1,218 research outputs found

    A review on methods to estimate a CT from MRI data in the context of MRI-alone RT

    Get PDF
    Background: In recent years, Radiation Therapy (RT) has undergone many developments and provided progress in the field of cancer treatment. However, dose optimisation each treatment session puts the patient at risk of successive X-Ray exposure from Computed Tomography CT scans since this imaging modality is the reference for dose planning. Add to this difficulties related to contour propagation. Thus, approaches are focusing on the use of MRI as the only modality in RT. In this paper, we review methods for creating pseudo-CT images from MRI data for MRI-alone RT. Each class of methods is explained and underlying works are presented in detail with performance results. We discuss the advantages and limitations of each class. Methods: We classified recent works in deriving a pseudo-CT from MR images into four classes: segmentation-based, intensity-based, atlas-based and hybrid methods and the classification was based on considering the general technique applied. Results: Most research focused on the brain and the pelvic regions. The mean absolute error ranged from 80 to 137 HU and from 36.4 to 74 HU for the brain and pelvis, respectively. In addition, an interest in the Dixon MR sequence is increasing since it has the advantage of producing multiple contrast images with a single acquisition. Conclusion: Radiation therapy is emerging towards the generalisation of MRI-only RT thanks to the advances in techniques for generation of pseudo-CT images and the development of specialised MR sequences favouring bone visualisation. However, a benchmark needs to be established to set in common performance metrics to assess the quality of the generated pseudo-CT and judge on the efficiency of a certain method

    An Investigation of Methods for CT Synthesis in MR-only Radiotherapy

    Get PDF

    Deep MR to CT Synthesis for PET/MR Attenuation Correction

    Get PDF
    Positron Emission Tomography - Magnetic Resonance (PET/MR) imaging combines the functional information from PET with the flexibility of MR imaging. It is essential, however, to correct for photon attenuation when reconstructing PETs, which is challenging for PET/MR as neither modality directly image tissue attenuation properties. Classical MR-based computed tomography (CT) synthesis methods, such as multi-atlas propagation, have been the method of choice for PET attenuation correction (AC), however, these methods are slow and suffer from the poor ability to handle anatomical abnormalities. To overcome this limitation, this thesis explores the rising field of artificial intelligence in order to develop novel methods for PET/MR AC. Deep learning-based synthesis methods such as the standard U-Net architecture are not very stable, accurate, and robust to small variations in image appearance. Thus, the first proposed MR to CT synthesis method deploys a boosting strategy, where multiple weak predictors build a strong predictor providing a significant improvement in CT and PET reconstruction accuracy. Standard deep learning-based methods as well as more advanced methods like the first proposed method show issues in the presence of very complex imaging environments and large images such as whole-body images. The second proposed method learns the image context between whole-body MRs and CTs through multiple resolutions while simultaneously modelling uncertainty. Lastly, as the purpose of synthesizing a CT is to better reconstruct PET data, the use of CT-based loss functions is questioned within this thesis. Such losses fail to recognize the main objective of MR-based AC, which is to generate a synthetic CT that, when used for PET AC, makes the reconstructed PET as close as possible to the gold standard PET. The third proposed method introduces a novel PET-based loss that minimizes CT residuals with respect to the PET reconstruction

    3D facial shape estimation from a single image under arbitrary pose and illumination.

    Get PDF
    Humans have the uncanny ability to perceive the world in three dimensions (3D), otherwise known as depth perception. The amazing thing about this ability to determine distances is that it depends only on a simple two-dimensional (2D) image in the retina. It is an interesting problem to explain and mimic this phenomenon of getting a three-dimensional perception of a scene from a flat 2D image of the retina. The main objective of this dissertation is the computational aspect of this human ability to reconstruct the world in 3D using only 2D images from the retina. Specifically, the goal of this work is to recover 3D facial shape information from a single image of unknown pose and illumination. Prior shape and texture models from real data, which are metric in nature, are incorporated into the 3D shape recovery framework. The output recovered shape, likewise, is metric, unlike previous shape-from-shading (SFS) approaches that only provide relative shape. This work starts first with the simpler case of general illumination and fixed frontal pose. Three optimization approaches were developed to solve this 3D shape recovery problem, starting from a brute-force iterative approach to a computationally efficient regression method (Method II-PCR), where the classical shape-from-shading equation is cast as a regression framework. Results show that the output of the regression-like approach is faster in timing and similar in error metrics when compared to its iterative counterpart. The best of the three algorithms above, Method II-PCR, is compared to its two predecessors, namely: (a) Castelan et al. [1] and (b) Ahmed et al. [2]. Experimental results show that the proposed method (Method II-PCR) is superior in all aspects compared to the previous state-of-the-art. Robust statistics was also incorporated into the shape recovery framework to deal with noise and occlusion. Using multiple-view geometry concepts [3], the fixed frontal pose was relaxed to arbitrary pose. The best of the three algorithms above, Method II-PCR, once again is used as the primary 3D shape recovery method. Results show that the pose-invariant 3D shape recovery version (for input with pose) has similar error values compared to the frontal-pose version (for input with frontal pose), for input images of the same subject. Sensitivity experiments indicate that the proposed method is, indeed, invariant to pose, at least for the pan angle range of (-50° to 50°). The next major part of this work is the development of 3D facial shape recovery methods, given only the input 2D shape information, instead of both texture and 2D shape. The simpler case of output 3D sparse shapes was dealt with, initially. The proposed method, which also use a regression-based optimization approach, was compared with state-of-the art algorithms, showing decent performance. There were five conclusions that drawn from the sparse experiments, namely, the proposed approach: (a) is competitive due to its linear and non-iterative nature, (b) does not need explicit training, as opposed to [4], (c) has comparable results to [4], at a shorter computational time, (d) better in all aspects than Zhang and Samaras [5], and (e) has the limitation, together with [4] and [5], in terms of the need to manually annotate the input 2D feature points. The proposed method was then extended to output 3D dense shapes simply by replacing the sparse model with its dense equivalent, in the regression framework inside the 3D face recovery approach. The numerical values of the mean height and surface orientation error indicate that even if shading information is unavailable, a decent 3D dense reconstruction is still possible

    Computational Methods for Matrix/Tensor Factorization and Deep Learning Image Denoising

    Get PDF
    Feature learning is a technique to automatically extract features from raw data. It is widely used in areas such as computer vision, image processing, data mining and natural language processing. In this thesis, we are interested in the computational aspects of feature learning. We focus on rank matrix and tensor factorization and deep neural network models for image denoising. With respect to matrix and tensor factorization, we first present a technique to speed up alternating least squares (ALS) and gradient descent (GD) − two commonly used strategies for tensor factorization. We introduce an efficient, scalable and distributed algorithm that addresses the data explosion problem. Instead of a computationally challenging sub-step of ALS and GD, we implement the algorithm on parallel machines by using only two sparse matrix-vector products. Not only is the algorithm scalable but it is also on average 4 to 10 times faster than competing algorithms on various data sets. Next, we discuss our results of non-negative matrix factorization for hyperspectral image data in the presence of noise. We introduce a spectral total variation regularization and derive four variants of the alternating direction method of multiplier algorithm. While all four methods belong to the same family of algorithms, some perform better than others. Thus, we compare the algorithms using stimulated Raman spectroscopic image will be demonstrated. For deep neural network models, we focus on its application to image denoising. We first demonstrate how an optimal procedure leveraging deep neural networks and convex optimization can combine a given set of denoisers to produce an overall better result. The proposed framework estimates the mean squared error (MSE) of individual denoised outputs using a deep neural network; optimally combines the denoised outputs via convex optimization; and recovers lost details of the combined images using another deep neural network. The framework consistently improves denoising performance for both deterministic denoisers and neural network denoisers. Next, we apply the deep neural network to solve the image reconstruction issues of the Quanta Image Sensor (QIS), which is a single-photon image sensor that oversamples the light field to generate binary measures

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Blurry Boundary Delineation and Adversarial Confidence Learning for Medical Image Analysis

    Get PDF
    Low tissue contrast and fuzzy boundaries are major challenges in medical image segmentation which is a key step for various medical image analysis tasks. In particular, blurry boundary delineation is one of the most challenging problems due to low-contrast and even vanishing boundaries. Currently, encoder-decoder networks are widely adopted for medical image segmentation. With the lateral skip connection, the models can obtain and fuse both semantic and resolution information in deep layers to achieve more accurate segmentation performance. However, in many applications (e.g., images with blurry boundaries), these models often cannot precisely locate complex boundaries and segment tiny isolated parts. To solve this challenging problem, we empirically analyze why simple lateral connections in encoder-decoder architectures are not able to accurately locate indistinct boundaries. Based on the analysis, we argue learning high-resolution semantic information in the lateral connection can better delineate the blurry boundaries. Two methods have been proposed to achieve such a goal. a) A high-resolution pathway composed of dilated residual blocks has been adopted to replace the simple lateral connection for learning the high-resolution semantic features. b) A semantic-guided encoder feature learning strategy is further proposed to learn high-resolution semantic encoder features so that we can more accurately and efficiently locate the blurry boundaries. Besides, we also explore a contour constraint mechanism to model blurry boundary detection. Experimental results on real clinical datasets (infant brain MRI and pelvic organ datasets) show that our proposed methods can achieve state-of-the-art segmentation accuracy, especially for the blurry regions. Further analysis also indicates that our proposed network components indeed contribute to the performance gain. Experiments on an extra dataset also validate the generalization ability of our proposed methods. Generative adversarial networks (GANs) are widely used in medical image analysis tasks, such as medical image segmentation and synthesis. In these works, adversarial learning is usually directly applied to the original supervised segmentation (synthesis) networks. The use of adversarial learning is effective in improving visual perception performance since adversarial learning works as realistic regularization for supervised generators. However, the quantitative performance often cannot be improved as much as the qualitative performance, and it can even become worse in some cases. In this dissertation, I explore how adversarial learning could be more useful in supervised segmentation (synthesis) models, i.e., how to synchronously improve visual and quantitative performance. I first analyze the roles of discriminator in the classic GANs and compare them with those in supervised adversarial systems. Based on this analysis, an adversarial confidence learning framework is proposed for taking better advantage of adversarial learning; that is, besides the adversarial learning for emphasizing visual perception, the confidence information provided by the adversarial network is utilized to enhance the design of the supervised segmentation (synthesis) network. In particular, I propose using a fully convolutional adversarial network for confidence learning to provide voxel-wise and region-wise confidence information for the segmentation (synthesis) network. Furthermore, various loss functions of GANs are investigated and the binary cross entropy loss is finally chosen to train the proposed adversarial confidence learning system so that the modeling capacity of the discriminator is retained for confidence learning. With these settings, two machine learning algorithms are proposed to solve some specific medical image analysis problems. a) A difficulty-aware attention mechanism is proposed to properly handle hard samples or regions by taking structural information into consideration so that the irregular distribution of medical data could be appropriately dealt with. Experimental results on clinical and challenge datasets show that the proposed algorithm can achieve state-of-the-art segmentation (synthesis) accuracy. Further analysis also indicates that adversarial confidence learning can synchronously improve the visual perception and quantitative performance. b) A semisupervised segmentation model is proposed to alleviate the everlasting challenge for medical image segmentation - lack of annotated data. The proposed method can automatically recognize well-segmented regions (instead of the entire sample) and dynamically include them to increase the label set during training. Specifically, based on the confidence map, a region-attention based semi-supervised learning strategy is designed to further train the segmentation network. Experimental results on real clinical datasets show that the proposed approach can achieve better segmentation performance with extra unannotated data.Doctor of Philosoph
    • …
    corecore