1,708 research outputs found

    Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In past number of methods have been developed for predicting subcellular location of eukaryotic, prokaryotic (Gram-negative and Gram-positive bacteria) and human proteins but no method has been developed for mycobacterial proteins which may represent repertoire of potent immunogens of this dreaded pathogen. In this study, attempt has been made to develop method for predicting subcellular location of mycobacterial proteins.</p> <p>Results</p> <p>The models were trained and tested on 852 mycobacterial proteins and evaluated using five-fold cross-validation technique. First SVM (Support Vector Machine) model was developed using amino acid composition and overall accuracy of 82.51% was achieved with average accuracy (mean of class-wise accuracy) of 68.47%. In order to utilize evolutionary information, a SVM model was developed using PSSM (Position-Specific Scoring Matrix) profiles obtained from PSI-BLAST (Position-Specific Iterated BLAST) and overall accuracy achieved was of 86.62% with average accuracy of 73.71%. In addition, HMM (Hidden Markov Model), MEME/MAST (Multiple Em for Motif Elicitation/Motif Alignment and Search Tool) and hybrid model that combined two or more models were also developed. We achieved maximum overall accuracy of 86.8% with average accuracy of 89.00% using combination of PSSM based SVM model and MEME/MAST. Performance of our method was compared with that of the existing methods developed for predicting subcellular locations of Gram-positive bacterial proteins.</p> <p>Conclusion</p> <p>A highly accurate method has been developed for predicting subcellular location of mycobacterial proteins. This method also predicts very important class of proteins that is membrane-attached proteins. This method will be useful in annotating newly sequenced or hypothetical mycobacterial proteins. Based on above study, a freely accessible web server TBpred http://www.imtech.res.in/raghava/tbpred/ has been developed.</p

    Computational prediction of host-pathogen protein-protein interactions

    Get PDF
    Philosophiae Doctor - PhDSupervised machine learning approaches have been applied successfully to the prediction of protein-protein interactions (PPIs) within a single organism, i.e., intra-species predictions. However, because of the absence of large amounts of experimentally validated PPIs data for training and testing, fewer studies have successfully applied these techniques to host-pathogen PPI, i.e., inter-species comparisons. Among the host-pathogen studies, most of them have focused on human-virus interactions and specifically human-HIV PPI data. Additional improvements to machine learning techniques and feature sets are important to improve the classification accuracy for host-pathogen protein-protein interactions prediction. The primary aim of this bioinformatics thesis was to develop a binary classifier with an appropriate feature set for host-pathogen protein-protein interaction prediction using published human-Hepatitis C virus PPI, and to test the model on available host-pathogen data for human-Bacillus anthracis PPI. Twelve different feature sets were compared to find the optimal set. The feature selection process reveals that our novel quadruple feature (a subsequence of four consecutive amino acid) combined with sequence similarity and human interactome network properties (such as degree, cluster coefficient, and betweenness centrality) were the best set. The optimal feature set outperformed those in the relevant published material, giving 95.9% sensitivity, 91.6% specificity and 89.0% accuracy. Using our optimal features set, we developed a neural network model to predict PPI between human-Mycobacterium tuberculosis. The strategy is to develop a model trained with intra-species PPI data and extend it to inter-species prediction. However, the lack of experimentally validated PPI data between human-Mycobacterium tuberculosis (Mtuberculosis), leads us to first assess the feasibility of using validated intra-species PPI data to build a model for inter-species PPI. In this model we used human intra-species PPI combined with Bacillus anthracis intra-species data to develop a binary classification model and extend the model for human-Bacillus anthracis inter-species prediction. Thus, we test our hypotheses on known human-Bacillus anthracis PPI data and the result shows good performance with 89.0% as average accuracy. The same approach was extended to the prediction of PPI between human-Mycobacterium tuberculosis. The predicted human-M-tuberculosis PPI data were further validated using functional enrichment of experimentally verified secretory proteins in M-tuberculosis, cellular compartment analysis and pathway enrichment analysis. Results show that five of the M-tuberculosis secretory proteins within an infected host macrophage that correspond to the mycobacterial virulent strain H37Rv were extracted from the human-M- tuberculosis PPI dataset predicted by our model. Finally, a web server was created to predict PPIs between human and Mycobacterium tuberculosis which is available online at URL:http://hppredict.sanbi.ac.za. In summary, the concepts, techniques and technologies developed as part of this thesis have the potential to contribute not only to the understanding PPI analysis between human and Mycobacterium tuberculosis, but can be extended to other pathogens. Further materials related to this study are available at ftp://ftp.sanbi.ac.za/machine learning.National Research Foundation (NRF) and SANB

    Validating subcellular localization prediction tools with mycobacterial proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The computational prediction of mycobacterial proteins' subcellular localization is of key importance for proteome annotation and for the identification of new drug targets and vaccine candidates. Several subcellular localization classifiers have been developed over the past few years, which have comprised both general localization and feature-based classifiers. Here, we have validated the ability of different bioinformatics approaches, through the use of SignalP 2.0, TatP 1.0, LipoP 1.0, Phobius, PA-SUB 2.5, PSORTb v.2.0.4 and Gpos-PLoc, to predict secreted bacterial proteins. These computational tools were compared in terms of sensitivity, specificity and Matthew's correlation coefficient (MCC) using a set of mycobacterial proteins having less than 40% identity, none of which are included in the training data sets of the validated tools and whose subcellular localization have been experimentally confirmed. These proteins belong to the TBpred training data set, a computational tool specifically designed to predict mycobacterial proteins.</p> <p>Results</p> <p>A final validation set of 272 mycobacterial proteins was obtained from the initial set of 852 mycobacterial proteins. According to the results of the validation metrics, all tools presented specificity above 0.90, while dispersion sensitivity and MCC values were above 0.22. PA-SUB 2.5 presented the highest values; however, these results might be biased due to the methodology used by this tool. PSORTb v.2.0.4 left 56 proteins out of the classification, while Gpos-PLoc left just one protein out.</p> <p>Conclusion</p> <p>Both subcellular localization approaches had high predictive specificity and high recognition of true negatives for the tested data set. Among those tools whose predictions are not based on homology searches against SWISS-PROT, Gpos-PLoc was the general localization tool with the best predictive performance, while SignalP 2.0 was the best tool among the ones using a feature-based approach. Even though PA-SUB 2.5 presented the highest metrics, it should be taken into account that this tool was trained using all proteins reported in SWISS-PROT, which includes the protein set tested in this study, either as a BLAST search or as a training model.</p

    Reconnoitering Mycobacterium tuberculosis lipoproteins to design subunit vaccine by immunoinformatics approach

    Get PDF
    Background: Tuberculosis is an aerosol transmitted disease of human beings caused by Mycobacterium tuberculosis (Mtb). The only available vaccine for Mtb is Bacillus Calmette-GuÊrin (BCG). Currently no alternative or booster is available for BCG. The objective of this predictive approach was based on binding of MHC-I and MHC-II and B cell epitopes of Mtb for mouse host.Methods: Immunoinformatics approach was used to design subunit vaccine (SV) by joining 8 MHC-I bindings, 6 MHC-II bindings, and 8 B-Cell epitopes with AAV, GPGPG, and KK amino acid linkers, respectively. The efficacy of the SV was enhanced through Mtb protein Rv3763 (LpqH, PDB ID= 4ZJM) as an adjuvant at the N-terminal of SV. The in silico analyses evaluated the SV to predict allergenicity, antigenicity, and physico-chemical properties.Results: Predictions revealed that SV is non-allergic and highly antigenic. The physico-chemical analysis showed that the SV was stable and basic in nature. The three-dimensional structure of SV was stable with a high binding affinity against the mouse TLR2 receptor. In silico cloning suggested the effective transformation of SV into the eukaryotic expression vector.Conclusion: This study permits preclinical validation of the designed SV in mouse host to confirm its immunogenic potential and efficacy, which will help in controlling tuberculosis.Keywords: Immunoinformatics; Docking; Subunit vaccine; Lipoprotein; Tuberculosis

    Understanding Communication Signals during Mycobacterial Latency through Predicted Genome-Wide Protein Interactions and Boolean Modeling

    Get PDF
    About 90% of the people infected with Mycobacterium tuberculosis carry latent bacteria that are believed to get activated upon immune suppression. One of the fundamental challenges in the control of tuberculosis is therefore to understand molecular mechanisms involved in the onset of latency and/or reactivation. We have attempted to address this problem at the systems level by a combination of predicted functional protein∜protein interactions, integration of functional interactions with large scale gene expression studies, predicted transcription regulatory network and finally simulations with a Boolean model of the network. Initially a prediction for genome-wide protein functional linkages was obtained based on genome-context methods using a Support Vector Machine. This set of protein functional linkages along with gene expression data of the available models of latency was employed to identify proteins involved in mediating switch signals during dormancy. We show that genes that are up and down regulated during dormancy are not only coordinately regulated under dormancy-like conditions but also under a variety of other experimental conditions. Their synchronized regulation indicates that they form a tightly regulated gene cluster and might form a latency-regulon. Conservation of these genes across bacterial species suggests a unique evolutionary history that might be associated with M. tuberculosis dormancy. Finally, simulations with a Boolean model based on the regulatory network with logical relationships derived from gene expression data reveals a bistable switch suggesting alternating latent and actively growing states. Our analysis based on the interaction network therefore reveals a potential model of M. tuberculosis latency

    Markov Mean Properties for Cell Death-Related Protein Classification

    Get PDF
    [Abstract] The cell death (CD) is a dynamic biological function involved in physiological and pathological processes. Due to the complexity of CD, there is a demand for fast theoretical methods that can help to find new CD molecular targets. The current work presents the first classification model to predict CD-related proteins based on Markov Mean Properties. These protein descriptors have been calculated with the MInD-Prot tool using the topological information of the amino acid contact networks of the 2423 protein chains, five atom physicochemical properties and the protein 3D regions. The Machine Learning algorithms from Weka were used to find the best classification model for CD-related protein chains using all 20 attributes. The most accurate algorithm to solve this problem was K*. After several feature subset methods, the best model found is based on only 11 variables and is characterized by the Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.992 and the true positive rate (TP Rate) of 88.2% (validation set). 7409 protein chains labeled with “unknown function” in the PDB Databank were analyzed with the best model in order to predict the CD-related biological activity. Thus, several proteins have been predicted to have CD-related function in Homo sapiens: 3DRX–involved in virus-host interaction biological process, protein homooligomerization; 4DWF–involved in cell differentiation, chromatin modification, DNA damage response, protein stabilization; 1IUR–involved in ATP binding, chaperone binding; 1J7D–involved in DNA double-strand break processing, histone ubiquitination, nucleotide-binding oligomerization; 1UTU–linked with DNA repair, regulation of transcription; 3EEC–participating to the cellular membrane organization, egress of virus within host cell, class mediator resulting in cell cycle arrest, negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle and apoptotic process. Other proteins from bacteria predicted as CD-related are 2G3V - a CAG pathogenicity island protein 13 from Helicobacter pylori, 4G5A - a hypothetical protein in Bacteroides thetaiotaomicron, 1YLK–involved in the nitrogen metabolism of Mycobacterium tuberculosis, and 1XSV - with possible DNA/RNA binding domains. The results demonstrated the possibility to predict CD-related proteins using molecular information encoded into the protein 3D structure. Thus, the current work demonstrated the possibility to predict new molecular targets involved in cell-death processes.Xunta de Galicia; 10SIN105004PRInstituto de Salud Carlos III; PI13/0028

    Non-classical protein secretion in bacteria

    Get PDF
    BACKGROUND: We present an overview of bacterial non-classical secretion and a prediction method for identification of proteins following signal peptide independent secretion pathways. We have compiled a list of proteins found extracellularly despite the absence of a signal peptide. Some of these proteins also have known roles in the cytoplasm, which means they could be so-called "moon-lightning" proteins having more than one function. RESULTS: A thorough literature search was conducted to compile a list of currently known bacterial non-classically secreted proteins. Pattern finding methods were applied to the sequences in order to identify putative signal sequences or motifs responsible for their secretion. We have found no signal or motif characteristic to any majority of the proteins in the compiled list of non-classically secreted proteins, and conclude that these proteins, indeed, seem to be secreted in a novel fashion. However, we also show that the apparently non-classically secreted proteins are still distinguished from cellular proteins by properties such as amino acid composition, secondary structure and disordered regions. Specifically, prediction of disorder reveals that bacterial secretory proteins are more structurally disordered than their cytoplasmic counterparts. Finally, artificial neural networks were used to construct protein feature based methods for identification of non-classically secreted proteins in both Gram-positive and Gram-negative bacteria. CONCLUSION: We present a publicly available prediction method capable of discriminating between this group of proteins and other proteins, thus allowing for the identification of novel non-classically secreted proteins. We suggest candidates for non-classically secreted proteins in Escherichia coli and Bacillus subtilis. The prediction method is available online

    Decoding sequence-level information to predict membrane protein expression

    Get PDF
    The expression and purification of integral membrane proteins remains a major bottleneck in the characterization of these important proteins. Expression levels are currently unpredictable, which renders the pursuit of these targets challenging and highly inefficient. Evidence demonstrates that small changes in the nucleotide or amino-acid sequence can dramatically affect membrane protein biogenesis; yet these observations have not resulted in generalizable approaches to improve expression. In this study, we develop a data-driven statistical model that predicts membrane protein expression in E. coli directly from sequence. The model, trained on experimental data, combines a set of sequence-derived variables resulting in a score that predicts the likelihood of expression. We test the model against various independent datasets from the literature that contain a variety of scales and experimental outcomes demonstrating that the model significantly enriches expressed proteins. The model is then used to score expression for membrane proteomes and protein families highlighting areas where the model excels. Surprisingly, analysis of the underlying features reveals an importance in nucleotide sequence-derived parameters for expression. This computational model, as illustrated here, can immediately be used to identify favorable targets for characterization

    Semantic systems biology of prokaryotes : heterogeneous data integration to understand bacterial metabolism

    Get PDF
    The goal of this thesis is to improve the prediction of genotype to phenotypeassociations with a focus on metabolic phenotypes of prokaryotes. This goal isachieved through data integration, which in turn required the development ofsupporting solutions based on semantic web technologies. Chapter 1 providesan introduction to the challenges associated to data integration. Semantic webtechnologies provide solutions to some of these challenges and the basics ofthese technologies are explained in the Introduction. Furthermore, the ba-sics of constraint based metabolic modeling and construction of genome scalemodels (GEM) are also provided. The chapters in the thesis are separated inthree related topics: chapters 2, 3 and 4 focus on data integration based onheterogeneous networks and their application to the human pathogen M. tu-berculosis; chapters 5, 6, 7, 8 and 9 focus on the semantic web based solutionsto genome annotation and applications thereof; and chapter 10 focus on thefinal goal to associate genotypes to phenotypes using GEMs. Chapter 2 provides the prototype of a workflow to efficiently analyze in-formation generated by different inference and prediction methods. This me-thod relies on providing the user the means to simultaneously visualize andanalyze the coexisting networks generated by different algorithms, heteroge-neous data sets, and a suite of analysis tools. As a show case, we have ana-lyzed the gene co-expression networks of M. tuberculosis generated using over600 expression experiments. Hereby we gained new knowledge about theregulation of the DNA repair, dormancy, iron uptake and zinc uptake sys-tems. Furthermore, it enabled us to develop a pipeline to integrate ChIP-seqdat and a tool to uncover multiple regulatory layers. In chapter 3 the prototype presented in chapter 2 is further developedinto the Synchronous Network Data Integration (SyNDI) framework, whichis based on Cytoscape and Galaxy. The functionality and usability of theframework is highlighted with three biological examples. We analyzed thedistinct connectivity of plasma metabolites in networks associated with highor low latent cardiovascular disease risk. We obtained deeper insights froma few similar inflammatory response pathways in Staphylococcus aureus infec-tion common to human and mouse. We identified not yet reported regulatorymotifs associated with transcriptional adaptations of M. tuberculosis.In chapter 4 we present a review providing a systems level overview ofthe molecular and cellular components involved in divalent metal homeosta-sis and their role in regulating the three main virulence strategies of M. tu-berculosis: immune modulation, dormancy and phagosome escape. With theuse of the tools presented in chapter 2 and 3 we identified a single regulatorycascade for these three virulence strategies that respond to limited availabilityof divalent metals in the phagosome. The tools presented in chapter 2 and 3 achieve data integration throughthe use of multiple similarity, coexistence, coexpression and interaction geneand protein networks. However, the presented tools cannot store additional(genome) annotations. Therefore, we applied semantic web technologies tostore and integrate heterogeneous annotation data sets. An increasing num-ber of widely used biological resources are already available in the RDF datamodel. There are however, no tools available that provide structural overviewsof these resources. Such structural overviews are essential to efficiently querythese resources and to assess their structural integrity and design. There-fore, in chapter 5, I present RDF2Graph, a tool that automatically recoversthe structure of an RDF resource. The generated overview enables users tocreate complex queries on these resources and to structurally validate newlycreated resources. Direct functional comparison support genotype to phenotype predictions.A prerequisite for a direct functional comparison is consistent annotation ofthe genetic elements with evidence statements. However, the standard struc-tured formats used by the public sequence databases to present genome an-notations provide limited support for data mining, hampering comparativeanalyses at large scale. To enable interoperability of genome annotations fordata mining application, we have developed the Genome Biology OntologyLanguage (GBOL) and associated infrastructure (GBOL stack), which is pre-sented in chapter 6. GBOL is provenance aware and thus provides a consistentrepresentation of functional genome annotations linked to the provenance.The provenance of a genome annotation describes the contextual details andderivation history of the process that resulted in the annotation. GBOL is mod-ular in design, extensible and linked to existing ontologies. The GBOL stackof supporting tools enforces consistency within and between the GBOL defi-nitions in the ontology. Based on GBOL, we developed the genome annotation pipeline SAPP (Se-mantic Annotation Platform with Provenance) presented in chapter 7. SAPPautomatically predicts, tracks and stores structural and functional annotationsand associated dataset- and element-wise provenance in a Linked Data for-mat, thereby enabling information mining and retrieval with Semantic Webtechnologies. This greatly reduces the administrative burden of handling mul-tiple analysis tools and versions thereof and facilitates multi-level large scalecomparative analysis. In turn this can be used to make genotype to phenotypepredictions. The development of GBOL and SAPP was done simultaneously. Duringthe development we realized that we had to constantly validated the data ex-ported to RDF to ensure coherence with the ontology. This was an extremelytime consuming process and prone to error, therefore we developed the Em-pusa code generator. Empusa is presented in chapter 8. SAPP has been successfully used to annotate 432 sequenced Pseudomonas strains and integrate the resulting annotation in a large scale functional com-parison using protein domains. This comparison is presented in chapter 9.Additionally, data from six metabolic models, nearly a thousand transcrip-tome measurements and four large scale transposon mutagenesis experimentswere integrated with the genome annotations. In this way, we linked gene es-sentiality, persistence and expression variability. This gave us insight into thediversity, versatility and evolutionary history of the Pseudomonas genus, whichcontains some important pathogens as well some useful species for bioengi-neering and bioremediation purposes. Genome annotation can be used to create GEM, which can be used to betterlink genotypes to phenotypes. Bio-Growmatch, presented in chapter 10, istool that can automatically suggest modification to improve a GEM based onphenotype data. Thereby integrating growth data into the complete processof modelling the metabolism of an organism. Chapter 11 presents a general discussion on how the chapters contributedthe central goal. After which I discuss provenance requirements for data reuseand integration. I further discuss how this can be used to further improveknowledge generation. The acquired knowledge could, in turn, be used to de-sign new experiments. The principles of the dry-lab cycle and how semantictechnologies can contribute to establish these cycles are discussed in chapter11. Finally a discussion is presented on how to apply these principles to im-prove the creation and usability of GEM’s.</p
    • …
    corecore