR
NA 

NA Nostoc puncti-
forme 

TRW-
63737 

390 15 42 5 

25 tmR
NA 

NA Tremblaya princeps AF481102 264 11 28 3 

26 tmR
NA 

NA Salinibacter ruber CP000159 369 13 35 4 

27 tmR
NA 

NA Leptospira interro-
gans 

AE016823 350 13 35 4 

28 tmR
NA 

NA Dehalococ-
coides 

etheno-
genes 

CP000027 352 13 35 4 

29 tmR
NA 

NA Borrelia garinii CP000013 363 14 38 4 

30 tmR
NA 

NA Magneto-
coccus 

marinus CP000471 366 12 30 2 

31 tmR
NA 

NA Propioni-
bacterium 

acnes TRW-1747-
3 

353 13 42 3 

32 tmR
NA 

NA Treponema pallidum TRW-
243276 

354 14 47 4 

33 tmR
NA 

NA Mycoplas-
ma 

ar-
thritidis 

TRW-
243272 

394 14 47 4 

34 tmR
NA 

NA Mycoplas-
ma 

pulmonis AL445565 387 14 47 4 

35 tmR
NA 

NA Acidimicro-
bium 

ferrooxi-
dans 

TRW-920 341 14 47 4 

36 tmR
NA 

NA Chlamydia muri-
darum 

TRW-
83560 

421 14 47 4 

37 tmR
NA 

NA Mycoplas-
ma 

my-
coides 

BX842642 411 15 52 4 

38 tmR
NA 

NA Mycoplas-
ma 

gallisep-
ticum 

AE015450 408 16 56 4 

39 tmR
NA 

NA Gemmata obscuri-
globus 

TRW-
214688 

412 16 56 4 

40 tmR
NA 

NA uncultured bacte-
rium 

TRW-
32045-4 

369 16 67 5 

41 tmR
NA 

NA Mycoplas-
ma 

pneu-
moniae 

TRW-
272634 

387 14 40 5 

42 tmR
NA 

NA Streptomy-
ces 

aureofa-
ciens 

AY616521 382 14 40 5 

43 tmR
NA 

NA Ureaplasma parvum AE002154 413 14 40 5 
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Table 3.7 continued  

44 tmR
NA 

NA Sulfurihy-
drogenibi-
um 

azorense TRW-
204536 

351 14 40 5 

45 tmR
NA 

NA Bacillus subtilis TRW-1423 363 15 53 5 

46 tmR
NA 

NA Mesostigma viride AF166114 359 15 53 5 

47 tmR
NA 

NA Vibrio fischeri CP000020 367 15 53 5 

48 tmR
NA 

NA Bacil-
lusphage 

G TRW-
12333 

312 11 35 3 

49 tmR
NA 

NA envi sequ TRW-
32045-1 

355 15 53 5 

50 tmR
NA 

NA Francisella tularen-
sis 

AM286280 421 16 58 5 

51 tmR
NA 

NA envi sequ TRW-
351057-3 

355 16 58 5 

52 tmR
NA 

NA Aster yellows TRW-
322098 

426 16 59 6 

53 tmR
NA 

NA Acinetobac-
ter 

sp CR543861 360 14 48 3 

54 tmR
NA 

NA Geobacter metal-
lireducen
s 

CP000148 356 17 74 6 

55 tmR
NA 

NA Coprother-
mobacter 

proteo-
lyticus 

TRW-
351627 

353 15 45 6 

56 tmR
NA 

NA Fibrobacter suc-
cino-
genes 

TRW-
59374 

361 15 45 6 

57 tmR
NA 

NA Clostridium perfringe
ns 

AP003190 358 15 45 6 

58 tmR
NA 

NA Mycoplas-
ma 

hy-
opneu-
moniae 

TRW-
295358 

424 16 42 9 

59 tmR
NA 

NA envi sequ TRW-
204433 

356 14 32 6 

60 tmR
NA 

NA Bacterio-
vorax 

marinus TRW-
97084 

385 16 51 7 

61 tmR
NA 

NA envi sequ TRW-2-2 356 14 33 6 
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Table 3.7 continued  

62 tmR
NA 

NA envi sequ TRW-2-1 365 15 46 6 

63 tmR
NA 

NA Porphy-
romonas 

gingivalis TRW-
242619 

407 18 71 7 

64 tmR
NA 

NA uncultured bacte-
rium 

TRW-
45456 

408 19 77 7 

65 tmR
NA 

NA Mycobacte-
riophage 

Bxz1 AY129337 437 18 71 4 

66 rnas
ep 

m Methano-
coccus 

maripal-
udis 

NA 233 10 30 1 

67 rnas
ep 

m Meth-
anocaldo-
coccus 

jan-
naschii 

NA 252 10 30 1 

68 rnas
ep 

m Archaeo-
globus 

fulgidus NA 229 10 30 1 

69 rnas
ep 

b Staphylo-
coccus 

epider-
midis 

NA 401 19 76 1 

70 rnas
ep 

b Ureaplasma urealyti-
cum 

NA 370 19 76 1 

71 rnas
ep 

b Mycoplas-
ma 

fer-
mentans 

NA 302 15 42 1 

72 rnas
ep 

b Mycoplas-
ma 

floccula-
re 

NA 412 15 46 1 

73 rnas
ep 

ar Halococcus mor-
rhuae 

NA 475 23 146 3 

74 rnas
ep 

ar Halobacte-
rium 

salinar-
um 

NA 375 19 106 3 

75 rnas
ep 

ar Natrono-
bacterium 

gregoryi NA 474 22 139 3 

76 rnas
ep 

ar Pyrococcus abyssi NA 330 16 78 4 

77 rnas
ep 

ar Sulfolobus acido-
caldarius 

NA 315 15 68 4 

78 rnas
ep 

ar Methano-
bacterium 

thermo-
auto-
trophi-
cum 

DH 293 15 68 4 

79 rnas
ep 

a2 Nitrosomo-
nas 

euro-
paea 

NA 285 14 54 4 
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Table 3.7 continued  

80 rnas
ep 

a1 Carbox-
ydothermus 

hy-
drogenof
ormans 

NA 331 16 68 4 

81 rnas
ep 

a2 Neisseria menin-
gitidis 

NA 360 16 68 4 

82 rnas
ep 

a2 Alcaligenes eu-
trophus 

NA 341 15 56 4 

83 rnas
ep 

a4 Aspergillus nidulans NA 385 17 70 4 

84 rnas
ep 

c Thermomi-
crobium 

roseum NA 350 18 78 5 

85 rnas
ep 

a1 Buchnera APS NA 376 17 74 5 

86 rnas
ep 

a5 Chlorobium tepidum NA 381 18 79 5 

87 rnas
ep 

a5 Bordetella pertussis NA 414 20 92 5 

88 rnas
ep 

ax Streptomy-
ces 

lividans NA 405 18 75 4 

89 rnas
ep 

a4 Pseudoana-
baena 

sp PCC6903 450 18 74 4 

90 rnas
ep 

a3 Chlamyd-
ophila 

pneu-
moniae 

CWL029 406 19 81 5 

91 rnas
ep 

ar Thermo-
plasma 

vol-
canum 

NA 305 16 70 4 

92 rnas
ep 

ar Methano-
sarcina 

barkeri NA 371 18 76 4 

93 rnas
ep 

ar Aeropyrum pernix NA 330 15 73 3 

94 rnas
ep 

b Mycoplas-
ma 

pneu-
moniae 

NA 369 20 89 7 

95 g1 e Exophiala nigra 2ESSU 445 19 28 5 
96 16S c Pilostyles thurberi NA 146

4 
63 188 4 

97 16S b Clostridium innocu-
um 

NA 152
9 

72 279 5 

98 16S m Physarum poly-
cepha-
lum 

NA 184
4 

65 248 5 
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Table 3.7 continued  

99 16S e Weiseria palustris NA 137
3 

64 257 5 

10
0 

16S b Petrotoga mio-
therma 

NA 132
6 

67 273 5 

10
1 

16S e Balamuthia mandril-
laris 

NA 197
2 

69 262 4 

10
2 

16S m Drosophila virilis NA 783 34 85 2 

10
3 

16S m Caenorhab-
ditis 

elegans NA 678 32 83 3 

10
4 

16S m Artemia francis-
cana 

NA 711 31 74 1 

10
5 

16S m Chorthippus paral-
lelus 

NA 789 28 55 1 

10
6 

16S m Harpactes ardens NA 950 34 83 1 

10
7 

16S m Parame-
cium 

tetraure-
lia 

NA 160
9 

56 194 1 

10
8 

16S m Chlamydo-
monas 

rein-
hardtii 

NA 118
8 

44 128 1 

10
9 

16S m Metridium senile NA 108
8 

45 128 1 

11
0 

16S m Pedinomo-
nas 

minor NA 117
0 

54 170 1 

11
1 

16S m Suillus si-
nuspau-
lianus 

NA 197
6 

69 246 1 

11
2 

16S m Tetrahy-
mena 

pyri-
formis 

NA 163
2 

53 164 1 

11
3 

16S m Paracentro-
tus 

lividus NA 877 35 91 1 

11
4 

16S m Acan-
thamoeba 

castel-
lanii 

NA 152
3 

61 210 1 

11
5 

16S m Podospora anserina NA 175
9 

62 214 1 

11
6 

g1 e Bangia fusco-
purpurea 

7C1SSU 475 24 49 1 

11
7 

g1 e Sphaero-
zosma 

granula-
tum 

C1SSU 432 18 34 1 
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Table 3.7 continued  

11
8 

g1 e Bensington-
ia 

ciliata JCM6865C
1SSU 

334 14 20 1 

11
9 

g1 e Cosmo-
cladium 

saxoni-
cum 

C1SSU 443 16 27 1 

12
0 

g1 e Aureoum-
bra 

lagunen-
sis 

C1SSU 438 21 42 1 

12
1 

g1 e Pneumo-
cystis 

carinii C1SSU 404 19 31 1 

12
2 

g1 e Mesotaeni-
um 

caldario-
rum 

C1SSU 414 21 33 1 

12
3 

g1 e Chlorella sorokin-
iana 

C1SSU 478 21 34 1 

12
4 

g1 e Exophiala derma-
titidis 

C1SSU 425 21 34 1 

12
5 

g1 e Dunaliella parva C1SSU 394 21 36 1 

12
6 

g1 e Bensington-
ia 

yamato-
ana 

JCM2896C
1SSU 

468 24 39 1 

12
7 

g1 e Ajellomyces capsula-
tus 

CBS21353C
1SSU 

407 19 27 1 

12
8 

g1 e Drechslerel-
la 

brochop
aga 

C1SSU 405 16 25 1 

12
9 

g1 e Genicularia spiro-
taenia 

C1SSU 382 17 31 1 

13
0 

g1 e Chlorella luteovi-
ridis 

BC1SSU 439 21 28 1 

13
1 

g1 e Protomyces macro-
sporus 

C1SSU 394 18 25 1 

13
2 

g1 e Penicilliop-
sis 

clavar-
iiformis 

C1SSU 388 15 22 1 

13
3 

g1 e Protoderma sarcinoi-
dea 

C1SSU 457 19 31 1 

13
4 

g1 e Characium sac-
catum 

C1SSU 461 21 35 1 

13
5 

g1 e Chlorella sac-
char-
ophila 

C1SSU 394 19 30 1 

13
6 

g1 e Sclerotinia scleroti-
orum 

1837C1LSU 320 14 25 1 
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Table 3.7 continued  

13
7 

g1 e Tetrahy-
mena 

pigmen-
tosa 

C1LSU 422 19 30 1 

13
8 

g1 e Pneumo-
cystis 

carinii Pc3C1LSU 375 15 25 1 

13
9 

g1 e Arxula aden-
inivorans 

C1LSU 425 18 29 1 

14
0 

g1 e Monilinia fructico-
la 

C1SSU 432 17 22 1 

14
1 

g1 e Protomyces inouyei C1SSU 353 20 31 1 

14
2 

g1 e Stau-
rastrum 

sp M753C1SS
U 

410 16 20 1 

14
3 

g1 m Suillus luteus A1LSU 356 14 15 1 

14
4 

g1 e Crypten-
doxyla 

hy-
pophloia 

ESSU 448 19 19 1 

14
5 

g1 b Phormidi-
um 

sp N182C3tLE
U 

269 13 16 1 

14
6 

g1 e Lecanora dispersa UNKSSU 311 10 11 1 

14
7 

g1 b Synecho-
coccus 

elon-
gatus 

C3tLEU 252 13 13 1 

14
8 

g1 m Schizosac-
charomyces 

pombe B1OX1 270 8 4 1 

14
9 

g1 b Prochloro-
thrix 

holland-
ica 

1C3trnL 281 13 12 1 

15
0 

g1 b Dermocar-
pa 

sp ATCC29371
C3tMET 

266 13 11 1 

15
1 

5S a Halobacte-
rium 

salinar-
um 

NA 120 5 6 0 

15
2 

5S e Phytomo-
nas 

sp NA 123 5 6 0 

15
3 

5S e Quercus petraea NA 119 5 6 0 

15
4 

5S a Halorubrum saccha-
rovorum 

NA 122 5 6 0 

15
5 

5S a Methan-
othermus 

fervidus NA 123 5 6 0 

15
6 

5S e Filobasidiel-
la 

neofor-
mans 

NA 117 5 6 0 
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Table 3.7 continued  

15
7 

5S e Euglena gracilis NA 120 5 6 0 

15
8 

5S e Homo sapiens NA 118 5 6 0 

15
9 

5S e Kabatiella mi-
crosticta 

NA 119 5 6 0 

16
0 

5S e Saccharo-
myces 

cere-
visiae 

NA 117 5 6 0 

16
1 

5S e Schizo-
chytrium 

aggrega-
tum 

NA 118 5 6 0 

16
2 

5S e Schizosac-
charomyces 

pombe NA 118 5 6 0 

16
3 

5S e Lentinula edodes NA 119 5 6 0 

16
4 

5S e Ascobolus immer-
sus 

NA 118 5 6 0 

16
5 

5S e Caenorhab-
ditis 

elegans NA 118 5 6 0 

16
6 

5S a Thermo-
plasma 

acidophi-
lum 

NA 122 5 6 0 

16
7 

5S a Pyrococcus woesei NA 123 5 6 0 

16
8 

5S b Synecho-
coccus 

sp NA 119 4 4 0 

16
9 

5S b Thermus sp NA 119 4 4 0 

17
0 

5S b Thermus ther-
mophilus 

NA 120 4 4 0 

17
1 

5S b Rhodobac-
ter 

capsula-
tus 

NA 118 4 4 0 

17
2 

5S b Acidithio-
bacillus 

ferrooxi-
dans 

NA 119 4 4 0 

17
3 

5S b Arthrobac-
ter 

oxydans NA 120 4 4 0 

17
4 

5S b Agrobacte-
rium 

tumefa-
ciens 

NA 119 4 4 0 

17
5 

5S b Mycoplas-
ma 

genitali-
um 

NA 117 4 4 0 

17
6 

5S b Halor-
hodospira 

halophila NA 120 4 4 0 
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Table 3.7 continued  

17
7 

5S b Pseudono-
cardia 

hydro-
carbon-
oxydans 

NA 119 4 4 0 

17
8 

5S b Pseudomo-
nas 

stutzeri NA 117 4 4 0 

17
9 

5S b Deinococ-
cus 

radi-
odurans 

NA 123 4 4 0 

18
0 

5S b Geobacillus stea-
rother-
mophilus 

NA 118 4 4 0 

18
1 

g2 m Pylaiella littoralis BLSU 241
1 

28 67 0 

18
2 

g2 m Marchantia poly-
morpha 

BtrnSi1 992 36 99 0 

18
3 

g2 b Escherichia coli ATBDi1 189
4 

24 52 0 

18
4 

g2 m Marchantia poly-
morpha 

ASSU 161
0 

24 62 0 

18
5 

g2 c Nicotiana tabacum AtrnAi1 712 23 53 0 

18
6 

g2 m Petunia x AOX2i1 135
6 

21 45 0 

18
7 

g2 c Nicotiana tabacum AA6i1 698 19 37 0 

18
8 

g2 c Nicotiana tabacum AtrnIi1 710 19 36 0 

18
9 

g2 c Nicotiana tabacum BpDi1 742 19 37 0 

19
0 

g2 c Nicotiana tabacum BS16i1 861 18 35 0 

19
1 

g2 c Nicotiana tabacum BtrnGi1 691 18 26 0 

19
2 

g2 c Nicotiana tabacum BRPC1i1 739 20 45 0 

19
3 

g2 c Nicotiana tabacum BND1i1 114
8 

17 28 0 

19
4 

g2 c Nicotiana tabacum BND2i1 679 19 33 0 

19
5 

g2 c Nicotiana tabacum BL16i1 101
9 

14 21 0 
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Table 3.7 continued  

19
6 

g2 c Nicotiana tabacum BpBi1 753 16 28 0 

19
7 

g2 m Agrocybe aegerita BLSU 176
2 

20 29 0 

19
8 

g2 m Pisum sativum BS10i1 934 24 40 0 

19
9 

g2 m Cryphonect
ria 

parasiti-
ca 

BSSU 206
9 

20 42 0 

20
0 

23S m Xenopus laevis NA 163
4 

69 138 0 

20
1 

23S m Katharina tunicata NA 127
2 

47 85 0 

20
2 

23S m Artemia salina NA 113
5 

46 84 0 

20
3 

23S m Euhadra herklotsi NA 102
1 

43 79 0 

20
4 

23S m Albinaria caerulea NA 103
1 

43 80 0 

20
5 

23S m Mytilus edulis NA 124
1 

53 99 0 

20
6 

23S m Pecten maximus NA 140
1 

52 100 0 
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CHAPTER 4. IDENTIFICATION OF RNA STRUCTURAL ENSEMBLES WITH PSEUDOKNOTS 

USING COMBINATION OF MULTIPLE PREDICTION PROGRAMS  

4.1 Introduction 

Cellular RNAs, both coding and non-coding, adopt complex folded structures in vivo. The 

structure of RNA is usually conserved along with its function, however RNA structures 

are difficult to determine by traditional experimental approaches, such as NMR or X-ray 

crystallography. An important alternative method for examining RNA structure is com-

putational prediction.  

The most commonly used RNA structure prediction approaches use dynamic program-

ming (DP) (56-61), and incorporate experimentally determined nearest-neighbor energy 

parameters (54). There are several DP-based program suites that predict both minimum 

free energy and near minimum free energy RNA structures, including Mfold/UNAfold 

(3,62,63), RNAstructure (64-66), and ViennaRNA (67-69). In nature, the folding of RNA is 

spontaneous because base-pairing and stacking reduce the free energy of RNA mole-

cules. However, RNA molecules are dynamic and instead of adopting a single folded con-

formation, they form an ensemble of interconverting structures with near-minimum 

free energies. McCaskill developed partition function algorithm (McCaskill 1990) that 

samples the ensemble of RNA structures from Boltzmann distribution and calculates the 

probability of each structure within the ensemble from its free energy.  
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Mfold generates a thermodynamically optimal base-paired structure, using dynamic 

programming; this approach can be extended, using multiple tracebacks in the dynamic 

programming matrix, to produce suboptimal structures as well. UNAFold (63), an exten-

sion of mfold, also includes partition function calculations which permit, among other 

things, the determination of base-pairing probabilities for each base. The Fold program, 

like Mfold, uses dynamic programming to predict minimum free-energy structures (36).  

Other programs that incorporate partition function to calculate base-pairing probability 

include: ProbablePair, which predicts a structure that incorporates the base-pairs whose 

probability exceeds a threshold (157); AllSub, which computes all the possible subopti-

mal structures plus the optimal structure (158); MaxExpect, which shows only the RNA 

structures with the highest base-pairing probabilities (146); stochastic, which samples 

RNA structures from the Boltzmann ensemble  according to their probability of occur-

rence (159); and ProbKnot, which predicts a maximum expected accuracy structure us-

ing base-pairing probabilities calculated by the partition function algorithm (78), etc.  

The ViennaRNA program RNAfold uses dynamic programming to compute base-pairing 

probabilities using the McCaskill partition function algorithm and produces both the 

MFE structure and suboptimal structures. Another program, RNALfold, computes the 

locally stable structure within a region of an RNA sequence. Other approaches also use 

partition function to calculate base-pairing probabilities, for example, Sfold (70,71) cal-

culates a centroid structure from Boltzmann ensemble, which has the smallest base-pair 

distance to the other structures in the ensemble.  
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Originally, dynamic programming-based program suites, such as ViennaRNA and 

RNAstructure, did not include pseudoknot prediction. This is because the prediction of 

minimum free-energy structures containing pseudoknots requires calculation of non-

nested base-pairs which significantly increases the complexity of the calculation (76). In 

general, due to memory and time limitations, dynamic programming based programs do 

not predict pseudoknots; however, some program suites have extended secondary-

structure prediction to include pseudoknots by modifications incorporating various heu-

ristics into their algorithms. ViennaRNA includes the program RNAPKplex (77), which 

decomposes a secondary structure into two parts and separately calculates the mini-

mum free energy of each part. The two parts include a pseudoknot-free structure that 

includes accessible (unpaired) bases, and an additional stem formed within the accessi-

ble region to form a pseudoknot with a stem in the pseudoknot-free structure. The cal-

culation of pseudoknot energy is recursive and with complexity O(n6); when the length 

of the accessible region limited to w, the computational time for RNAPKplex is O(n3 + 

n2w4). In the RNAstructure program suite, ProbKnot predicts pseudoknot-free struc-

tures using base-pairing probabilities calculated by the partition function algorithm, and 

recursively searches for base-pairs with the highest pairing probabilities to yield a max-

imum expected accuracy structure that contains pseudoknots in O(n3) time (78).  

Other approaches for solving the pseudoknot prediction problem have been developed 

recently. However, these programs often predict only certain types of pseudoknots. The 

best-characterized type is the H-type pseudoknot, sometimes called simple pseudoknot, 

which is the interaction between a hairpin loop and the region outside the loop. Anoth-
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er widely studied pseudoknot is the kissing hairpin, which is the interaction between the 

loop regions of two hairpins loops. DotKnot predicts H-type pseudoknots and kissing 

hairpins by extracting high probability paired regions from an initial near minimum free- 

energy structure prediction, assembling a list of candidate pseudoknots, and evaluating 

the pseudoknot loop entropies using parameters developed by Cao and Chen(79,80). 

DotKnot has complexity O(n3), with the loop length of the pseudoknots limited. Another 

package, pknotsRG (130), originally predicted H-type pseudoknots and has been super-

seded by the novel program, pKiss (81,82), that includes kissing hairpins using a heuristic 

strategy with complexity O(n5).  

In addition to for dynamic programming and partition function based approaches, other 

RNA structure prediction approaches include grammar-based methods, such as CON-

TRAfold (72,73). CONTRAfold computes base-pairing probabilities using conditional log-

linear models (CLLM), a generalization of stochastic context-free grammars (SCFG), using 

free-energy scoring of RNA structural features (stems, loops, bulges, etc). The CONTRA-

fold model is used in other RNA structure prediction packages such as CentroidFold (74) 

and IPknot  (75). These programs compute base-pairing probabilities using the McCaskill 

partition function algorithm, CONTRAfold grammar-based methods, or other approach-

es, and then predict a structure with maximizeald base-pairing probability using integer 

programming (IP) (IPknot), or by a generalized centroid approach (CentroidFold).  

RNA molecules are ensembles of interconverting structures with different topologies, 

presumably near the minimum free-energy. RNA structures predicted by different pro-

grams are each only partially correct due to the incompleteness of the nearest neighbor 
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energy model, imprecision in energy parameters, interactions with proteins and ions in 

the cell, and temperature and ionic strength effects. Since individual program each have 

limitations, in this work we have investigate whether combining the results of multiple 

programs improves the accuracy of predicted structures. The combined structure com-

presses several alternative structures into one: it removes the redundant base-pairing 

regions that exist in more than one alternative structures, and retains all the base-

pairing information. We have tested 24 state-of-the-art RNA structure prediction pro-

grams on a gold-standard set of functional RNA sequences, most of which include bio-

logically validated pseudoknots,using 327,679 combinations of RNA structure prediction 

programs.  . This comprehensive comparison confirms previous findings that predicted 

structures are highly sensitive to the prediction methods, and allows the identification 

of program combinations that give the most accurate structures.  The best combinations 

vary with different trades-offs between prediction recall and precision. 

 

4.2 Materials and Methods 

4.2.1 Curated RNA families  

A set of curated RNA structures have been collected from the literature and a variety of 

biological databases (106) and is extended in this work (Table 3.3). This set includes 206 

structures of transfer RNA, Ribonuclease P RNA, transfer-messenger RNA, group I and 

group II self-splicing introns, and 5S, 16S and 23S ribosomal RNA. The structures in this 

curated set have been reviewed to ensure that the reported structures are as accurate 

as possible given existing experimental data, and incorporating expert opinion. The cu-
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rated structures have been screened to ensure that no pair of structures has greater 

than 50% sequence identity.  

 

4.2.2 RNA structure prediction by different programs  

A list of 24 RNA structure prediction programs (Table 4.1, UNAFold with 9 different pa-

rameter combinations, plus 15 other programs) have been tested on the set of curated 

RNASome of the programs predict ensembles of structures or allow sets of near mini-

mum free-energy structures (Table 4.1). For example, UNAFold predicts both the mini-

mum free energy (MFE) and near minimum free-energy structures.  The set of near min-

imum free-������ �����	 
��� ��� ��������� �� ��� ������� ���������� 
��� ��	���� ��

the MFE structure) and W (window size; each suboptimal predicted structure has at 

least W pairs of bases that are different from all other structures; moreover, each of the 

W pairs must have at least W bases in its position away from any pairs in other struc-

tures) (62).  

 

4.2.3 Predicted structure evaluation: precision, recall, and F1 score 

A predicted structure can be evaluated by evaluating the precision, recall, and accuracy 

(F1 score) of stems using the corresponding curated structure as the gold standard.  

Precision is the proportion of stems in a predicted structure that match curated stems.  

��������� �
 �

 � ! "�
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where, the True Positive stems, TP, are defined as the number of predicted stems that 

match at least one curated stem. Stems are considered to match when each half of one 

stem shares at least one base that is the same as the corresponding half of the other 

stem. FP, False Positives, are defined as the number of predicted stems that do not 

match any curated stem. The sum of TP and FP is the total number of predicted stems.  

 

Recall calculates the fraction of curated stems that match predicted stems. FN, False 

Negatives, are defined as the number of curated stems that do not match any predicted 

stem. In recall calculation, the sum of TP and FN is the total number of curated stems.  

������ �  ��

�� 	 
�
 

The F1 score measures the accuracy of a predicted structure giving equal weight to pre-

cision and recall.  


� �
 � ��������� � ������

��������� 	 ������
 

 

4.2.4 Correlation analysis of structure prediction programs  

Structure prediction performance with using the 24 conditions and programs described 

above shows different patterns across the 8 RNA families (Table 4.4), which conserve 

different structural characteristics. It Specific programs/conditions has presumably work 

better with structures with specific characteristics, and perform better in the families 

with such structural characteristics. However, RNA molecules are also complex mole-

cules with multiple structural patterns, which, might not be perfectly captured by a sin-
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gle program. Predictions based on multiple independent programs have the potential to 

provide prediction that better match the individual characteristics of specific families, 

and thus increase recall, but may also generate noise (false positives, over-prediction) 

and reduce precision. The selection of a reasonable number of independent programs is 

like making a pot of stew: if the programs are seasonings, they need to be diverse 

enough for a decent flavor (recall); they also need to be limited to avoid over spicing 

(precision).  

The program performance (precision, recall, F1 score) is calculated from the proportion 

of matching stems; the independence of the programs can be analyzed by the correla-

tions in matching to the curated stems. There are in total 4,455 stems in the 206 curated 

RNA sequences. We generated a 24 (programs) x 4,455 (stems) data matrix; each row is 

a binary vector of 4,455 elements with one indicating that the corresponding curated 

stem matched by at least one stem predicted by the program (row) and zero indicating 

that the corresponding curated stem cannot be matched to any stem predicted by that 

program. Correlation between any two programs were calculated, and used to compute 

the distance which is the inverse of correlation. A UPGMA (Unweighted Pair Group 

Method with Arithmetic Mean) tree was generated from the correlation. In the UPGMA 

tree, the branches started from single programs; branches with least distances were 

joined to create a new branch, and a new distance was calculated; this process contin-

ued until all the branches were joined to a common ancestor (root of the tree).   
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4.2.5 Combination of alternative structures  

The alternative foldings predicted for the same RNA sequence often share a large pro-

portion of identically base-paired regions (Figure 4.1). We remove this redundancy to 

generate a combined structure by combining overlapping stems in the predicted struc-

tures into single stems. Two stems are considered to overlap when both of their half-

stems completely or partially overlap in the sequence and their centers (the mean of the 

position of the first and last paired bases) differ by no more than 3 bases. The union of 

the sequence positions of both the paired bases is used as the coordinates of the com-

bined stem. Structure combination is complete when no overlapping can be found be-

tween any two stems in the predicted structures. Figure 4.1 shows an example of struc-

ture combination.  The MFE structure contains two base-paired regions: 3-7:22-26, and 

11-12:17-18. The near-MFE structure also has two base-paired regions: 2-5:23-26, and 

7-9:16-18. The first stem in each predicted structure overlap on both the left and right 

half stems, bases 3-7 vs 2-5 and 22-26 vs 23-26, respectively. The second base-paired 

regions overlap on only the right half stem, bases 17-18 vs 16-18, while the left half 

stems, bases 11-12 vs 7-9, do not overlap.  Moreover, the left half stem of second base-

paired region in 1, right (bases 7-9) overlaps with the left half stem of 1, left (bases 3-7) 

by one base. 

Structure combination was performed on all possible sets of alternative structures gen-

erated of the 24 program/conditions considered here. The 24 programs/conditions 

have, in total, 327,679 combinations; for each RNA sequence, 327,679 combined pre-

dicted structures have been generated.  
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4.3 Results 

4.3.1 Average precision, recall, and F1 score of 24 RNA structure prediction programs  

Table 4.4 shows the average performance (precision, recall, and F1 score) over all the 

RNA sequences, and for each structural class, for different RNA structure prediction 

programs/conditions. For a single program, the best average precision, recall, and F1 

score in the 206 RNA sequences are 0.763±0.246 (mean±standard deviation, Probable-

Pair in RNAstructure), 0.769±0.193 (sfold) and 0.577±0.241 (ProbKnot in RNAstructure), 

respectively.   

A precision of 0.763±0.246 means that more than 75% of the gold-standard curated 

stems are correctly predicted; recall of 0.769±0.193 indicates that over 75% of the pre-

dicted stems correspond to known stems in the curated biological structures. A predict-

ed structure that comprises 75% of the correct stems is sufficiently complete for classifi-

cation using topological methods (Huang and Gribskov, in preparation). We have found 

that in structures with 70% of correct stems we are able to discriminate between differ-

ent RNA functional families according to their structures (AUC > 0.8; data not shown). 

Using a single program, we are confident to obtain 75% of correct stems in structure 

prediction; however, if we can find an optimal combination of results from multiple pro-

grams, we might be able to push the performance to a higher level.  

4.3.2 Correlation analysis  

To further analyze the relationship between programs, a UPGMA tree was calculated 

from the correlation between different RNA structure prediction programs/conditions 

(Figure 4.2).  The UNAFold programs with different parameter settings, the programs 
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from RNAstructure package, and other programs (grammar-based programs and statis-

tical sampling-based programs), group together in major branches of the tree. Programs 

on different branches are more independent from each other, and when structures pre-

dicted by these programs are combined, we expect they should show better prediction 

performance.  

 

4.3.3 F1 score of the 20 best performing program combinations    

Table 2 shows the top 20 best performing combinations based on average F1 scores 

across the curated families. For each combination, the average ranking is calculated by 

summing the rank of the program within each family, and dividing by the number of 

families. Predicted RNA structures from 327,679 program combinations were consid-

ered. Program combination CONTRAfold in IPknot combined with ProbKnot in RNAstruc-

ture (n.p), ProbKnot in RNAstructure (p), CentroidFold combined with ProbKnot in 

RNAstructure (c.p), McCaskill in IPknot combined with ProbKnot in RNAstructure (i.p) 

are the top 4 in average F1 ranking, with n, c, and i in one group of the UPGMA tree, and 

p in another group (Figure 4.2), which agrees with our expectation that combination of 

more independent programs should have better prediction performance. More im-

portantly, n, c, and i are pseudoknot prediction programs.  

 

4.3.4 Pareto Frontier: potential optimal solutions for precision versus recall  

Figure 4.3 shows the precision and recall of the program combinations. For each family, 

a Pareto frontier is shown. Each point on the Pareto frontier exceeds all the points with 
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smaller vertical coordinates in precision, and exceeds all the points with larger vertical 

coordinates in recall. The full list of points on the Pareto frontier can be found in the Ta-

bles 4.7 � 4.14. The lists of program combinations with the top precision and recall can 

also be found in Table 4.5 and Table 4.6.  

Table 4.3 shows the frequency of programs on the Pareto Frontier, as a reference to 

choose programs depending on the need of users � higher F1, precision, or recall. Since 

F1 score is skewed towards precision, similar conclusions can be drawn for both of these 

two statistics. If one�s goal is to obtain predicted structures with higher precision or F1 

score, programs such as CONTRAfold in IPknot (n), CentroidFold (c), McCaskill in IPknot 

(i), ProbablePair (r), AllSub in RNAstructure (a), pKiss (k), and ProbKnot in RNAstructure 

(p) are better options. To obtainpredicted structures with higher recalls, i.e., with lower 

numbers of false positives, programs such as stochastic in RNAstructure (t), DotKnot (d), 

RNALfold in ViennaRNA (l), UNAFold with ddG = 5, W = 4 (u-5-4), Fold (f), ProbKnot in 

RNAstructure (p), and pKiss (k) are better options.  ProbKnot in RNAstructure (p) has 

good overall performance as measured by precision, recall, and F1. Depending on the 

preference of precision (F1) or recall, a combination of programs/conditions of ProbKnot 

with some programs with high performance in the corresponding statistic is recom-

mended.  

4.4 Discussions 

RNA structures have been studied by multiple computational approaches in the last 40 

years. The most widely used computational approaches are based on dynamic pro-

gramming and predict both MFE and near-MFE structures for a given RNA sequence. 
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Other approaches use statistical sampling from the Boltzmann distribution and calculate 

base-pairing probabilities according to calculated free energies. In addition, novel ap-

proaches using grammar-based algorithms to get the maximum accuracy structures 

have emerged recently. However, structures predicted by individual programs are only 

partially correct. 

This work focuses on finding optimal combinations of results from individual programs 

to improve the accuracy of structure prediction, based on the RNA topology level. As we 

know, RNA topology, which is the nesting, adjacency, and pseudoknotting relationships 

between stems, is closely related to RNA function. When comparing with the local struc-

tural features, such as number of base pairs, the global arrangement of stems is more 

conserved and reliable. Furthermore, pseudoknots are important structural elements in 

RNA functions. Some RNA structure prediction programs can predict pseudoknots, or 

one stem from a pseudoknot, however, there is still space for improvement, which is 

another challenge this work tries to tackle. For example, UNAFold predicts multiple al-

ternative structures without pseudoknots; however, the two stems in one pseudoknot 

could have been predicted in two separate structures. The combined structure, which 

retains stem information from alternative structures, has the potential to identify the 

implicit pseudoknot information. Based on a global point of view, the structure combi-

nation approach has promising potential to improve structure prediction.  

We have investigated the prediction performance of 24 programs/parameter combina-

tions and correlation analysis shows that, in spite of similar methodology, different pro-

grams show considerably variability in prediction performance, and considerable differ-
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ences in performance across functional families. Since the predictions made by individu-

al programs are each only partially correct, we combine the results from multiple pro-

grams and look for combinations with improved performance. Our results have shown 

Pareto frontiers for each functional family, which are potential optimal solutions for 

precisions vs recall. For each program combination on the frontier, there is no other 

program or program combination that has both higher precision and higher recall. De-

pending on the need for higher precision or recall, program combination on the Pareto 

frontier represent the best possible choices for structure predictions. In the high preci-

sion region of the Pareto frontier we tend to find that the best program combinations 

include no more than two programs; when more than two programs are combined the 

level of increased noise exceeds the level of increased information. In the high recall re-

gion of the Pareto Frontier we tend to find that the best combinations include around 5 

programs; this indicates that there is considerable amount of independence between 

the programs and that generating the most comprehensive list of true stems requires 

multiple approaches.  Unfortunately, this high recall comes at the expense of greatly 

reduced precision (number of false positive predictions). F1 score, which is a balance 

between precision and recall, shows that combining programs that differ in algorithms 

yields a better overall performance (Table 4.2). For example, dynamic programming-

based approaches, such as ProbKnot (RNAstructure) and grammar-based approaches, 

such as IPknot or CentroidFold, are complement each other. However, caution should 

be taken when using the F1 scores. In general, the range of precision, attends to be 

much larger than the range of recall. Therefore, differences in the F1 score are dominat-
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ed by the differences in the precision. There is no universal best setting for precision 

versus recall, but the results here can be broadly used to select programs or program 

combinations that optimize the result required by the end-������ ����	
��	�� ������� 	�

is high precision, high recall, or both.  This choice is simplified by the limited number of 

program combinations found along the Pareto frontier; other combinations need not be 

considered since, for any combination not on the frontier, there is always a combination 

on the front that has both higher precision AND higher recall.  
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Figure 4.1 An example of alternative predicted RNA foldings sharing overlapping base-
paired regions. Two alternative structures of a 31 base RNA sequence 
(ACCCCCUCCUUCCUUGGAUCAAGGGGCUCAA) were predicted using UNAFold. The plot 
shows th� ��� ����	���� 
���� �� � -9.8 kcal/mol) and a near-��� ����	���� 
����� �� �

-9.5 kcal/mol). The MFE structure has two base-paired regions, 3-7:2-226, and 11-12:17-
18. The near-MFE structure also has two base-paired regions, 2-5:23-26, and 7-9:16-18.  
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Figure 4.2 UPGMA tree of RNA structure prediction programs. The pairwise correlation 
between any two programs were calculated, and used to compute the distance which is 
the inverse of correlation. A UPGMA (Unweighted Pair Group Method with Arithmetic 
Mean) tree were generated from the correlation. In the UPGMA tree, the branches 
started from single programs; branches with least distances were joined to create a new 
branch, and a new distance was calculated; this process continued until all the branches 
were joined to a common ancestor (root of the tree).   
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Figure 4.3 Precision v.s. recall of all the program combinations. Each dot represents the 
prediction performance of one program combination for a specific curated RNA struc-
ture and is drawn with a family-specific shape. For each RNA family, the Pareto frontier 
is shown by shapes filled with the family-specific color and outlined in black (dots with 
top 10% precision and top 10% recall) or shapes filled with white and enclose outlined in 
the family-specific color (dots not in the top 10% precision or top 10% recall range); also, 
a regression line fitting all the dots of the Pareto Frontier in that family is drawn with 
the family-specific color. Dots not in the Pareto Frontier are drawn in grey. For the spe-
cific shape/color of each family, refer to the legend box on the top-left corner; (B) indi-
vidual families, from 1 through 8, are 16S rRNA, 23S rRNA, RNase P RNA, Group II Intron, 
tRNA, Group I Intron, tmRNA, and 5S rRNA (the order corresponds to the order of the 
families plotted in (A). The non-Pareto Frontier dots within a specific family is drawn in 
black, with dots in other families drawn in grey.  
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Figure 4.3   
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Table 4.1 RNA structure prediction programs tested in this study. The third column 
shows the abbreviation for each program used in the text and figures. For UNAFold, W = 
�� �� �� ��� ��	 
 �� �� �� � �������� ��� ������������ � ������ ���  !"#��� $#% &���ic-
tion, while u-1-�� ������ ���  !"#��� ����&����� &��������� �� ���� ����'( ���'� ��	 

1 kcal/mol and window size W = 8.  
 

Package Program Code Method 

Availability 

of subop-

timal fold-

ing(s) 

Pseudoknot 

prediction 

CentroidFold N/A c 

Predicts an RNA secondary 

structure with maximum 

base-pairing probability based 

on generalized centroid esti-

mator that adjusts precision 

and recall upon user request 

(Hamada, et al., 2009).  

No Yes 

IPknot 

McCaskill i 

Predicts an RNA secondary 

structure with maximum 

base-pairing probability using 

integer programming by 

McCaskill model (Sato, et al., 

2011).  

No Yes 

CONTRAfold n 

Predicts an RNA secondary 

structure with maximum 

base-pairing probability using 

integer programming by 

CONTRAfold model (Sato, et 

al., 2011). 

No Yes 
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Table 4.1 continued  

RNAstructure 

AllSub a 

Generates all possible near-

minimum free energy struc-

tures (Duan, et al., 2006).  

Yes No 

Fold f 

Predicts the minimum free en-

ergy (MFE) suboptimal struc-

tures (Mathews, et al., 2004).  

Yes No 

MaxExpect m 

Generates one or several struc-

tures composed of highly prob-

able base-pairs (Lu, et al., 

2009).  

No No 

ProbKnot p 

Calculates the highest pairing 

probabilities to yield a maxi-

mum expected accuracy struc-

ture which might contains 

psedoknots (Bellaousov and 

Mathews, 2010).  

No Yes 

ProbablePair r 

Generates secondary structures 

composed of base-pairs with 

base-pairing probabilities that 

exceed a specified threshold 

(Mathews, 2004).  

Yes No 

stochastic t 

Generates a representative 

sample of structures by sto-

chastic sampling from the 

Boltzmann ensemble (Har-

manci, et al., 2009). 

Yes No 
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Table 4.1 continued  

ViennaRNA 

RNALfold l 

Calculates locally stable sec-

ondary structures of RNAs 

(Hofacker, 2003; Hofacker, 

2004; Lorenz, et al., 2011).  

Yes No 

RNAfold o 

Computes base-pairing prob-

abilities using partition func-

tion algorithm (55) and yields 

both the MFE structure and 

suboptimal structures 

(Hofacker, 2003; Hofacker, 

2004; Lorenz, et al., 2011).  

Yes No 

RNAPKplex x 

Predicts RNA secondary 

structures including pseu-

doknots (Hofacker, 2003; 

Hofacker, 2004; Lorenz, et al., 

2011).  

No Yes 
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Table 4.1 continued  

UNAFold 

Minimum 

Free Energy 

(MFE) 

u 

Computes minimum free en-

ergy folding and suboptimal 

foldings by dynamic pro-

grammingods (Markham and 

Zuker, 2008; Zuker, 2003; Zu-

ker, et al., 1999).  

No No 

ddG=1, W=4 u-1-4 Yes 

ddG=1, W=8 u-1-8 

ddG=3, W=4 u-3-4 

ddG=3, W=8 u-3-8 

ddG=3, 

W=12 

u-3-

12 

ddG=5, W=4 u-5-4 

ddG=5, W=8 u-5-8 

ddG=5, 

W=12 

u-5-

12 

DotKnot N/A d 

Predicts RNA structures with 

restricted topologies H-type 

pseudoknots and kissing 

hairpins) by assembling high 

probability base-paired re-

gions (Sperschneider and 

Datta, 2010; Sperschneider, 

et al., 2011).  

No Yes 
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Table 4.1 continued  

pKiss N/A k 

Predicts RNA structures with 

estricted topologies (H-type 

pseudoknots and kissing 

hairpins) using heuristics 

(Corinna Theis, 2010; Janssen 

and Giegerich, 2015; Reeder, 

et al., 2007). 

Yes  Yes 

sfold N/A s 

Calculates the centroid struc-

ture of the Boltzmann en-

semble using partition-

function weighted statistical 

sampling (Ding, et al., 2005; 

Ding and Lawrence, 2003). 

Yes No 
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Table 4.2 F1 score of the 20 best performing programs combinations vs 8 RNA families. 
The second row shows the average size (number of stems) for each RNA family. For each 
program/condition combination, the F1 score is averaged over each of the 8 RNA fami-
lies and also averaged over the 8 RNA family averages (all). Within each RNA family and 
also within the overall average, the F1 scores for the 327,679 program combinations are 
ranked from highest to lowest. For each combination, the average ranking is calculated 
by summing its ranking within each family and dividing by the number of families. The 
program combinations with the 20 highest average rankings are shown below, with the 
best F1 score within each family bolded.  
 
 
Combination 

(stem_#) 

16S 

(60.5±17.1) 

23S 

 (46.9±8.2) 

5S  

(4.6±0.5) 

g1  

(13.3± 2.1) 

g2  

(20.0± 4.5) 

Rnasep  

(24.3± 5.9) 

tRNA  

(9.6± 1.0) 

tmRNA 

 (25.8± 5.9) 

All 

 (21.7±17.3) 

Average Ranking 

n.p 0.266±0.121 0.283±0.089 0.778±0.223 0.541±0.168 0.251±0.102 0.505±0.12 0.328±0.042 0.658±0.11 0.54±0.225 18 

p 0.272±0.112 0.281±0.087 0.816±0.197 0.528±0.162 0.235±0.111 0.457±0.123 0.355±0.068 0.774±0.076 0.577±0.241 20 

c.p 0.253±0.126 0.274±0.097 0.797±0.228 0.557±0.168 0.227±0.11 0.506±0.126 0.335±0.045 0.65±0.104 0.554±0.228 22 

i.p 0.273±0.121 0.26±0.084 0.779±0.23 0.546±0.163 0.242±0.11 0.494±0.13 0.317±0.046 0.636±0.122 0.533±0.228 25 

n.r 0.263±0.133 0.289±0.115 0.801±0.216 0.537±0.172 0.269±0.104 0.504±0.111 0.283±0.026 0.637±0.12 0.54±0.227 37 

m.n 0.255±0.125 0.269±0.112 0.754±0.213 0.533±0.173 0.26±0.104 0.493±0.117 0.289±0.045 0.631±0.117 0.527±0.22 44 

p.r 0.255±0.106 0.272±0.093 0.795±0.238 0.503±0.165 0.23±0.108 0.433±0.126 0.311±0.061 0.774±0.086 0.553±0.255 45 

c.m 0.247±0.113 0.253±0.115 0.784±0.214 0.553±0.175 0.263±0.136 0.498±0.117 0.298±0.045 0.619±0.114 0.536±0.224 45 

n.p.r 0.252±0.12 0.274±0.093 0.745±0.242 0.506±0.166 0.227±0.093 0.475±0.116 0.3±0.042 0.657±0.11 0.519±0.228 46 

i 0.292±0.142 0.257±0.107 0.855±0.178 0.599±0.172 0.297±0.117 0.517±0.133 0.3±0.023 0.528±0.159 0.539±0.233 48 

c.p.r 0.239±0.111 0.266±0.101 0.763±0.249 0.522±0.168 0.224±0.106 0.473±0.121 0.302±0.048 0.65±0.107 0.525±0.233 54 

c.n.p 0.255±0.116 0.256±0.089 0.759±0.237 0.533±0.18 0.236±0.107 0.494±0.123 0.293±0.039 0.565±0.119 0.506±0.223 59 

i.r 0.275±0.126 0.254±0.102 0.808±0.206 0.565±0.169 0.268±0.116 0.502±0.113 0.271±0.013 0.62±0.132 0.543±0.227 63 

c.r 0.249±0.121 0.259±0.121 0.837±0.202 0.579±0.176 0.278±0.137 0.508±0.111 0.271±0.008 0.621±0.11 0.552±0.231 65 

i.p.r 0.257±0.113 0.253±0.087 0.747±0.247 0.511±0.161 0.219±0.098 0.463±0.125 0.289±0.039 0.636±0.123 0.512±0.23 68 

i.m 0.26±0.115 0.245±0.098 0.76±0.223 0.542±0.169 0.256±0.115 0.487±0.121 0.279±0.043 0.617±0.134 0.525±0.224 70 

n 0.272±0.133 0.286±0.117 0.855±0.174 0.562±0.168 0.3±0.111 0.502±0.114 0.313±0.018 0.477±0.173 0.513±0.232 70 

c 0.263±0.145 0.254±0.125 0.893±0.157 0.609±0.183 0.321±0.13 0.517±0.129 0.309±0.017 0.486±0.151 0.546±0.24 71 

c.i.p 0.254±0.119 0.238±0.08 0.761±0.243 0.517±0.172 0.221±0.11 0.474±0.138 0.283±0.037 0.553±0.134 0.494±0.228 98 

m.p 0.251±0.106 0.253±0.106 0.77±0.235 0.474±0.173 0.217±0.106 0.404±0.126 0.315±0.052 0.757±0.09 0.532±0.253 105 
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Table 4.3 Frequency of programs on the Pareto Frontier. For each statistic, the top 4 
program combinations along the Pareto Frontier were identified for each family of 
structures, and the occurrence of individual programs summed. (Programs with only 
one occurrence in the high F1 or high precision lists, or with less than half of the maxi-
mum occurrence in the high recall list are not shown), represented as: program code 
(occurrence).  
 

High F1 High precision High recall 

c(13) 

i(10) 

n(8) 

a(6) 

r(5) 

k(4) 

f(4) 

t(4) 

p(4) 

n(11) 

c(10) 

i(9) 

r(6) 

a(5) 

k(4) 

p(3) 

t(28) 

d(20) 

l(17) 

u-5-4(16) 

f(16) 

p(16) 

 

 

  



126 
 

 

Table 4.4 F1 scores of the 24 structure prediction programs. The F1 scores (mean±std) 
for RNA structures in 8 functional families plus that for all the RNA structures are shown. 
��� ���� �� �	
�� 
� �	� ����� �� �
����� �
� ����
��� ������ ��� ������� ��reshold 
above MFE for suboptimal structures) and increasing W (window size, the variation be-
tween predicted structures) increases precision but reduces recall, and overall slightly 
��	����� ��� �� �	
��� �� 	
������ ������ � �� ��	������ ��� ��� 	�� !�ecision and 
increases recall, and overall reduces the F1 score. In general, maximizing window size at 
a relatively low energy threshold (ddG=1, W = 8) yields the best F1 score for UNAFold.   
 

Code Package 

Family (stem 

number) 

 

Program 

16S 23S 5S g1 g2 rnasep tRNA tmRNA 
To-

tal/average 

60.5±17.1 46.9±8.2 4.6±0.5 13.3± 2.1 20.0± 4.5 24.3± 5.9 9.6± 1.0 25.8± 5.9 21.7±17.3 

c CentroidFold N/A 0.263±0.145 0.254±0.125 0.893±0.157 0.609±0.183 0.321±0.13 0.517±0.129 0.309±0.017 0.486±0.151 0.546±0.24 

i 

IPknot 

McCaskill 0.292±0.142 0.257±0.107 0.855±0.178 0.599±0.172 0.297±0.117 0.517±0.133 0.3±0.023 0.528±0.159 0.539±0.233 

n CONTRAfold 0.272±0.133 0.286±0.117 0.855±0.174 0.562±0.168 0.3±0.111 0.502±0.114 0.313±0.018 0.477±0.173 0.513±0.232 

a 

RNAstruc-

ture 

AllSub 0.22±0.114 0.208±0.074 0.505±0.201 0.487±0.143 0.176±0.092 0.418±0.104 0.384±0.112 0.734±0.083 0.518±0.205 

f Fold 0.192±0.047 0.16±0.068 0.504±0.185 0.296±0.061 0.125±0.025 0.298±0.071 0.301±0.076 0.746±0.091 0.453±0.235 

m MaxExpect 0.235±0.103 0.211±0.057 0.779±0.191 0.53±0.17 0.23±0.093 0.449±0.126 0.309±0.017 0.729±0.083 0.575±0.224 

p ProbKnot 0.272±0.112 0.281±0.087 0.816±0.197 0.528±0.162 0.235±0.111 0.457±0.123 0.355±0.068 0.774±0.076 0.577±0.241 

r ProbablePair 0.231±0.091 0.185±0.074 0.767±0.18 0.518±0.144 0.237±0.128 0.426±0.111 0.32±0.013 0.736±0.081 0.576±0.22 

t stochastic 0.056±0.012 0.043±0.006 0.237±0.164 0.144±0.046 0.042±0.012 0.153±0.067 0.176±0.076 0.472±0.12 0.248±0.182 

l 

ViennaRNA 

RNALfold 0.122±0.023 0.146±0.021 0.448±0.134 0.181±0.088 0.082±0.046 0.131±0.053 0.273±0.082 0.127±0.038 0.193±0.14 

o RNAfold 0.231±0.092 0.24±0.072 0.812±0.212 0.531±0.165 0.222±0.113 0.433±0.128 0.301±0.028 0.392±0.134 0.453±0.23 

x RNAPKplex 0.243±0.105 0.26±0.092 0.839±0.199 0.553±0.164 0.252±0.106 0.435±0.139 0.305±0.021 0.416±0.134 0.473±0.232 

u 

UNAFold 

Minimum Free 

Energy (MFE) 
0.124±0.049 0.108±0.022 0.54±0.184 0.334±0.124 0.117±0.066 0.329±0.076 0.286±0.033 0.21±0.064 0.296±0.17 

u-1-4 ddG=1, W=4 0.202±0.089 0.206±0.053 0.596±0.209 0.472±0.148 0.165±0.067 0.412±0.109 0.293±0.063 0.298±0.103 0.37±0.186 

u-1-8 ddG=1, W=8 0.204±0.091 0.206±0.057 0.628±0.217 0.475±0.143 0.177±0.073 0.426±0.099 0.293±0.033 0.307±0.111 0.382±0.191 

u-3-4 ddG=3, W=4 0.187±0.078 0.165±0.048 0.477±0.18 0.394±0.157 0.144±0.064 0.343±0.086 0.289±0.092 0.224±0.078 0.305±0.16 

u-3-8 ddG=3, W=8 0.196±0.082 0.178±0.047 0.556±0.186 0.429±0.142 0.161±0.067 0.389±0.088 0.293±0.033 0.266±0.092 0.346±0.173 

u-3-12 ddG=3, W=12 0.206±0.086 0.188±0.045 0.625±0.195 0.456±0.143 0.17±0.072 0.409±0.103 0.305±0.02 0.29±0.094 0.372±0.187 

u-5-4 ddG=5, W=4 0.096±0.037 0.092±0.037 0.401±0.181 0.26±0.101 0.1±0.057 0.261±0.071 0.252±0.075 0.149±0.053 0.221±0.139 

u-5-8 ddG=5, W=8 0.124±0.046 0.122±0.037 0.548±0.182 0.367±0.124 0.124±0.063 0.347±0.072 0.286±0.033 0.227±0.071 0.304±0.172 

u-5-12 ddG=5, W=12 0.15±0.057 0.148±0.038 0.625±0.195 0.427±0.138 0.142±0.08 0.394±0.09 0.305±0.02 0.27±0.085 0.349±0.191 

d DotKnot N/A 0.251±0.085 0.236±0.065 0.646±0.233 0.559±0.151 0.195±0.09 0.42±0.132 0.292±0.017 0.4±0.166 0.433±0.209 

k pKiss N/A 0.185±0.024 NA 0.474±0.133 0.506±0.116 0.199±0.081 0.39±0.121 0.28±0.079 0.378±0.117 0.408±0.144 

s sfold N/A 0.214±0.119 0.205±0.089 0.77±0.212 0.543±0.172 0.198±0.091 0.469±0.142 0.296±0.023 0.354±0.133 0.451±0.234 
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Table 4.5 Program combinations with the top 20 precisions. The precision (mean±std) 
for RNA structures in 8 functional families plus that for all the RNA structures are shown. 
The best precision of each family is bolded. 
 

Combination 16S 23S 5S g1 g2 rnasep tRNA tmRNA all 
Average 

Ranking 

stem_# 60.5±17.1 46.9±8.2 4.6±0.5 13.3± 2.1 20.0± 4.5 24.3± 5.9 9.6± 1.0 25.8± 5.9 21.7±17.3 NA 

r 0.372±0.163 0.385±0.125 0.859±0.208 0.698±0.18 0.258±0.16 0.687±0.169 0.5±0 0.96±0.075 0.763±0.246 3 

c 0.395±0.199 0.376±0.173 0.919±0.15 0.716±0.204 0.348±0.146 0.755±0.166 0.542±0.073 0.537±0.188 0.647±0.25 11 

n.r 0.333±0.171 0.385±0.139 0.748±0.255 0.574±0.204 0.256±0.128 0.619±0.159 0.431±0.133 0.605±0.138 0.56±0.229 12 

n 0.396±0.186 0.428±0.145 0.854±0.198 0.684±0.22 0.303±0.132 0.747±0.146 0.566±0.082 0.512±0.193 0.607±0.25 13 

c.r 0.335±0.152 0.353±0.176 0.808±0.238 0.603±0.195 0.27±0.15 0.621±0.16 0.375±0.073 0.611±0.143 0.58±0.233 13 

p 0.287±0.118 0.281±0.086 0.821±0.235 0.562±0.177 0.206±0.112 0.573±0.142 0.586±0.097 0.92±0.09 0.653±0.277 14 

i 0.361±0.168 0.296±0.109 0.83±0.2 0.658±0.195 0.264±0.121 0.662±0.157 0.481±0.04 0.506±0.167 0.574±0.24 19 

c.m 0.294±0.143 0.316±0.19 0.733±0.262 0.523±0.189 0.245±0.157 0.531±0.139 0.4±0.116 0.597±0.142 0.528±0.228 19 

m.n 0.297±0.164 0.323±0.159 0.676±0.255 0.505±0.187 0.239±0.13 0.525±0.131 0.378±0.114 0.59±0.132 0.509±0.217 26 

i.r 0.307±0.138 0.277±0.106 0.747±0.244 0.563±0.187 0.229±0.123 0.563±0.145 0.359±0.033 0.553±0.144 0.527±0.225 26 

p.r 0.274±0.117 0.265±0.098 0.754±0.279 0.49±0.177 0.193±0.107 0.487±0.157 0.407±0.091 0.893±0.119 0.588±0.293 30 

n.p 0.27±0.13 0.248±0.075 0.704±0.264 0.51±0.182 0.193±0.09 0.544±0.14 0.41±0.079 0.603±0.126 0.512±0.226 36 

c.n.r 0.271±0.134 0.276±0.12 0.725±0.271 0.521±0.205 0.196±0.105 0.553±0.159 0.361±0.161 0.463±0.145 0.483±0.236 43 

m 0.252±0.111 0.222±0.059 0.795±0.233 0.562±0.192 0.187±0.095 0.554±0.141 0.542±0.073 0.919±0.098 0.668±0.271 44 

c.n 0.316±0.156 0.29±0.123 0.803±0.248 0.595±0.222 0.227±0.114 0.645±0.163 0.431±0.133 0.407±0.174 0.518±0.26 44 

c.m.r 0.267±0.147 0.305±0.197 0.69±0.294 0.467±0.182 0.23±0.163 0.464±0.144 0.312±0.109 0.588±0.143 0.491±0.233 44 

i.m 0.27±0.126 0.248±0.111 0.686±0.269 0.495±0.18 0.213±0.125 0.49±0.134 0.345±0.089 0.543±0.143 0.484±0.221 47 

c.p 0.232±0.113 0.24±0.087 0.749±0.271 0.525±0.179 0.174±0.096 0.545±0.146 0.403±0.071 0.613±0.131 0.532±0.237 49 

r.x 0.233±0.111 0.269±0.091 0.743±0.28 0.513±0.168 0.191±0.13 0.461±0.141 0.38±0.066 0.485±0.111 0.471±0.225 53 

m.n.r 0.276±0.168 0.31±0.168 0.636±0.277 0.451±0.18 0.225±0.135 0.461±0.136 0.307±0.098 0.582±0.133 0.475±0.22 54 
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Table 4.6 Program combinations with the top 20 recalls. The recall (mean±std) for RNA 
structures in 8 functional families plus that for all the RNA structures are shown. The 
best recall of each family is bolded. 
 

Combination 16S 23S 5S g1 g2 rnasep tRNA tmRNA all 
Average 

Ranking 

stem_# 60.5±17.1 46.9±8.2 4.6±0.5 13.3± 2.1 20.0± 4.5 24.3± 5.9 9.6± 1.0 25.8± 5.9 21.7±17.3 NA 

a.d.f.l.m.t.u-5-4.x 0.691±0.178 0.65±0.12 0.996±0.03 0.872±0.133 0.679±0.166 0.772±0.114 0.399±0.143 0.934±0.085 0.82±0.198 3815 

a.d.f.l.p.t.u-5-4.x 0.692±0.178 0.658±0.113 0.996±0.03 0.872±0.133 0.687±0.162 0.772±0.116 0.399±0.143 0.934±0.085 0.821±0.197 3951 

a.d.f.k.l.t.u-5-4 0.688±0.181 0.645±0.128 0.996±0.03 0.873±0.135 0.679±0.151 0.772±0.113 0.399±0.143 0.94±0.082 0.822±0.198 3955 

a.d.k.l.p.t.u-5-4 0.683±0.181 0.655±0.117 0.996±0.03 0.871±0.135 0.692±0.151 0.754±0.124 0.399±0.143 0.935±0.083 0.818±0.198 3975 

a.d.i.k.l.t.u-5-4.x 0.685±0.176 0.653±0.12 0.996±0.03 0.87±0.129 0.686±0.15 0.75±0.116 0.399±0.143 0.939±0.079 0.818±0.197 4104 

a.f.i.l.p.t.u-5-4.x 0.69±0.178 0.658±0.113 0.996±0.03 0.866±0.127 0.679±0.157 0.77±0.115 0.399±0.143 0.934±0.082 0.819±0.196 4209 

a.f.k.l.p.t.u-5-4 0.686±0.182 0.652±0.116 0.996±0.03 0.867±0.133 0.681±0.148 0.768±0.112 0.399±0.143 0.936±0.083 0.819±0.197 4298 

a.d.f.l.n.t.u-5-4.x 0.693±0.176 0.65±0.12 0.996±0.03 0.871±0.131 0.683±0.155 0.772±0.114 0.399±0.143 0.934±0.085 0.821±0.196 4329 

a.d.k.l.s.t.u-5-4.x 0.687±0.176 0.653±0.125 0.996±0.03 0.873±0.131 0.689±0.146 0.752±0.118 0.399±0.143 0.937±0.079 0.819±0.197 4433 

a.d.k.l.n.t.u-5-4.x 0.687±0.176 0.65±0.12 0.996±0.03 0.869±0.13 0.69±0.145 0.75±0.115 0.399±0.143 0.935±0.083 0.818±0.196 4483 

a.d.l.n.p.t.u-5-4.x 0.687±0.175 0.658±0.113 0.996±0.03 0.867±0.131 0.691±0.158 0.756±0.125 0.399±0.143 0.928±0.087 0.817±0.197 4532 

a.d.f.l.t.u-5-4.x 0.689±0.177 0.65±0.12 0.996±0.03 0.869±0.132 0.676±0.162 0.771±0.115 0.399±0.143 0.934±0.085 0.819±0.197 4546 

a.d.l.p.s.t.u-5-4 0.682±0.177 0.66±0.118 0.996±0.03 0.867±0.137 0.686±0.166 0.755±0.125 0.399±0.143 0.929±0.084 0.816±0.198 4657 

a.d.f.l.s.t.u-5-4.x 0.693±0.176 0.653±0.125 0.996±0.03 0.871±0.134 0.682±0.156 0.772±0.114 0.399±0.143 0.935±0.081 0.821±0.197 4680 

a.d.l.n.s.t.u-5-4.x 0.688±0.174 0.653±0.125 0.996±0.03 0.868±0.131 0.687±0.152 0.754±0.119 0.399±0.143 0.929±0.084 0.816±0.196 4715 

a.c.d.k.l.t.u-5-4 0.68±0.179 0.647±0.124 0.996±0.03 0.87±0.133 0.683±0.151 0.749±0.114 0.399±0.143 0.935±0.083 0.816±0.198 4732 

a.d.l.m.n.t.u-5-4 0.684±0.176 0.647±0.124 0.996±0.03 0.867±0.135 0.682±0.161 0.753±0.12 0.399±0.143 0.928±0.087 0.815±0.198 4856 

a.d.l.n.p.t.u-5-4 0.685±0.177 0.657±0.113 0.996±0.03 0.866±0.135 0.69±0.157 0.756±0.125 0.399±0.143 0.928±0.087 0.816±0.197 4858 

a.c.d.i.l.t.u-5-4.x 0.682±0.175 0.653±0.12 0.996±0.03 0.866±0.128 0.679±0.159 0.75±0.117 0.399±0.143 0.933±0.085 0.815±0.197 4909 

a.i.k.l.p.t.u-5-4 0.681±0.179 0.657±0.113 0.996±0.03 0.863±0.131 0.685±0.147 0.749±0.124 0.399±0.143 0.937±0.079 0.816±0.198 4968 
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Table 4.7 The precision, recall, and F1 score of the points in the Pareto Frontier in 16S 
rRNAs.  
 

16S: 117 program combinations  
program combina- precision recall F1 top precision/recall 
n 0.396 0.213 0.277 p 
i 0.361 0.253 0.298 p 
i.k 0.311 0.277 0.293 p 
a.k.n 0.283 0.279 0.281 p 
i.n 0.278 0.283 0.28 p 

a.i 0.275 0.284 0.279 p 
i.k.r 0.266 0.289 0.277 p 
k.p 0.263 0.298 0.279 p 
k.n.p 0.257 0.299 0.276 p 
i.p 0.256 0.305 0.278 p 
i.k.n 0.252 0.308 0.277 p 
i.k.p 0.241 0.324 0.276 

 
f.n 0.238 0.33 0.277 

 
a.f.n 0.229 0.336 0.272 

 
f.k.n 0.217 0.345 0.266 

 
f.i 0.216 0.351 0.267 

 
a.f.i 0.207 0.357 0.262 

 
a.f.i.r 0.195 0.361 0.253 

 
f.p.r 0.194 0.386 0.258 

 
n.t 0.188 0.455 0.266 

 
n.r.t 0.188 0.457 0.266 

 
a.n.r.t 0.188 0.458 0.267 

 
a.m.n.t 0.188 0.461 0.267 

 
a.m.n.r.t 0.187 0.462 0.266 

 
f.n.t 0.17 0.48 0.251 

 
a.f.m.n.t 0.169 0.483 0.25 

 
a.f.m.n.r.t 0.169 0.484 0.251 

 
c.f.m.r.t 0.154 0.485 0.234 
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Table 4.7 continued 

a.c.f.m.t 0.154 0.486 0.234 
 

f.k.m.n.t 0.151 0.494 0.231 
 

a.f.k.m.n.r.t 0.151 0.495 0.231 
 

p.r.t 0.144 0.533 0.227 
 

a.m.p.t 0.143 0.534 0.226 
 

a.m.p.r.t 0.142 0.535 0.224 
 

k.p.r.t 0.134 0.543 0.215 
 

a.k.m.p.t 0.133 0.544 0.214 
 

a.k.m.p.r.t 0.133 0.545 0.214 
 

f.m.p.t 0.127 0.557 0.207 
 

a.f.m.p.r.t 0.126 0.558 0.206 
 

f.k.p.t 0.118 0.565 0.195 
 

f.k.m.p.t 0.117 0.567 0.194 
 

f.k.m.p.r.t 0.117 0.568 0.194 
 

a.f.k.m.p.r.t 0.117 0.569 0.194 
 

d.f.p.t 0.097 0.57 0.166 
 

a.d.f.m.p.t 0.096 0.572 0.164 
 

d.f.k.m.p.t 0.091 0.578 0.157 
 

a.d.f.k.p.r.t 0.091 0.579 0.157 
 

f.n.p.t.u-3-12 0.069 0.58 0.123 
 

a.f.m.n.p.t.u-3-12 0.068 0.581 0.122 
 

f.k.n.p.t.u-3-12 0.067 0.584 0.12 
 

f.k.n.p.r.t.u-3-12 0.066 0.585 0.119 
 

d.f.m.n.t.u-3-12 0.065 0.586 0.117 
 

a.d.f.m.n.t.u-3-12 0.065 0.587 0.117 
 

f.m.n.t.u-3-4 0.064 0.588 0.115 
 

f.k.n.p.r.t.u-3-8 0.063 0.589 0.114 
 

d.f.k.m.n.r.t.u-3-12 0.063 0.591 0.114 
 

a.d.f.k.m.n.t.u-3-12 0.063 0.592 0.114 
 

d.f.k.n.t.u-3-8 0.061 0.594 0.111 
 

a.f.n.p.t.u-3-4 0.06 0.596 0.109 
 

a.f.n.p.r.t.u-3-4 0.06 0.597 0.109 
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Table 4.7 continued 

n.r.t.u 0.059 0.6 0.107 
 

m.n.t.u 0.059 0.603 0.107 
 

a.m.n.t.u 0.059 0.604 0.107 
 

a.k.m.n.t.u 0.058 0.607 0.106 
 

k.n.p.t.u 0.057 0.609 0.104 
 

a.m.n.p.r.t.u 0.057 0.61 0.104 
 

k.n.p.r.t.u 0.057 0.611 0.104 
 

a.k.n.p.r.t.u 0.057 0.612 0.104 
 

f.k.n.r.t.u 0.056 0.616 0.103 
 

f.k.m.n.t.u 0.056 0.617 0.103 
 

a.f.m.n.p.t.u 0.055 0.621 0.101 
 

f.k.n.r.s.t.u 0.054 0.624 0.099 
 

c.f.k.n.s.t.u 0.053 0.625 0.098 
 

f.k.n.p.s.t.u 0.052 0.626 0.096 
 

a.d.f.k.m.n.t.u-5-12 0.05 0.627 0.093 
 

d.f.k.n.p.t.u-5-12 0.048 0.629 0.089 
 

d.f.k.n.p.r.t.u-5-12 0.048 0.63 0.089 
 

d.f.k.m.n.r.t.u 0.047 0.631 0.087 
 

d.f.k.m.n.t.u 0.047 0.632 0.087 
 

d.f.k.n.r.s.t.u-5-12 0.047 0.633 0.088 
 

d.f.n.r.s.t.u 0.046 0.635 0.086 
 

d.f.k.n.s.t.u 0.045 0.637 0.084 
 

d.f.m.n.r.t.u-5-8 0.044 0.639 0.082 
 

f.l.m.n.t.u-5-12 0.044 0.64 0.082 
 

f.k.l.n.r.t.u-5-12 0.043 0.642 0.081 
 

d.k.l.m.n.t.u-5-12 0.043 0.645 0.081 
 

d.f.k.l.t.u-5-12 0.042 0.647 0.079 
 

a.d.f.k.l.r.t.u-5-12 0.042 0.648 0.079 
 

d.f.l.m.n.t.u-5-12 0.042 0.65 0.079 
 

d.f.k.l.n.t.u-5-12 0.041 0.652 0.077 
 

a.d.f.k.l.n.t.u-5-12 0.041 0.653 0.077 
 

d.f.k.l.m.n.t.u-5-12 0.041 0.654 0.077 
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Table 4.7 continued 

d.f.k.l.n.p.t.u-5-12 0.04 0.655 0.075 
 

d.f.k.l.n.s.t.u-5-12 0.039 0.657 0.074 
 

d.f.l.m.n.t.u 0.038 0.658 0.072 
 

d.f.k.l.n.r.t.u 0.038 0.659 0.072 
 

d.k.l.m.n.r.t.u-5-8 0.038 0.66 0.072 
 

d.f.l.m.n.t.u-5-8 0.037 0.666 0.07 
 

d.f.k.l.n.t.u-5-8 0.037 0.667 0.07 
 

f.t 0.037 0.67 0.07 
 

a.f.t 0.036 0.672 0.068 
 

a.f.r.t 0.036 0.675 0.068 
 

f.m.r.t 0.036 0.677 0.068 
 

a.f.m.r.t 0.035 0.678 0.067 
 

a.d.f.k.n.s.t.u-5-4 0.032 0.679 0.061 
 

d.f.k.n.s.t.u-5-4 0.032 0.68 0.061 
 

d.f.k.n.o.p.t.u-5-4 0.032 0.681 0.061 r 
d.f.k.n.o.s.t.u-5-4 0.031 0.682 0.059 r 
d.f.l.t.u-5-4 0.03 0.685 0.057 r 
f.k.l.m.n.r.t.u-5-4 0.03 0.686 0.057 r 

a.f.l.m.n.t.u-5-4 0.03 0.687 0.057 r 
f.k.l.m.n.t.u-5-4 0.03 0.689 0.057 r 
d.f.l.m.n.t.u-5-4.x 0.029 0.694 0.056 r 
d.f.k.l.n.p.t.u-5-4 0.029 0.695 0.056 r 
d.f.l.n.p.t.u-5-4.x 0.028 0.696 0.054 r 
d.f.k.l.n.p.t.u-5-4.x 0.028 0.697 0.054 r 
d.f.k.l.n.s.t.u-5-4.x 0.028 0.698 0.054 r 
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Table 4.8 The precision, recall, and F1 score of the points in the Pareto Frontier in 23S 
rRNAs.  
 
23S: 83 program combinations  
program combina- precision recall F1 top precision/recall 
k.n 0.428 0.217 0.288 p 
n.r 0.385 0.234 0.291 p 
m.n 0.323 0.249 0.281 p 
a.k.n 0.318 0.279 0.297 p 
a.k.m.n 0.289 0.282 0.285 p 
c.f 0.274 0.315 0.293 p 

c.f.m 0.268 0.317 0.29 p 

f.n 0.268 0.324 0.293 p 
a.f.k.n 0.26 0.327 0.29 

 
k.n.p 0.248 0.331 0.284 

 
c.k.t 0.237 0.426 0.305 

 
c.f.t 0.236 0.429 0.304 

 
a.c.f.k.t 0.236 0.432 0.305 

 
a.n.t 0.23 0.436 0.301 

 
a.f.n.r.t 0.228 0.439 0.3 

 
k.m.p.r.t 0.184 0.484 0.267 

 
a.p.r.t 0.184 0.487 0.267 

 
a.f.k.m.p.r.t 0.183 0.49 0.266 

 
c.k.p.r.t 0.159 0.505 0.242 

 
a.c.k.p.t 0.159 0.508 0.242 

 
a.c.f.m.p.t 0.157 0.511 0.24 

 
a.f.k.n.p.r.t 0.155 0.512 0.238 

 
a.i.p.r.t 0.136 0.515 0.215 

 
a.f.i.m.p.t 0.136 0.518 0.215 

 
a.d.k.p.t 0.123 0.52 0.199 

 
a.d.f.m.p.t 0.122 0.523 0.198 

 
a.f.i.k.n.p.r.t 0.119 0.524 0.194 

 
d.n.p.r.t 0.112 0.53 0.185 

 
a.d.m.n.p.r.t 0.112 0.533 0.185 
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Table 4.8 continued 

a.d.f.k.n.p.r.t 0.111 0.536 0.184 
 

a.d.f.i.k.p.t 0.101 0.539 0.17 
 

c.m.p.r.t.u-1-4 0.095 0.542 0.162 
 

a.c.k.p.t.u-1-4 0.094 0.545 0.16 
 

a.c.f.k.m.p.t.u-1-4 0.094 0.547 0.16 
 

a.f.n.p.t.u-1-4 0.093 0.548 0.159 
 

a.i.k.p.t.u-1-4 0.09 0.551 0.155 
 

a.f.i.k.p.r.t.u-1-4 0.089 0.553 0.153 
 

a.d.f.i.k.m.t.u-1-4 0.087 0.554 0.15 
 

a.f.i.m.n.p.t.u-1-4 0.084 0.556 0.146 
 

a.c.d.f.k.m.p.t.u-1-4 0.082 0.557 0.143 
 

a.d.i.k.m.p.t.u-1-4 0.08 0.561 0.14 
 

a.d.f.i.k.p.r.t.u-1-4 0.079 0.564 0.139 
 

a.d.f.i.k.p.s.t.u-1-4 0.071 0.567 0.126 
 

a.d.f.i.k.p.t.u-1-4.x 0.07 0.569 0.125 
 

a.d.f.i.k.o.p.t.u-1-4 0.066 0.572 0.118 
 

a.c.p.r.t.u-5-12 0.065 0.573 0.117 
 

a.c.f.k.p.t.u-5-12 0.064 0.575 0.115 
 

m.t.u.x 0.061 0.58 0.11 
 

a.l.n.p.r.t.u-1-4 0.061 0.582 0.11 
 

a.k.t.u.x 0.061 0.583 0.11 
 

a.f.k.m.r.t.u.x 0.06 0.586 0.109 
 

a.f.o.t.u 0.059 0.588 0.107 
 

a.k.m.p.t.u.x 0.059 0.589 0.107 
 

a.f.k.m.p.r.t.u.x 0.058 0.591 0.106 
 

a.f.i.m.p.t.u.x 0.057 0.594 0.104 
 

a.f.p.r.s.t.u.x 0.056 0.595 0.102 
 

a.f.i.k.o.p.t.u 0.056 0.596 0.102 
 

a.d.f.i.p.t.u.x 0.055 0.597 0.101 
 

a.d.i.k.l.p.t.u-1-4.x 0.052 0.598 0.096 
 

a.f.i.k.p.t.u-5-8 0.05 0.6 0.092 
 

a.d.i.k.l.o.p.t.u-1-4 0.05 0.601 0.092 
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Table 4.8 continued 

a.d.i.k.l.p.s.t.u-1-4.x 0.048 0.602 0.089 
 

a.c.l.n.p.t.u-5-12 0.046 0.604 0.085 
 

a.k.l.p.s.t.u-5-12 0.045 0.605 0.084 
 

a.c.d.l.p.t.u-5-12 0.045 0.606 0.084 
 

a.d.i.l.p.t.u-5-12 0.044 0.609 0.082 
 

a.d.k.l.p.s.t.u-5-12 0.043 0.61 0.08 
 

a.l.m.p.t.u-5-8 0.042 0.616 0.079 
 

a.k.m.p.t.u-5-4 0.041 0.637 0.077 
 

a.f.k.p.t.u-5-4 0.041 0.64 0.077 
 

a.c.f.p.t.u-5-4 0.04 0.642 0.075 
 

a.f.m.p.t.u-5-4.x 0.038 0.643 0.072 
 

a.f.i.p.t.u-5-4 0.038 0.645 0.072 
 

a.f.i.k.m.p.t.u-5-4.x 0.036 0.646 0.068 
 

a.f.i.k.p.s.t.u-5-4 0.035 0.648 0.066 
 

a.f.i.p.s.t.u-5-4.x 0.033 0.649 0.063 p 
a.k.l.m.p.r.t.u-5-4 0.033 0.652 0.063 p 
a.c.k.l.p.r.t.u-5-4 0.032 0.654 0.061 p 
a.k.l.p.t.u-5-4.x 0.032 0.655 0.061 p 

a.i.l.m.p.t.u-5-4 0.032 0.657 0.061 p 
a.i.k.l.p.t.u-5-4.x 0.031 0.658 0.059 p 
a.d.l.p.s.t.u-5-4 0.03 0.66 0.057 p 
i.l.o.p.s.t.u-5-4 0.029 0.661 0.056 p 
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Table 4.9 The precision, recall, and F1 score of the points in the Pareto Frontier in 5S 
rRNAs. 
 

5S: 21 program combinations  
program combina- precision recall F1 top precision/recall 
c 0.919 0.887 0.903 p 
i 0.83 0.894 0.861 p 
c.r 0.808 0.895 0.849 

 
c.i 0.789 0.901 0.841 

 
i.n 0.749 0.909 0.821 

 
p.x 0.746 0.914 0.821 

 
c.i.n 0.724 0.916 0.809 

 
i.n.r 0.688 0.924 0.789 

 
i.r.x 0.675 0.925 0.78 

 
i.n.x 0.661 0.931 0.773 

 
i.n.r.x 0.625 0.94 0.751 

 
i.n.p.r.x 0.582 0.947 0.721 

 
i.u-3-8 0.47 0.949 0.629 

 
c.i.u-3-8 0.454 0.956 0.616 

 
i.n.u-3-8 0.444 0.957 0.607 

 
i.u-3-8.x 0.442 0.967 0.607 

 
i.n.u-3-8.x 0.42 0.975 0.587 

 
i.n.p.u-3-8.x 0.394 0.982 0.562 

 
c.t.u-3-8 0.136 0.984 0.239 

 
p.t.u-3-8 0.134 0.991 0.236 r 
c.p.t.u-3-8.x 0.131 0.996 0.232 r 
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Table 4.10 The precision, recall, and F1 score of the points in the Pareto Frontier in 
Group I Introns.  
 
g1: 78 program combinations  
program combina- precision recall F1 top precision/recall 
c 0.716 0.535 0.612 p 
i 0.658 0.554 0.602 p 
c.r 0.603 0.564 0.583 p 
c.n 0.595 0.585 0.59 p 
c.p 0.525 0.607 0.563 p 
c.d 0.514 0.643 0.571 p 

d.i 0.488 0.656 0.56 p 

c.d.n 0.459 0.669 0.544 
 

c.d.i 0.442 0.67 0.533 
 

c.d.p 0.423 0.678 0.521 
 

d.i.m 0.404 0.682 0.507 
 

d.i.p 0.404 0.684 0.508 
 

d.i.s 0.389 0.688 0.497 
 

c.d.n.x 0.384 0.69 0.493 
 

c.d.n.p 0.384 0.691 0.494 
 

c.d.i.p 0.373 0.694 0.485 
 

a.d 0.359 0.698 0.474 
 

k.p 0.354 0.704 0.471 
 

k.s 0.353 0.71 0.472 
 

d.k 0.352 0.73 0.475 
 

d.k.r 0.328 0.737 0.454 
 

d.k.p 0.307 0.747 0.435 
 

d.k.p.r 0.287 0.748 0.415 
 

d.k.p.s 0.272 0.752 0.4 
 

c.d.k.n.s 0.27 0.753 0.397 
 

d.i.k.n.s 0.262 0.754 0.389 
 

a.d.k 0.26 0.758 0.387 
 

a.d.k.r 0.247 0.765 0.373 
 

a.d.k.p 0.235 0.77 0.36 
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Table 4.10 continued 

a.d.k.p.r 0.224 0.771 0.347 
 

c.d.k.n.s.u-3-12 0.21 0.772 0.33 
 

d.i.k.n.s.u-3-12 0.206 0.775 0.325 
 

c.d.n.p.u-5-8 0.202 0.779 0.321 
 

c.d.i.n.p.u-5-8 0.19 0.78 0.306 
 

c.d.k.u-5-8 0.188 0.783 0.303 
 

c.d.n.p.s.u-5-8 0.183 0.785 0.297 
 

a.c.d.n.u-5-8 0.182 0.788 0.296 
 

c.d.k.n.u-5-8 0.18 0.79 0.293 
 

c.d.k.p.u-5-8 0.175 0.792 0.287 
 

a.c.d.n.p.u-5-8 0.17 0.793 0.28 
 

c.d.k.n.p.u-5-8 0.168 0.796 0.277 
 

c.d.k.n.s.u-5-8 0.166 0.797 0.275 
 

c.d.k.p.s.u-5-8 0.161 0.798 0.268 
 

c.d.k.p.r.s.u-5-8 0.156 0.799 0.261 
 

c.d.k.n.p.s.u-5-8 0.155 0.802 0.26 
 

d.f.k.r 0.149 0.804 0.251 
 

a.c.d.k.n.p.u-5-8 0.146 0.805 0.247 
 

d.f.k.p 0.145 0.809 0.246 
 

d.f.k.p.r 0.141 0.811 0.24 
 

d.f.k.m.p.r 0.133 0.812 0.229 
 

a.d.f.k.r 0.131 0.816 0.226 
 

a.d.f.k.p 0.127 0.819 0.22 
 

a.d.f.k.p.r 0.124 0.82 0.215 
 

c.d.k.n.p.s.u-5-4 0.118 0.822 0.206 
 

c.d.k.n.p.s.u-5-4.x 0.112 0.823 0.197 
 

a.c.d.k.p.s.u-5-4 0.109 0.824 0.193 
 

a.c.d.k.p.s.u-5-4.x 0.104 0.825 0.185 
 

c.d.l.p.s.u-5-4 0.1 0.826 0.178 
 

d.i.l.p.s.u-5-4 0.099 0.827 0.177 
 

c.d.l.n.p.s.u-5-4 0.098 0.83 0.175 
 

c.d.i.l.p.s.u-5-4.x 0.094 0.831 0.169 
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Table 4.10 continued 

c.d.k.l.n.p.u-5-4 0.093 0.832 0.167 
 

c.d.k.t 0.093 0.833 0.167 
 

c.d.k.m.t 0.092 0.837 0.166 
 

c.d.k.m.n.t 0.084 0.838 0.153 
 

k.p.s.t 0.083 0.841 0.151 
 

k.m.s.t 0.083 0.842 0.151 
 

c.d.k.s.t 0.083 0.843 0.151 
 

d.k.s.t 0.083 0.848 0.151 
 

d.k.p.s.t 0.081 0.85 0.148 
 

d.k.t 0.076 0.863 0.14 
 

d.k.r.t 0.074 0.864 0.136 r 
d.k.p.t 0.073 0.866 0.135 r 
d.k.m.t 0.073 0.867 0.135 r 
d.f.m.t 0.062 0.868 0.116 r 
d.f.k.t 0.06 0.876 0.112 r 
d.f.k.r.t 0.059 0.877 0.111 r 
d.f.k.p.r.t 0.058 0.879 0.109 r 
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Table 4.11 The precision, recall, and F1 score of the points in the Pareto Frontier in 
Group II Introns.  
 
g2: 86 program combinations  
program combina- precision recall F1 top precision/recall 
c 0.348 0.305 0.325 p 
n 0.303 0.319 0.311 p 
i 0.264 0.368 0.307 p 
i.r 0.229 0.374 0.284 p 
c.f 0.221 0.395 0.283 p 
a.c.f 0.216 0.4 0.281 p 

c.f.r 0.211 0.401 0.277 p 

a.c.f.r 0.207 0.406 0.274 p 
c.f.m 0.205 0.408 0.273 

 
a.c.f.m 0.201 0.413 0.27 

 
c.f.m.r 0.2 0.414 0.27 

 
a.c.f.m.r 0.197 0.419 0.268 

 
f.i 0.189 0.432 0.263 

 
a.f.i 0.185 0.434 0.259 

 
c.t 0.183 0.497 0.268 

 
a.c.t 0.183 0.501 0.268 

 
a.c.f.t 0.182 0.513 0.269 

 
c.f.m.t 0.179 0.514 0.266 

 
a.c.f.m.t 0.178 0.517 0.265 

 
a.c.f.m.r.t 0.176 0.519 0.263 

 
f.i.m.t 0.155 0.521 0.239 

 
a.f.i.m.t 0.155 0.523 0.239 

 
a.f.i.m.r.t 0.154 0.525 0.238 

 
a.c.f.k.m.t 0.127 0.526 0.205 

 
a.c.f.k.m.r.t 0.125 0.528 0.202 

 
c.f.t.x 0.118 0.532 0.193 

 
a.c.f.t.x 0.117 0.535 0.192 

 
c.f.m.t.x 0.114 0.541 0.188 

 
c.f.m.r.t.x 0.113 0.543 0.187 
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Table 4.11 continued 

a.c.f.m.r.t.x 0.112 0.545 0.186 
 

a.f.i.t.x 0.104 0.547 0.175 
 

f.i.m.t.x 0.102 0.553 0.172 
 

a.f.i.m.t.x 0.102 0.556 0.172 
 

a.f.i.m.r.t.x 0.101 0.558 0.171 
 

k.n.p.s.u 0.096 0.56 0.164 
 

i.k.p.u 0.094 0.568 0.161 
 

i.k.p.s.u 0.09 0.572 0.156 
 

a.i.k.p.u 0.085 0.573 0.148 
 

a.i.k.p.s.u 0.081 0.577 0.142 
 

i.k.n.p.u 0.075 0.582 0.133 
 

f.k.n.p.u 0.072 0.585 0.128 
 

i.k.n.p.s.u 0.071 0.586 0.127 
 

a.f.k.n.p.u 0.071 0.587 0.127 
 

a.i.k.n.p.u 0.07 0.588 0.125 
 

f.k.n.p.s.u 0.068 0.589 0.122 
 

a.n.t.u 0.067 0.601 0.121 
 

f.n.t.u 0.066 0.603 0.119 
 

a.f.n.t.u 0.066 0.606 0.119 
 

n.p.t.u 0.065 0.618 0.118 
 

a.f.n.p.t.u 0.064 0.623 0.116 
 

a.c.f.n.p.t.u 0.062 0.624 0.113 
 

a.k.n.p.t.u 0.061 0.625 0.111 
 

a.f.k.n.p.t.u 0.06 0.63 0.11 
 

c.f.k.n.p.t.u 0.059 0.631 0.108 
 

f.k.n.p.s.t.u 0.057 0.634 0.105 
 

n.p.t.u-5-8 0.051 0.635 0.094 
 

a.f.n.p.t.u-5-8 0.05 0.64 0.093 
 

a.f.n.p.r.t.u-5-8 0.049 0.642 0.091 
 

c.f.n.p.r.t.u-5-8 0.047 0.643 0.088 
 

k.n.p.r.t.u-5-8 0.046 0.644 0.086 
 

f.k.n.p.t.u-5-8 0.046 0.647 0.086 
 

  



142 
 

 

Table 4.11 continued 

f.k.n.p.r.t.u-5-8 0.045 0.649 0.084 
 

a.p.t.u-5-4 0.044 0.651 0.082 
 

f.p.t.u-5-4 0.044 0.656 0.082 
 

c.f.p.t.u-5-4 0.043 0.66 0.081 
 

k.p.t.u-5-4 0.042 0.661 0.079 
 

f.k.p.t.u-5-4 0.042 0.666 0.079 
 

c.f.k.p.t.u-5-4 0.041 0.667 0.077 
 

f.n.p.t.u-5-4 0.041 0.67 0.077 
 

c.f.n.p.t.u-5-4 0.04 0.671 0.075 
 

f.n.p.r.t.u-5-4 0.04 0.672 0.076 
 

f.k.n.p.t.u-5-4 0.039 0.677 0.074 
 

c.f.k.n.p.t.u-5-4 0.038 0.678 0.072 
 

f.k.n.p.r.t.u-5-4 0.038 0.679 0.072 
 

f.k.n.p.s.t.u-5-4 0.037 0.681 0.07 
 

f.k.n.p.r.t.u-5-4.x 0.035 0.684 0.067 
 

f.k.n.p.s.t.u-5-4.x 0.033 0.686 0.063 
 

d.f.k.n.p.t.u-5-4.x 0.031 0.687 0.059 
 

k.l.n.p.t.u-5-4 0.028 0.69 0.054 r 

k.l.n.p.r.t.u-5-4 0.028 0.691 0.054 r 
d.k.l.p.t.u-5-4 0.027 0.692 0.052 r 
k.l.n.p.t.u-5-4.x 0.027 0.693 0.052 r 
d.k.l.p.r.t.u-5-4 0.027 0.694 0.052 r 
d.k.l.p.s.t.u-5-4 0.026 0.696 0.05 r 
k.l.n.p.s.t.u-5-4.x 0.026 0.697 0.05 r 
d.k.l.n.p.t.u-5-4.x 0.025 0.698 0.048 r 
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Table 4.12 The precision, recall, and F1 score of the points in the Pareto Frontier in 
RNase P RNAs.  
 
Rnasep: 145 program combinations  
program combina- precision recall F1 top precision/recall 
c 0.755 0.4 0.523 p 
i 0.662 0.428 0.52 p 
c.n 0.645 0.444 0.526 p 
i.n 0.579 0.458 0.511 p 
i.r 0.563 0.46 0.506 p 
c.n.r 0.553 0.471 0.509 p 

c.p 0.545 0.481 0.511 p 

i.n.r 0.508 0.487 0.497 p 
i.p 0.503 0.491 0.497 p 
c.n.p 0.496 0.504 0.5 p 
i.n.p 0.462 0.515 0.487 p 
n.p.s 0.429 0.516 0.468 p 
c.i.n.p 0.425 0.52 0.468 p 
c.n.p.s 0.398 0.526 0.453 p 
a.c.n 0.388 0.531 0.448 

 
i.n.p.s 0.379 0.537 0.444 

 
a.i.n 0.369 0.539 0.438 

 
c.i.n.p.s 0.354 0.541 0.428 

 
a.c.i.n 0.345 0.545 0.423 

 
a.i.n.r 0.339 0.548 0.419 

 
a.c.n.p 0.332 0.552 0.415 

 
a.i.n.p 0.319 0.56 0.406 

 
a.c.i.n.p 0.302 0.564 0.393 

 
i.m.n.u-1-4 0.292 0.565 0.385 

 
a.i.u-1-8 0.286 0.568 0.38 

 
a.c.n.u-1-8 0.282 0.574 0.378 

 
i.n.p.s.u-1-8 0.275 0.576 0.372 

 
a.i.n.u-1-8 0.274 0.582 0.373 

 
a.i.n.u-1-4 0.261 0.588 0.362 
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Table 4.12 continued 

a.c.i.n.u-1-4 0.249 0.592 0.351 
 

a.i.n.r.u-1-4 0.247 0.593 0.349 
 

a.i.n.p.u-1-8 0.246 0.594 0.348 
 

a.i.n.u-5-12 0.242 0.597 0.344 
 

a.i.n.p.u-1-4 0.236 0.599 0.339 
 

a.c.i.n.u-5-12 0.231 0.601 0.334 
 

a.i.n.r.u-5-12 0.229 0.602 0.332 
 

a.c.i.n.p.u-1-4 0.226 0.603 0.329 
 

a.i.n.p.u-5-12 0.22 0.608 0.323 
 

a.c.i.n.p.u-5-12 0.212 0.612 0.315 
 

c.f 0.206 0.613 0.308 
 

a.c.i.n.p.r.u-5-12 0.202 0.616 0.304 
 

c.f.n 0.2 0.62 0.302 
 

f.i.n 0.196 0.624 0.298 
 

c.f.n.r 0.192 0.627 0.294 
 

c.f.i.n 0.19 0.628 0.292 
 

c.f.i.r 0.188 0.63 0.29 
 

f.i.n.r 0.188 0.631 0.29 
 

c.f.n.p 0.186 0.632 0.287 
 

c.f.i.n.r 0.183 0.634 0.284 
 

c.f.i.m 0.182 0.636 0.283 
 

f.i.m.n 0.182 0.637 0.283 
 

d.f.i.n 0.178 0.638 0.278 
 

c.f.i.m.n 0.177 0.64 0.277 
 

c.d.f.i.n 0.173 0.641 0.272 
 

c.f.i.n.p.r 0.171 0.642 0.27 
 

d.f.i.n.r 0.171 0.643 0.27 
 

c.f.i.m.n.r 0.17 0.644 0.269 
 

c.f.n.u-1-4 0.167 0.645 0.265 
 

c.d.f.i.n.r 0.167 0.646 0.265 
 

d.f.i.m.n 0.166 0.647 0.264 
 

c.d.f.m.n.r 0.163 0.648 0.26 
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Table 4.12 continued 

c.d.f.i.n.s 0.162 0.649 0.259 
 

c.d.f.i.m.n 0.162 0.651 0.259 
 

f.i.n.r.u-1-4 0.159 0.653 0.256 
 

c.f.n.p.u-1-4 0.157 0.654 0.253 
 

c.f.m.n.u-1-4 0.157 0.655 0.253 
 

c.f.i.n.r.u-1-4 0.155 0.656 0.251 
 

c.d.f.n.u-1-4 0.154 0.657 0.25 
 

c.f.m.n.r.u-1-4 0.152 0.658 0.247 
 

c.f.i.m.n.u-1-4 0.15 0.66 0.244 
 

c.d.f.n.r.u-1-4 0.15 0.662 0.245 
 

c.d.f.i.r.u-1-4 0.147 0.663 0.241 
 

c.f.i.m.n.r.u-1-4 0.146 0.664 0.239 
 

c.d.f.i.n.r.u-1-4 0.144 0.667 0.237 
 

d.f.i.n.r.u-5-12 0.141 0.668 0.233 
 

c.d.f.i.m.n.u-1-4 0.14 0.669 0.232 
 

c.d.f.i.n.r.u-5-12 0.138 0.672 0.229 
 

c.d.f.i.m.n.u-5-12 0.135 0.674 0.225 
 

a.c.d.f.i.n.u-1-4 0.133 0.675 0.222 
 

a.d.f.i.n.u-5-12 0.131 0.676 0.219 
 

a.c.d.f.i.n.u-5-12 0.129 0.679 0.217 
 

c.d.f.i.n.r.u-3-4 0.125 0.681 0.211 
 

c.d.f.n.p.r.u-3-4 0.123 0.682 0.208 
 

c.d.f.i.r.u 0.123 0.683 0.208 
 

c.d.f.i.n.r.u 0.121 0.686 0.206 
 

c.d.f.m.n.r.u 0.119 0.687 0.203 
 

c.d.f.i.m.n.u 0.118 0.688 0.201 
 

a.c.d.f.n.r.u 0.114 0.69 0.196 
 

a.c.d.f.i.n.u 0.113 0.691 0.194 
 

a.c.d.f.i.r.u 0.112 0.692 0.193 
 

c.d.f.u-5-4 0.107 0.694 0.185 
 

c.d.f.r.u-5-4 0.105 0.699 0.183 
 

c.d.f.n.r.u-5-4 0.103 0.702 0.18 
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Table 4.12 continued 

d.f.i.n.r.u-5-4 0.102 0.703 0.178 
 

c.d.f.i.n.r.u-5-4 0.101 0.706 0.177 
 

c.d.f.n.p.r.u-5-4 0.1 0.707 0.175 
 

c.d.f.n.p.s.u-5-4 0.098 0.708 0.172 
 

a.c.d.f.n.r.u-5-4 0.096 0.711 0.169 
 

a.c.d.f.i.r.u-5-4 0.095 0.712 0.168 
 

a.c.d.f.k.r.u-5-4 0.088 0.713 0.157 
 

d.f.l.n.r.u-5-4 0.083 0.716 0.149 
 

c.d.f.l.n.r.u-5-4 0.082 0.717 0.147 
 

d.f.i.l.n.r.u-5-4 0.081 0.719 0.146 
 

d.f.i.l.m.n.u-5-4 0.08 0.72 0.144 
 

d.f.l.n.p.s.u-5-4 0.079 0.721 0.142 
 

d.f.l.m.n.r.u-5-4.x 0.078 0.722 0.141 
 

a.d.f.l.n.r.u-5-4 0.078 0.724 0.141 
 

p.r.t.u 0.077 0.726 0.139 
 

m.p.t.u 0.076 0.727 0.138 
 

d.m.t.u 0.075 0.729 0.136 
 

d.p.t.u 0.075 0.731 0.136 
 

c.d.p.t.u 0.074 0.732 0.134 
 

d.p.r.t.u 0.074 0.733 0.134 
 

d.i.m.t.u 0.074 0.734 0.134 
 

c.d.i.m.t.u 0.073 0.735 0.133 
 

d.i.m.r.t.u 0.072 0.736 0.131 
 

d.p.r.s.t.u 0.072 0.737 0.131 
 

c.d.i.p.r.t.u 0.072 0.738 0.131 
 

c.d.m.p.r.t.u 0.071 0.739 0.13 
 

d.i.m.p.r.t.u 0.071 0.74 0.13 
 

d.n.p.t.u-5-4 0.067 0.742 0.123 
 

d.m.n.r.t.u-5-4 0.066 0.743 0.121 
 

d.n.p.r.t.u-5-4 0.066 0.744 0.121 
 

d.f.i.n.r.t.u-5-12 0.065 0.745 0.12 
 

f.r.t.u 0.065 0.747 0.12 
 

  



147 
 

 

Table 4.12 continued 

f.n.r.t.u 0.064 0.748 0.118 
 

f.m.t.u 0.064 0.749 0.118 
 

f.i.r.t.u 0.064 0.751 0.118 
 

f.n.p.r.t.u 0.063 0.753 0.116 
 

c.d.f.r.t.u 0.063 0.754 0.116 
 

d.f.m.r.t.u 0.062 0.756 0.115 
 

c.f.i.m.r.t.u 0.062 0.757 0.115 r 
d.f.i.n.r.t.u 0.062 0.758 0.115 r 

d.f.i.m.r.t.u 0.061 0.76 0.113 r 
f.i.m.t.u-5-4 0.058 0.761 0.108 r 
f.i.n.p.r.t.u-5-4 0.057 0.764 0.106 r 
c.f.i.p.r.t.u-5-4 0.057 0.765 0.106 r 
d.f.i.r.t.u-5-4 0.057 0.766 0.106 r 
c.d.f.i.p.t.u-5-4 0.056 0.767 0.104 r 
d.f.i.m.r.t.u-5-4 0.056 0.769 0.104 r 
c.f.l.p.r.t.u-5-4 0.05 0.77 0.094 r 
c.d.f.i.l.t.u-5-4 0.05 0.772 0.094 r 
c.d.f.l.m.t.u-5-4 0.05 0.773 0.094 r 

d.f.i.l.r.t.u-5-4 0.05 0.774 0.094 r 
d.f.i.l.m.t.u-5-4 0.049 0.775 0.092 r 
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Table 4.13 The precision, recall, and F1 score of the points in the Pareto Frontier in 
tmRNAs.  
 
tmRNA: 41 program combinations  
program combina- precision recall F1 top precision/recall 
r 0.96 0.606 0.743 p 
p 0.92 0.675 0.779 p 
p.r 0.893 0.691 0.779 p 
f 0.817 0.727 0.769 p 
f.r 0.804 0.742 0.772 

 
f.p 0.78 0.769 0.774 

 
f.p.r 0.768 0.775 0.771 

 
a.f.p 0.694 0.785 0.737 

 
a.f.p.r 0.685 0.79 0.734 

 
f.n.p 0.544 0.799 0.647 

 
f.n.p.r 0.538 0.802 0.644 

 
f.i.p 0.502 0.816 0.622 

 
f.i.p.r 0.497 0.82 0.619 

 
a.f.i.p 0.465 0.828 0.596 

 
a.f.i.p.r 0.461 0.83 0.593 

 
d.f.p.r 0.424 0.832 0.562 

 
a.d.f.p 0.402 0.838 0.543 

 
a.d.f.p.r 0.399 0.844 0.542 

 
a.c.d.f.p 0.343 0.846 0.488 

 
t 0.343 0.854 0.489 

 
f.t 0.324 0.873 0.473 

 
n.t 0.289 0.874 0.434 

 
i.t 0.279 0.894 0.425 

 
f.i.t 0.265 0.902 0.41 

 
d.f.t 0.243 0.906 0.383 

 
c.d.f.t 0.22 0.909 0.354 

 
d.f.i.t 0.211 0.913 0.343 

 
i.k.t 0.181 0.914 0.302 

 
d.f.i.s.t 0.177 0.915 0.297 
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Table 4.13 continued 

f.i.k.t 0.175 0.918 0.294 
 

d.f.k.t 0.167 0.922 0.283 
 

d.f.i.k.r.t 0.151 0.924 0.26 
 

d.f.i.k.s.t 0.134 0.925 0.234 
 

d.f.k.t.u-1-8 0.131 0.926 0.23 
 

d.f.i.k.r.t.u-1-8 0.121 0.928 0.214 
 

f.i.k.r.t.u-3-8 0.116 0.929 0.206 
 

d.f.k.r.t.u-3-8 0.112 0.931 0.2 
 

d.f.i.k.p.t.u-3-8 0.105 0.932 0.189 r 
d.f.i.k.s.t.u-3-8 0.096 0.934 0.174 r 
d.f.k.t.u 0.09 0.935 0.164 r 
d.f.k.s.t.u 0.084 0.937 0.154 r 
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Table 4.14 The precision, recall, and F1 score of the points in the Pareto Frontier in 
tRNAs.  

 

tRNA: 8 program combinations  

program combina- precision recall F1 top precision/recall 
p 0.586 0.257 0.357 p 
a 0.45 0.36 0.4 

 
a.c 0.328 0.367 0.346 

 
a.n 0.325 0.376 0.349 

 
a.u-1-4 0.307 0.378 0.339 

 
a.c.u-1-4 0.253 0.385 0.305 

 
a.l.n.u-3-4 0.163 0.391 0.23 

 
a.t 0.134 0.402 0.201 r 
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CHAPTER 5. COMPUTATIONAL DESIGN OF DECOY RNA STRUCTURES USING A GRAPH-

ICAL APPROACH  

5.1 Introduction  

Decoy structures, as their name indicates, are non-biological structures that have similar 

topological characteristics to natural molecules, but have no real biological functions. 

Compared to random structures which have little similarity and are easy to be discrimi-

nated from biological structures, decoy structures make better experimental controls 

because they share similarity with biological structures. Real biological structures often 

conserve some patterns that are not found in random structures. In the studies of pro-

tein structures, decoy protein structures have been used for evaluation of energy func-

tions in protein structure prediction since the 1990s (160-165). In exploration of the 

RNA world, the ������� ��	
� �� ��	�	�� ��� ���� 	� ��	�-RNA-li��� ��� �	�	�	��� ��

their construction of an RNA topology database (97,99,100,142). However, no work has 

yet focused on the construction of decoy RNA structures. In this work, we propose a 

novel approach for generating decoy RNA structures based on the XIOS graphical 

framework. Multiple functional RNA families have been explored, and our decoy RNA 

structures preserve most of the properties of different functional families.  
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5.2 Methods 

5.2.1 Natural motif database construction 

A list of 206 curated RNA structures from 8 functional families have been collected from 

a variety of resources (see Table 3.3). These RNA structures have been converted to 

XIOS graphs (Figure 2.1). The fingerprint of each, which is the set of subgraphs of 3 to 7 

vertices for each RNA structure, is computed using a subgraph random sampling algo-

rithm (Chapter 3). Each non-isomorphic subgraph has a unique index in a pre-computed 

RNA structural motif database containing 55,728 motifs (Table 2.1). In addition, the sub-

graphs of subgraphs have been identified and stored in the motif database (Figure 3.1). 

The set of subgraphs plus their parental subgraphs are called the extended fingerprint of 

a RNA graph. Each RNA fingerprint can be written as a binary vector of 55,728 entries 

indicating whether each motif exists in the database. For each RNA family, the incidence 

of each motif is calculated as the number of RNAs in that family that contain the motif, 

and the probability of the motif is its incidence divided by the total number of RNAs in 

that family. The total probability of a motif is also calculated across all the families. The 

collection of all 3 to 7 vertex motifs that are found in a set of curated RNA structures is 

called the decoy database (Table 5.1), which will be used to construct decoy structures.   

 

5.2.2 Construction of random graphs 

Random graphs have been constructed as a control for the decoy graphs. The construc-

tion starts from one dome, and is incremented by adding one dome at a time. A new 

dome is added by randomly picking two intervals (an interval is the space separated by 
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the two ends of the domes and the sequence) in the existing dome plot. This process 

proceeds until the random graph reaches the desired number of vertices (stems) (Figure 

5.1).  

 

5.2.3 Construction of decoy graphs: family-specific and non-family-specific 

Decoy graphs are constructed by an exhaustive enumeration approach. A decoy begins 

with one dome. The structure is iteratively incremented by adding one dome at a time 

to the structure. All possible locations of adding the new dome are examined. For each 

candidate location, its structural fingerprint is calculated using random sampling ap-

proach, the fingerprint similarity to natural RNAs computed, and weighted by either the 

family specific appearance probability (family-specific decoys) or the total appearance 

probability (non-family-specific decoys) pre-calculated in section 2.1. In each iteration, 

one candidate is sampled, probability weighted by its fingerprint similarity to natural 

RNAs, and kept for the next iteration. This process proceeds until the decoy graph 

reaches the desired number of vertices (stems) (Figure 5.2).  

 

5.2.4 Evaluation  

��� �����	
���� ����� 	���� �	� ����
���� �� ��� ���	���� ��� �	������ �� ��� �����

��� �	������ �� ��� ����� ��� 	���� �� ��� ��� �
���	 �� ��� ��� �
���	 ������� ��� 

ratio), connectivity, degree centrality, global clustering coefficient. An additional graph-

ical metric is the topological fingerprint. Each graph metric is described below. For each 

RNA functional family, 10 decoy graphs (using motifs from that specific family) and 10 
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control graphs (using motifs from all RNA families) are generated respectively, with the 

size (stem number) as the average number of stems in that family. A family-specific de-

coy graph, a non-family-specific decoy graph, or a random graph is evaluated by its er-

ror, which is considered to be the sum of the difference in the six graph metrics, be-

tween this graph and curated graphs in a certain family, and also evaluated by the topo-

logical fingerprint similarity between this graph and curated graphs in a family.  

 

�������� �	 
�� ��� 

�� �� ��� ���������� ��� ����� !� !� "#$ �%&�� ���'���� ��� (�!(!�� !� !� (���%!)�!���

which is one of the most important structural elements in RNA (112).  

 

�������� �	 
*� ��� 

�� �� ��� ���������� ��� ����� !� !� "�$ �%&�� ���'���� ��� (�!(!�� !� !� nested stems 

(also called embedding), one of the structural principles in RNA (94,96). For example, 

the classical structure of the Iron Response Element (IRE), is a hairpin embedded inside 

of a stem (166,167).  

 

O/I ratio 

The O/I ratio reflects the ratio of pseudoknots to that of nested stems, which reveals 

whether the structure is more pseudoknot-concentrated or nesting-concentrated.  
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Connectivity 

Connectivity is a graph theoretical concept that calculates the minimum number of 

nodes or edges (nodes are used here) that need to be removed to produce a discon-

nected graph (168). Some RNA structures (graphs) are less connected, but more orga-

nized than others; they are organized as several modules (motifs), and each module 

contains several stems (vertices), with some stems being the junction connecting differ-

ent modules.  

 

Degree centrality  

Degree centrality measures the number of neighbors (connections) of a vertex. The de-

gree centrality of a graph measures the average in number of connections among the 

vertices in the graph (169). The degree centrality of RNA structures differs by family, and 

could therefore be considered an important metric for RNA structures. The calculation 

of degree centrality of a graph is shown below, as equation (1), N is the total number of 

vertices in the graph, ������� is the maximum degree among all the nodes in the graph, 

and ������ is the degree of node �: 

 
	
 �

� ������� � ��������
���
�� � ���� � ���

 
(1) 

 

Global clustering coefficient 

The clustering coefficient measures whether the neighbors of a node tend to cluster to-

gether. The global clustering coefficient measures the global property of a graph being a 
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community (170). RNA structures in different families differ in their clustering coeffi-

cient, and therefore, global clustering coefficient can be used as a metric in graph com-

parison. The calculation of global clustering coefficient is shown below, as equation (2): 

 

 
��� �

�����	 
� �
��� �	�����

�����	 
� �
������� �	����� 
� ��	�����
 

(2) 

 

Number of hairpin loops 

A hairpin loop in RNA is defined as a loop enclosed by a stem. The number of hairpin 

loops is one of the important characteristics that discriminate between RNA families 

(171).  

 

Number of internal loops 

An internal loop in RNA is defined as a loop enclosed by two stems. A typical internal 

loop is comprised of two unpaired areas, however, a special case exists when the loop 

only contains one unpaired area, and it is called a bulge loop. In this work, bulge loops 

and typical internal loops are not discriminated. Just like the number of hairpin loops, 

the number of internal loops is another important characteristic to discriminate RNA 

families.  
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Number of multi-loops 

A multi-loop in RNA is defined as a stem enclosed by two or more stems. Multi-loops are 

characteristic of some RNA families, for example, the clover-leaf structure in tRNA is a 

four-way multi-loop. Therefore, the number of multi-loops is another important RNA 

structural statistic.  

 

Depth of stem nesting 

One stem is considered to be nested in another stem when this stem lies in the loop re-

gion of the other stem. Some RNAs have multiple layers of stem nesting, and the depth 

of nesting is an important RNA structural characteristic.  

 

Structural fingerprint similarity  

The structural fingerprints of RNAs �� and �� are represented as two sets of subgraphs:  

� � ����	 ��
	 � 	 ���  and � � ����	 ��
	 � 	 ��� , where ���	 ��
	 � 	 ��� and 

���	 ��
	 � 	 ���  are subgraphs in the RNAs �� and ��, respectively. Their similarity is 

measured by the Jaccard Similarity (151), �� (Chapter 3), as equation (3):  

 
����	 �� �

�� � ��

�� � ��
 

 

(3) 

5.3 Results  

The decoy graphs (both family-specific and non-family-specific) are evaluated using the 

graph features discussed above, using natural RNA graphs as positive controls, and ran-
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dom graphs as negative controls. It is expected that the graphs built with family specific-

ity share the most fingerprint similarity with the natural graphs, and the random graphs 

share the least fingerprint similarity with the natural graphs.  

 

Structural fingerprint similarity 

The structural fingerprint similarity to the natural graphs, is highest in the decoy graphs 

with family specificity, lower in the decoy graphs without family specificity, and lowest 

in the random graphs (Figure 5.3).  

 

Similarity of decoys to natural graphs  

In general, the decoy graphs are more similar to natural graphs than to the random 

graphs. This is true for ������ ������	
��� ����
�� � ��� ������ ����
�� � ��� ������ ���

number of hairpins. However, the random graphs are more similar to the natural graphs 

in the depth of nesting. For other features, such as the clustering coefficient, the decoy 

graphs and the random graphs are equally similar to the natural graphs. In addition, 

both decoy graphs and random graphs differ from natural graphs in the number of in-

ternal/bulge loops, and the number of multi-loops (see Figures 5.4 - 5.13 for more de-

tails).  

 

5.4 Discussions 

Decoys are synthetic graphs that have some structural similarity to natural RNA graphs. 

In this work, we have constructed decoy graphs and tested their difference from natural 
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RNA graphs using several graph features and topological fingerprint similarity. We have 

shown that decoys are different from random graphs, and they serve as better biological 

controls in experiments when compared with random graphs, as they have higher fin-

gerprint similarity to the natural graphs, and they are more similar to natural graphs in 

metrics such as ������ ������	
��� ����
�� � ��� ������ ����
�� � ��� ������ ��� ����

ber of hairpins. This is the first work so far to create decoy structures for use in RNA 

structural studies.  
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Figure 5.3 Structural fingerprint similarity between: natural RNA graphs (red), decoy 
graphs with family specificity (blue), decoy graphs without family specificity (pink), or 
random graphs (green), and natural RNA graphs in the corresponding family (solid) or 
outside of that family (tilted lines).  
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������ ��	 ��
���� � ��� ����� ��� �
���
� ��� ��
��� ������ ���� ��
���  ��� �
!���

specificity (blue), decoy graphs without family specificity (pink), or random graphs 
(green).  
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������ ��� ��	
��� �� ��� ����� in: natural RNA graphs (red), decoy graphs with family 
specificity (blue), decoy graphs without family specificity (pink), or random graphs 
(green).  
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������ ��	 
��� � ��� � ��� ������ in: natural RNA graphs (red), decoy graphs with fam-
ily specificity (blue), decoy graphs without family specificity (pink), or random graphs 
(green).  
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Figure 5.7 Connectivity values in: natural RNA graphs (red), decoy graphs with family 
specificity (blue), decoy graphs without family specificity (pink), or random graphs 
(green).  
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Figure 5.8 Degree centrality values in: natural RNA graphs (red), decoy graphs with fami-
ly specificity (blue), decoy graphs without family specificity (pink), or random graphs 
(green).  
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Figure 5.9 Global clustering coefficient values in: natural RNA graphs (red), decoy graphs 
with family specificity (blue), decoy graphs without family specificity (pink), or random 
graphs (green).  
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Figure 5.10 Number of hairpin loops in: natural RNA graphs (red), decoy graphs with 
family specificity (blue), decoy graphs without family specificity (pink), or random graphs 
(green).  
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Figure 5.11 Number of internal/bulge loops in: natural RNA graphs (red), decoy graphs 
with family specificity (blue), decoy graphs without family specificity (pink), or random 
graphs (green).  
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Figure 5.12 Number of multi-loops in: natural RNA graphs (red), decoy graphs with fami-
ly specificity (blue), decoy graphs without family specificity (pink), or random graphs 
(green).  
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Figure 5.13 Number of stem nesting in: natural RNA graphs (red), decoy graphs with 
family specificity (blue), decoy graphs without family specificity (pink), or random graphs 
(green).   
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Table 5.1 Natural motif database. 

 

Motif size  Naturally existing motif 
number 

Physically possible motif 
number 

3 8 8 
4 43 46 
5 187 368 
6 549 3,914 
7 1,241 51,390 

Total 2,028 55,726 
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CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS 

6.1 Summary: RNA sequence, topology, and function  

As one of the three major macromolecules (DNA, RNA, and protein) in all known forms 

of life, RNA (ribonucleic acid) is a ubiquitous molecule containing different classes, and 

that performs multiple cellular functions including regulation and expression of genes. 

Only some RNA functions are well studied, for example, RNA as a genetic information 

carrier from DNA to protein (as it was originally known). However, as modern technolo-

gies thrive (e.g., high-throughput sequencing), a plethora of novel RNAs have been 

found, and their complex functions are largely unknown.  

Classical methods for identifying the function of a novel DNA or protein molecule func-

tion rely on sequence similarity to annotated molecules; however, functional RNA mole-

cules lack a reliable signal at the sequence level. Instead, RNA sequences with similar 

functions have conserved secondary and higher-order structures; therefore, we can re-

veal novel RNA functions by structural comparison to known RNA molecules. Moreover, 

functional motifs, which are the key substructures responsible for RNA function, can be 

found within groups of RNA molecules with common functions.  

In the XIOS graphical framework, RNA structures are represented as graphs; common 

substructures are identified by finding common (isomorphic) subgraphs among multiple 

structures. I have developed a subgraph sampling algorithm to efficiently identify sub-
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graphs in an RNA graph without exhaustive search.  The set of subgraphs in an RNA 

structure, called its fingerprint, can be compared with the fingerprints of other RNA 

structures to identify conserved or common structural motifs. I have also developed a 

distance function for comparing RNA structural fingerprints and demonstrate that it is 

able of correctly identifying the similarity between structures in known classes of RNA 

structures. The identification of RNAs with similar structural motifs is a step towards 

structure-based prediction of RNA function.  

Given the importance of RNA structure in understanding its function, it is critical to ob-

tain reliable RNA structures. However, the folded structures of cellular RNAs could be 

complicated, and it could be difficult and expensive to determine structures using tradi-

tional approaches, such as NMR or X-ray crystallography. Computational prediction, 

cheaper alternative for determining RNA structures, has been applied for 40 years. 

However, structures predicted by individual programs are only partially correct. I have 

evaluated multiple combinations of individual programs to find the optimal combination 

for improved prediction accuracy. Improvement of structure prediction is another step 

towards the identification of functional RNAs using sequence information. From se-

quence to structure (topology), and from topology to function, connection of these 

three dots has provided the foundation for a non-coding RNA BLAST program, through 

which one can predict the function of a novel RNA based on conserved structural ele-

ments.  

Based on the XIOS graph framework, I have developed an approach to create decoy RNA 

structures that serve as better experimental controls than random structures. Decoy 
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structures are non-biological structures generated by computers, with similar topologi-

cal characteristics to natural molecules, but having no real biological functions. Although 

decoy structures are commonly used in protein structure analysis, the work proposed 

here for generating RNA decoys is the first method for generating RNA topological de-

coys. Figure 6.1 shows the roadmap of the three major works that make the core of this 

thesis.  

 

6.2 Future direction: motif distributions in RNA structures   

Motifs in a fingerprint are not equally important in RNA classification. One might as-

sume that RNA structural motifs would play a similar role to words in identifying docu-

ments with similar content.  That is that neither the most frequent nor the least fre-

quent words are the most informative. In information retrieval (172), this is measured 

by the term frequency (TF) and Inverse Document Frequency (IDF). RNA motifs that are 

contained only in specific families of RNAs are more important in classification than the 

ones that appear in most of the RNAs, and motifs that occur in only one or a few struc-

tures are similarly uninformative. Using the fingerprints of our curated data (Chapter 3), 

the curve of the natural log of frequency versus the natural log of rank shows that the 

�����������	 �
 �� ����
� 
������ ���
�� ��� (Figure 6.2).  

We use Inverse Document Frequency (IDF) to emphasize the effects on motifs with low-

er support. Suppose R is the total set of RNA structures (corresponding to documents), r 

is any one of the structures, and m is a motif (corresponding to a term), then the IDF of 

motif m in RNA r is 
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 ������ � � 	 
��  ���  ��

�
  
(4) 

IDF is offset by Term Frequency (TF), the frequency of motifs in each RNA structure, 

which is currently only a Boolean relationship  

 ����� � � �� �  ��� � � �  (5) 

And Term Frequency-Inverse Document Frequency (TF-IDF) is the product of TF and IDF 

 �������� � �� 	 
��  ���  ��

�
 � �  ��� � � � 
(6) 

We applied TF-IDF weighting on the Cosine Similarity calculation (173) and achieved bet-

ter classification results for both simple fingerprints and extended fingerprints than the 

results using no TF-IDF weighting (Figure 6.3). Other options for measuring term fre-

quency, such as logarithmically scaled frequency, or augmented frequency, could be ex-

plored aiming for further improvement in the classification in future experiments.  
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Figure 6.1 Roadmap of the three works: RNA fingerprint, RNA structure prediction im-
provement, and decoy structure generation.  
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Figure 6.2 RNA motif frequency v.s. rank. This curve is close to a straight line, which indi-
����� ���� ��� ����	�
���� �� ��� ������ ���	�������� ������ ����  
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Figure 6.3 TFIDF Weighting in RNA using Cosine Similarity. Left: AUC of SimFP (no 
weighting, dashed line, 0.802; TFIDF weighting, solid line, 0.902); right: AUC of ExtFP 
(0.796; 0.936).  
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