83 research outputs found

    Assessing the performance of the Gaussian Process Regression algorithm to fill gaps in the time-series of daily actual evapotranspiration of different crops in temperate and continental zones using ground and remotely sensed data

    Get PDF
    The knowledge of crop evapotranspiration is crucial for several hydrological processes, including those related to the management of agricultural water sources. In particular, the estimations of actual evapotranspiration fluxes within fields are essential to managing irrigation strategies to save water and preserve water resources. Among the indirect methods to estimate actual evapotranspiration, ETa, the eddy covariance (EC) method allows to acquire continuous measurement of latent heat flux (LE). However, the time series of EC measurements are sometimes characterized by a lack of data due to the sensors' malfunctions. At this aim, Machine Learning (ML) techniques could represent a powerful tool to fill possible gaps in the time series. In this paper, the ML technique was applied using the Gaussian Process Regression (GPR) algorithm to fill gaps in daily actual evapotranspiration. The technique was tested in six different plots, two in Italy, three in the United States of America, and one in Canada, with different crops and climatic conditions in order to consider the suitability of the ML model in various contexts. For each site, the climate variables were not the same, therefore, the performance of the method was investigated on the basis of the available information. Initially, a comparison of ground and reanalysis data, where both databases were available, and between two different satellite products, when both databases were available, have been conducted. Then, the GPR model was tested. The mean and the covariance functions were set by considering a database of climate variables, soil water status measurements, and remotely sensed vegetation indices. Then, five different combinations of variables were analyzed to verify the suitability of the ML approach when limited input data are available or when the weather variables are replaced with reanalysis data. Cross-validation was used to assess the performance of the procedure. The model performances were assessed based on the statistical indicators: Root Mean Square Error (RMSE), coefficient of determination (R2), Mean Absolute Error (MAE), regression coefficient (b), and Nash-Sutcliffe efficiency coefficient (NSE). The quite high Nash Sutcliffe Efficiency (NSE) coefficient, and the root mean square error (RMSE) low values confirm the suitability of the proposed algorithm

    Quantifying numerical weather and surface model sensitivity to land use and land cover changes

    Get PDF
    Land surfaces have changed as a result of human and natural processes, such asdeforestation, urbanization, desertification and natural disasters like wildfires. Land use and landcover change impacts local and regional climates through various bio geophysical processes acrossmany time scales. More realistic representation of land surface parameters within the land surfacemodels are essential to for climate models to accurately simulate the effects of past, current andfuture land surface processes. In this study, we evaluated the sensitivity and accuracy of theWeather Research and Forecasting (WRF) model though the default MODIS land cover data andannually updated land cover data over southeast of United States. Findings of this study indicatedthat the land surface fluxes, and moisture simulations are more sensitive to the surfacecharacteristics over the southeast US. Consequently, we evaluated the WRF temperature andprecipitation simulations with more accurate observations of land surface parameters over thestudy area. We evaluate the model performance for the default and updated land cover simulationsagainst observational datasets. Results of the study showed that updating land cover resulted insubstantial variations in surface heat fluxes and moisture balances. Despite updated land use andland cover data provided more representative land surface characteristics, the WRF simulated 2- m temperature and precipitation did not improved due to use of updated land cover data. Further,we conducted machine learning experiments to post-process the Noah-MP land surface modelsimulations to determine if post processing the model outputs can improve the land surfaceparameters. The results indicate that the Noah-MP simulations using machine learning remarkablyimproved simulation accuracy and gradient boosting, and random forest model had smaller meanerror bias values and larger coefficient of determination over the majority of stations. Moreover,the findings of the current study showed that the accuracy of surface heat flux simulations byNoah-MP are influenced by land cover and vegetation type

    Quantifying terrestrial ecosystem carbon dynamics with mechanistically-based biogeochemistry models and in situ and remotely sensed data

    Get PDF
    Terrestrial ecosystem plays a critical role in the global carbon cycle and climate system. Therefore, it is important to accurately quantify the carbon dynamics of terrestrial ecosystem under future climatic change condition. This dissertation evaluates the regional carbon dynamics by using upscaling approach, mechanistically-based biogeochemistry models and in situ and remotely sensed data. The upscaling studies based on FLUXNET network has provided us the spatial and temporal pattern of the carbon fluxes but it fails to consider the atmospheric CO2 effect given its important physiological role in carbon assimilation. In the second chapter, we consider the effect of atmospheric CO2 using an artificial neural network (ANN) approach to upscale the AmeriFlux tower of net ecosystem exchange (NEE) and the derived gross primary productivity (GPP) to the conterminous United States. We found that atmospheric CO 2effect on GPP/NEE exhibited a great spatial and seasonal variability. Further analysis suggested that air temperature played an important role in determining the atmospheric CO2 effects on carbon fluxes. In addition, the simulation that did not consider atmospheric CO2 failed to detect ecosystem responses to droughts in part of the US in 2006. The study suggested that the spatially and temporally varied atmospheric CO2 concentrations should be factored into carbon quantification when scaling eddy flux data to a region. The process-based ecosystem models are useful tools to predicting future change in the terrestrial ecosystem. However, they suffer the great uncertainty induced by model structure and parameters. The carbon isotope (13C) discrimination by terrestrial plants, involves the biophysical and biogeochemistry processes and exhibits seasonal and spatial variations, which may provide additional constraints on model parameters. In the third chapter, we found that using foliar 13C composition data, model parameters were constrained to a relatively narrow space and the site-level model simulations were slightly better than that without the foliar 13C constraint. The model extrapolations with three stomatal schemes all showed that the estimation uncertainties of regional carbon fluxes were reduced by about 40%. In addition, tree ring data have great potentials in addressing the forest response to climatic changes compared with mechanistic model simulations, eddy flux measurement and manipulative experiments. In the fourth chapter, we collected the tree ring isotopic carbon data at 12 boreal forest sites to develop a linear regression model, and the model was extrapolated to the whole boreal region to obtain the water use efficiency (WUE) and GPP spatial and temporal variation from 1948 to 2010. Our results demonstrated that most of boreal regions except parts of Alaska showed a significant increasing WUE trend during the study period and the increasing magnitude was much higher than estimations from other land surface models. Our predicted GPP by the WUE definition algorithm was comparable with site observation, while for the revised light use efficiency algorithm, GPP estimation was higher than site observation as well as land surface model estimates. In addition, the increasing GPP trends estimated by two algorithms were similar with land surface model simulations

    Impacts of Climate Extremes on Terrestrial Productivity

    Full text link
    Terrestrial biosphere absorbs approximately 28% of anthropogenic CO2 emissions. This terrestrial carbon sink might become saturated in a future climate regime. To explore the issues associated with this topic, an accurate estimate of gross primary production (GPP) of global terrestrial ecosystems is needed. A major uncertainty in modeling global terrestrial GPP is the parameter of light use efficiency (LUE). Most LUE estimates in global models are satellite-based and coarsely measured with emphasis on environmental variables. Others are from eddy covariance towers with much greater spatial and temporal data quality and emphasis on mechanistic processes, but in a limited number of sites. In this study, we conducted a comprehensive global study of tower-based LUE from 237 FLUXNET towers, and scaled up LUEs from in-situ tower level to global biome level. We integrated the tower-based LUE estimates with key environmental and biological variables at 0.5º × 0.5º grid-cell resolutions, using a random forest regression (RFR) approach. Then we developed a RFR-LUE-GPP model using the grid-cell LUE data. In order to calibrate the LUE model, we developed a data-driven RFR-GPP model using random forest regression method only. Our results showed LUE varies largely with latitude. We estimated a global area-weighted average of LUE at 1.23±0.03 gC m-2 MJ-1 APAR, which led to an estimate of global gross primary production (GPP) of 107.5±2.5 Gt C /year from 2001 to 2005. Large uncertainties existed in GPP estimations over sparsely vegetated areas covered by savannas and woody savannas at middle to low latitude (i.e. 20ºS to 40ºS and 5ºN to 40ºN) due to the lack of available data. Model results were improved by incorporating Köppen climate types to represent climate/meteorological information in machine learning modeling. This brought a new understanding to the recognized problem of climate-dependence of spring onset of photosynthesis and the challenges in accurately modeling the biome GPP of evergreen broad leaf forests (EBF). The divergent responses of GPP to temperature and precipitation at mid-high latitudes and at mid-low latitudes echo the necessity of modeling GPP separately by latitudes. We also used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on observational data measured by the eddy covariance method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon assimilation capacities of evergreen broadleaf forest and deciduous broadleaf forest. The carbon assimilation capacities of Mediterranean forests were highly sensitive to climate extremes, while marine forest climates tended to be insensitive to climate extremes. Our estimates suggest an average global reduction of forest canopy photosynthetic capacity due to unfavorable climate extremes of 6.3 Pg C (~5.2% of global gross primary production) per growing season over 2001-2010, with evergreen broadleaf forests contributing 52% of the total reduction. At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16oC, above which terrestrial CO2 fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16oC T latitudinal belt poleward. Land surface area with T \u3e16oC and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050

    Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    Get PDF
    Gianluca Tramontana was supported by the GEOCARBON EU FP7 project (GA 283080). Dario Papale, Martin Jung and Markus Reichstein acknowledge funding from the EU FP7 project GEOCARBON (grant agreement no. 283080) and the EU H2020 BACI project (grant agreement no. 640176). Gustau Camps-Valls wants to acknowledge the support by an ERC Consolidator Grant with grant agreement 647423 (SEDAL). Kazuhito Ichii was supported by Environment Research and Technology Development Funds (2-1401) from the Ministry of the Environment of Japan and the JAXA Global Change Observation Mission (GCOM) project (no. 115). Christopher R. Schwalm was supported by National Aeronautics and Space Administration (NASA) grants nos. NNX12AP74G, NNX10AG01A, and NNX11AO08A. M. Altaf Arain thanks the support of Natural Sciences and Engineering Research Council (NSREC) of Canada. Penelope Serrano Ortiz was partially supported by the GEISpain project (CGL2014-52838-C2-1-R) funded by the Spanish Ministry of Economy and Competitiveness and the European Union ERDF funds. Sebastian Wolf acknowledges support from a Marie Curie International Outgoing Fellowship (European Commission, grant 300083). The FLUXCOM initiative is coordinated by Martin Jung, Max Planck Institute for Biogeochemistry (Jena, Germany). This work used eddy-covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, FluxnetCanada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. We acknowledge the financial support to the eddy-covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, the Max Planck Institute for Biogeochemistry, the National Science Foundation, the University of Tuscia and the US Department of Energy, and the databasing and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, the University of California - Berkeley, and the University of Virginia.Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data and (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange (R2  0.6), gross primary production (R2> 0.7), latent heat (R2 > 0.7), sensible heat (R2 > 0.7), and net radiation (R2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well (R2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted (R2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). The evaluated large ensemble of ML-based models will be the basis of new global flux products.European Union (EU) GA 283080 283080 640176European Research Council (ERC) 647423Ministry of the Environment, Japan 2-1401JAXA Global Change Observation Mission (GCOM) project 115National Aeronautics & Space Administration (NASA) NNX12AP74G NNX10AG01A NNX11AO08ANatural Sciences and Engineering Research Council of CanadaGEISpain project - Spanish Ministry of Economy and Competitiveness CGL2014-52838-C2-1-REuropean Commission Joint Research Centre 300083United States Department of Energy (DOE) DE-FG02-04ER63917 DE-FG02-04ER63911FAO-GTOS-TCOiLEAPSMax Planck Institute for BiogeochemistryNational Science Foundation (NSF)University of Tusci

    Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System

    Get PDF
    We applied an approach for daily estimation and monitoring of evapotranspiration (ET) over the Northeast Asia monsoon region using satellite remote sensing observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Frequent cloud cover results in a substantial loss of remote sensing information, limiting the capability of continuous ET monitoring for the monsoon region. Accordingly, we applied and evaluated a stand-alone MODIS ET algorithm for representative regional ecosystem types and an alternative algorithm to facilitate continuous regional ET estimates using surface meteorological inputs from the Korea Land Data Assimilation System (KLDAS) in addition to MODIS land products. The resulting ET calculations showed generally favorable agreement (root-mean-square error  \u3c 1.3 mm d−1) with respect to in situ measurements from eight regional flux tower sites. The estimated mean annual ET for 3 years (2006 to 2008) was approximately 362.0 ± 161.5 mm yr−1 over the Northeast Asia domain. In general, the MODIS and KLDAS-based ET (MODIS-KLDAS ET) results showed favorable performance when compared to tower observations, though the results were overestimated for a forest site by approximately 39.5% and underestimated for a cropland site in South Korea by 0.8%. The MODIS-KLDAS ET data were generally underestimated relative to the MODIS (MOD16) operational global terrestrial ET product for various biome types, excluding cropland; however, MODIS-KLDAS ET showed better agreement than MOD16 ET for forest and cropland sites in South Korea. Our results indicate that MODIS ET estimates are feasible but are limited by satellite optical-infrared remote sensing constraints over cloudy regions, whereas alternative ET estimates using continuous meteorological inputs from operational regional climate systems (e.g., KLDAS) provide accurate ET results and continuous monitoring capability under all-sky conditions

    Machine learning algorithms improve MODIS GPP estimates in United States croplands

    Get PDF
    Introduction: Machine learning methods combined with satellite imagery have the potential to improve estimates of carbon uptake of terrestrial ecosystems, including croplands. Studying carbon uptake patterns across the U.S. using research networks, like the Long-Term Agroecosystem Research (LTAR) network, can allow for the study of broader trends in crop productivity and sustainability.Methods: In this study, gross primary productivity (GPP) estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) for three LTAR cropland sites were integrated for use in a machine learning modeling effort. They are Kellogg Biological Station (KBS, 2 towers and 20 site-years), Upper Mississippi River Basin (UMRB - Rosemount, 1 tower and 12 site-years), and Platte River High Plains Aquifer (PRHPA, 3 towers and 52 site-years). All sites were planted to maize (Zea mays L.) and soybean (Glycine max L.). The MODIS GPP product was initially compared to in-situ measurements from Eddy Covariance (EC) instruments at each site and then to all sites combined. Next, machine learning algorithms were used to create refined GPP estimates using air temperature, precipitation, crop type (maize or soybean), agroecosystem, and the MODIS GPP product as inputs. The AutoML program in the h2o package tested a variety of individual and combined algorithms, including Gradient Boosting Machines (GBM), eXtreme Gradient Boosting Models (XGBoost), and Stacked Ensemble.Results and discussion: The coefficient of determination (r2) of the raw comparison (MODIS GPP to EC GPP) was 0.38, prior to machine learning model incorporation. The optimal model for simulating GPP across all sites was a Stacked Ensemble type with a validated r2 value of 0.87, RMSE of 2.62 units, and MAE of 1.59. The machine learning methodology was able to successfully simulate GPP across three agroecosystems and two crops

    Development and Extrapolation of a General Light Use Efficiency Model for the Gross Primary Production

    Get PDF
    The global carbon cycle is one of the large biogeochemical cycles spanning all living and non-living compartments of the Earth system. Against the background of accelerating global change, the scientific community is highly interested in analyzing and understanding the dynamics of the global carbon cycle and its complex feedback mechanism with the terrestrial biosphere. The international network FLUXNET was established to serve this aim with measurement towers around the globe. The overarching objective of this thesis is to exploit the powerful combination of carbon flux measurements and satellite remote sensing in order to develop a simple but robust model for the gross primary production (GPP) of vegetation stands. Measurement data from FLUXNET sites as well as remote sensing data from the NASA sensor MODIS are exploited in a data-based model development approach. The well-established concept of light use efficiency is chosen as modeling framework. As a result, a novel gross primary production model is established to quantify the carbon uptake of forests and grasslands across a broad range of climate zones. Furthermore, an extrapolation scheme is derived, with which the model parameters calibrated at FLUXNET sites can be regionalized to pave the way for spatially continuous model applications

    Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations

    Get PDF
    Accurate estimation of the satellite-based global terrestrial latent heat flux (LE) at high spatial and temporal scales remains a major challenge. In this study, we introduce a Bayesian model averaging (BMA) method to improve satellite-based global terrestrial LE estimation by merging five process-based algorithms. These are the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product algorithm, the revised remote-sensing-based Penman-Monteith LE algorithm, the Priestley-Taylor-based LE algorithm, the modified satellite-based Priestley-Taylor LE algorithm, and the semi-empirical Penman LE algorithm. We validated the BMA method using data for 2000–2009 and by comparison with a simple model averaging (SA) method and five process-based algorithms. Validation data were collected for 240 globally distributed eddy covariance tower sites provided by FLUXNET projects. The validation results demonstrate that the five process-based algorithms used have variable uncertainty and the BMA method enhances the daily LE estimates, with smaller root mean square errors (RMSEs) than the SA method and the individual algorithms driven by tower-specific meteorology and Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological data provided by the NASA Global Modeling and Assimilation Office (GMAO), respectively. The average RMSE for the BMA method driven by daily tower-specific meteorology decreased by more than 5 W/m2 for crop and grass sites, and by more than 6 W/m2 for forest, shrub, and savanna sites. The average coefficients of determination (R2) increased by approximately 0.05 for most sites. To test the BMA method for regional mapping, we applied it for MODIS data and GMAO-MERRA meteorology to map annual global terrestrial LE averaged over 2001–2004 for spatial resolution of 0.05°. The BMA method provides a basis for generating a long-term global terrestrial LE product for characterizing global energy, hydrological, and carbon cycles
    • …
    corecore