4,257 research outputs found

    An SVM-based system for predicting protein subnuclear localizations

    Get PDF
    BACKGROUND: The large gap between the number of protein sequences in databases and the number of functionally characterized proteins calls for the development of a fast computational tool for the prediction of subnuclear and subcellular localizations generally applicable to protein sequences. The information on localization may reveal the molecular function of novel proteins, in addition to providing insight on the biological pathways in which they function. The bulk of past work has been focused on protein subcellular localizations. Furthermore, no specific tool has been dedicated to prediction at the subnuclear level, despite its high importance. In order to design a suitable predictive system, the extraction of subtle sequence signals that can discriminate among proteins with different subnuclear localizations is the key. RESULTS: New kernel functions used in a support vector machine (SVM) learning model are introduced for the measurement of sequence similarity. The k-peptide vectors are first mapped by a matrix of high-scored pairs of k-peptides which are measured by BLOSUM62 scores. The kernels, measuring the similarity for sequences, are then defined on the mapped vectors. By combining these new encoding methods, a multi-class classification system for the prediction of protein subnuclear localizations is established for the first time. The performance of the system is evaluated with a set of proteins collected in the Nuclear Protein Database (NPD). The overall accuracy of prediction for 6 localizations is about 50% (vs. random prediction 16.7%) for single localization proteins in the leave-one-out cross-validation; and 65% for an independent set of multi-localization proteins. This integrated system can be accessed at . CONCLUSION: The integrated system benefits from the combination of predictions from several SVMs based on selected encoding methods. Finally, the predictive power of the system is expected to improve as more proteins with known subnuclear localizations become available

    Esub8: A novel tool to predict protein subcellular localizations in eukaryotic organisms

    Get PDF
    BACKGROUND: Subcellular localization of a new protein sequence is very important and fruitful for understanding its function. As the number of new genomes has dramatically increased over recent years, a reliable and efficient system to predict protein subcellular location is urgently needed. RESULTS: Esub8 was developed to predict protein subcellular localizations for eukaryotic proteins based on amino acid composition. In this research, the proteins are classified into the following eight groups: chloroplast, cytoplasm, extracellular, Golgi apparatus, lysosome, mitochondria, nucleus and peroxisome. We know subcellular localization is a typical classification problem; consequently, a one-against-one (1-v-1) multi-class support vector machine was introduced to construct the classifier. Unlike previous methods, ours considers the order information of protein sequences by a different method. Our method is tested in three subcellular localization predictions for prokaryotic proteins and four subcellular localization predictions for eukaryotic proteins on Reinhardt's dataset. The results are then compared to several other methods. The total prediction accuracies of two tests are both 100% by a self-consistency test, and are 92.9% and 84.14% by the jackknife test, respectively. Esub8 also provides excellent results: the total prediction accuracies are 100% by a self-consistency test and 87% by the jackknife test. CONCLUSIONS: Our method represents a different approach for predicting protein subcellular localization and achieved a satisfactory result; furthermore, we believe Esub8 will be a useful tool for predicting protein subcellular localizations in eukaryotic organisms

    BUSCA: An integrative web server to predict subcellular localization of proteins

    Get PDF
    Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization

    PLPD: reliable protein localization prediction from imbalanced and overlapped datasets

    Get PDF
    Subcellular localization is one of the key functional characteristics of proteins. An automatic and efficient prediction method for the protein subcellular localization is highly required owing to the need for large-scale genome analysis. From a machine learning point of view, a dataset of protein localization has several characteristics: the dataset has too many classes (there are more than 10 localizations in a cell), it is a multi-label dataset (a protein may occur in several different subcellular locations), and it is too imbalanced (the number of proteins in each localization is remarkably different). Even though many previous works have been done for the prediction of protein subcellular localization, none of them tackles effectively these characteristics at the same time. Thus, a new computational method for protein localization is eventually needed for more reliable outcomes. To address the issue, we present a protein localization predictor based on D-SVDD (PLPD) for the prediction of protein localization, which can find the likelihood of a specific localization of a protein more easily and more correctly. Moreover, we introduce three measurements for the more precise evaluation of a protein localization predictor. As the results of various datasets which are made from the experiments of Huh et al. (2003), the proposed PLPD method represents a different approach that might play a complimentary role to the existing methods, such as Nearest Neighbor method and discriminate covariant method. Finally, after finding a good boundary for each localization using the 5184 classified proteins as training data, we predicted 138 proteins whose subcellular localizations could not be clearly observed by the experiments of Huh et al. (2003)

    SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments

    Get PDF
    Motivation: Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. Results: In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single-and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization

    MULocDeep: A deep-learning framework for protein subcellular and suborganellar localization prediction with residue-level interpretation

    Get PDF
    Prediction of protein localization plays an important role in understanding protein function and mechanisms. In this paper, we propose a general deep learning-based localization prediction framework, MULocDeep, which can predict multiple localizations of a protein at both subcellular and suborganellar levels. We collected a dataset with 44 suborganellar localization annotations in 10 major subcellular compartments—the most comprehensive suborganelle localization dataset to date. We also experimentally generated an independent dataset of mitochondrial proteins in Arabidopsis thaliana cell cultures, Solanum tuberosum tubers, and Vicia faba roots and made this dataset publicly available. Evaluations using the above datasets show that overall, MULocDeep outperforms other major methods at both subcellular and suborganellar levels. Furthermore, MULocDeep assesses each amino acid's contribution to localization, which provides insights into the mechanism of protein sorting and localization motifs. A web server can be accessed at http://mu-loc.org

    Analyses and web interfaces for protein subcellular localization and gene expression data

    Get PDF
    Cataloged from PDF version of article.In order to benefit maximally from large scale molecular biology data generated by recent developments, it is important to proceed in an organized manner by developing databases, interfaces, data visualization and data interpretation tools. Protein subcellular localization and microarray gene expression are two of such fields that require immense computational effort before being used as a roadmap for the experimental biologist. Protein subcellular localization is important for elucidating protein function. We developed an automatically updated searchable and downloadable system called model organisms proteome subcellular localization database (MEP2SL) that hosts predicted localizations and known experimental localizations for nine eukaryotes. MEP2SL localizations highly correlated with high throughput localization experiments in yeast and were shown to have superior accuracies when compared with four other localization prediction tools based on two different datasets. Hence, MEP2SL system may serve as a reference source for protein subcellular localization information with its interface that provides various search and download options together with links and utilities for further annotations. Microarray gene expression technology enables monitoring of whole genome simultaneously. We developed an online installable searchable open source system called differentially expressed genes (DEG) that includes analysis and retrieval interfaces for Affymetrix HG-U133 Plus 2.0 arrays. DEG provides permanent data storage capabilities with its integration into a database and being an installable online tool and is valuable for groups who are not willing to submit their data on public servers.Bilen, BiterM.S

    pTARGET: a web server for predicting protein subcellular localization

    Get PDF
    The pTARGET web server enables prediction of nine distinct protein subcellular localizations in eukaryotic non-plant species. Predictions are made using a new algorithm [C. Guda and S. Subramaniam (2005) pTARGET [corrected] a new method for predicting protein subcellular localization in eukaryotes. Bioinformatics, 21, 3963–3969], which is primarily based on the occurrence patterns of location-specific protein functional domains in different subcellular locations. We have implemented a relational database, PreCalcDB, to store pre-computed prediction results for all eukaryotic non-plant protein sequences in the public domain that includes about 770 000 entries. Queries can be made by entering protein sequences or by uploading a file containing up to 5000 protein sequences in FASTA format. Prediction results for queries with matching entries in the PreCalcDB will be retrieved instantly; while for the missing ones new predictions will be computed and sent by email. Pre-computed predictions can also be downloaded for complete proteomes of Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila, Mus musculus and Homo sapiens. The server, its documentation and the data are accessible from
    • …
    corecore