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Abstract. We present three heuristic strategies for folding RNA se-
quences into secondary structures including kissing hairpin motifs. The
new idea is to construct a kissing hairpin motif from an overlay of two
simple canonical pseudoknots. The difficulty is that the overlay does
not satisfy Bellman’s Principle of Optimality, and the kissing hairpin
cannot simply be built from optimal pseudoknots. Our strategies have
time/space complexities of O(n4)/O(n2), O(n4)/O(n3), and O(n5)/O(n2).
All strategies have been implemented in the program pKiss and were
evaluated against known structures. Surprisingly, our simplest strategy
performs best. As it has the same complexity as the previous algorithm
for simple pseudoknots, the overlay idea opens a way to construct a vari-
ety of practically useful algorithms for pseudoknots of higher topological
complexity within O(n4) time and O(n2) space.

1 Introduction

1.1 Biological relevance of pseudoknots in RNA structure

RNA is a chain molecule, the activated form of genetic information in all living
organisms. Folding back onto itself, RNA forms secondary structure via base
pairing of complementary nucleotides. Stacks of base pairs form helices, akin
to the Watson-Crick helix of DNA, but with base pairs A-U, G-C, G-U, and
occasionally some non-standard pairs. Ultimately, a tertiary (spatial) structure
forms which is essential for biological function. Pseudoknots are structural motifs
also defined via base pairing patterns, but, as they form late in the folding
process, are generally considered as elements of tertiary structure.

Kissing hairpins are a common RNA folding motif belonging to the class of
pseudoknots. The unpaired bases of a secondary structure build crossing base
pairs by loop-loop interactions (the “kiss”) and form a stable tertiary struc-
ture motif. Although these motifs have been known for over fifteen years, our
understanding of kissing hairpins is still small. Especially viral genomes have
been investigated for kissing hairpins, but also bacterial and eukaryotic ones.
Researchers showed that kissing hairpins have important duties in a wide va-
riety of RNA mediated processes. For example, they contribute extensively in
stabilizing the structure and also play a role in viral plasmid DNA replication [5]
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or RNA synthesis [19]. Li et al. investigated in 2006 the mechanical unfolding of
a minimal kissing complex [15]. They discovered that the loop-loop interaction
is exceptionally stable.

1.2 RNA folding of nested structures

In RNA structure prediction, there is a dichotomy between prediction of nested
and pseudo-knotted structures. The former is essentially a solved problem, whereas
the latter is an active area of research. A structure holds a pseudoknot, if residues
i − j and k − l form base pairs such that i < k < j < l. This situation is also
called a crossing interaction. Without any crossing interaction, a structure is
nested.

Nested structures can be naturally represented as trees, and they lend them-
selves to structure prediction in O(n3) time and O(n2) space. Early algorithms
used a simple optimization criterion such as base pair maximization, while to-
day’s algorithms of practical relevance [27,14,17] use free energy minimization
under an experimentally established thermodynamic model [18]. An improve-
ment to O(n3/ log n) time for folding of nested structures has recently been
contributed by Frid et al. [9], but this approach is not easily adapted to the
established energy model. Recent progress in the field of nested structure pre-
diction has been made mostly in the area of a more comprehensive analysis of
the folding space [26,4], comparative prediction from multiple sequences [8], or
trading the thermodynamic model for machine learning techniques [2].

1.3 Folding pseudoknots

Structures with pseudoknots are much more difficult to predict. Even under
energy models much simpler than what we use in practice, prediction of the op-
timal pseudo-knotted structure has been shown to be NP-hard [16,1]. This has
generated considerable interest in algorithms that solve the problem in polyno-
mial time for restricted topologies of pseudoknots – see the review by Condon
and Jabbari [7]. In an investigation of pseudoknot topologies [23], Rødland ar-
gues that the full topological complexity of pseudoknots is probably not needed
in practical applications. For reasons of space, in the sequel we focus on those
approaches which have resulted in realistic programs.

Pseudoknot folding using the established energy model was pioneered by
Rivas and Eddy [22]. They presented an O(n6) time, O(n4) space algorithm for
a fairly general class of pseudoknots. The high effort allows to fold only rather
short sequences, and hence, the generality of the algorithm cannot really be
exploited. A pragmatic approach was chosen by Reeder and Giegerich with the
program pknotsRG [20]. They restricted the analysis to the class of canonical
simple recursive pseudoknots, achieving O(n4) time, O(n2) space, and leading
to a program widely used 1 today. The program HotKnots [21] uses a heuristics
to assemble pseudoknots from low-energy helices.

1 Counting over 200 downloads and over 4,000 submissions per year according to http:

//bibiserv.techfak.uni-bielefeld.de/statistics/

http://bibiserv.techfak.uni-bielefeld.de/statistics/
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Quite recently, a new algorithm has been published in [6], but at the point
of this writing, an implementation was not yet available. Our new approach
presented here is an extension of the ideas used with pknotsRG , which we will
review in necessary detail in Section 2.1.

1.4 Typology of structuresm

Fig. 1. Schematic representation of a nested structure (the Y shape), a simple
pseudoknot, and a kissing hairpin motif. The bottom line shows the arrange-
ment of helix parts mapped to the primary sequence, with arbitrary sequence in
between.

Notation Dynamic programming over sequences leads to a decomposition of the
given sequence into subwords, typically in all possible ways. Let S = 0s1 . . . sn be
a sequence over the RNA alphabet {A,C,G,U}. The use of a fictitious 0-position
at the start of S allows us to describe subwords by their bounding positions. For
example, subword (0, n) is S and subword (2, 4) is 2s3s4. A subword (i, j) has
length j − i and splits seamlessly into subwords (i, k) and (k, j) for i ≤ k ≤ j.
This convention avoids a lot of fiddling with ±1.

We write s = xyz to indicate that s is split into subwords x, y, z. The no-
tation s = ixkylzj indicates, more concretely, that s is itself a subword of the
overall input sequence S with boundaries i and j, and k, l denote the subword
boundaries between x, y, z. If all boundaries are independent, a dynamic pro-
gramming algorithm investigating all possible decompositions of this type has
at least O(n4) steps, iterating over all 0 ≤ i ≤ k ≤ l ≤ j ≤ n.

Nested structures, simple pseudoknots, and kissing hairpins We use the notation
axa′ to indicate that subword a′ is a reverse complement (under RNA rules) of
a, and hence the two can form a helix. Using these conventions, Figure 1 sketches
three types of RNA structures, together with their associated sequence decom-
position. The first is a nested structure, the so-called Y-shape, the second a
simple pseudoknot (sometimes called H-type), and the third is a kissing hairpin
structure, which is our specific concern here. We shall reserve the word “pseu-
doknot” for simple pseudoknots here, to distinguish them from kissing hairpins.
When we allude to pesudoknots with a more complex topology than these two
classes, we shall explicitly say so.



4 Corinna Theis, Stefan Janssen, and Robert Giegerich

To evaluate the folding energy of a kissing hairpin motif on subword s, we
need to split s = aubva′wcxb′yc′. The subwords named u, v, w, x, y can attain
arbitrary (sub)structures, so kissing hairpins (as well as pseudoknots) may be
embedded within each other.

2 Three strategies for kissing hairpin prediction

2.1 The combined power of canonization rules and non-ambiguous
dynamic programming

Canonization The algorithm of pknotsRG reduces computational complexity by
imposing three canonization rules on the pseudoknots it considers:

Rule 1: In a helix s = aua′, a and a′ are perfect helices.
Rule 2: In a helix s = aua′, a and a′ extend towards each other maximally

according to the rules of base pairing, except the following case:
Rule 3: With crossing helices as in aubva′wb′, Rule 2 might imply a nega-

tive length of v. We set v = ε and both helices meet at an arbitrary
position.

Note that these rules are imposed on pseudoknots only, the search space of
nested structures remains untouched. The beneficial effect of these rules is that
maximal helices of form iaza

′
j can be precomputed, and a canonical split into

a pseudoknot of form s = aubva′wb′ is uniquely characterized by four moving
boundaries only, more precisely as s = iaukbva

′
lwb
′
j . This is the key to achieve

O(n4) time, O(n2) space efficiency. For details, we refer to [20]. There, it is shown
that while an optimal, pseudoknotted structure P may not satisfy the canonic-
ity constraints, there is a near-optimal pseudoknot Pcan which does. However,
minimum free energy folding might deliver an unknotted structure U with free
energy such that E(P ) ≤ E(U) ≤ E(Pcan). U will be returned without a hint to
Pcan, and hence to the potential existence of P . At this point, computing with
canonical pseudoknots seems but another heuristic approach.

Semantic non-ambiguity A dynamic programming algorithm is called semanti-
cally ambiguous [10,11], if it examines an object of interest in its search space
more than once. This typically leads to exponential explosion of redundant solu-
tion candidates. For finding a single, optimal solution in a dynamic programming
algorithm, such redundancy does not matter, but it renders the algorithm use-
less for producing near-optimals. The pknotsRG program is implemented in a
non-ambiguous way.

Combining canonicity with a non-ambiguous algorithm allows the program to
return suboptimals. In particular, we can ask the best canonical pseudoknot from
the near-optimal search space, even when the minimum free energy structure
comes out unknotted. The best canonical pseudoknot Pcan may be checked for
potential extension to a non-canonical structure P of even lower energy. In this
sense, the heuristic constraint of canonization appears tolerable. Our algorithms
presented here adhere to the same idea. All considered structures are canonical,
and there will be only one situation where a structure is considered twice.
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2.2 Decomposition alternatives of the kissing hairpin motif

An elementary decomposition of a kissing hairpin leads to three helices (a−a′, b−
b′, c− c′) with intervening sequences u, v, w, x, y, folded in arbitrary ways, with
the overall arrangement aubva′wcxb′yc′. See Figure 2 for an illustration. Such
a decomposition, in full generality, leads to 12 moving boundaries, and makes
us resort to canonization. Rule 2 of our canonization constraints eliminates six
moving boundaries – the inner endpoints of three helices, which are now fixed
by the helix maximality rule. The remaining boundaries are the outer endpoints
of the three helices. Iterating over these six boundaries would lead to an O(n6)
time, O(n2) space strategy. Our goal is to do better than this.

Our key idea is the view of the kissing hairpin motif as an overlay of two
simple pseudoknots (Figure 2). Given that we already know how to compute op-
timal simple pseudoknots for the overlapping subwords aubva′zb′ and btcxb′yc′,
can we find their optimal overlay such that z = wcx and t = va′w, thus defining
the overall optimal decomposition into aubva′wcxb′yc′? Can we find its optimal
energy as the sum from its two constituents?

a u b v a′ w c x b′ y c′

|- - - -|- - - - | - - - -|- - - -|- - - - | - - - -|- - - -|- - - -|- - - - | - - - -|- - - -|
i h k m

h l m j

Fig. 2. The composition of two pseudoknots leading to a kissing hairpin motif
with the overlay of parts of the sequence and the moving boundaries i, h, k, l, m,
and j on top. The linear form of the sequence below shows 12 moving boundaries
(vertical lines). With the canonization rules, only six boundaries (labeled lines)
remain.

Simple as it seems, there is a problem. First, if w = ε, the optimal choice of a′

(with respect to a and b′) may conflict with the optimal choice of c (with respect
to b and c′). Moreover, in the overlay, the energy contribution of the middle helix
(b− b′) and the structure for v, w, and x embedded within both pseudoknots are
accounted for twice, and must be subtracted from the energy sum of both parts.
This violates the monotonicity requirement for dynamic programming known as
Bellman’s Principle: for the overlay, the energy function is non-monotonic, and
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as a consequence, an optimal kissing hairpin motif may arise as an overlay of
sub-optimal pseudoknots.

We will present three, increasingly complex strategies A, B, and C, such
that their search spaces are properly included in the form SearchspaceA ⊆
SearchspaceB ⊆ SearchspaceC ⊂ SearchspaceKH . This relation will allow us
to evaluate whether the expense for a more general strategy pays off in practice,
but we will not be able to relate our results to an evaluation of the complete
search space SearchspaceKH of all (non-canonical) structures.

2.3 Strategy A – an O(n4) time, O(n2) space algorithm

Strategy A makes the optimistic assumption that at least one of the pseudoknots
is the optimal structure for its underlying subword. This fixed, we choose the
rest of the motif in the best possible way.

(1) For all subwords p, find the optimal pseudoknot such that p = aubva′zb′.
Store results in a table of size O(n2).

(2) For all subwords s, split in all ways s = pt and look up the optimal
decomposition p = aubva′zb′.

(3) For all s of Step 2, use s = auq and find the pseudoknot decomposition
such that q = brcxb′yc′ and r = va′w, to complete the kissing hairpin decom-
position s = aubva′wcxb′yc′. This pseudoknot must be chosen such that c lies
strictly to the right of a′, hence this is not, in general, the optimal pseudoknot
over its underlying subword q. Record the decomposition of lowest free energy.

(4 - 6) Apply symmetric steps starting from an optimal choice for the right
pseudoknot in the overlay.

(7) Choose lower energy value from (3) and (6); store it in a table of size
O(n2).

The symmetry of (1-3) and (4-6) leads to the only case of ambiguity in our
approach: If the two locally optimal pseudoknots make a perfect overlay as a
kissing hairpin, this (optimal) structure will be found twice.

Efficiency: (1) takes O(n4) steps as with pknotsRG . (2) takes O(n3) steps,
as the decomposition of p is already computed. (3) takes also O(n4), because it
inherits O(n3) from Step 2 for all splits of s, which determine au and hence, the
split auq. (Only) one extra factor of n arises from the split rc, which in turn
determines the inner endpoints of helix (c− c′) due to the maximality rule, and
hence implies the split yc′. (4-6) take O(n4) steps for symmetry reasons. (7)
takes O(n2) steps. Postponing implementation details, we see that this yields an
algorithm with O(n4) time, O(n2) space requirements.

Note that Strategy A does some redundant work – the right pseudoknot
determined in Step 3 has already been considered as a (generally sub-optimal)
pseudoknot in Step 1.
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2.4 Strategy B – an O(n4) time, O(n3) space algorithm

Strategy B avoids the redundant work of Strategy A, and also enlarges the
search space. We spend extra space in Step 1 to store results about sub-optimal
pseudoknots.

(1) For p = aubva′zb′, and for each choice of b therein, we record the optimal
choice of a′. Conversely, for each choice of a′, we store the optimal choice of b.
This requires two tables of size O(n3).
(2) For the kissing hairpin motif, we first choose a, b, b′, and c′, which costs
O(n4), and use the stored information to optimally determine the other bounds
for a′ and c by lookup with O(1).
(3) Unfortunately, the stored information may suggest that with an optimal
choice, a′ and c would overlap (and w have negative length).We correct this by
a heuristic decision – selecting an a′ further to the left and a c further to the
right. This decision will also be based on precomputed information in order to
retain a runtime of O(n4).
(4) We minimize over all cases considered.

The overall efficiency is O(n4) time and O(n3) space. Note that the search
space here is more general than with strategy A, as neither pseudoknot needs to
be optimal with respect to its underlying subword. This generalization lies with
Step 1. In Strategy A, only the optimal choice of b within p is considered for
overlay, while here, all possible choices of b are tried.

2.5 Strategy C – an O(n5) time, O(n2) space algorithm

Strategy C avoids the extra storage required by Strategy B. The necessary infor-
mation is re-computed on demand, after choosing a, b, b′ and c′. This increases
runtime, but also allows us to avoid the heuristic decision when a′ and c would
overlap. For each choice of a′, we compute the best choice of c strictly to its right.
This threatens to raise time complexity to O(n6), but with a clever arrangement
of computations and an extra table of size O(n), we can keep it at O(n5).

The optimal choice of l with respect to (h, j) as a pseudoknot is a heuristics
with respect to (i, j) as a kissing hairpin (see Figure 3). It assumes that va′w
can fold optimally. For the kiss, however, v and w can only fold individually, as
they are separated by a′, which is the partner of a. Thus, l need not be optimal
for (i, j) as a kissing hairpin.

3 Algorithms

3.1 Algorithmic subtleties

Annotated energies When computing minimum free energies from pseudoknots,
we will need to also record the internal boundaries of the given subword which
achieved optimal energy. These will be data of the form (E, h, k). When we
minimize over these tuples, we do this with a lexicographic ordering. This is
consistent with mimimizing over energies alone. When two structures have the
same energy, then the choice is arbitrary and remains unspecified.
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Exact subword boundaries in the input decomposition Substructures have certain
minimal sizes. For example, we forbid lonely pairs, i.e. helices of length 1. There-
fore, in iakza

′
j , we do not iterate k over i ≤ k ≤ j, but only over i+2 ≤ k ≤ j−2.

This does not affect the asymptotics, but saves substantial time in practice. The
minimal subword sizes used are two base pairs for each helix, loop u and y have
one unpaired base. Loop w has two single bases (k + 2 ≤ l). The size of loop v
and x is ≥ 0, because we want to keep the possibility of coaxially stacking of
the helices. With that, we get a minimal sequence length of 16 bases to form a
kissing hairpin (see Figure 3).

Fig. 3. The graphic shows the mandatory bases (black dots) of a kissing hair-
pin and the indices i, h, k, l, m, and j determining the start and end points of
the helices (black tics). Gray regions u, v, w, x, and y can fold in an arbitrary
way.

To be concrete in the following recurrences, we use the precise boundaries
consistent with our implementation. But for understanding the essentials of the
algorithms, the reader may choose to ignore them.

3.2 Pseudoknot-recurrence of pknotsRG – csrPK

Due to the canonization of pknotsRG, the calculation of a canonical simple recur-
sive pseudoknot (csrPK) for a given subword needs two boundaries in addition
to (i, j): h, the start position of the b − b′ helix, and k, the end position of the
a− a′ helix. The recurrence of a csrPK for a subword (i, j) is:

csrPK (i, j) = min
i+3 ≤ h ≤ j−8
h+4 ≤ k ≤ j−4

EcsrPK

(
iauhbva

′
krb
′
j

)
The energy function EcsrPK makes use of a precomputed table to determine the
inner endpoints of the helices in a unique, maximal and non-overlapping fashion.
With these boundaries fixed, the energy value is the sum of stabilizing energies
of both helices + energy contributions of the arbitrary folded regions u, v and
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w + contributions from bases which dangle onto the helices from inside the
csrPK + penalties for explicitly unpaired bases in front of u and b′. For later
use, we adapt EcsrPK to additionaly store h and k, which can be retrieved by
the functions boundaryleft and boundaryright.

3.3 Recurrences of Strategy A – csrKHA

For Strategy A we make two strong assumptions. (1) Helices a− a′ and b− b′ of
an optimal csrPK, starting at i and ending at m, can be adopted for the overall
csrKH and thus determine the boundaries h and k. We can look up these values
via the table csrPK. (2) The remaining boundary l, the starting point for the
c − c′ helix, can be determined by using the energy of a second csrPK as an
objective function. This second csrPK must start at h, end at j and have its end
position of the left helix b : b′ at m, thus overlaying a part of the first csrPK:

left (i, j) = min
i+13 ≤ m ≤ j−3

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)
, where

h = boundaryleft (csrPK (i,m)) ,

k = boundaryright (csrPK (i,m)) ,

l = boundaryleft

(
min

k+2 ≤ d ≤ m−4
EcsrPK

(
hbva

′wdcxb
′
myc

′
j

))
A csrKH may alternatively arise from the opposite direction, i.e. an optimal
csrPK on its right half overlaying a suboptimal csrPK at its left:

right (i, j) = min
i+3 ≤ h ≤ j−13

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)
, where

l = boundaryleft (csrPK (h, j)) ,

m = boundaryright (csrPK (h, j)) ,

k = boundaryright

(
min

h+4 ≤ d ≤ l−2
EcsrPK (iauhbva

′
dwcxb

′
m)

)
The optimal csrKH with Strategy A is:

csrKHA (i, j) = min (left (i, j) , right (i, j))

3.4 Recurrences of Strategy B – csrKHB

Since Strategy B has to store the optimal choice of a′ for every given b for csrPKs
on the left side and the optimal b for every given a′ for csrPKs on the right side
of the csrKH, we have to replace the function csrPK with lpk and rpk. A csrPK
for a subword (i, j) can now be determined by minimizing over lpk (i, h, j) and
rpk (i, k, j):

lpk (i, h, j) = min
h+4 ≤ k ≤ j−4

EcsrPK

(
iauhbva

′
krb
′
j

)
rpk (i, k, j) = min

i+3 ≤ h ≤ k−4
EcsrPK

(
iauhbva

′
krb
′
j

)
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An overlay of csrPKs from lpk and rkp might overlap in region w of the csrKH,
when building it. We can overcome this obstacle in a heuristic way by introducing
an artifical border ξ:

lpkheuristic (i, h, j) = min
h+4 ≤ k ≤ ξ

EcsrPK

(
iauhbva

′
krb
′
j

)
rpkheuristic (i, k, j) = min

ξ ≤ h ≤ k−4
EcsrPK

(
iauhbva

′
krb
′
j

)
Thus we can construct a csrKH with Strategy B by first iterating over the outer
endpoints of helix b − b′, namely m and h. Second, we choose the energeti-
cally optimal combination of k and l by overlaying all csrPKs from lpk (i, h,m)
and rpk (h,m, j), as well as their heuristic counterparts lpkheuristic (i, h,m) and
rpkheuristic (h,m, j) to guarantee at least one feasible overlay:

csrKHB(i, j) = min
i+13 ≤ m ≤ j−3

i+3 ≤ h ≤ m−10

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)
, where

k ∈ boundaryright

{
lpk (i, h,m) , lpkheuristic (i, h,m)

}
l ∈ boundaryleft

{
rpk (h,m, j) , rpkheuristic (h,m, j)

}
3.5 Recurrences of Strategy C – csrKHC

We start with Strategy C identical to Strategy B, by iterating over m and h.
But instead of retrieving k and l from precomputed csrPK tables, we now also
iterate k to determine a′ and look up the optimal choice for l depending on k in
a one dimensional table rpk:

csrKHC(i, j) = min
i+13 ≤ m ≤ j−3

i+3 ≤ h ≤ m−10

h+4 ≤ k ≤ m−6

l = boundaryleft(rpk(k))

EcsrKH

(
iauhbva

′
kwlcxb

′
myc

′
j

)

When iterating over k, we go from right to left. Thus we have a growing sub-
word (k,m). While shifting k one position to the left, the function rpk(k) also
determines the optimal csrPK that begins at h, ends at j, has its b′ at m and its
c somewhere in the subword (k,m). Since we temporarily store the results for
rpk(k), it can be calculated in O(1) time. We just compare the existing result for
the one letter shorter subword rpk(k+1) with one new csrPK, whose boundaries
are at h, k + 2,m, j:

rpk(k) = min
(
EcsrPK

(
hbva

′wk+2cxb
′
myc

′
j

)
, rpk(k + 1)

)
3.6 Implementation via algebraic dynamic programming

Alike pknotsRG , pKiss is implemented with the algebraic dynamic programming
technique [12]. This makes it easy to add and combine different types of analysis.
Currently, we compute optimal and suboptimal structures. We plan to add shape
abstraction and computation of best knotted and un-knotted folding.
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4 Evaluation of strategies A, B, and C

A piece of anecdotal evidence The RNA polymerase gene (gene 1) of the human
coronavirus 229E is a good example for the usefulness of improved secondary
structure prediction tools. Analyzing the genome of the human coronavirus,
Herold and Siddell [13] guessed, that a “slippery site” together with an H-type
pseudoknot acts as a frameshift inducing structure. Extensive mutational anal-
yses showed that a kissing hairpin is required for high frequency frameshifts.
Their work implied computer-assisted modeling, but prior prediction tools could
not detect kissing hairpin motifs. pKiss finds the proper kissing hairpin.

Available test data Verified structures holding pseudoknots and kissing hairpins
are rare. We collected a dataset of 61 pseudoknotted structures include 6 kissing
hairpins, one “double” pseudoknot with topology a b c d c′ a′ d′ b′ and 5 sim-
ple pseudoknots with nested sub-structures (see Appendix). The sequence length
varies from 28 to 115 nt. The sequence types consist of viral ribosomal frame
shifting or readthrough, mRNA, tmRNA, viral 3’ UTR, ribozymes, signal recog-
nition particle RNA [25], sequences with high affinity to HIV-1-RT [24] and viral
RNA. These well-studied structures are subsequently called the true structures.

Comparison of the Strategies A, B, and C On 57 out of 61 sequences, Strategies
A, B, and C agree. B finds a structure of lower energy than A in two cases,
and C in the same two cases and two further ones. This is consistent with the
hierarchy of search space inclusion, but the small disagreement is surprising.

Positive and negative test cases For a true positive prediction, we require the
structure with the right topology in the right sequence position, but allow for a
few missing base pairs (the price of canonization) or extra base pairs when they
are consistent with the true structure. All 6 true kissing hairpins are precisely
predicted by each strategy. Overall, 46 structures (75.4%) are correctly predicted
while 15 sequences (24.6%) deviate from the true structure. These negative cases
contain the complex pseudoknot which is beyond the class of kissing hairpins,
but the helices actually predicted are correct. In seven cases, a kissing hairpin is
predicted instead of a simple pseudoknot. One cannot exclude that this kissing
hairpin is actually correct, but has not been detected before due to the lack of
appropriate tools.

Further evaluations Comparing pKiss to the program by Rivas and Eddy brought
little insight, as the program solves a more general problem and, as expected
from their asymptotics, is much slower and greedy for space. Comparing pKiss
to the most recent version of HotKnots [3] on our data set, we find the following:
HotKnots currently provides four different parameter sets. Choosing the best
prediction from those four in each case, it agrees with Strategy A in 3 out of
our 6 positive test cases. On the larger data set of simple pseudoknots, there
is more agreement between the methods. Execution time for a single parame-
ter choice is generally lower than for pKiss by a factor of 3 – 6. We have also
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evaluated pKiss on random data and tested the robustness of predictions un-
der varied energy parameters for kissing hairpin initiation. All evaluation data,
as well as the first author’s M.Sc. thesis, can be obtained from our website at
http://bibiserv.techfak.uni-bielefeld.de/pkiss/.

5 Conclusion

Should the observations from our evaluation on sparse data generalize, inter-
esting algorithmic perspectives open up. Strategy A evaluates a more complex
motif than simple pseudoknots – without increasing asymptotic complexity. Un-
expectedly, Strategy A performs best among A, B, and C – it is faster, agrees on
the true positives, and has fewer false negatives. Closer inspection showed that
it is always the left pseudoknot of the overlay which was chosen optimally. One
may speculate that this is because the strategy is consistent with the hierarchic
folding path during transcription. Boldly dropping the symmetric computation
starting from the right pseudoknot reduces work in the innermost loop and may
provide a speed-up factor close to 2.

The more exciting perspective is the extension of the overlay idea to more
complex structures. A motif of four hairpins with two kissing interactions, for
example, can be overlaid as a b a′ c b′ c′ and b c b′ d c′ d′. Using ideas of Strat-
egy A, this can, again, be achieved in O(n4) time and O(n2) space! Addition-
ally, alternative decompostions, say a b a′ c b′ c′ with c d c′ d′ (a kissing hair-
pin overlaid with a simple pseudoknot) may be investigated, without raising the
asymptotics. Furthermore, two such double kissing structures can form an over-
lay, and so on. It appears that one can construct a variety of practically useful,
albeit increasingly heuristic, programs for pseudoknotted motifs of increasingly
complex topologies within O(n4) time and O(n2) space.

Acknowledgement RG thanks A. Condon and H. Jabbari for discussion of
the pKiss ideas in their early state.
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