165 research outputs found

    Forest inventory attribute estimation using airborne laser scanning, aerial stereoimagery, radargrammetry and interferometry - Finnish experiences of the 3D techniques

    Get PDF
    Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widespread, and the popularity of ALS has also raised interest toward alternative 3D techniques, including airborne and spaceborne techniques. Point clouds can be generated using photogrammetry, radargrammetry and interferometry. Airborne stereo imagery can be used in deriving photogrammetric point clouds, as very-high-resolution synthetic aperture radar (SAR) data are used in radargrammetry and interferometry. ALS is capable of mapping both the terrain and tree heights in mixed forest conditions, which is an advantage over aerial images or SAR data. However, in many jurisdictions, a detailed ALS-based digital terrain model is already available, and that enables linking photogrammetric or SAR-derived heights to heights above the ground. In other words, in forest conditions, the height of single trees, height of the canopy and/or density of the canopy can be measured and used in estimation of forest inventory attributes. In this paper, first we review experiences of the use of digital stereo imagery and spaceborne SAR in estimation of forest inventory attributes in Finland, and we compare techniques to ALS. In addition, we aim to present new implications based on our experiences

    Metsien kartoitus ja seuranta aktiivisella 3D-kaukokartoituksella

    Get PDF
    The main aim in forest mapping and monitoring is to produce accurate information for forest managers with the use of efficient methodologies. For example, it is important to locate harvesting sites and stands where forest operations should be carried out as well as to provide updates regarding forest growth, among other changes in forest structure. In recent years, remote sensing (RS) has taken a significant technological leap forward. It has become possible to acquire three-dimensional (3D), spatially accurate information from forest resources using active RS methods. In practical applications, mainly 3D information produced by airborne laser scanning (ALS) has opened up groundbreaking potential in natural resource mapping and monitoring. In addition to ALS, new satellite radars are also capable of acquiring spatially accurate 3D information. The main objectives of the present study were to develop 3D RS methodologies for large-area forest mapping and monitoring applications. In substudy I, we aim to map harvesting sites, while in substudy II, we monitor changes in the forest canopy structure. In studies III-V, efficient mapping and monitoring applications were developed and tested. In substudy I, we predicted plot-level thinning maturity within the next 10-year planning period. Stands requiring immediate thinning were located with an overall accuracy of 83%-86% depending on the prediction method applied. The respective prediction accuracy for stands reaching thinning maturity within the next 10 years was 70%-79%. Substudy II addressed natural disturbance monitoring that could be linked to forest management planning when an ALS time series is available. The accuracy of the damaged canopy cover area estimate varied between -16.4% to 5.4%. Substudy II showed that changes in the forest canopy structure can be monitored with a rather straightforward method by contrasting bi-temporal canopy height models. In substudy III, we developed a RS-based forest inventory method where single-tree RS is used to acquire modelling data needed in area-based predictions. The method uses ALS data and is capable of producing accurate stand variable estimates even at the sub-compartment level. The developed method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized. The method is especially suitable for large-area biomass or stem volume mapping. Based on substudy IV, the use of stereo synthetic aperture radar (SAR) satellite data in the prediction of plot-level forest variables appears to be promising for large-area applications. In the best case, the plot-level stem volume (VOL) was predicted with a relative error (RMSE%) of 34.9%. Typically, such a high level of prediction accuracy cannot be obtained using spaceborne RS data. Then, in substudy V, we compared the aboveground biomass and VOL estimates derived by radargrammetry to the ALS estimates. The difference between the estimation accuracy of ALS based and TerraSAR X based features was smaller than in any previous study in which ALS and different kinds of SAR materials have been compared. In this thesis, forest mapping and monitoring applications using active 3D RS were developed. Spatially accurate 3D RS enables the mapping of harvesting sites, the monitoring of changes in the canopy structure and even the making of a fully RS-based forest inventory. ALS is carried out at relatively low altitudes, which makes it relatively expensive per area unit, and other RS materials are still needed. Spaceborne stereo radargrammetry proved to be a promising technique to acquire additional 3D RS data efficiently as long as an accurate digital terrain model is available as a ground-surface reference.Metsien kartoitus ja seuranta aktiivisella 3D-kaukokartoituksella. Metsävaroista kerätään mahdollisimman tarkkaa tietoa metsänomistajan päätöksenteon tueksi. Tietoa kerätään puustotunnusten lisäksi toimenpidekohteista ja metsässä tapahtuvista muutoksista, kuten kasvusta ja luonnontuhoista. Laajojen metsäalueiden kartoituksessa käytetään apuna lentokoneesta tai satelliiteista tehtävää kaukokartoitusta. Metsien kaukokartoitus on viime vuosina ottanut merkittävän kehitysaskeleen, kun aktiiviset 3D-kaukokartoitusmenetelmät ovat yleistyneet. Aktiivisessa kaukokartoituksessa, kuten laserkeilauksessa ja tutkakuvauksessa instrumentti vastaanottaa lähettämäänsä säteilyä. Laserkeilaus tuottaa kohteesta 3D-havaintoja, jotka metsäalueilla kuvaavat suoraan puuston pituutta ja metsän tiheyttä. Laserkeilauksella kohteesta saadaan tällä hetkellä tyypillisesti 0,5−20 havaintoa/m2. Laserkeilaus tehdään lentokoneesta 500−3000 m korkeudesta, jolloin aineiston hankinta laajoilta alueilta on kallista verrattuna satelliittikuviin. Myös satelliittitutkakuvilta voidaan tuottaa spatiaalisesti tarkkaa 3D-tietoa, jonka pistetiheys on tosin huomattavasti harvempaa kuin laserkeilauksella. Tutkimuksessa kehitettiin sovelluksia metsien kartoitukseen ja seurantaan hyödyntäen aktiivisia 3D-kaukokartoitusmenetelmiä. Metsiköiden toimenpidetarvetta ennustettiin onnistuneesti laserkeilausaineiston avulla. Harvennettaviksi luokitellut metsiköt pystyttiin kartoittamaan 70%−86% tarkkuudella. Kahden ajankohdan laserkeilausaineistoja käytettiin lumituhojen vuoksi vaurioituneiden puiden kartoittamiseen. Tuhoutuneen latvuspinta-alan kartoitus perustui laserkeilausaineistosta tuotettujen latvusmallien erotuskuviin. Kehitetty menetelmä soveltuu latvusrakenteessa tapahtuneiden muutosten, kuten lumi- ja tuulituhojen, kartoittamiseen ja seurantaan. Laajojen metsäalueiden kartoitus perustuu yleensä kaksivaiheeseen inventointimenetelmään, jossa käytetään maastomittauksia ja tiedon yleistyksessä kaukokartoitusaineistoa. Kartoitusta voidaan tehostaa joko maastomittauksia vähentämällä tai hyödyntämällä mahdollisimman halpaa kaukokartoitusaineistoa. Tutkimuksessa kehitettiin täysin kaukokartoitukseen perustuva kaksivaiheinen metsien inventointimenetelmä. Tarvittava maastotieto mitattiin suoraan laserkeilausaineistosta. Menetelmä soveltuu puuston tilavuuden tai biomassan kartoitukseen erityisesti alueille, joilla maastomittausten kustannukset ovat merkittävät. Satelliittitutkakuvat ovat potentiaalinen aineisto etenkin laajojen alueiden metsävarojen seurannassa. Synteettisen apertuurin tutka (SAR)-stereokuvilta mitattiin automaattisesti 3D-pisteitä, joita käytettiin puustotunnusten ennustamisessa. Keskitilavuus ennustettiin parhaimmillaan lähes samalla tarkkuudella kuin laserkeilauksella. Tutkimus osoitti aktiivisen 3D-kaukokartoitustiedon mahdollistavan entistä yksityiskohtaisemman metsien kartoituksen ja seurannan

    Feature extraction and selection in remote sensing-aided forest inventory

    Get PDF
    This dissertation explored the potential of image features derived from remotely sensed data in the context of large-area forest inventory. The study areas were located in Finnish boreal forests, with one exception in Northern Minnesota, USA. Estimation of forest variables was carried out at pixel (or an equidistant grid) level. The non-parametric k nearest neighbour estimation method was applied throughout the study. The used remotely sensed data included Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite images, colour infra-red aerial photographs, TerraSAR-X radar and airborne laser scanning (ALS) data. An indicative suitability order of these image types for estimation of forest variables was ALS, TerraSAR-X, aerial photographs and Landsat 7 ETM+. Special emphasis was placed on combining features extracted from individual remotely sensed data sources and searching for sets of image features that led to the best performance for estimation of forest variables. Selection of the image features was mainly carried out using a genetic algorithm. The resulting relative root mean square errors (RMSEs) ranged from 23% to 77% in the case of estimating mean volume of growing stock. The best results were obtained employing ALS and aerial photograph-based feature combinations. These combinations led to relative RMSEs of 23 30% when estimating mean volume of growing stock, depending on the landscape complexity. Combining image types with complementary properties typically improved the estimation accuracy. Automatic selection of image feature sets greatly reduced noise and dimensionality of the large feature sets used as input data and resulted in better performance in terms of estimation error. In studies employing ALS data, the ALS observations describing the vertical structure of forest stands played a critical role in decreasing the estimation error.Yksi tapa hyödyntää kaukokartoitusaineistoja metsien inventoinnissa on käyttää niistä irrotettavia tilastollisia tunnuksia, nk. piirteitä ja yleistää maastossa mitattujen koealojen tiedot näiden piirteiden avulla jatkuvaksi pinnaksi koko tarkasteltavalle alueelle. Tavallisimmat kaukokartoitusaineiston kuvatulkintapiirteet ovat karkearesoluutioisen kuvan pikselien sävyarvot tai hienoresoluutioiselta kuvalta esim. maastokoealan kokoa vastaaville ruuduille lasketut sävyarvojen keskiarvot ja keskihajonnat. Arvojen järjestäytymistä, tekstuuria, voidaan myös hyödyntää. Näitä piirteitä on mahdollista irrottaa hyvin suuri joukko, etenkin jos yhdistellään erilaisia, toistensa ominaisuuksia täydentäviä aineistotyyppejä. Kaikki piirteet eivät kuitenkaan ole hyödyllisiä kuvatulkintaprosessissa osa voi olla jopa haitallisia. Lisäksi samaa asiaa kuvaavat piirteet ovat turhia ja kovin suuri määrä on laskennallisesti työläs sekä haittaa joidenkin menetelmien toimivuutta. Piirteiden joukosta on siksi syytä valita pienempiä osajoukkoja, joiden kyky erotella erilaisia metsäkohteita on mahdollisimman suuri. Tässä työssä paneuduttiin eri kuvatyypeistä irrotettujen piirteiden yhdistelyyn sekä mahdollisimman toimivien, suppeiden piirreyhdistelmien valintaan. Piirteiden valinta tehtiin pääasiassa geneettisen algoritmin avulla. Kaukokartoitusaineistona oli satelliittikuvia, tutkakuvia, ilmakuvia sekä lentokoneesta tehtävän laserkeilauksen (ALS) pisteistöjä. Puustotunnukset saatiin maastossa mitatuilta koealoilta. Tutkimusalueita oli useita, pääasiassa Suomessa. Halutunkokoisille kuvan ruuduille tuotettiin puustotunnukset antamalla niille muutaman kuvapiirteiltään samankaltaisimman maastokoealan tunnukset (ns. k:n lähimmän naapurin menetelmä). Eri piirreyhdistelmien tuottamaa virhettä arvioitiin ristiinvalidoinnin avulla. Tuloksina saadut suhteelliset keskineliövirheen neliöjuuret (RMSE) asettuivat välille 23 77 %, kun kyseessä oli puuston keskitilavuuden arviointi. Parhaat tulokset saatiin yhdistelemällä ALS- ja ilmakuvapiirteitä. Tällöin suhteelliset RMSE-arvot puuston keskitilavuudelle olivat 23 30 %, maisemakuvasta riippuen. Yleensä toisiaan täydentävien kuvatyyppien käyttö paransi arvioiden tarkkuutta. Piirrevalinta vähensi suuresti hälyn sekä piirteiden määrää alkuperäiseen syötteeseen verrattuna ja johti parempaan estimointitulokseen

    Forest mapping by the radargrammetric processing of TerraSAR-X satellite images

    Get PDF
    Metsävarojen inventointiin tarvittaisiin ympäri maailman entistä tarkempaa ja edullisempaa kaukokartoitusmenetelmää, jonka avulla metsävaratiedot voitaisiin myös päivittää nopeasti. Optisiin satelliittikuviin perustuva puustotulkinta on epätarkkaa ja nopeasti saturoituvaa. Lentolaserkeilaus olisi tarkka kartoitusmenetelmä, mutta sen kustannukset ovat suuret ja inventointiprosessi on hidas. Uudet, korkearesoluutioisia tutkakuvia ottavat satelliitit ovat viime vuosina lisänneet tutkijoiden kiinnostusta SAR-kuvien (Synthetic Aperture Radar) hyödyntämiseen luonnonvarojen kartoituksessa. Maisterin tutkielmassa tarkasteltiin stereokuvamittauksella TerraSAR-X -kuvista tuotettua 3D-tietoa (eng. SAR radargrammetry) metsävarojen inventoinnissa. Radargrammetriassa tutkasatelliitin ottamasta stereokuvaparista etsitään vastinpisteitä, joiden sijainti paikanne-taan. Havaintojen korkeus maanpinnasta saatiin erotuksena laserkeilattuun maastomalliin. Stereokuvamitattua 3D-pistepilveä käytettiin opinnäytetyössä puustotunnusten estimointiin aluepohjaisen laserkeilausinventoinnin menetelmillä. Koealatasolla radargrammetria tuotti puuston kokonaistilavuuden, biomassan, pohjapinta-alan ja keskipituuden estimointitarkkuuksiksi (suhteellinen RMSE) 40,3 %, 39,9 %, 34,0 % ja 15,9 %. Yli 2 hehtaarin metsikkökuvioilla vastaavat tarkkuudet olivat 20,2 %, 20,4 %, 36,1 % ja 6,9 %. Ainoastaan pohjapinta-alan arviointi ei tarkentunut kuviokoon kasvaessa. Yhteenvetona voidaan todeta, että radargrammetrian perusteella puiden latvusten korkeus pystytään määrittämään erittäin tarkasti, mutta puuston pohjapinta-alan kanssa pistepilvestä lasketut puuston tiheyttä kuvaavat piirteet korreloivat huonosti. Siitä huolimatta gradun tulokset puuston kokonaistilavuuden ja biomassan estimointitarkkuudesta olivat selvästi optisiin satelliittikuviin perustuvaa puustotulkintaa tarkempia.Accurate and economical remote sensing method with good temporal resolution is required for mapping up-to-date information about the forest resources. Detecting forests by optical satellite images is an inaccurate procedure with the saturation problem. Airborne laser scanning (ALS) is a precise application, but the inventory process is slow and expensive. Recently the new synthetic aperture radar (SAR) satellites with a high spatial resolution have caused a renaissance of radar-based remote sensing. The purpose of the master’s thesis was to investigate the accuracy of forest mapping by radargrammetric processing of TerraSAR-X satellite images. The radargrammetry is based on stereoscopic measurement, which calculates 3D coordinates for corresponding points of the SAR image pair. In the research an area-based approach (ABA) was utilized to estimate forest attributes from the 3D points, and digital terrain model (DTM) produced by ALS was used to calculate height of the corresponding points. In plot-level the relative RMSEs for stem volume, biomass, basal area and mean height were 40.3 %, 39.9 %, 34.0 % and 15.9 %. In stands larger than 2 hectares the corresponding RMSEs were 20.2 %, 20.4 %, 36.1 % and 6.9 %. It’s notable that the estimation of basal area didn’t improve in stand-level at all. According to the research SAR radargrammetry is a precise technology to estimate forest canopy height, but the mapping of forest density is very unclear. Nevertheless the results about the estimation accuracy of forest stem volume and biomass by SAR radargrammetry were clearly better than the comparable estimation accuracy of optical satellite images

    3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

    Get PDF
    Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed
    corecore