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ABSTRACT 

Choi, Joon Hee PhD, Purdue University, August 2018. Computational Methods for 
Matrix/Tensor Factorization and Deep Learning Image Denoising . Major Professor: 
Stanley Chan. 

Feature learning is a technique to automatically extract features from raw data. 

It is widely used in areas such as computer vision, image processing, data mining and 

natural language processing. In this thesis, we are interested in the computational 

aspects of feature learning. We focus on rank matrix and tensor factorization and 

deep neural network models for image denoising. 

With respect to matrix and tensor factorization, we first present a technique to 

speed up alternating least squares (ALS) and gradient descent (GD) − two com-

monly used strategies for tensor factorization. We introduce an efficient, scalable 

and distributed algorithm that addresses the data explosion problem. Instead of a 

computationally challenging sub-step of ALS and GD, we implement the algorithm 

on parallel machines by using only two sparse matrix-vector products. Not only is 

the algorithm scalable but it is also on average 4 to 10 times faster than competing 

algorithms on various data sets. Next, we discuss our results of non-negative matrix 

factorization for hyperspectral image data in the presence of noise. We introduce 

a spectral total variation regularization and derive four variants of the alternating 

direction method of multiplier algorithm. While all four methods belong to the same 

family of algorithms, some perform better than others. Thus, we compare the algo-

rithms using stimulated Raman spectroscopic image will be demonstrated. 

For deep neural network models, we focus on its application to image denoising. 

We first demonstrate how an optimal procedure leveraging deep neural networks 

and convex optimization can combine a given set of denoisers to produce an overall 



xiv 

better result. The proposed framework estimates the mean squared error (MSE) of 

individual denoised outputs using a deep neural network; optimally combines the 

denoised outputs via convex optimization; and recovers lost details of the combined 

images using another deep neural network. The framework consistently improves 

denoising performance for both deterministic denoisers and neural network denoisers. 

Next, we apply the deep neural network to solve the image reconstruction issues of the 

Quanta Image Sensor (QIS), which is a single-photon image sensor that oversamples 

the light field to generate binary measures. 
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1. INTRODUCTION 

Modern data analysis is surround by two basic problems: (1) How to efficiently extract 

meaningful information from a massive volume of data? (2) How does the massive 

data improve classical tasks such as estimating signals embedded in noise? The 

former question concerns about the algorithm aspect of large-scale data analysis. 

As we will see in this thesis, many well-established computational methods in linear 

algebra become computationally inadequate when the data volume grows. The second 

question concerns about the performance of estimation methods when data becomes 

abundant. The goal of this thesis is to address these two problems from two specific 

angles. First, we study a factorization problem for multidimensional arrays (called 

the tensors), and develop an efficient algorithm that can be executed on distributed 

machines. We then analyze how noise would influence the factorization, and methods 

to improve robustness. Second, we study a regression problem using deep neural 

networks. We find that despite the abundance of data, many neural networks are 

trained under specific conditions, thus limiting their performance. We thus develop 

a globally optimal method to combine these neural network estimators. We also 

investigate how deep neural networks can help improving image reconstruction on a 

new type of image sensors. 

1.1 Objective 1: Efficient Matrix and Tensor Factorization Methods 

Matrix factorization is a widely used unsupervised learning technique that allows 

us to decompose a matrix into products of feature matrices. Traditionally, matrix 

factorization has been the backbone of many signal processing techniques such as the 

LU decomposition, QR decomposition and singular value decomposition (SVD). Of 

all these methods, we are particularly interested in the class of rank factorization. 
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Rank factorization is typically used to provide low-rank matrix approximation of a 

matrix so that we can infer meaningful features embedded in the matrix. Given an 

m × n matrix Y of rank r, a rank factorization is a product of Y = WH where W 

is an m × r matrix and H is an r × n matrix. These rank factorization can also be 

represented as a form of the bilinear model 

r∑ 
Y = wi ◦ hi, (1.1) 

i=1 

where “◦” denotes the outer product of two vectors. Thus, we can build an approxi-

mate representation of the data matrix Y as a sum of rank-one matrices. 

The focus of the first part of this thesis is the tensor factorization, an extension 

of matrix factorization to multidimensional arrays. For a three-dimensional array, 

tensor factorization considers the approximation 

r∑ 
Y ≈ ai ◦ bi ◦ ci (1.2) 

i=1 

where “◦” denotes the outer product of vectors and Y is a three-dimensional array of 

size m × n × k. 

Tensor factorization appears naturally in applications involving multi-modal ob-

servations. For example, in hyperspectral imaging we acquire data with two spatial 

dimensions and a spectral dimension. (See Figure 1.1). A typical question is then 

to evaluate the composition of the material shown in the image, e.g., chemical com-

ponents of soil. In other applications such as recommendation systems, tensor fac-

torization is also common. For example, when analyzing a recommendation system 

involving users, items and their evolution over time, we have to consider a three-

dimensional array consisting of a user dimension, an item dimension, and a temporal 

dimension. As the size of the array increases, the computational cost to perform the 

above stated decompositions will eventually become so high that we will not be able 

to process the data quickly without sacrificing the quality. 
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Fig. 1.1.: Hyperspectral image data [1] 

There are two specific sub-objectives of Part 1 of the thesis. We summarize them 

in the followings. 

Objective 1(a): The objective is to develop an efficient tensor factorization that 

can be scaled to billions of non-zero entries. At a high level, our proposed method 

considers a flatting technique by rewriting the tensor Y as a matrix Y 1 ∈ Rmn×k, and 

decompose Y 1 as 

Y 1 ≈ A (B ⊙ C)T . (1.3) 

where “⊙” is a Khatri-Rao product (see Chapter 2 for the detail) and (B ⊙ C) ∈ 

Rmk×r. Typically, (B ⊙ C) is very large, and so it poses significant computational 

challenge when computing A (B ⊙ C)T . Algorithms addressing these computational 

challenges have been studied in recent years. Bader and Kolda [2] proposed a state-

of-art method solving the data explosion problem. Also, Kang et al. [3] proposed an 

algorithm addressing the computational challenges on parallel machines. We tackle 

this problem by exploring special structures of the matrices so that sparse computa-

tion techniques can be employed. We will discuss this method in Chapter 2. We com-
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pare our method with other methods addressing the computational challenges [2, 3] 

in terms of computation time. 

Objective 1(b): The objective here is to study the algorithmic aspect of a slightly 

more specialized matrix factorization problem called the non-negative matrix factor-

ization (NMF). The goal NMF is to factorize a matrix Y as the product of two 

non-negative matrices W and H . Typically, this problem is formulate through a 

minimization problem 

minimize ∥Y − WH∥2 
F , 

W ,H 

subject to W ≥ 0, H ≥ 0 (1.4) 

To solve (1.4), there are many existing approaches, e.g., the multiplicative update 

method [4], block principal pivoting method [5], and different online approaches [6–8]. 

Because of the bilinear quadratic minimization form of (1.4), one of the mainstream 

approaches is the alternating nonnegative least squares [9, 10], and other alternating 

direction algorithms [11]. In this part of the thesis, we consider a special alternating 

direction algorithm. We show that even for the same alternating direction algorithm, 

there are various options of controlling how variables are updated. We analyze their 

performance, and compare their complexity. 

1.2 Objective 2: Deep Learning for Image Denoising 

The second part of the thesis is to investigate a class of deep neural network 

methods for the task of image restoration, in particular denoising type of problems. 

Here, by denoising we meant that given a noisy observation y ∈ Rn, which is assumed 

to be corrupted by i.i.d. Gaussian noise: 

y = x + η, 
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where x ∈ Rn is the clean image, our goal is to estimate the latent image x. Image 

denoising is a testbed for a number of image restoration problems. Therefore, study-

ing image denoising has important implication to other types of image restoration 

problems. 

Objective 2(a): The objective here is to develop a globally optimal combination 

approach to combine neural network image denoisers. 

The latest development of image denoising has been focusing on deep learning 

based methods, e.g., [12–18]. While these methods have demonstrated superior per-

formance over the deterministic counterparts [19–23], they suffer fundamentally to a 

problem known as the model mismatch. In particular, there are three model mismatch 

problems we often see in practice: 

• Denoiser Characteristic: Different denoiser models have different characteris-

tics. For example, total variation works well for piecewise constant images and 

BM3D [20] works well for images with repeated patterns. 

• Noise Level: Neural network image denoisers are typically trained under specific 

noise levels. However, when the actual noise level deviates from the trained noise 

level, the performance of the denoisers drop. 

• Image Class: A denoiser trained for a particular class of images may work well 

for the class and not work for other classes. 

Therefore, the following question should be answered: Given a set of image denois-

ers, each having a different denoising capability, is there a provably optimal way of 

combining these denoisers to produce an overall better result? An answer to this ques-

tion is fundamental to designing ensembles of weak estimators for complex scenes. 

In Chapter 4, we present an optimal procedure leveraging deep neural networks and 

convex optimization. The proposed framework, called the Consensus Neural Net-

work (CsNet), introduces three new concepts in image denoising: (1) A deep neural 

network to estimate the mean squared error (MSE) of individual denoised outputs 

without needing the ground truth; (2) A provably optimal procedure to combine the 
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denoised outputs via convex optimization; (3) An image boosting procedure using a 

deep neural network to improve contrast and to recover lost details of the combined 

images. 

Objective 2(b): The objective here is to present a set of preliminary results for a 

new type of single-photon image sensors called the Quanta Image Sensor (QIS). 

QIS is envisioned to be a candidate for the next generation image sensor after 

CMOS. However, image reconstruction of the sensor is faced with a problem the 

data is binary: if photon count is below the threshold, the value is 0; if above, the 

value 1. Most of the existing methods for the image reconstruction of QIS are based 

on optimization such as maximum-likelihood (ML) or maximum a-posteriori (MAP) 

estimation, but those are very slow. A recent research [24] converted the Poisson 

random variable to Gaussian then applied an existing image denoising method instead 

of solving complex ML or MAP. We apply a deep neural network to solve the image 

reconstruction issues of QIS. In Chapter 5, we present our preliminary findings on this 

topic. Experimental results show that the proposed network produces significantly 

better reconstruction results compared to existing methods. 

1.3 Contributions of The Thesis 

There are four main contributions of this thesis. They are listed as follows: 

• Objective 1(a): Distributed Factorization of Tensors 

We propose a technique for significantly speeding up Alternating Least Squares 

(ALS) and Gradient Descent (GD), two widely used algorithms for tensor fac-

torization. By exploiting properties of the Khatri-Rao product, we show how to 

efficiently address a computationally challenging sub-step of both algorithms. 

Our algorithm, DFacTo, only requires two sparse matrix-vector products and 

is easy to parallelize. DFacTo is not only scalable but also on average 4 to 10 

times faster than competing algorithms on a variety of datasets. For instance, 

DFacTo only takes 480 seconds on 4 machines to perform one iteration of the 
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ALS algorithm and 1,143 seconds to perform one iteration of the GD algorithm 

on a 6.5 million × 2.5 million × 1.5 million dimensional tensor with 1.2 billion 

non-zero entries. 

• Objective 1(b): Comparison of ADMM Algorithms for Noisy Non-negative Ma-

trix Factorization 

We present a set of empirical results of non-negative matrix factorization for 

hyperspectral image data in the presence of noise. We introduce a spectral to-

tal variation regularization, and derive four variants of the alternating direction 

method of multiplier algorithm. While all four methods belong to the same 

family of algorithms, we show that some performs better than others. Com-

parisons of the algorithms using stimulated Raman spectroscopic image will be 

demonstrated. 

• Objective 2(a): Optimal Combination of Image Denoisers 

We present an optimal framework combining multiple weak image denoisers, 

called Consensus Neural Network (CsNet). The framework consists of three 

components: MSE Estimator; Optimal Combination; and Denoising Dooster. 

CsNet first uses a novel deep neural network for estimating MSE of the denoised 

images from a set of initial image denoisers. Then, using the estimated MSE, 

CsNet solves a convex optimization problem where the optimality is guaranteed 

and combine the denoised images. Finally, the combined estimate is boosted 

by a novel deep neural network booster. Experimental results show CsNet out-

performs other state-of-the-art denoising algorithms on tasks including: over-

coming noise level mismatch combining denoisers for different image classes 

combining different denoiser types 

• Objective 2(b): Image Reconstruction for Quanta Image Sensors using Deep 

Neural Networks 
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Unlike the existing image reconstruction algorithms based on optimization, we 

present the first deep neural network approach for QIS image reconstruction. 

Our deep neural network takes the binary bit stream of QIS as input, learns 

the nonlinear transformation and denoising simultaneously. Different from [25] 

which assumes a sparsity prior, our network learns the denoiser directly; And 

compared to [26], our network has a significantly deeper layer to learn the 

transformation. We present two designs: one mimics the entire Transform-

Denoise pipeline, and the other one substitutes part of the Transform-Denoise 

pipeline. We show that both networks has significantly better performance than 

the existing Transform-Denoise method [24]. 

1.4 Publications Resulting from this Thesis 

The following papers are results of this thesis. 

1. Joon Hee Choi, Omar Elgendy and Stanley Chan, Integrating Disparate 

Sources of Experts for Robust Image Denoising, submitted to IEEE Transaction 

on Image Processing (TIP), 2018. 

2. Joon Hee Choi, Omar Elgendy and Stanley Chan, Image Reconstruction for 

Quanta Image Sensors Using Deep Neural Networks, to appear in International 

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018. 

3. Chiman Kwan, Joon Hee Choi, Stanley Chan, Jin Zhou and Bence Budavari, 

Resolution Enhancement for Hyperspectral Images: A Super-Resolution and 

Fusion Approach, International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP), pp 6180-6184, 2017. 

4. Chien-Sheng Liao, Joon Hee Choi, Delong Zhang, Stanley H. Chan and Ji-Xin 

Cheng. Denoising Stimulated Raman Spectroscopic Images by Total Variation 

Minimization, Journal of Physical Chemistry C, 119 (33), pp. 19397-19403, 

July, 2015. 
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5. Chiho Choi, Ayan T. Sinha, Joon Hee Choi, Sujin Jang and Karthik Ramani, 

Collaborative Filtering Approach to Real-Time Hand Pose Estimation, The 

IEEE International Conference on Computer Vision (ICCV), pp. 2336-2344, 

2015. 

6. Joon Hee Choi and S.V.N. Vishwanathan, DFacTo: Distributed Factorization 

of Tensors, Advances in Neural Information Processing Systems (NIPS), pp. 

1296-1304, 2014. 
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PART I 

MATRIX AND TENSOR FACTORIZATION 
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2. DFACTO: DISTRIBUTED FACTORIZATION OF 

TENSORS 

In this chapter, we address a computational challenge of tensor factorization by pre-

senting a distributed algorithm. We compare our method with three existing meth-

ods. This work was published in Advances in Neural Information Processing Systems 

(NIPS), 2014 [27]. 

2.1 Introduction 

2.1.1 Matrix, Tensor, and their Applications 

In classical linear algebra, a matrix can be considered as a rectangular array 

consisting of rows and columns of numbers. Because of the planner structure of the 

array, mathematical properties of matrices are widely studied, e.g., inverses, norms, 

symmetry, spectral decomposition, and computational techniques, [28,29]. For a long 

time, matrix-based techniques has been the backbone of many engineering and signal 

processing subjects, e.g., filter bank design [30, 31], optimal control [32], and many 

other disciplines. However, as we encounter more complicated data in modern data 

analytic, e.g., data volumes involving high-dimensional arrays (arrays with dimension 

more than just rows and columns), matrices becomes inadequate. 

We refer to high-dimensional arrays with finite number of entries as tensors in 

this thesis. This is a narrow defined scope of a tensor, as this thesis does not consider 

tensors in advanced calculus, e.g., Ricci Calculus in general relativity and differential 

geometry [33]. Instead, we consider a tensor as a cubicle storing numbers. Such data 

analytic perspective was first discussed by [34] in a psychometric journal, and Sanchez 

and Kowalski in an analytic chemistry journal [35]. In modern data science appli-
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cations, such analytic perspective is becoming more popular [36, 37]. For instance, 

on a social network evolving over time, one can form a users-users-time tensor which 

contains snapshots of interactions between members of the social network [38]. An-

other example would be an online store such as Amazon.com where users routinely 

review various products. One can form a users- items-words tensor from the review 

text [39]. A tensor can also be formed by considering the various contexts in which 

a user has interacted with an item [40]. One last example: a tensor can be formed 

by considering the data collected by the Never Ending Language Learner (the Read 

the Web) project which contains triples of noun phrases and the context in which 

they occur, such as, (“George Harrison”, “plays”, “guitars”) [41]. [42] considered a 

tensor data to represent regions of a particular density in a three-dimensional CT 

scan, allowing the visualization of internal organs, bones, or other structures. 

2.1.2 Tensor Factorization 

Objective: The objective of this study is to investigate efficient algorithms for 

factorizing tensors into low rank products. Rank factorization is an important data 

analysis tool that provides low-rank approximation so that we can extract features. 

Before we discuss our proposed methods, we first discuss the difference between tensor 

factorization and matrix factorization. 

Given an m-by-n matrix Y of rank r, a matrix rank factorization is a product 

of Y = WH where W is an m-by-r matrix and H is an r-by-n matrix. Rank 

factorization can also be represented as a form of the bilinear model (see Figure 2.1) 

r∑ 
Y = wi ◦ hi, (2.1) 

i=1 

where ◦ denotes the outer product of two vectors. Thus, we can build an approximate 

representation of the data matrix Y as a sum of rank-one matrices. 

https://Amazon.com
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Fig. 2.1.: [Top] Matrix-factorization. [Bottom] Tensor-factorization. 

Tensor factorization extends the matrix factorization to multidimensional arrays. 

In this thesis, we are particularly interested in the three-way tensor factorization, 

which considers 

r∑ 
Y ≈ ai ◦ bi ◦ ci (2.2) 

i=1 

where ◦ denotes the outer product of vectors, Y is of size m × n × k, A of size 

m × r, B of size n × r and C of size k × r. Figure 2.1 shows this tensor factorization 

graphically. Decomposition of this type is also called the CANDECOMP or the 

PARAFAC decomposition [37,43–45]. An alternative to PARAFAC is the High-Order 

SVD (HOSVD) or the Tucker-3 decomposition, see, e.g., [46–52]. In this thesis, we 

shall focus on PARAFAC due to is applicability in many engineering problems. 

Challenges: The challenges of tensor factorization can be understood from three 

aspects. First, the rank of a tensor is ill-posed. Using the PARAFAC decomposition, 

a tensor can be written as a sum of rank-one outer products of vectors. The smallest 

number of these rank-one prodducts, R, is called the rank of the tensor. However, 

while writing a matrix as a sum of rank-1 outer products (i.e., SVD) is always pos-

sible, writing a tensor as a sum of rank-1 outer products (i.e., PARAFAC) is not 
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always possible. Therefore, unlike matrices, the rank of a tensor Y ∈ Rm×n×k is not 

necessarily min (m, n, k). See [53–56] for further discussions. This thesis does not 

address the rank issue. Instead, we will focus on developing efficient algorithms. 

Second, unlike matrices where we have standard decomposition methods, e.g., QR 

factorization and LU factorization, tensors do not have well-defined decomposition 

methods. In fact, most of the existing algorithms are based on minimizing certain en-

ergy functions by alternating minimizations [57–60]. However, since the optimization 

problem is non-linear, the convergence to a global minimum is generally not guaran-

teed [61]. It might have a local minimum where the cost function ceases to decrease. 

Some techniques for improving the guess are discussed in [62]. In this thesis, we will 

focus on two classes of minimization techniques: the Alternating Least Squares (ALS) 

and the gradient descent (GD). We are specially interested in how these algorithms 

can be speed up for large-tensors. 

Third, as data size grows, the number of entries of tensors also grow. This problem 

is exacerbated when the dimensions of tensor we need to factorize are very large (of the 

order of hundreds of thousands or millions), or when sparse tensors contain millions 

to billions of non-zero entries. For instance, a tensor we formed using review text 

from Amazon.com has dimensions of 6.5 million -by- 2.5 million -by- 1.5 million and 

contains approximately 1.2 billion non-zero entries. 

2.1.3 Related Methods 

The mainstream tensor factorization optimization methods can be classified into 

two categories: The Alternating Least Squares (ALS) [58, 61, 63, 64], and Gradient 

Descent (GD) [62,65]. We will discuss these two methods in details in Section A.2 and 

Section A.3, respectively. In a nutshell, the key step in both methods is to multiply 

a matricized tensor and a Khatri-Rao product of two matrices (line 4. However, this 

process leads to a computationally-challenging, intermediate data explosion problem 

when the data size is large. 

https://Amazon.com
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Some studies have identified this intermediate data explosion problem and have 

suggested ways of addressing it. First, the Tensor Toolbox [2] uses the method of 

reducing indices of the tensor for sparse datasets and entrywise multiplication of 

vectors and matrices for dense datasets. However, it is not clear how to store data 

or how to distribute the tensor factorization computation to multiple machines (see 

Appendix). That is, there is a lack of distributable algorithms in existing studies. 

Another possible strategy to solve the data explosion problem is to use GigaTensor [3]. 

Unfortunately, while GigaTensor does address the problem of parallel computation, it 

is relatively slow. To summarize, existing algorithms for tensor factorization such as 

the excellent Tensor Toolbox of [2], or the Map-Reduce based GigaTensor algorithm 

of [3] often do not scale to large problems. 

2.1.4 Our Contributions 

In this chapter, we introduce an efficient, scalable and distributed algorithm, 

DFacTo, that addresses the data explosion problem. Since most large-scale real 

datasets are sparse, we will focus exclusively on sparse tensors. This is well justi-

fied because previous studies have shown that designing specialized algorithms for 

sparse tensors can yield significant speedups [2]. We show that DFacTo can be ap-

plied to both ALS and GD, and naturally lends itself to a distributed implementation. 

Therefore, it can be applied to massive real datasets which cannot be stored and ma-

nipulated on a single machine. For ALS, DFacTo is on average around 5 times faster 

than GigaTensor and around 10 times faster than the Tensor Toolbox on a variety 

of datasets. In the case of GD, DFacTo is on average around 4 times faster than 

CP-OPT [66] from the Tensor Toolbox. On the Amazon.com review dataset, DFacTo 

only takes 480 seconds on 4 machines to perform one iteration of ALS and 1,143 

seconds to perform one iteration of GD. 

As with any algorithm, there is a trade-off: DFacTo uses 3 times more memory 

than the Tensor Toolbox, since it needs to store 3 flattened matrices as opposed to 

https://Amazon.com
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a single tensor. However, in return, our algorithm only requires two sparse matrix-

vector multiplications, making DFacTo easy to implement using any standard sparse 

linear algebra library. Therefore, there are two merits of using our algorithm: 1) 

computations are distributed in a natural way; and 2) only standard operations are 

required. 

2.2 Notation and Preliminaries 

Our notation is standard, and closely follows [37]. Also see [36]. Lower case letters 

such as x denote scalars, bold lower case letters such as x denote vectors, bold upper 

case letters such as X represent matrices, and calligraphic letters such as X denote 

three-dimensional tensors. 

The i-th element of a vector x is written as xi. In a similar vein, the (i, j)-th entry 

of a matrix X is denoted as xi,j and the (i, j, k)-th entry of a tensor X is written as 

xi,j,k. Furthermore, xi,: (resp. x:,i) denotes the i-th row (resp. column) of X. We will 

use XΩ,: (resp. X:,Ω) to denote the sub-matrix of X which contains the rows (resp. 

columns) indexed by the set Ω. For instance, if Ω = {2, 4}, then XΩ,: is a matrix which 

contains the second and fourth rows of X. Extending the above notation to tensors, 

we will write Xi,:,:, X:,j,: and X:,:,k to respectively denote the horizontal, lateral and 

frontal slices of a third-order tensor X. The column, row, and tube fibers of X are 

given by x:,j,k, xi,:,k, and xi,j,: respectively. 

Sometimes a matrix or tensor may not be fully observed. We will use ΩX or ΩX 

respectively to denote the set of indices corresponding to the observed (or equivalently 

non-zero) entries in a matrix X or a tensor X. Extending this notation, ΩX (resp. ΩX )i,: :,j 

denotes the set of column (resp. row) indices corresponding to the observed entries 

in the i-th row (resp. j-th column) of X. We define ΩX , ΩX , and ΩX analogouslyi,:,: :,j,: :,:,k 

as the set of indices corresponding to the observed entries of the i-th horizontal, j-th 

lateral, or k-th frontal slices of X. Also, nnzr(X) (resp. nnzc(X)) denotes the number 

of rows (resp. columns) of X which contain at least one non-zero element. 
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X⊤ denotes the transpose, X† denotes the Moore-Penrose pseudo-inverse, and 

∥X∥ (resp. ∥X∥) denotes the Frobenius norm of a matrix X (resp. tensor X) [67]. 

Given a matrix A ∈ Rn×m, the linear operator vec(A) yields a vector x ∈ Rnm, which 

is obtained by stacking the columns of A. On the other hand, given a vector x ∈ Rnm, 

the operator unvec(n,m)(x) yields a matrix A ∈ Rn×m. 

A ⊗ B denotes the Kronecker product, A ⊙ B the Khatri-Rao product, and A ∗ B 

the Hadamard product of matrices A and B. The outer product of vectors a and b 

is written as a ◦ b (see e.g., [68]). Definitions of these standard matrix products can 

be found in Appendix A.1: 

2.2.1 Flattening Tensors 

Just like the vec(·) operator flattens a matrix, a tensor X may also be unfolded 

or flattened into a matrix in three ways namely by stacking the horizontal, lateral, 

and frontal slices. We use Xn to denote the n-mode flattening of a third-order tensor 

X ∈ RI×J×K ; X1 is of size I × JK, X2 is of size J × KI, and X3 is of size K × IJ . 

The following relationships hold between the entries of X and its unfolded versions: 

1 2 3 xi,j,k = xi,j+(k−1)J = xj,k+(i−1)K = xk,i+(j−1)I . (2.3) 

We can view X1 as consisting of K stacked frontal slices of X, each of size I × J . 

Similarly, X2 consists of I slices of size J × K and X3 is made up of J slices of size 

K × I. If we use Xn,m to denote the m-th slice in the n-mode flattening of X, then 

observe that the following holds: 

1 1,k 2 2,i 3 3,jxi,j+(k−1)J = xi,j , xj,k+(i−1)K = xj,k, xk,i+(j−1)I = xk,i . (2.4) 

One can state a relationship between the rows and columns of various flattenings 

of a tensor, which will be used to derive our distributed tensor factorization algorithm 

in Section 2.3. 
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Lemma 2.2.1 Let (n, n ′ ) ∈ {(2, 1), (3, 2), (1, 3)}, and let Xn and Xn ′ be the n and 

n ′-mode flattening respectively of a tensor X. Moreover, let Xn,m be the m-th slice in 
′ ′ ′ nXn, and x be the m-th row of Xn . Then, vec(Xn,m) = xn .m,: m,: 

Proof Using (2.3) and (2.4), we can write 

3 1,k 1 = xxk,i+(j−1)I = xi,j i,j+(k−1)J . 

The result for (n, n ′ ) = (1, 3) follows directly from (A.7) by letting k = m. For other 
′values of n and n , the arguments are analogous. 

2.3 DFacTo 

Recall that the main challenge of implementing ALS or GD for solving tensor 

factorization lies in multiplying a matricized tensor and a Khatri-Rao product of two 

matrices: X1 (C ⊙ B)1 . If B is of size J × R and C is of size K × R, explicitly 

forming (C ⊙ B) requires O(JKR) memory and is infeasible when J and K are 

large. This is called the intermediate data explosion problem in the literature [3]. The 

lemma below will be used to derive our efficient algorithm, which avoids this problem. 

Although the proof can be inferred using results in [37], we give an elementary proof 

for completeness. 

Lemma 2.3.1 The r-th column of X1 (C ⊙ B) can be computed as 

[ ] [ (( )⊤ 
)]⊤ 

X1 (C ⊙ B) 
:,r 

= unvec(K,I) X2 b:,r c:,r (2.5) 

Proof We need to show that ⎡ ⎤ 
b⊤ X2,1 [ ] [ (( )⊤ 

)]⊤ ⎢⎢ :,r 
. 

c:,r ⎥⎥ 
.X1 (C ⊙ B) 

:,r 
= unvec(K,I) X2 b:,r c:,r = ⎢⎣ 

. ⎥⎦ 
. 

b⊤ X2,I 
:,r c:,r 

1We mainly concentrate on the update to A since the updates to B and C are analogous. 
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Or equivalently it suffices to show that [X1 (C ⊙ B)]i,r = b: 
⊤ 
,r X

2,i c:,r. Using (A.9) 

( ) ( ) ( )
b⊤ X2,i ⊤ X2,ivec :,r c:,r = c:,r ⊗ b: 

⊤ 
,r vec . (2.6) 

Observe that b⊤ 
:,r X

2,i c:,r is a scalar. Moreover, using Lemma 2.2.1 we can write 

1vec (X2,i) = xi,:. This allows us to rewrite the above equation as 

( )⊤ [ ]
X2,i 1b⊤ c:,r = x (c:,r ⊗ b:,r) = X1 (C ⊙ B) 

i,r 
,:,r i,: 

which completes the proof. 

Unfortunately, a naive computation of [X1 (C ⊙ B)]:,r by using (2.5) does not solve 

the intermediate data explosion problem. This is because (X2)
⊤ 
b:,r produces a KI 

dimensional vector, which is then reshaped by the unvec(K,I)(·) operator into a K × 

I matrix. However, as the next lemma asserts, only a small number of entries of 

(X2)
⊤ 
b:,r are non-zero. 

For convenience, let a vector produced by (X2)⊤b:,r be b:,r and a matrix produced 

by 
[
unvec(K,I)(b:,r)

]⊤ be Mr. 

Lemma 2.3.2 The number of non-zeros in b:,r is at most nnzr((X2)⊤) and nnzc(X2). 

Proof Multiplying an all-zero row in (X2)⊤ and b:,r produces zero. Therefore, the 

number of non-zeros in b:,r is equal to the number of rows in (X2)⊤ that contain at 

least one non-zero element. Also, by definition, nnzr((X2)⊤) is equal to nnzc(X2). 

As a consequence of the above lemma, we only need to explicitly compute the non-[ ]⊤zero entries of b:,r. However, the problem of reshaping b:,r via the unvec(K,I)(·) 

operator still remains. The next lemma shows how to overcome this difficulty. 

Lemma 2.3.3 The location of the non-zero entries of Mr depends on (X2)⊤ and is 

independent of b:,r. 

Proof The product of the (k+(i−1)K)-th row of (X2)⊤ and b:,r is the (k+(i−1)K)-

th element of b:,r. And, this element is the (i, k)-th entry of Mr by definition of 
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[ ]⊤ 
unvec(K,I)(·) . Therefore, if all the entries in the (k + (i − 1)K)-th row of (X2)⊤ 

are zero, then the (i, k)-th entry of Mr is zero regardless of b:,r. Consequently, the 

location of the non-zero entries of Mr is independent of b:,r, and is only determined 

by (X2)⊤. 

Given X one can compute (X2)⊤ to know the locations of the non-zero entries of Mr. 

In other words, we can infer the non-zero pattern and therefore preallocate memory for 

Mr. We will show below how this allows us to perform the 
[
unvec(K,I)(·)

]⊤ operation 

for free. 

Recall the Compressed Sparse Row (CSR) Format, which stores a sparse matrix 

as three arrays namely values, columns, and rows. Here, values represents the non-

zero values of the matrix; while columns stores the column indices of the non-zero 

values. Also, rows stores the indices of the columns array where each row starts. For 

example, if a sparse matrix Mr is ⎡ ⎤ 
1 0 2 

Mr = ⎣ ⎦ , 
0 3 4 

then the CSR of Mr is 

[ ]
value(Mr) = 1 2 3 4 [ ]

col(Mr) = 0 2 1 2 [ ]
row(Mr) = 0 2 4 . 

Different matrices with the same sparsity pattern can be represented by simply chang-

ing the entries of the value array. For our particular case, what this means is that we 

can pre-compute col(Mr) and row(Mr) and pre-allocate value(Mr). By writing the 

non-zero entries of b:,r into value(Mr) we can “reshape” b:,r into Mr. 

Let the matrix with all-zero rows in (X2)⊤ removed be (X̂ 2)⊤. Then, Algorithm 1 

shows the DFacTo algorithm for computing N := X1 (C ⊙ B). Here, the input values 
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are (X̂ 2)⊤, B, C, and Mr preallocated in CSR format. By storing the results of the 

product of (X̂ 2)⊤ and b:,r directly into value(Mr), we can obtain Mr because Mr 

was preallocated in the CSR format. Then, the product of Mr and c:,r yields the r-th 

column of N. We obtain the output N by repeating these two sparse matrix-vector 

products R times. 

Algorithm 1: DFacTo algorithm for Tensor Factorization 

1 Input: (X̂ 2)⊤, B, C, value(Mr) col(Mr), row(Mr) 
2 Output: N 
3 while r=1, 2,…, R do 
4 value(Mr) ← (X̂ 2)⊤ b:,r 

← Mr5 n:,r c:,r 

6 end 

Algorithm 2: DFacTo(ALS) algorithm for Tensor Factorization 

1 Input: X1, X2, X3 

2 Initialize: A, B, C 
3 while stopping criterion not met do 
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 end 

while r=1, 2,…, R do ( )⊤⊤ 
n:,r ← unvec(K,I) (X2) b:,r c:,r 

end ( )−1 
A ← N C⊤C ∗ B⊤B 
Normalize columns of A 
while r=1, 2,…, R do ( )⊤⊤ 

n:,r ← unvec(I,J) (X3) c:,r a:,r 

end ( )−1 
B ← N A⊤A ∗ C⊤C 
Normalize columns of B 
while r=1, 2,…, Right do ( )⊤⊤ 

n:,r ← unvec(J,K) (X1) a:,r b:,r 

end ( )−1 
C ← N B⊤B ∗ A⊤A 
Normalize columns of C 
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It is immediately obvious that using the above lemmas to compute N requires no 

extra memory other than storing Mr, which contains at most nnzc(X2) ≤ ΩX non-

zero entries. Therefore, we completely avoid the intermediate data explosion problem. 

Moreover, the same subroutine can be used for both ALS and GD. The ALS and GD 

algorithms of the DFacTo model is summarized in Algorithms 2 and 3. We can solve 

the problem of overfitting by adding a λI term in C⊤C ∗ B⊤B, A⊤A ∗ C⊤C, and 

B⊤B ∗ A⊤A of Algorithms 2 (lines 7, 12, 17) and 3 (lines 7, 11, 15). 

2.3.1 Distributed Memory Implementation 

Our algorithm is easy to parallelize using a master-slave architecture of MPI(Message 

Passing Interface). At every iteration, the master transmits A, B, and C to the slaves. 

Algorithm 3: DFacTo(GD) algorithm for Tensor Factorization 

1 Input: X1, X2, X3 

2 Initialize: A, B, C 
3 while stopping criterion not met do 
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

while r=1, 2,…, R do 
n:,r ← unvec(K,I)((X

2)⊤b:,r)
⊤ c:,r 

end ( )
∇A ← N + A C⊤C ∗ B⊤B 
while r=1, 2,…, R do ( )⊤⊤ 

n:,r ← unvec(I,J) (X3) c:,r a:,r 

end ( )
∇B ← N + B A⊤A ∗ C⊤C 
while r=1, 2,…, Right do ( )⊤⊤ 

n:,r ← unvec(J,K) (X1) a:,r b:,r 

end ( )
∇C ← N + C B⊤B ∗ A⊤A 
α ← Linesearch(A, B, C, ∇A, ∇B, ∇C) 
A ← A − α∇A 
B ← B − α∇B 
C ← C − α∇C 

20 end 
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The slaves hold a fraction of the rows of X2 using which a fraction of the rows of N 

is computed. By performing a synchronization step, the slaves can exchange rows of 

N. In ALS, this N is used to compute A which is transmitted back to the master. 

Then, the master updates A, and the iteration proceeds. In GD, the slaves transmit 

N back to the master, which computes ∇A. Then, the master computes the step size 

by a line search algorithm, updates A, and the iteration proceeds. 

2.3.2 Complexity Analysis 

( )
A naive computation of N requires JK + ΩX R flops; forming C ⊙ B requires 

JKR flops and performing the matrix-matrix multiplication X1 (C ⊙ B) requires ( )
ΩX R flops. Our algorithm requires only nnzc(X2) + ΩX R flops; ΩX R flops 

for computing b:,r and nnzc(X2)R flops for computing Mrc:,r. Note that, typically, 

nnzc(X2) ≪ both JK and ΩX (see Table 2.1). In terms of memory, the naive algo-

rithm requires O(JKR) extra memory, while our algorithm only requires nnzc(X2) 

extra space to store Mr. 

2.3.3 Related Work 

Two papers that are most closely related to our work are the GigaTensor algo-

rithm proposed by [3] and the Sparse Tensor Toolbox of [2]. As discussed above, both 

algorithms attack the problem of computing N efficiently. In order to compute n:,r,( )
GigaTensor computes two intermediate matrices N1 := X1 ∗ 1I ⊙ (c:,r ⊗ 1J )

⊤ and ( )
N2 := bin (X1) ∗ 1I ⊙ (1K ⊗ b:,r)

⊤ . Next, N3 := N1 ∗ N2 is computed, and n:,r 

is obtained by computing N3 1JK . As reported in [3], GigaTensor uses 2 ΩX extra 

storage and 5 ΩX flops to compute one column of N. The Sparse Tensor Toolbox 

stores a tensor as a vector of non-zero values and a matrix of corresponding indices. 

Entries of B and C are replicated appropriately to create intermediate vectors. A 

Hadamard product is computed between the non-zero entries of the matrix and inter-

mediate vectors, and a selected set of entries are summed to form columns of N. The 
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algorithm uses 2 ΩX extra storage and 5 ΩX flops to compute one column of N. 

See Appendix A.4 for a detailed illustrative example which shows all the intermediate 

calculations performed by our algorithm as well as the algorithm of [3] and [2]. 

Also, [66] suggests the gradient-based optimization of CANDECOMP/PARAFAC 

(CP) using the same method as [2] to compute X1 (C ⊙ B). [66] refers to this gradient-

based optimization algorithm as CPOPT and the ALS algorithm of CP using the 

method of [2] as CPALS. Following [66], we use these names, CPALS and CPOPT. 

2.4 Experimental Evaluation 

Our experiments are designed to study the scaling behavior of DFacTo on both 

publicly available real-world datasets as well as synthetically generated data. We con-

trast the performance of DFacTo (ALS) with GigaTensor [3] as well as with CPALS [2], 

while the performance of DFacTo (GD) is compared with CPOPT [66]. We also 

present results to show the scaling behavior of DFacTo when data is distributed 

across multiple machines. 

Datasets See Table 2.1 for a summary of the real-world datasets we used in our 

experiments. The NELL-1 and NELL-2 datasets are from [3] and consists of (noun 

phrase 1, context, noun phrase 2) triples from the “Read the Web” project [41]. 

NELL-2 is a version of NELL-1, which is obtained by removing entries whose values 

are below a threshold. 

The Yelp Phoenix dataset is from the Yelp Data Challenge 2, while Cellartracker, 

Ratebeer, Beeradvocate and Amazon.com are from the Stanford Network Analysis 

Project (SNAP) home page. All these datasets consist of product or business reviews. 

We converted them into a users × items × words tensor by first splitting the text 

into words, removing stop words, using Porter stemming [69], and then removing 

user-item pairs which did not have any words associated with them. In addition, for 

the Amazon.com dataset we filtered words that appeard less than 5 times or in fewer 
2https://www.yelp.com/dataset_challenge/dataset 

https://2https://www.yelp.com/dataset_challenge/dataset
https://Amazon.com
https://Amazon.com
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than 5 documents. Note that the number of dimensions as well as the number of 

non-zero entries reported in Table 2.1 differ from those reported in [39] because of 

our pre-processing. 

Table 2.1.: Summary statistics of the datasets used in our experiments. 

Dataset I J K X̂Ω nnzc(X1) nnzc(X2) nnzc(X3) 

Yelp 46.0K 11.5K 84.5K 9.9M 4.3M 6.1M 229.8K 
Cellartracker 36.5K 412.4K 163.5K 25.0M 19.2M 5.9M 1.3M 

NELL-2 12.1K 9.2K 28.8K 76.9M 16.6M 21.5M 337.4K 
Beeradvocate 33.4K 66.1K 204.1K 78.8M 19.0M 12.1M 1.6M 

Ratebeer 29.1K 110.3K 294.0K 77.1M 22.4M 7.8M 2.9M 
NELL-1 2.9M 2.1M 25.5M 143.7M 113.3M 119.1M 17.4M 
Amazon 6.6M 2.4M 1.7M 1.2B 525.3M 389.6M 29.9M 

We also generated the following two kinds of synthetic data for our experiments: 

• the number of non-zero entries in the tensor is held fixed but we vary I, J , and 

K. 

• the dimensions I, J , and K are held fixed but the number of non-zeros entries 

varies. 

To simulate power law behavior, both the above datasets were generated using the 

following preferential attachment model [70]: the probability that a non-zero entry is 

added at index (i, j, k) is given by pi ×pj ×pk, where pi (resp. pj and pk) is proportional 

to the number of non-zero entries at index i (resp. j and k). 

Implementation and Hardware All experiments were conducted on a comput-

ing cluster where each node has two 2.1 GHz 12-core AMD 6172 processors with 48 

GB physical memory per node. Our algorithms are implemented in C++ using the 

Eigen library3 and compiled with the Intel Compiler. We downloaded Version 2.5 of 

the Tensor Toolbox, which is implemented in MATLAB4. Since open source code for 
3http://eigen.tuxfamily.org
4http://www.sandia.gov/~tgkolda/TensorToolbox/ 

http://eigen.tuxfamily.org
http://www.sandia.gov/~tgkolda/TensorToolbox/
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GigaTensor is not freely available, we developed our own version in C++ following 

the description in [3]. Also, we used MPICH25 in order to distribute the tensor factor-

ization computation to multiple machines. All our codes are available for download 

under an open source license from http://www.joonheechoi.com/research. 

Scaling on Real-World Datasets Both CPALS and our implementation of Gi-

gaTensor are uni-processor codes. Therefore, for this experiment we restricted our-

selves to datasets which can fit on a single machine. When initialized with the same 

starting point, DFacTo and its competing algorithms will converge to the same so-

lution. Therefore, we only compare the CPU time per iteration of the different 

algorithms. The results are summarized in Table 2.2. On many datasets DFacTo 

(ALS) is around 5 times faster than GigaTensor and 10 times faster than CPALS; 

the differences are more pronounced on the larger datasets. Also, DFacTo (GD) is 

around 4 times faster than CPOPT. 

Table 2.2.: Times per iteration (in seconds) of DFacTo (ALS), GigaTensor, CPALS, 
DFacTo (GD), and CPOPT on datasets which can fit in a single machine (R=10). 

Dataset DFacTo (ALS) GigaTensor CPALS DFacTo (GD) CPOPT 
Yelp Phoenix 9.52 26.82 46.52 13.57 45.9 
Cellartracker 23.89 80.65 118.25 35.82 130.32 

NELL-2 32.59 186.30 376.10 80.79 386.25 
Beeradvocate 43.84 224.29 364.98 94.85 481.06 

Ratebeer 44.20 240.80 396.63 87.36 349.18 
NELL-1 322.45 772.24 - 742.67 -

The differences in performance between DFacTo (ALS) and CPALS and between 

DFacTo (GD) and CPOPT can partially be explained by the fact that DFacTo (ALS, 

GD) is implemented in C++ while CPALS and CPOPT use MATLAB. However, it 

must be borne in mind that both MATLAB and our implementation use an optimized 

BLAS library to perform their computationally intensive numerical linear algebra 

operations. 
5http://www.mpich.org/static/downloads/ 

http://www.joonheechoi.com/research
http://www.mpich.org/static/downloads/
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Compared to the Map-Reduce version implemented in Java and used for the ex-

periments reported in [3], our C++ implementation of GigaTensor is significantly 

faster and more optimized. As per [3], the Java implementation took approximately 

10,000 seconds per iteration to handle a tensor with around 109 non-zero entries, when 

using 35 machines. In contrast, the C++ version was able to handle one iteration 

of the ALS algorithm on the NELL-1 dataset on a single machine in 772 seconds. 

However, because DFacto (ALS) uses a better algorithm, it is able to handsomely 

outperform GigaTensor and only takes 322 seconds per iteration. 

Also, the execution time of DFacTo (GD) is longer than that of DFacTo (ALS) 

because DFacTo (GD) spends more time on the line search algorithm to obtain an 

appropriate step size. 

Scaling across Machines Our goal is to study scaling behavior of the time per 

iteration as datasets are distributed across different machines. Towards this end we 

worked with two datasets. NELL-1 is a moderate-size dataset which our algorithm 

can handle on a single machine, while Amazon is a large dataset which does not fit 

on a single machine. Table 2.3 shows that the iteration time decreases as the number 

of machines increases on the NELL-1 and Amazon datasets. While the decrease in 

iteration time is not completely linear, the computation time excluding both synchro-

nization and line search time decreases linearly. The Y-axis in Figure 2.2 indicates 

T4/Tn where Tn is the single iteration time with n machines on the Amazon dataset. 

Synthetic Data Experiments We perform two experiments with synthetically 

generated tensor data. In the first experiment we fix the number of non-zero entries 

to be 106 and let I = J = K and vary the dimensions of the tensor. For the second ex-

periment we fix the dimensions and let I = J = K and the number of non-zero entries 

is set to be 2I. The scaling behavior of the three algorithms on these two datasets 

is summarized in Table 2.4. Since we used a preferential attachment model to gen-

erate the datasets, the non-zero indices exhibit a power law behavior. Consequently, 

the number of columns with non-zero elements (nnzc(·)) for X1, X2 and X3 is very 
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Table 2.3.: Total Time and CPU time per iteration (in seconds) as a function of 
number of machines for the NELL-1 and Amazon datasets (R=10). 

DFacTo (ALS) DFacTo (GD) 
NELL-1 Amazon NELL-1 Amazon 

Machines Iter. CPU Iter. CPU Iter. CPU Iter. CPU 
1 322.45 322.45 - - 742.67 104.23 - -
2 205.07 167.29 - - 492.38 55.11 - -
4 141.02 101.58 480.21 376.71 322.65 28.55 1143.7 127.57 
8 86.09 62.19 292.34 204.41 232.41 16.24 727.79 62.61 
16 81.24 46.25 179.23 98.07 178.92 9.70 560.47 28.61 
32 90.31 34.54 142.69 54.60 209.39 7.45 471.91 15.78 

(a) DFacTo(ALS) (b) DFacTo(GD) 

Fig. 2.2.: The scalability of DFacTo with respect to the number of machines on the 
Amazon dataset 

close to the total number of non-zero entries in the tensor. Therefore, as predicted 

by theory, DFacTo (ALS, GD) does not enjoy significant speedups when compared 

to GigaTensor, CPALS and CPOPT. However, it must be noted that DFacto (ALS) 

is faster than either GigaTensor or CPALS in all but one case and DFacTo (GD) is 

faster than CPOPT in all cases. We attribute this to better memory locality which 

arises as a consequence of reusing the memory for N as discussed in Section 2.3. 

Rank Variation Experiments Table 2.5 shows the time per iteration on various 

ranks (R) with the NELL-2 dataset. We see that the computation time of our al-
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Table 2.4.: Time per iteration (in seconds) on synthetic datasets (non-zeros = 106 or 
2I, R=10) 

DFacTo DFacTo 
I = J = K Non-zeros GigaTensor CPALS CPOPT(ALS) (GD) 

104 106 1.14 2.80 5.10 2.32 5.21 
105 106 2.72 6.71 6.11 5.87 11.70 
106 106 7.26 11.86 16.54 16.51 29.13 
107 106 41.64 38.19 175.57 121.30 202.71 
104 2 · 104 0.05 0.09 0.52 0.09 0.57 
105 2 · 105 0.92 1.61 1.50 1.81 2.98 
106 2 · 106 12.06 22.08 15.84 21.74 26.04 
107 2 · 107 144.48 251.89 214.37 275.19 324.2 

gorithm increases lineraly in R like the time complexity analyzed in Section 2.3.2. 

Table 2.5.: Time per iteration (in seconds) on various R 

R 5 10 20 50 100 200 500 
NELL-2 15.84 31.92 58.71 141.43 298.89 574.63 1498.68 

2.5 Discussion and Conclusion 

We presented a technique for significantly speeding up the Alternating Least 

Squares (ALS) and the Gradient Descent (GD) algorithm for tensor factorization by 

exploiting properties of the Khatri-Rao product. Not only is our algorithm, DFacto, 

computationally attractive, but it is also more memory efficient compared to existing 

algorithms. Furthermore, we presented a strategy for distributing the computations 

across multiple machines. 

We hope that the availability of a scalable tensor factorization algorithm will 

enable practitioners to work on more challenging tensor datasets, and therefore lead 

to advances in the analysis and understanding of tensor data. Towards this end we 
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intend to make our code freely available for download under a permissive open source 

license. 

Although we mainly focused on tensor factorization using ALS and GD, it is worth 

noting that one can extend the basic ideas behind DFacTo to other related problems 

such as joint matrix completion and tensor factorization. We presented such a model 

in Section A.5. In fact, we believe that this joint matrix completion and tensor 

factorization model by itself is somewhat new and interesting in its own right, despite 

its resemblance to other joint models including tensor factorization such as [71]. In our 

joint model, we are given a user × item ratings matrix Y, and some side information 

such as a user × item × words tensor X. Preliminary experimental results suggest 

that jointly factorizing Y and X outperforms vanilla matrix completion. 
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3. COMPARISON OF ADMM ALGORITHMS FOR 

NOISY NON-NEGATIVE MATRIX FACTORIZATION 

3.1 Introduction 

3.1.1 Non-negative Matrix Factorization 

We consider the classical non-negative matrix factorization problem with a special 

concern about the noise present in the observation. More precisely, we assume that 

for a given pair of matrices W ∈ RM×R and H ∈ RR×N , the observation model is 

given by 

Y = WH + η, (3.1) 

where Y ∈ RM×N is the observed data, and η is a zero-mean iid Gaussian noise 

matrix with variance σ2. Here, the dimension R specifies the number of columns of 

W (also the number of rows of H) on which the rank of the observation model is 

defined. 

Non-negative matrix factorization has important applications in computer vision 

[72], recommendation system [73], remote sensing [74], and hyperspectral imaging 

[75]. In this chapter, we are primarily interested in using non-negative factorization 

to identify chemical signatures from stimulated Raman scattering (SRS) imaging 

data [76]. In chemometrics, such process is widely known as the multivariate curve 

resolution (MCR) technique [77]. 

Given the observation model in (3.1), non-negative matrix factorization is typically 

posed as a minimization problem 

minimize 
1 ∥Y − WH∥2 

F , (3.2)
W ≥0,H≥0 2 



32 

where the goal is to minimize the ℓ2-norm of the residue between the observed data 

Y and the predicted data WH . In the absence of noise, (3.2) can be solved by 

a multiplicative algorithm [4], the alternating least-squares method [78], or more 

recently the alternating direction method of multiplier (ADMM) [11]. However, it 

should be reminded that since (3.2) is a non-convex problem, there is in general no 

guarantee of global optimality except under some restrictive conditions [79]. 

3.1.2 Problem Statement 

The focus of this chapter is to perform non-negative matrix factorization in the 

presence of η. When η is present, solving (3.2) is inadequate to return a pair of clean 

(W , H). In this case, a common wisdom is to consider some regularization functions 

on W and H and turn the problem into 

minimize 
1 ∥Y − WH∥2 

F + λf(W , H), (3.3)
W ≥0,H≥0 2 

where f(W , H) is the regularization on W and H , and λ is the associated parameter. 

For example, one may choose f(W , H) = ∥W ∥2 
F + ∥H∥2 

F to constrain the energy of 

W and H [75], or use the spectral total variation regularization [80]- [81] 

minimize 
1 ∥Y − WH∥2 

F + λ∥WH∥ST V , (3.4)
W ≥0,H≥0 2 

which we shall discuss in Section 3.2 of this chapter. The price we have to pay, of 

course, is that (3.3) is often more difficult than (3.2). 

Our primary concern of this chapter is how to solve (3.4) efficiently. Readers 

who are familiar with total variation may probably recognize that (3.4) is a vari-

ant of the total variation minimization, which suggests that we can use the ADMM 

algorithm. However, as we will discuss in this chapter, the way we setup the aug-

mented Lagrangian function for the ADMM algorithm has some drastic influence on 

the performance, even if they are derived from the same procedure. 
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3.1.3 Contributions 

The majority of the previous work on non-negative matrix factorization has been 

focusing on proposing new algorithms to solve (3.2) [4]- [11], with some others on 

finding better f(W , H) in (3.3) [82]- [83]. While we also have these two goals in 

mind, we put extra emphasis on the analysis of when the ADMM algorithm works 

and when it does not work. The importance of such analysis is that it informs us the 

proper design of the ADMM algorithm for some non-convex problems. There are two 

contributions of this chapter. 

First, we discuss four types of algorithms that can be derived for solving (3.4). We 

show that each one is a variant of ADMM, and we comment on where they were used 

in the literature. Second, we provide numerical evidence that some performs well but 

some performs badly. We provide our preliminary understanding of the situation. 

The rest of the chapter is organized in the following way. In Section 3.2 we 

discuss the spectral total variation (3.4) in some details. Then, in Section 3.3 we 

discuss various possible ways of solving (3.4) using the ADMM algorithm. Since 

none of these algorithms can guarantee global optimum, in Section 3.4 we study their 

empirical behavior on some synthetic datasets. A discussion and conclusion is given 

in Section 3.5. 

3.2 Background 

In this section we provide a brief discussion of the spectral total variation defined in 

(3.4), and a quick review of the ADMM algorithm. For notation simplicity, we define 

the operations ten(·), mat(·) and vec(·) for a tensor X , its matrix representation 

X ∈ RMN×K , and vector representation x ∈ RMNK×1 as 

X = ten(X), X = mat(x) and x = vec(X ). 
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Moreover, whenever an inner product is needed, we write 

def
XT Y = vec(X )T vec(Y). 

3.2.1 Spectral Total Variation 

We define the (anisotropic) spectral total variation of X as 

∥X∥ST V = βx∥Dxx∥1 + βy∥Dyx∥1 + βz∥Dzx∥1, (3.5) 

where (Dx, Dy, Dz) are the forward finite-difference operators along the horizontal, 

vertical and temporal directions, with parameters (βx, βy, βz), respectively. ∥X∥ST V 

generalizes conventional total variation to multiple dimensions [81]. 

To illustrate the effectiveness of the STV on real data, we consider a stimulated 

Raman scattering image of size 512 × 512 × 80 for a cell. The image shown on the 

left hand side is the center 128 × 128 portion of the 45th frame of the product WH 

where W and H are results of (3.2) with R = 8. It can be seen that the predicted 

observation WH remains noisy, although the rank we posed on the problem is small. 

In the same figure we also show the result of solving (3.4) using Algorithm 4. It is 

evident from the result that the STV reduces a significant amount of noise in the 

data. 

3.2.2 ADMM Algorithm 

ADMM algorithm solves constrained optimization problems of the following form: 

minimize f(x) + g(y), subject to Ax + By = c. (3.6) 
x,y 
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(a) Input (b) Solution of (3.2) (c) Solution of (3.4) 

Fig. 3.1.: Non-negative matrix factorization with and without regularization. Here 
we show the product of the solution WH . 

To solve (3.6), we consider the augmented Lagrangian function 

L(x, y, z) = f(x) + g(y) + z T (Ax + By − c) + (ρ/2)∥Ax + By − c∥2 , (3.7) 

and solve for x, y, z alternatively via the procedure 

(k+1) (k)x = argmin L(x, y , z(k)), (3.8a) 
x 

(k+1) (k+1)y = argmin L(x , y, z(k)), (3.8b) 
y ( )

(k+1) (k) Ax(k+1) + By(k+1) − cz = z + ρ . (3.8c) 

Under mild conditions, e.g., when f(·) is strongly convex and g(·) is convex, the 

convergence of the algorithm is guaranteed [84]. 

One common engineering question about using ADMM is how to convert a given 

optimization problem (e.g., (3.4)) into the form of (3.6). Of course, the basic re-

quirement is that the re-formulated problem (i.e., (3.6)) should be equivalent to the 

original problem at the optimal solution. However, there are usually multiple ways of 

re-formulating the problem by choosing different combinations of (A, B, c) in (3.6). 

In what follows we will discuss several possible options of the ADMM. 
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3.3 Variations of ADMM Algorithms 

In this section we present four versions of ADMM to solve (3.4). 

3.3.1 Single Variable Split 

The first method we consider is to define an intermediate variable Z and solve for 

minimize 
W ≥0,H≥0,Z 

1 ∥Y − W H∥2 
F + λ∥Z∥ST V 

2 
(3.9) 

subject to W H − Z = 0. 

cc 

We call this method the single variable split, as it converts the original problem in 

(3.4) into the form of (3.6) by using one variable Z. Such approach is very com-

mon in compressive sensing literature [84], where one converts problems of the form 

minx ∥y − Ax∥2 + λ∥x∥1 into minx,z ∥y − Ax∥2 + λ∥z∥1, subject to z = x. 

To solve (3.9), we consider the augmented Lagrangian function 

L(W , H , Z, V ) = 
1 ∥Y − WH∥2 

F + λ∥Z∥ST V 
2 

+ V T (WH − Z) + 
ρ ∥WH − Z∥2 

F , (3.10) 

c
b 

2 

c 

where V is the Lagrangian multiplier. Then, we solve the following subproblems 

alternatively: 

W , H) = argmin 
1 ∥Y −WH∥F 

2 + V T (WH − Z) + 
ρ ∥WH −Z∥F 

2 (3.11a) 

Z W 

( 
2 2W ≥0,H≥0 

argmin λ∥Z∥ST V + V T (WH − Z) + 
ρ (3.11b)∥= H −Z∥2 

F2Z ccbV W 

Since (3.11a) is quadratic, we can show the following result. 

(3.11c)V + ρ( H − Zb).= 







 




■ 
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Proposition 3.3.1 The optimization problem in (3.11a) is equivalent to 

1 Y + ρZ − V 2 

( c cW , H) = argmin WH − . (3.12)
2 1 + ρW ≥0,H≥0 F 

Proof By completing squares. 

The result of Proposition 3.3.1 is in the same form as (3.2). Since (3.2) is the standard 

non-negative matrix factorization problem, we can solve (3.12) using an existing NMF 

solver. We also note that the problem (3.11b) is a standard STV minimization, which 

can be solved using an existing package [81]. To summarize the single variable split 

method, we show the algorithm in Algorithm 4. Here, we increase the parameter ρ 

by γρ to ensure convergence, where γ > 1. 

Algorithm 4: Single Variable Split 
1 while not converge do 
2 (W , H) ← Solve (3.12) 
3 Z ← Solve (3.11b) 
4 V ← V + ρ(WH − Z) 
5 ρ ← γρ 
6 end 

3.3.2 Multiple Variable Split 

The second method we consider is to introduce multiple intermediate variables to 

handle both WH and the STV of WH simultaneously. To simplify our notations 

we shall consider one D instead of (Dx, Dy, Dz), and set β = 1. The difference 

between multiple variable split and single variable split is the number of intermediate 

variables we defined in the ADMM algorithm. 

We write (3.4) as the following constrained problem: 
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minimize 
1 ∥Y − WH∥2 

F + λ∥x∥1 (3.13)
W ,H,Z,x,W+,H+ 2 

subject to WH − Z = 0, Dz − x = 0, 

W = W+, H = H+, W+ ≥ 0, H+ ≥ 0. 

The first constraints in (3.13) is the same as the constraint in (3.9), which is to 
defsubstitute WH . The second constraint is ensure that ∥x∥1 = ∥Dz∥1 = ∥Z∥ST V . 

The third and the fourth constraints are used to ensure non-negativity of W and H . 

The augmented Lagrangian function of (3.13) is 

L(W , H , Z, x, W+, H+, V , u, P , Q) 

=
1 ∥Y − WH∥2 

F + λ∥x∥1 + V T (WH − Z) + 
ρ ∥WH − Z∥2 

F2 2 
µ α1 

+ u T (Dz − x) + ∥Dz − x∥2 
F + P T (W − W+) + ∥W − W+∥2 

F2 2 

+ QT (H − H+) + 
α2 ∥H − H+∥2 

F , (3.14)
2 

where V , u, P and Q are Lagrangian multipliers, and ρ, µ, α1 and α2 are parameters. 

(3.14) has been previously used in several occasions, e.g., [11], [82], [85], (usually 

without the STV term). The intuition behind is that by splitting (3.11a) and (3.11b) 

further, we can possibly reduce some computation. Algorithm 5 summarizes the 

method after completing squares and scaling the parameters. 

3.3.3 Half Quadratic Penalty 

The third method we consider is a simple variant of the single variable split. In 

this method, we remove the update of the Lagrange multiplier V in (3.11a)-(3.11c). 

This returns us a half quadratic penalty method, which solves 

minimize 
1 ∥Y − WH∥2 

F + λ∥Z∥ST V + 
ρ ∥WH − Z∥2 

W≥0,H≥0,Z 2 2 F 
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Algorithm 5: Multiple Variable Split 
1 while not converge do 

W ← argmin 
1 ∥Y − WH∥2 

F + V T (WH − Z) + 
ρ ∥WH − Z∥2 

F 
W 2 22 

α1 
+ P T (W − W+) + ∥W − W+∥2 

F2 

H ← argmin 
1 ∥Y − WH∥2 

F + V T (WH − Z) + 
ρ ∥WH − Z∥2 

F 
H 2 23 

α2 
+ QT (H − H+) + ∥H − H+∥2 

F2 
4 Z ← argmin V T (WH − Z) + 

2 
ρ ∥WH − Z∥F 

2 + uT (Dz − x) + µ 
2 ∥Dz − x∥F 

2 

Z 

5 x ← argmin λ∥x∥1 + uT (Dz − x) + µ 
2 ∥Dz − x∥2 

F 
x 

6 W+ ← argmin P T (W − W+) + α 
2 
1 ∥W − W+∥2 

F 
W+≥0 

7 H+ ← argmin QT (H − H+) + α 
2 
2 ∥H − H+∥2 

F 
H+≥0 

8 V ← V + (WH − V ), u ← u + (Dz − x) 
9 P ← P + (W − W+), Q ← Q + (H − H+) 

10 ρ ← γρ, α1 ← γα1, α2 ← γα2, µ ← γµ. 
11 end 

by alternatingly minimizing 

( c cW , H) = argmin 
W≥0,H≥0 

1 ∥Y − WH∥2 
F + 

2 
ρ ∥WH − Z∥2 

F2 
(3.15) 

bZ = argmin λ∥Z∥ST V 
Z 

+ 
ρ ∥WH − Z∥2 

F . 2 
(3.16) 

Half quadratic minimization has been widely used in signal and image processing [86]-

[87]. Using Proposition 3.3.1, we can derive the algorithm as shown in Algorithm 6. 

Algorithm 6: Half Quadratic Penalty 

1 while not converge do 
2 

2 (W , H) ← argmin 1 WH − Y +ρZ 
2 1+ρ 

FW ≥0,H≥0 

3 Z ← Solve (3.16) 
4 ρ ← γρ 
5 end 
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3.3.4 Algorithm-induced Prior 

The fourth method we consider is a relatively new concept called algorithm-

induced prior [88], [89]. The idea is to rewrite (3.11b) as 

2 

Z WH +ccb = argmin 
ρ V 

Z 2 ρ 
− Z + λ∥Z∥ST V , (3.17) 

F 

which can be done by completing squares. (3.17) can be viewed as a denoising step 

where the observed data is WH + V /ρ, and the potential clean estimate is Z. 

The denoising perspective suggests us that we can replace ∥Z∥ST V by any other 

prior that can lead to better denoising performance. Or more aggressively, we can 

replace the entire optimization in (3.17) by an off-the-shelf denoising algorithm (which 

we call a denoiser in general): 

cc 

ccbZ ← denoiser WH + V /ρ 

Here, we use BM3D [90] as the denoiser for this problem. The overall algorithm is 

shown in Algorithm 7. 

Algorithm 7: BM3D induced prior 

( )
. 

1 while not converge do 
2 (W , H) ← Solve (3.12) 
3 Z ← BM3D (WH + V /ρ) 
4 V ← V + ρ(WH − Z) 
5 ρ ← γρ 
6 end 
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3.4 Experiments and Discussions 

3.4.1 Experimental Results 

In this experiment, we set the internal parameters as µ = 1, α1 = 100, α2 = 100, 

ρ = 0.1 and γ = 1.1. W and H are initialized with random matrices. Whenever 

total variation minimization is required, e.g., (3.11b), we use deconvtv [81] to solve, 

and whenever a NMF is needed, i.e., (3.2), we use our implementation of the ADMM 

algorithm in [11] to solve. 

To create synthetic stimulated Raman scattering data so that we can compute 

the PSNR, we acquire a 256 × 256 × 50 dimethyl sulfoxide (DMSO) solution with 

100% concentration. We then apply a standard NMF to the reshaped data, i.e., a 

65536 × 50 matrix, and limit the rank to R = 5. Denoting the decomposed matrices 

as W and H , we generate synthetic observations Y using (3.1) by setting η as zero-

mean iid Gaussian noise with standard deviation σ = {5/255, 10/255, 20/255}. The 

regularization parameter is set as λ = σ1.1. 

Non-negative matrix factorization is known to have permutation and scaling am-

biguity. Therefore, for the estimated W (and H), we compute the optimal permu-

tation P so that columns of WP would match with that of the true W . Moreover, 

we normalize W so that all values are in [0, 1]. In other words, we let 

( ) ( )c W − Wmin H − Hmin
W = P , and Hc = P ,

Wmax − Wmin Hmax − Hmin 

where Wmin and Wmax are the minimum and maximum of W . 

We show three sets of results in Table 3.1, namely, the PSNR of W , H , and 

WH . It can be seen that the multiple-variable split method is consistently the 

worst, and is significantly worse than other three methods. For single-variable split, 

half-quadratic, and algorithm-induced prior, the performance is not much different, 

although the PSNR of W and H are consistently worse than that of WH (which is 

reasonable because we only regularize WH). 
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Table 3.1.: PSNR of the algorithms at σ = 5/255, 10/255, 20/255. 

sigma 
Single 

Variable Split 
Multiple 

Variable Split 
Half Quadratic 

Penalty 
Algorithm 

induced Prior 

5 
255 

W 36.16 10.30 37.73 34.61 
H 41.01 16.15 48.57 38.54 

W H 48.35 16.62 49.02 46.21 

10 
255 

W 34.57 10.30 35.34 34.53 
H 40.61 16.13 42.77 40.52 

W H 46.32 16.71 46.22 45.91 

20 
255 

W 32.70 10.31 32.33 32.57 
H 41.01 16.09 37.93 38.85 

W H 44.94 16.93 43.98 45.07 

In Figure 3.2 we show how the PSNR of H iterates for each algorithm. Generally 

speaking, all algorithms demonstrate an improving PSNR, despite several spiky be-

havior of the single-variable split and the algorithm-induced prior. The exact reason 

of the spikes is unknown, but we suspect it is related to the non-convexity of NMF. 

3.4.2 Discussion 

The results of this experiment has two implications. First, multiple-variable split 

should be avoided, especially when the problem is non-convex. Intuitively, the key 

difference between the three methods and multiple-variable split is that the formers 

are separate denoise-then-factorize processes whereas the latter is a combined denoise-

factorize process. Since geometrically NMF is seeking support vectors that define a 

non-negative cone [91], a separate denoise-then-factorize process allows us to shrink 

the uncertainty caused by the noise before factorization. A combined denoise-factorize 

process, on the other hand, is more like to cause oscillation. 

Second, single-variable split and half-quadratic penalty have similar behavior ex-

cept that single-variable split usually converges faster due to the Lagrange multiplier. 

Algorithm-induced prior has some unpredictable behavior. This is most likely caused 

by the nonlinearity of BM3D. However, looking at the PSNR at σ = 20/255, al-
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Fig. 3.2.: PSNRs of H at every iteration. σ = 20/255. 

gorithm induced prior seems to give better WH , implying that the denoiser has a 

strong influence on high noise settings. 

3.5 Conclusion 

We studied four variants of the ADMM algorithm to analyze and compare their 

performances of non-negative matrix factorization in the presence of noise. Since 

non-negative matrix factorization is non-convex but bi-convex, i.e. convex in a ma-

trix when the other matrix fixed, one has to be careful when choosing the splitting 

strategy. We found from the experiment that the multiple-variable split can result in 

bad performance, whereas single variable split, half quadratic penalty and algorithm-

induced priors lead to similar performance. We argue that the disparity in the perfor-
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mance is caused by the extent to which the denoising part and the factorization part 

of the ADMM can reach. We also demonstrated the potential of algorithm-induced 

prior. 
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PART II 

DEEP LEARNING IMAGE DENOISING 
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4. OPTIMAL COMBINATION OF IMAGE DENOISERS 

This Chapter addresses given a set of denoisers the optimal combination with two 

modules: MSE Estimator and Booster network. It is based on a paper to be submitted 

to IEEE Transactions on Image Processing [92]. 

4.1 Introduction 

While image denoising algorithms over the past decade have produced very promis-

ing results, it is also safe to say that there is no single image denoiser can perform 

uniformly better than other denoisers. In fact, any image denoiser, either determinis-

tic [19–23] or learning-based [12–18], has an implicit prior model that determines its 

denoising characteristics. Since a particular prior model encapsulates the statistics of 

a limited set of imaging conditions, the corresponding denoiser is only an expert for 

the images that it is designed to handle. We refer to this gap between the imaging 

model and the denoising task as a model mismatch. 

Model mismatch is common in practice. The followings are three examples: 

• Denoiser Characteristic: Every denoiser has a different characteristic. For 

example, total variation assumes sparsity of the gradients, thus works well 

for piecewise constant images; BM3D [20] assumes patch reoccurrence, thus 

works well for images with repeated patterns. Figure 4.1 shows an example 

of BM3D [20] and a neural network denoiser DnCNN [16]. For Boat512, it is 

clear that DnCNN performs better. However, for Barbara512, BM3D actually 

outperforms DnCNN due to the weak oscillating pattern on the cloth, a rare 

feature that is difficult to learn. 
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(a) BM3D, 30.85dB (b) DnCNN, 31.14dB (c) Ours, 31.32dB 

(d) BM3D, 26.80dB (e) DnCNN, 26.49dB (f) Ours, 26.80dB 

Fig. 4.1.: Comparison of BM3D [20], DnCNN [16] and the proposed CsNet. 

• Noise Level: For neural network image denoisers, the performance is determined 

by the noise level under which the denoiser is trained. For example, if a denoiser 

is trained for i.i.d. Gaussian noise of standard deviation σ, it only works well 

for this particular σ. As soon as the noise level deviates, the performance will 

degrade. 

• Image Class: A denoiser could be well trained for a particular class of images 

(e.g., building), but it may not work for other classes (e.g., face). For this 

type of class-aware issue, the typical solution is by means of scene classification. 

However, scene classification itself is an open problem and there is no consensus 

of the best approach. Therefore, it would be more convenient if the denoiser 

can automatically pick a class that gives the best performance without seeking 

classification algorithms. 
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The common question underlying these examples is that if we have a set of de-

noisers, each having a different characteristic, how do we combine them to produce a 

better result? Answering this question is fundamental to designing ensembles of ex-

pert image restoration methods for complex scenes. The goal of this work is to present 

a framework called the Consensus Neural Network (CsNet) which seeks consensus by 

using neural networks and convex optimization. 

4.1.1 Related Work 

Combining estimators is a long-lasting statistical problem. In as early as 1959, 

Graybill and Deal [93] started to consider linearly combining two unbiased scalar 

estimators to yield a new estimator that remains unbiased and has lower variance. 

More properties of the such combination scheme was discussed by Samuel-Cahn [94]. 

In [95], Rubin and Weisberg extended the idea by estimating weights from the sam-

ples. However, the estimators are still scalars and are assumed to be independent. 

Correlated scalar estimators are later studied by Keller and Olkin [96]. For vector 

estimators (which is the case for image denoisers), Odell et al. [97] presented a very 

comprehensive study. However, their result is limited to two vector estimators. The 

general case of multiple estimators is studied by Lavancier and Rochet [98], who 

proposed an optimization approach to estimate the weights. 

Specific to image denoising, methods seeking linear combination of denoisers are 

scattered in the literature. The most popular approach is perhaps the linear expan-

sion of thresholds by Blu and colleagues [99], using the Stein’s unbiased risk estimator 

(SURE). In [100], Chaudhury et al. presented an improved bilateral filter using the 

SURE estimator. For learning based methods, the loss-specific training approach by 

Jancsary et al. [101] presented a regression tree field model to optimize the denoising 

performance over different metrics. There is also an end-to-end neural network solu-

tion for selecting denoisers by Agostinelli et al. [102], where the authors proposed to 

learn the weights using an auto-encoder. 
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The noise-level mismatch is discussed more often in the neural network literature. 

Conventional approach is to either truncate the noise level to the nearest trained 

level [103] or to train the network with a large number of examples covering all noise 

levels [16]. A more recent approach is to feed a noise map to the network and train the 

network to recognize the noise level [18]. However, this approach requires a redesign 

of the network structure. In contrast, CsNet uses the same structure for all initial 

denoisers. 

4.1.2 Contributions 

An overview of the proposed CsNet framework is shown in Figure 4.2. We sum-

marize the three key contributions of this chapter in the followings: 

• MSE Estimator. We present a novel deep neural network to estimate the mean 

square error (MSE) in the absence of the ground truth. Existing deep neural 

network based image quality assessment methods are designed to predict per-

ceptual quality and not MSE. To the best of our knowledge, our deep learning 

based MSE estimator is the first of this kind in the literature. 

• Optimal Combination. We present an optimal combination framework via con-

vex optimization. By minimizing a quadratic function over a unit simplex, we 

prove that resulting combination is optimal in the MSE sense. We provide 

geometric interpolation of the solution, and a fast algorithm to determine the 

optimal point. 

• Denoising Booster. We present a new deep neural network to boost the com-

bined estimates. Unlike the existing deterministic boosters which are iterative, 

we cascade several simple neural networks to build the booster. 

To help readers understand the design process, we proceed the chapter by first 

discussing the optimal combination and its associated theoretical properties in Sec-

tion 4.2. Section 4.3 discusses the neural network estimator for estimating the MSE. 
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ConsensusNet
D1 M w1

D2 M w2

DK M wK

Solve

P1

•

•

•

∑
Booster F

Input Output

Fig. 4.2.: Structure of the proposed CsNet: Given a set of K initial denoisers 
D1, . . . , DK , CsNet uses an MSE estimator (M) to estimate the MSE of each ini-
tial denoiser. After the MSEs are estimated, we solve a convex optimization problem 
(P1) to determine the optimal weight w1, . . . , wK . The combined estimate is then 
boosted using a booster neural network to improve contrast and details. 

We emphasize that the neural network presented here is just one of the many possible 

ways of estimating the MSE. Readers preferring non-training based approaches can 

use estimators such as SURE, although we will provide examples where SURE does 

not work. Section 4.4 discusses the booster, and its cascade structure. Experiments 

are discussed in Section 4.5. 

4.1.3 Notation 

Throughout this chapter, we use lower case bold letters to denote vectors, e.g., 

x ∈ RN , and upper case bold letters to denote matrices, e.g., X ∈ RK×K . An 

all-one vector is denoted as 1. Standard basis vectors are denoted as ei, i.e., ei = 

[0, . . . , 1, . . . , 0]T . For any vector x, ∥x∥2 means the ℓ2-Euclidean norm, and for any 

matrix A, ∥A∥2 = max∥x∥2=1 ∥Ax∥2 denotes the matrix operator norm. To specify 

that a vector x is non-negative for all its elements, we write x ⪰ 0. For matrices, 

A ⪰ 0 means that A is positive semi-definite. Images in this chapter are normalized 

so that every pixel is in [0, 1]. Noise level of an i.i.d. Gaussian noise is specified 

by its standard deviation σ. For notational simplicity, we write σ in the scale of 

[0, 255], e.g., “σ = 20” means σ = 20/255. Finally, an image denoiser D is a mapping 

D : [0, 1]N → [0, 1]N . We assume D is bounded and is asymptotically invariant [104]. 
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4.2 Optimal Combination of Estimators 

4.2.1 Problem Formulation 

Consider a linear forward model where a clean image z ∈ RN is corrupted by 

additive i.i.d. Gaussian noise η ∼ N (0, σ2I) so that the observed image is y = z + η. 

We apply a set of K image denoisers D1, . . . , DK to yield K initial estimates zbk = 

Dk(y) for k = 1, . . . , K. For convenience, we concatenate these initial estimates by 

constructing a matrix Zb = [zb1, . . . , zbK ] ∈ RN×K . In this chapter, we focus on the 

linear combination of estimators. That is, for a given Zb, we construct the linearly 

combined estimate as 
K∑ bzb = wkzbk = Zw, (4.1) 
k=1 

defwhere w = [w1, . . . , wK ]
T ∈ RK is the vector of combination weights. The goal of 

our work is to formulate an optimization problem to determine the optimal weights. 

For analytic tractability, we use mean squared error (MSE) to measure the opti-

mality, although it is known that alternative visual quality metrics correlate better 

to human visual systems [105]. Denote z ∈ RN as the ground truth. We define the 

MSE between the combined estimate zb and the ground truth z as 

[ ] [ 
2
]

def bMSE(zb, z) = E ∥zb − z∥2 = E Zw − z . (4.2) 

The optimal combination problem can be posed as minimizing the MSE by seeking 

the weight vector w ∈ RK : 

[ ]
∥ bminimize E Zw − z∥2 

w (4.3) 
subject to wT 1 = 1, and w ⪰ 0. 

Here, the constraint wT 1 = 1 ensures that the sum of the weight is 1, and the 

constraint w ⪰ 0 ensures that the combined estimate remains in [0, 1]N . 
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Let us simplify (4.3). First, we define Z = [z, . . . , z] ∈ RN×K , i.e., a matrix with 

the ground truth z in each column. Since wT 1 = 1, we can show that 

[ ] [ ]
2 2 b bE Zw − z = E Zw − Zw [ ]

= E w T (Zb − Z)T (Zb − Z)w 

= w T Σw, 

where Σ is defined as [ ]
def

Σ = E (Zb − Z)T (Zb − Z) . 

We call Σ the covariance matrix1. Using this result, it can be shown that (4.3) is 

equivalent to 

minimize wT Σw 
w (P1) 

subject to wT 1 = 1, and w ⪰ 0, 

which is a convex problem because Σ is positive semi-definite and the feasible set is 

convex. 

Before we discuss how to solve (P1), we should first discuss how to obtain Σ. The 

(i, i)-th entry of Σ is [ ] def
Σii = E ∥zbi − z∥2 = MSEi, 

which is the MSE of the i-th estimate. The (i, j)-th entry of Σ is the correlation 

between zbi and zbj : 
[ ]

Σij = E (zbi − z)T (zbj − z) . [ ]
def1Straightly speaking, Σ = E (Zb − Z)T (Zb − Z) is not the conventional covariance matrix because 

denoisers are not necessarily unbiased, i.e., E[Zb] ≠ Z. 
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To express Σij in terms of MSEi and MSEj , we notice that 

[ ] [ ]
E ∥zbi − zbj ∥2 = E ∥zbi − z + z − zbj ∥2 

= E ∥zbi − z∥2 + E ∥zbj − z∥2 + . . . [ ]
− 2E (zbi − z)T (zbj − z) . 

Rearranging the terms we can write Σij as 

[ ]
MSEi + MSEj − E ∥zbi − zbj ∥2 

Σij = . (4.4)
2 

Therefore, when we do not have the true MSEi and MSEj but only the estimates ]MSEi [ ]
and MSE]

j , (4.4) provides a convenient way to construct Σij because E ∥zbi − zbj ∥2 

does not require the ground truth. 

4.2.2 Solving (P1) 

The optimization problem in (P1) is a quadratic minimization over a unit sim-

plex. It is known that such problem does not have a closed form solution. Iterative 

algorithms are available, e.g., using general purpose semi-definite programming such 

as CVX [106, 107], or using projected gradients [108, 109]. However, since (P1) has a 

simple structure, efficient algorithms can be derived. 

Our algorithm is an accelerated gradient method following from the work of Jaggi 

[110]. We briefly describe the algorithm for completeness. Let 

f(w) = w T Σw (4.5) 

be the objective function, and 

def
Ω = {w | w T 1 = 1, and w ⪰ 0} (4.6) 
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be the feasible set. The first order linear approximation at the t-th iterate is 

f(y) = f(w(t)) + ∇f(w(t))T (y − w(t)), ∀y ∈ Ω. 

Thus, for any y ∈ Ω, y − w(t) is a feasible search direction. One choice of y is to 

(t))Tmake ∇f(w y minimized so that f(y) has a lower cost. This leads to 

(t))Tminimize ∇f(w y, (4.7) 
y∈Ω 

which has a linear objective function. Once y is determined, we construct a standard 

accelerated gradient step: 

(t+1) (t) (t)),w = w + α(y − w (4.8) 

where α = 2 is the step size. 
t+2 

It remains to find out an solution for the subproblem (4.7). Note that the sub-

problem (4.7) is a linear programming over the unit simplex. Therefore, the solution 

has to lie on one of the vertices. Proposition 4.2.1 provides a full characterization. 

The pseudo-code is shown in Algorithm 8. 

Proposition 4.2.1 The solution to (4.7) is y = ei∗ , where i∗ = argmini(∇f(w(t)))i. 

Proof Let g = ∇f(w(t)). Then it follows that 

∑K K∑ 
T g y = giyi ≥ gmin yi = gmin, 

i=1 i=1 

∑Kwhere gmin = mini gi, and i=1 yi = 1 because y ∈ Ω. The lower bound can be 

attained when y = ei∗ , where i∗ = argmini gi. 

Example 1 As an illustration of Algorithm 8, we compare its performance with an 

ADMM algorithm by Condat [108]. The reference method is CVX [106]. We repeat 
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Algorithm 8: Algorithm to Solve (P1) 
01: Initialize w = e1. 

2: for t = 0, 1, . . . , Tmax do 
3: Let i∗ = argmin (Σw(t))i 

i ( )
(t+1) (t) + 2 (t)).4: Update w = w 

t+2 (ei∗ − w 
5: end for 

the experiment 1000 times using different random matrices Σ, and take the average. 

As shown in Figure 4.3, Algorithm 8 converges significantly faster than [108]. In 

terms of runtime, Algorithm 8 takes about 4.4 msec, [108] takes 13 msec, and CVX 

takes 223.1 msec. 

Fig. 4.3.: Comparison of Algorithm 8 and the ADMM algorithm by [108], using the 
optimal solution obtained by CVX [106]. 

4.2.3 Geometric Interpretation of (P1) 

Uniqueness. The uniqueness of the solution of (P1) is determined by the positive 

definiteness of Σ. If Σ is positive definite, then (P1) is strictly convex, and hence the 
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optimal weight is unique. If Σ is only positive semi-definite, then there are infinitely 

many optimal weights. The following proposition explains this phenomenon. 

∗ ∗Proposition 4.2.2 Suppose that Σ is positive semi-definite. Let w1 and w2 be two 
def∗ ∗ ∗solutions of (P1). Then, for any 0 ≤ t ≤ 1, the vector w = tw1 + (1 − t)w2 is also 

a solution of (P1). 

∗ ∗Proof Let f(w) = wT Σw. Since both w1 and w2 are solutions to (P1), we have 

∗ ∗ ∗ ∗f(w1) = f(w2). Also, by linearity, we have that 1T w = 1 and w ⪰ 0. Since f is 

convex, we can show that 

∗ ) = f(tw ∗ ∗ f(w 1 + (1 − t)w2) 

∗ ∗ ∗≤ tf(w1) + (1 − t)f(w2) = f(w1). 

∗ ∗But since w1 is an optimal solution, it is impossible for f(w ∗) < f(w1). So the only 

∗ ∗possibility is f(w ∗) = f(w1). This implies that w is also a solution. 

The implication of Proposition 4.2.2 is that if two initial estimates zbi and zbj are 

identical (or scalar multiple of one and other), then Σ will have dependent columns 

(hence positive semi-definite). When this happens, there will be infinitely many ways 

of combining the two initial estimates. However, in practice this is not an issue 

∗ ∗ ∗ ∗because even if the pair (wi , w ) is not unique, the combined estimate w zbi + w zbjj i j 

remains unique as zbi = zbj . 
Geometry. The geometry of (P1) can be interpreted in low dimensions, e.g., Fig-

ure 4.4. In this figure, we consider a 2D case so that Σ is a 2 × 2 matrix. We can 

show that the ellipse always has its minor axis pointing to the northeast direction if 

the two initial estimates are positively correlated. 

Proposition 4.2.3 Consider a two-dimensional Σ. If Σ12 > 0, then Σ always has 

its minor axis pointing to the northeast direction and major axis to the northwest 

direction. 
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Σ12 > 0 Σ12 < 0

Fig. 4.4.: Geometry of the optimal weight minimization problem. 

Proof Consider the eigen-decomposition of Σ = USU T . For a 2×2 matrix, classical 

results in matrix analysis [111] shows that the eigen-value and eigen-vectors are 

1 1 
s1 = (Σ11 + Σ22 − λ) , s2 = (Σ11 + Σ22 + λ) ,

2 2 

and ⎡ ⎤ ⎡ ⎤ 
Σ11−Σ22+λ Σ11−Σ22−λ 

2Σ12 2Σ12⎣ ⎦ ⎣ ⎦u1 = , u2 = 
1 1 

√
where λ = 4Σ2 + (Σ11 − Σ12)2 .12 

Note that λ ≥ |Σ11 − Σ22| because Σ2 ≥ 0. Therefore, s2 ≥ s1 and so u1 is the 12 

minor axis and u2 is the major axis. The numerator of the first entry of u1 is 

Σ11 − Σ22 + λ ≥ Σ11 − Σ22 + |Σ11 − Σ22|⎧ ⎪⎨2|Σ11 − Σ22| ≥ 0, if Σ11 ≥ Σ22, 
= ⎩⎪ 

0, otherwise. 

As a result, the numerator of the first entry of u1 is always non-negative, implying 

that the sign of the denominator determines the sign of the entry. Therefore, if 
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Σ12 > 0, then u1 will be pointing to the northeast direction. By orthogonality of the 

eigen-vectors, u2 points to the northwest direction. 

Proposition 4.2.3 provides some insights about the solution. If Σ12 > 0 (which is 

usually the case), the major axis must point to northwest. Therefore, the solution 

is more likely to be at one of the two vertices. In other words, the optimal solution 

tends to be sparse. Such sparsity should come with no surprise, because the linear 

constraint wT 1 = 1 is equivalent to ∥w∥1 = 1 if w ⪰ 0. 

Remark 4.2.1 In practice, if we only have an estimated covariance matrix Σe , there eis no guarantee that Σ is positive semi-definite. (Symmetry can be preserved by econstructing the off-diagonals using (4.4).) When Σ is not positive semi-definite, we eproject Σ onto its closest positive semi-definite matrix by solving 

Σ = argmin ∥S − Σe ∥F 
2 . (4.9) 

S⪰0 

The solution to (4.9) is the truncated singular value decomposition where negative esingular values of Σ are set to 0. 

4.2.4 Optimal MSE Lower Bound 

We derive the MSE lower bound of (P1). To do so, we consider a relaxed opti-

mization by removing the non-negativity constraint: 

minimize wT Σw 
w (P2) 

subject to wT 1 = 1. 

Clearly, the feasible set of (P2) includes the feasible set of (P1), and so the MSE 

obtained by solving (P2) must be a lower bound of the MSE obtained by solving (P1). 
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∗More precisely, if we let wb be the optimal weight vector obtained by (P1), and w be 

that obtained by (P2), then 

[ ] [ ]
2 2 b bE Zwb − z ≥ E Zw ∗ − z . (4.10) 

Let us analyze the right hand side of (4.10). The optimization in (P2) is a stan-

dard linear equality constrained quadratic minimization. Closed-form solution can 

be derived via the standard Lagrangian approach by defining: 

1 T Σw − λ(wL(w, λ) = w T 1 − 1). (4.11)
2 

The first order KKT conditions state that 

∂L 
= 0, w T 1 = 1,

∂w 

where the first condition is equivalent to 

Σw − λ1 = 0, or w = λΣ†1, (4.12) 

where Σ† denotes the pseudo-inverse of a symmetric positive semi-definite matrix Σ. 

If Σ is positive definite, then Σ† = Σ−1 and (4.12) can be written as w = λΣ−11. 

Substituting (4.12) into the constraint, we have that 

( ) 1 
1T λΣ†1 = 1 ⇒ λ = . (4.13)

1T Σ†1 

Substituting (4.13) into (4.12), we prove the following. 

Proposition 4.2.4 The solution to (P2) is given by 

∗ w = 
Σ†1 

, (4.14)
1T Σ†1 
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where Σ† denotes the pseudo-inverse of the symmetric positive semi-definite matrix 

Σ. 

∗Given the optimal weight vector w , we can determine the corresponding mean 

squared error: 

[ ]
2 b ∗ )T Σw ∗E Zw ∗ − z = (w =

1 
. (4.15)

1T Σ†1 

∗Since the weight w provides a lower bound on the MSE, in particular if we consider 

a weight vector ek = [0, . . . , 1, . . . , 0]T (i.e., the k-th standard basis vector), we must 

have 

1 
MSEk = ek

T Σek ≥ (w ∗ )T Σw ∗ = 
1T Σ†1 

. (4.16) 

∗The inequality holds because ek is one of the feasible vectors but w is the optimal 
∗solution. Therefore, an optimally combined estimate using w has to be no worse 

than any initial estimate. 

Remark 4.2.2 The MSE lower bound result presented here is more general than the 

previous result by Odell et al. [97] which only considered K = 2. When K = 2, we 

have 

∗ Σ22 − Σ12 ∗ ∗ w = , and w = 1 − w (4.17)1 2 1,Σ11 + Σ22 − 2Σ12 

which is the same as Equation 2 of Table 3 in [97]. 2 

4.2.5 Perturbation in Σ 

We conclude this section by discussing the perturbation issue when we use an eestimated covariance matrix Σ instead of Σ. To facilitate the discussion, we define 

two weight vectors: 
2In Equation 2 of Table 3 in [97], there is a typo of the numerator which should be corrected as 
m22 − m12. 
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we = argmin v T Σe v, and w = argmin v T Σv. (4.18) 
v∈Ω v∈Ω 

That is, we is the optimal weight vector found according to the estimated co-evariance matrix Σ, and w is the optimal weight vector found according to the true 

covariance matrix Σ. Correspondingly, we define their combined estimates as 

b bze = Zwe, and zb = Zw. (4.19) 

The following proposition summarizes the perturbation result. 

eProposition 4.2.5 Assume that Σ ≻ 0 and Σ ≻ 0. Then, 

E∥ze − zb∥2 ≤ E∥zb − z∥2(2∆ + ∆2), (4.20) 

where 
def ∥ e Σ−1Σ∥2.∆ = ΣΣ−1 − e 

Proof The proof is given in the Appendix B. Our proof simplifies the multi-block 

concept of [98]. We also utilize the generalized Rayleigh quotient idea to obtain the 

bound. 

The implication of Proposition 4.2.5 can be seen from the two terms on the right 

hand side of (4.20). First, E∥zb−z∥2 measures the bias between the oracle combination 

zb and the ground truth z. That it is an upper bound in (4.20) implies that the 

perturbed estimate is upper limited by the bias. The second term ∆ measures the 

Σ−1closeness between the oracle covariance Σ and the estimated covariance Σe . If Σ e = 

I, then ∆ = 0 and so the perturbation is minimized. In practice, if Σe can be estimated 

in n random trials and if ΣΣe 
n 
−1 →p 

I as n →∞, then we can also show that ∆ →p 
0. 

(See Section 4.3 for an example using the SURE.) 
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4.3 MSE Estimator 

The key to make (P1) success is an accurate covariance matrix Σ. Estimating the 

covariance matrix requires estimating the mean squared error (MSE). In this section 

we discuss a neural network solution. 

4.3.1 Why not SURE? 

In image processing, perhaps the most popular approach for estimating MSE is the 

Stein’s Unbiased Risk Estimator (SURE). (See, e.g., [99, 112] for illustrations, [113] 

for a Monte-Carlo version, and [114] for a recent work using SURE in deep neural 

network.) As its name suggested, SURE is an unbiased estimator of the true MSE, 

i.e., the estimator will approach to the true MSE as the number of samples grows. 

While SURE-based estimators work well in ideal situations, it also has many 

shortcomings: 

• Large Variance. SURE only provide average performance guarantee. For 

Monte-Carlo SURE, there is another level of randomness due to the Monte-

Carlo scheme. Therefore, given a single noisy image, SURE can be inaccurate, 

especially for non-linear denoises such as BM3D. 

• Clipped Noise. SURE is designed to handle additive i.i.d. Gaussian noise. 

However, most real images are clipped to [0, 1]N , and most neural network 

denoisers clip the noise during training. If the observed image is clipped, then 

SURE will fail. See Figure 4.5 for an example. For more discussions of clipped 

noise, see [115]. 

• Beyond Denoisers. While SURE is a good choice for image denoising problems, 

one has to re-derive the SURE equations for different forward models, e.g., 

deblurring or super-resolution. This severely limits the generality of the present 

optimal combination framework. 
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Fig. 4.5.: Clipped Noise Example. Compare SURE and the proposed neural net-
work (NN) on estimating the MSE. In this experiment, we use BM3D to denoise the 
cameraman image. The noise level changes from σ = 10 to σ = 50. The observed 
images are clipped to [0, 1]N . The error bars are computed using 50 random trials of 
the i.i.d. Gaussian noise realizations. 

4.3.2 Neural Network MSE Estimator 

Our proposed solution is a deep neural network based MSE estimator. Using deep 

neural networks for image quality assessment is an active research topic [116–120]. 

However, the existing neural network based image quality assessment methods are 

tailored to predict the human visual system responses when seeing an image. A pure 

MSE estimator, to the best of our knowledge, does not exist. 

The proposed neural network based MSE estimator is shown in Figure 4.6. There 

are two unique features of the network. First, the input to the network is a pair of 

images (y, zbk), i.e., the noisy observation and the k-th denoised image. Using both 

y and zbk is reminiscent to the SURE approach, as y provides noise statistics that 

cannot be obtained from zbk alone. 



64

64x64
1,1

MSE$%&

z(%&

𝑦&

Patch Size
Feature Maps

Conv1-1 Conv2-1
MaxPool

Conv1-2 Conv2-2
MaxPool

C
on

ca
te

na
tio

n

Conv3

64x64
32,32

32x32
32,32

32x32
64

32x32
64

Conv4
MaxPool

16x16
64

16x16
64

Conv5

16x16
1

Conv6
FC1 FC2

512

Fig. 4.6.: Network structure of a proposed MSE Estimator.

Second, instead of feeding the entire image into the network, we partition the

image into non-overlapping patches of size 64× 64. That is, if we denote the MSE of

the i-th patch of the k-th denoiser as M̃SEk,i
def
= M̃SE(yi ,̂ zk,i), then the overall MSE

of the k-th denoiser is

M̃SEk =
1

M

M∑
i=1

M̃SE(yi ,̂ zk,i),

where yi is the i-th patch of y, ẑk,i is the i-th patch of ẑk, and M is the number

of non-overlapping patches in the image. Partitioning the image into small patches

reduces the breath and depth of the neural network.

The network consists of 8 convolutional layers, 3 maxpool layers and 2 fully con-

nected layers. The inputs yi and ẑk,i separately pass through two convolutional

layers, and then concatenate and pass over four convolutional layers. The convoul-

tional layers use 3 × 3 kernels with zero-padding and the leaky rectifier activation

function (LReLU) [121]. The scale of our LReLU is 0.2, i.e., max (x, 0.2x). We apply

maxpool layer with 2×2 kernel every two convoultional layer. Fully connected layers

use ReLU and dropout regularization of ratio 0.5. The cost function is the L1-loss,

defined as

L =
∣∣∣MSEk,i − M̃SEk,i

∣∣∣ (4.21)

where MSEk,i is the true MSE of i-th block of the k-th denoiser. For implementation,

we use ADAM optimizer [122] with learning rate α = 0.0001.

The training data we use is the 300 Training and Validation images in BSD500.

For each image, we randomly extracted 32 patches of size 64 × 64 and generate 6
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variations by flipping horizontally and vertically and rotating at 0◦, 90◦, 180◦ and 

270◦. The noise level is σ ∈ [1, 60], with clipping to [0, 1]N . To prepare denoised 

images for training the networks, we use five pre-trained REDNets [14] at noise levels 

σb = 10, 20, 30, 40, 50. Therefore, for every noisy input we generate multiple denoised 

images, and every denoised image forms an input-output pair with the ground truth 

MSE. We trained the MSE estimator network with 100 epochs for around 7 hours. 

4.3.3 Comparison with SSDA 

Readers familiar with the image denoising literature may ask about the difference 

between the proposed method and the AMC-SSDA method by Agostinelli et al. [102]. 

The AMC-SSDA method is an end-to-end neural network for denoising images of 

different noise types, e.g., salt-pepper, Gaussian, and Poisson. We are not interested 

in this problem because it is unnatural to have an image denoising problem where the 

noise type is totally blind. In contrast, it is more common to have multiple denoisers 

for different noise levels (Section 4.5.1), different image classes (Section 4.5.2), and 

different denoiser types (Section 4.5.3). 

There are other differences. First, the SSDA has a set of fixed neural network 

denoisers. CsNet can adapt any initial denoisers, including both deterministic or 

learning-based. Second, the weight prediction of the AMC-SSDA is done using a 

neural network which does not have any optimality guarantee. CsNet, however, is 

provably optimal. Additionally, CsNet estimates the MSE (which is a scalar) from 

an image. This is easier than estimating the weight vector in AML-SSDA. Third, 

CsNet can be generalized to other estimation problems such as deblurring and super-

resolution. The AMC-SSDA, however, has limited generalization capability because 

the initial estimators are limited to the SSDA structure. 
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26.69dB 26.73dB 23.55dB 24.75dB 26.63dB 29.51dB 
Before After Before After Before After 

Fig. 4.7.: Examples showing the effectiveness of the booster in improving the details 
and contrast of the combined result. See Section 4.5.3 for experiment details. 

4.4 Booster Network 

In our proposed CsNet, besides the convex optimization algorithm and the MSE 

estimator, there is a third component known as the booster. The booster is used 

to improve the combined estimates by enhancing the contrast and to recover lost 

details. To provide readers a quick preview of the booster, we show a few examples 

in Figure 4.7. 

4.4.1 What is a Booster? 

The concept of boosting can be traced back to as early as the 70’s, when Tukey 

[123] suggested a “twicing procedure”. In machine learning, the same concept was 

studied by Bühlmann and Yu [124]. The essential step of boosting is simple: Given 

a current estimate zb(t) and the observation y, we construct a mapping B : RN → RN 

(t+1)(usually another denoising algorithm), and then define the next estimate zb in 
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Fig. 4.8.: Network structure of the proposed booster network. The network con-
tains 3 convolutional layers followed by 3 deconvolutional layers. Convolutional and 
deconvolutional layers consists of residual neural network blocks. Skip connections 
are used to enforce symmetry of the network. This network is repeated three times 
(t = 1, 2, 3). 

terms of zb(t), y and B with the goal to improve the MSE. In Tukey’s “twicing”, the 

(t+1) isrelationship between zb(t) and zb 

(t+1) (t)zb = B(y − zb(t)) + zb . (4.22) 

Thus, if B is a denoiser, then B(y−zb(t)) is the filtered version of the residue. As shown 

in [125], MSE is not monotonically decreasing as t →∞ because of the bias-variance 

trade-off. However, with proper monitoring such as cross-validation, MSE can be 

minimized by stopping the boosting procedure before saturation. (See additional 

discussion for the image denoising problem in [126].) 

In the image denoising literature, the above idea of boosting has been studied in 

multiple places such as [125–127]. There are several variations, e.g., Osher’s iterative 

regularization [128], and Romano and Elad’s SOS [129]. In all these boosting methods, 

the idea is the take the noisy input and the estimate zb(t) to recursively update the 

estimate. 

4.4.2 Deep Learning based Booster 

Our proposed neural network booster is motivated by the above examples of clas-

sical boosters. The specific network architecture is shown in Figure 4.8. Instead of 
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using a deterministic function B, we use a multi-layer neural network as the building 

block of the booster. We then cascade the building blocks to form an overall booster. 

Referring to Figure 4.8, if we denote the t-th building block as Bt, then the input-

output relationship of Bt is 

(t+1) (t)zb = Bt(y, zb(t)) + zb . (4.23) 

Clearly, (4.23) is a generalization of (4.22) as Bt now becomes a nonlinear mapping 

trained from the data. Also, when cascading a sequence {Bt}, we generalize (4.22) 

by allowing each Bt to have its own network weights. 

The architecture of the t-th building block Bt consists of 3 convolutional layers 

followed by 3 deconvolutional layers, each using kernels of size 3 × 3. The input 

to the network is the pair (y, zb(t)), which is concatenated to form a common input. 

The convolutional layers are used to smooth out the noisy input y, whereas the 

deconvolutional layers are used to recover the sharp details. Skip connections are 

used to ensure that signals are not attenuated as it passes through the layers. Note 

(t+1) tothat we purposely add a skip connection from the input zb(t) to the output zb 

mimic the addition in (4.22). We cascade Bt for t = 1, . . . , T , where T is typically 

small (T = 3). 

The training data we use is the 300 train and validation images in BSD500. We 

extract 32 patches of size 64 × 64 from each training dataset. For each patch we 

generate 6 variations by flipping horizontally and vertically and rotating at 0◦, 90◦, 

180◦ and 270◦. The cost function we use in training the booster network is the 

standard L1-loss: 

L = ∥z − zb(T )∥1 (4.24) 

where MSEk,i is the true MSE of i-th block of the k-th denoiser. During the training, 

we use ADAM optimizer with learning rate 10−4. We trained booster network with 

100 epochs for 12 hours. 
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4.4.3 Performance of Booster 

The effectiveness of the booster can be seen in Figure 4.7, where we show a 

few examples taken from the BSD500 dataset. In this example, we consider a neural 

network denoiser trained at five different noise levels (See Section 4.5.3 for experiment 

details). 

As we see in Figure 4.7, the booster is doing particularly well for two types of 

improvements. The first type of improvement is the recovery of the fine details. For 

example, in the Swam image we can recover the lines on the feather; in the House 

image we can recover branches of the tree. These are also reflected in the PSNR. 

The second type of improvement is the contrast enhancement. For example, before 

boosting the House image we see that the background sky has a gray-ish intensity. 

However, after boosting the background sky has a brighter background. 

4.5 Experiments 

We build our neural networks using Tensorflow and are run on Intel(R) Core(TM) 

i5-4690K CPU 3.50GHz with an Nvidia Titan-X GPU, except DnCNN which is down-

loaded from the author’s website. 

4.5.1 Experiment 1: Noise-Level Mismatch 

There are two objectives of this experiment. First, we want to evaluate the effec-

tiveness of CsNet in interpolating denoising performance when the initial denoisers 

are not trained for every noise level. Second, we want to compare the performance of 

CsNet with existing blind denoisers such as [16] because these denoisers can handle 

multiple noise level. 

Regarding the initial denoisers, we use the 300 training and validation images in 

BSD500 to train five initial denoisers D1, . . . , D5 using two neural network denoisers: 

DnCNN [16] and REDNet [14]. For each denoiser, the denoising strength is set as 
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24.56dB 24.61dB 25.14dB 25.41dB 
Groundtruth DnCNN, σb=30 DnCNN, σb=40 DnCNN, Before DnCNN, After 

17.54dB 24.54dB 24.67dB 25.22dB 25.47dB 
Input, σ=35 REDNet, σb=30 REDNet, σb=40 REDNet, Before REDNet, After 

Fig. 4.9.: Example of Noise-level mismatch. The image is House (size 321×481) from 
BSD500. The actual noise level is σ = 35. Before and After means Before Booster 
and After Booster, respectively. DnCNN, Before and After uses five DnCNN initial 
denoisers, and REDNet, Before and After uses five REDNet initial denoisers. 

Table 4.1.: Example of Noise-level mismatch. The average PSNRs of REDNet (σb = 
10, 20, 30, 40, 50), Blind REDNet with 50 layers and ConsensusNet on 200 test images 
from BSD500. 

σ 
RED 
(10) 

RED 
(20) 

RED 
(30) 

RED 
(40) 

RED 
(50) 

Before 
(NN) 

After 
(NN) 

Before 
(ora) 

After 
(ora) 

RED 
Blind 

10 
15 
20 
25 
30 
35 
40 
45 
50 

34.14 
28.43 
24.43 
21.84 
19.96 
18.49 
17.29 
16.27 
15.40 

30.69 
30.75 
30.35 
27.00 
23.42 
21.05 
19.34 
18.01 
16.91 

28.25 
28.30 
28.36 
28.42 
28.21 
26.20 
23.26 
20.97 
19.21 

26.83 
26.84 
26.84 
26.85 
26.84 
26.80 
26.63 
25.57 
23.40 

25.86 
25.85 
25.84 
25.81 
25.77 
25.71 
25.64 
25.53 
25.35 

34.08 
31.32 
30.31 
28.90 
28.20 
27.26 
26.65 
25.95 
25.40 

33.92 
31.79 
30.46 
29.31 
28.52 
27.78 
27.21 
26.69 
26.26 

34.14 
31.39 
30.35 
28.93 
28.22 
27.28 
26.68 
25.98 
25.44 

33.91 
31.80 
30.48 
29.31 
28.52 
27.78 
27.22 
26.70 
26.27 

33.77 
31.61 
30.13 
28.99 
28.06 
27.27 
26.58 
25.95 
25.37 

one of the values σb = 10, 20, 30, 40, and 50. When testing, we use a noise level of 

σ ∈ [10, 50]. 

The results of this experiment are shown in Table 4.1 and Figure 4.9. Table 4.1 

shows the comparison with REDNet as initial denoisers, whereas Figure 4.9 shows a 

visual comparison of an image in the BSD500 dataset. To illustrate the behavior of 
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REDNet ( =10)

REDNet ( =20)

REDNet ( =30)

REDNet ( =40)

REDNet ( =50)

CsNet (Before)

CsNet (After)

Fig. 4.10.: Noise-level mismatch. Graphical illustration of Table 4.1. The red curve 
indicates the performance before boosting. 

CsNet of all the noise levels, we show in Figure 4.10 a PSNR plot as a function of σ. 

This is a comparison between individual REDNets and the CsNet before the boosting 

step. There are two observations in this experiment. 

First, for each σ, the best performing REDNet is the one with σb right above σ. 

This result is consistent with the suggestion made in [16]. However, CsNet is able to 

boost the performance by an average of 0.45dB for noise levels that are originally not 

trained for, i.e., σ = 15, 25, 35, 45. 

Second, compared to blind REDNet, we observe that CsNet generally has a similar 

performance before boosting, and better after boosting. This suggests that instead 

of training a blind denoiser, one can train a set of weak denoisers and use CsNet 

to combine the results. The advantage of doing so, besides reducing the training 

cost, is that CsNet allows us to plug-in any off-the-shelf image denoiser as the initial 

estimators whereas blind denoiser is a fixed network. 

4.5.2 Experiment 2: Different Image Classes 

The objective of this experiment is to evaluate the performance of CsNet when the 

initial denoisers are trained for different image classes. To this end, we fix the type 

of initial denoisers as REDNet, and train three different REDNets using three classes 
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Groundtruth 22.56dB 29.53dB 28.62dB 28.89dB 29.52dB 29.69dB 
Bldg Input RED-Bldg RED-Face RED-Flwr Before After 

Groundtruth 22.41dB 29.78 29.94dB 29.91dB 29.99dB 30.22dB 
Face Input RED-Bldg RED-Face RED-Flwr Before After 

Groundtruth 22.62dB 33.39dB 33.11dB 33.48dB 33.48dB 34.36dB 
Flower Input RED-Bldg RED-Face RED-Flwr Before After 

Fig. 4.11.: Image denoising for Building, Face and Flower classes. While class-
specific REDNet has good performance when classes match, CsNet is able to select 
the best denoiser. Testing images are from ImageNet. 

Table 4.2.: Example of different image classes. Class-specific REDNets have better 
performance than BM3D, DnCNN (generic) and REDNet (generic). CsNet selects 
the best class. We use 10 images from ImageNet for testing. 

RED RED RED 
(Bldg) (Face) (Flwr) 

Before After 
(est) (est) 

Before After 
(ora) (ora) 

BM3D DnCNN 
(Gen) (Gen) 

RED 
(Gen) 

Bldg 
Face 
Flwr 

30.40 28.96 29.35 
30.19 30.39 30.34 
31.09 30.95 31.31 

30.33 30.41 
30.45 30.74 
31.32 31.50 

30.40 30.47 
30.51 30.80 
31.38 31.54 

29.30 29.77 
29.97 30.28 
30.42 31.15 

29.77 
30.29 
31.18 

of images: Flower, Face and Building. We have experimented with other initial 

denoisers such as DnCNN, but the results are similar. In training the initial denoisers, 

we manually select 200 class-specific images for each class from the ImageNet [130]. 
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We fix the noise level as σ = 20 to eliminate the complication of having uncertainty 

in both noise levels and image classes. 

The result of this experiment is shown in Table 4.2 with a few representative 

examples in Figure 4.11. We observe that denoisers trained with generic database such 

as DnCNN and REDNet perform worse than class-specific denoisers. For example, 

in the Building image, DnCNN (generic) and REDNet (generic) attain 29.7722dB 

and 29.7743dB respectively. A REDNet trained with Building class has a PSNR 

of 30.39dB, approximately 0.7dB above the generic REDNet. For Face and Flower 

classes, the same observation can be found, although the gap is less substantial. One 

reason is that for Building class, the vertical and horizontal features learned by the 

network are less common in generic images. 

4.5.3 Experiment 3: Different Denoiser Types 

The objective of this experiment is to evaluate CsNet for different types of initial 

denoisers. To this end, we consider four denoisers running at specific noise levels σb 

that match with the actual noise level σ. These denoisers are BM3D [20], DnCNN [16], 

REDNet [14] and FFDNet [18]. We use the original implementation by the authors 

for DnCNN and FFDNet, and build our own REDNet. 

The results of this experiment are shown in Table 4.3. Among the four denoisers, 

FFDNet and REDNet have comparable performance at the top, followed by DnCNN 

and then BM3D. For the five noise levels we tested, CsNet consistently improves the 

performance. The PSNR gain with respect to the best denoiser is less significant 

for small σ, but becomes more substantial for large σ. One reason is that for high 

noise the initial denoisers tend to oversmooth. The boosting of the CsNet is thus 

effective. Figure 4.12 shows a visual comparison on the Bear image. In this image, 

BM3D actually performs better than DnCNN. The proposed CsNet can pick this best 

estimate (24.79dB), and boost the PSNR to 25.76dB. 
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Groundtruth Input, σ=50 BM3D DnCNN 
15.03dB 24.77dB 24.35dB 

FFDNet, σb=50 REDNet, σb=50 Before Booster, σb=50 After Booster, σb=50 
24.39dB 24.31dB 24.79dB 25.76dB 

Fig. 4.12.: Example of different denoiser type. The ConsensusNet is used to integrate 
BM3D [20], DnCNN [16], REDNet [14], and FFDNet [18]. The testing image is Bear 
(size 321×481) from BSD500. 

Table 4.3.: Example of different denoiser type. We integrate BM3D [20], DnCNN [16], 
REDNet [14], and FFDNet [18], and show CsNet before and after boosting. We use 
200 images from BSD500 for testing. 

σ 
BM3D 

[20] 
DnCNN 

[16] 
FFDNet 

[18] 
REDNet 

[14] 

Before 
Boost 
(est) 

After 
Boost 
(est) 

Before 
Boost 
(ora) 

After 
Boost 
(ora) 

10 33.56 34.10 33.94 34.12 34.14 33.89 34.16 33.90 
20 29.73 30.33 30.27 30.34 30.37 30.48 30.40 30.51 
30 27.68 28.17 28.18 28.20 28.23 28.52 28.28 28.55 
40 26.22 26.60 26.65 26.62 26.68 27.19 26.72 27.21 
50 24.99 25.34 25.35 25.35 25.40 26.16 25.44 26.18 

4.5.4 Limitations and Extensions 

The effectiveness of CsNet is mainly dominated by the accuracy of the MSE 

estimate. If the noise is truly i.i.d. Gaussian (i.e., unclipped) and the noise level is 

low, then a deterministic MSE estimator such as SURE would be the ideal candidate. 

When noise level increases and when noise becomes clipped, then a neural network 
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based MSE estimator is a better option. If the images are large and complex, we can 

partition the image into sub-regions and use CsNet to handle each region separately. 

The bottleneck, again, is the accuracy in estimating the MSE. In the presence of MSE 

uncertainty, one solution is to consider regularization to (P1). Possible choices of 

regularization include forcing similar weights for denoisers that are known to perform 

similarly. We leave the discussion of such regularization to future work. 

When training the neural networks we choose to use the L1 metric, for it gives 

slightly better visual quality then the usual L2 metric. We do not heavily tune this 

metric because it is not the focus of the chapter. For readers who are concerned about 

the loss function, we refer to [131] for some recent empirical findings on the topic. 

The advantage of CsNet relative to other class-aware neural network denoisers 

is that we allow combination of multiple denoisers. Typical class-aware denoisers, 

e.g., [15], rely on semantic classifiers to greedily select only one denoiser. As we 

demonstrated in Section 4.5.2, a combination of the denoisers is better than the best 

of the individuals. 

CsNet is a general framework for combining estimators. That is, one is not lim-

ited to applying CsNet to image denoising problems, although we use denoising as 

a demonstration. A straight forward extension of CsNet is to combine multiple de-

blurring algorithms, or to combine multiple image super-resolution algorithms. In 

complex imaging scenarios where no single method performs uniformly better than 

the others, CsNet offers a solution to integrate individual weak estimators. 

4.6 Conclusion 

We present an optimal framework called the Consensus Neural Network (CsNet) 

to combine multiple weak image denoisers. CsNet consists of three major compo-

nents. Starting with a set of initial image denoisers, CsNet first uses a novel deep 

neural network to estimate the MSE. The deep neural network is more robust than 

the traditional estimators such as SURE for estimating the MSE. Once the MSE 
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is estimated, CsNet solves a convex optimization problem. The optimality of the 

CsNet is guaranteed by the convex formulation. Finally, the combined estimate is 

boosted using a new deep neural network image booster. Experimental results con-

firm the effectiveness of CsNet, where it shows superior performance compared to 

other state-of-the-art denoising algorithms on tasks including: overcoming noise level 

mismatch, combining denoisers for different image classes, and combining different 

denoiser types. 
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5. IMAGE RECONSTRUCTION FOR QUANTA IMAGE 

SENSORS USING DEEP NEURAL NETWORKS 

In this chapter, we propose deep neural networks for reconstructing images for Quanta 

Image Sensors. This work is based on a paper to appear in International Conference 

on Acoustics, Speech, and Signal Processing (ICASSP), 2018 [132]. 

5.1 Introduction 

Quanta Image Sensor (QIS) is a new type of image sensor envisioned to supersede 

CMOS and CCD [133]. Having a very small full-well capacity (1−250 photoelectrons) 

and single-photon sensitivity, QIS is perceived as an ideal candidate for compensating 

the deterioration of signal-to-noise ratio in small pixels. The sensor has an extremely 

high readout rate (10k fps as in [134], and 156k fps in [135]), and can potentially be 

made for very high spatial resolution [133, 136]. However, the QIS data is binary: A 

pixel has a value 1 if the photon count exceeds certain threshold, and has a value 

0 if the photon count is below the threshold. As a result, non-traditional image 

reconstruction algorithms are need to recover the images, as illustrated in Figure 5.1. 

Existing image reconstruction methods for QIS are largely based on maximum-

likelihood (ML) or maximum a-posteriori (MAP) estimation. These optimizations 

are done using gradient descent [137], dynamic programming [138] or ADMM [139], 

which are all time consuming. A significantly faster algorithm is the Transform-

Denoise method by Chan et al. [24], where the authors use the variance stabilizing 

transform (VST) to convert the truncated Poisson random variables to Gaussian, 

and then apply denoising algorithms for smoothing. In this chapter, we propose a 

deep neural network approach for QIS image reconstruction. As shown in Figure 5.2, 
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the neural network has better performance than Transform-Denoise by a substantial 

margin. 

Using deep neural networks for image restoration problems is relatively new but 

has a strong momentum [140–146]. In [25], the authors proposed a neural network to 

unroll the ISTA iteration with a sparsity prior. However, sparsity priors are generally 

inferior to discriminative priors learned directly by the neural networks [142]. A simple 

QIS reconstruction network is proposed by Rojas et al. [26], where they presented a 

two-layer neural network to learn the Transform-Denoise pipeline in [24]. However, 

despite the speed-up offered by the network, the PSNR performance is worse than 

Transform-Denoise using BM3D as the denoiser. 

The key contribution of this chapter is a new deep neural network based solution 

for QIS image reconstruction. Different from [25] which assumes a sparsity prior, 

our network learns the denoiser directly; And compared to [26], our network has a 

significantly deeper layer to learn the transformation. We present two designs: one 

mimics the entire Transform-Denoise pipeline, and the other one substitutes part of 

the Transform-Denoise pipeline. We show that both networks has significantly better 

performance than the existing Transform-Denoise method. 

{K{

T

M
︷ ︸︸ ︷

T

{

Reconstruction

−−−→

N
︷ ︸︸ ︷

Fig. 5.1.: Image reconstruction of QIS. Given the binary bit planes, the algorithm estimates 
the gray-scale image shown on the right. 
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(a) ML closed-form [137], 21.64 dB (b) Transform-Denoise [24], 30.53 dB 

(c) Proposed Method, 31.45 dB (d) Ground Truth 

Fig. 5.2.: Image Reconstruction using ML [137], TD [24], and our proposed RED-Net 
method. 

5.2 QIS Imaging Model 

In this section we provide an overview of the QIS imaging model. A pictorial 

illustration is shown in Figure 5.3. We shall focus on a few important highlights of 

the model. Readers interested in the details can refer to [137], [24] or [147]. 
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•

K gk Poisson×

α

cn
θm Ym bm,1

bm,2

bm,T
θ = αGc

Fig. 5.3.: Image formation process of QIS. 

5.2.1 Spatial-Temporal Oversampling 

We model the incoming light intensity as a vector c = [c0, . . . , cN−1]
T . We assume 

that cn is normalized to the range [0, 1] for all n, and use a constant α > 0 to model 

the gain factor. 
defQIS uses M ≫ N jots to oversample c. The ratio K = M/N is the spatial 

oversampling factor. The oversampling process is modeled by an up-sampling opera-

tor and a lowpass filter {gk} as shown in Figure 5.3. Mathematically, we define the 

output of the oversampling process as 

θ = αGc, (5.1) 

where θ = [θ0, . . . , θM−1]
T denotes the light intensity sampled at the M jots, and the 

matrix G ∈ RM×N is a matrix capturing the upsampling and the lowpass filter {gk}. 

The lowpass filter {gk} can be arbitrary, e.g., B-spline as mentioned in [137]. How-

ever, for efficient reconstruction we shall assume that the filter is box-car. Physically, 

by using a box-car filter we implicitly assume that the incident light is focused on each 

jot, which is reasonable to some extent because QIS is equipped with micro-lenses 

to focus incident light. If {gk} deviates from the box-car but we still use box-car 

for reconstruction, we say that there is model mismatch, which will be studied in 

Section 5.4. 
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5.2.2 Truncated Poisson Process 

The oversampled signal θ generates a sequence of Poisson random variables ac-

cording to the distribution 

P(Ym,t = ym,t) = 
θm
ym,t e−θm 

, (5.2) 
ym,t! 

where m ∈ {0, 1, . . . ,M −1} and t ∈ {0, 1, . . . , T −1} denote the m-th jot and the t-th 

independent measurement in time, respectively. Denoting q ∈ N as the quantization 

threshold, the final observed binary measurement Bm,t is a truncation of Ym,t, i.e., 

Bm,t = 1 when Ym,t ≥ q, and Bm,t = 0 otherwise. Hence, the distribution of Bm,t is 

P(Bm,t = bm,t) = 

⎧ ⎪⎨ ⎪⎩ 

Ψq(θm), if bm,t = 0, 
(5.3) 

1 − Ψq(θm), if bm,t = 1. 

where Ψq : R+ → [0, 1] is the upper incomplete Gamma function [148]. 

The goal of image reconstruction is to reconstruct the underlying image c from 

the binary measurements B = {Bm,t | m = 0, . . . ,M − 1, and t = 0, . . . , T − 1} as 

shown in Figure 5.1. With the box-car kernel assumption, one can show that the ML 

solution has a closed-form [24]: 

ĉn = 
K 
α 
Ψ−1 

q

(
1 − 

Sn 

L

)
, (5.4) 

def ∑T −1 ∑K−1where Sn = BKn+k,t is the spatial-temporal binning of the binary mea-t=0 k=0 

defsurements, and L = KT is the combined spatial-temporal oversampling factor. 

5.2.3 Transform-Denoise Approach 

Our proposed deep neural network shares some similarity with the Transform-

Denoise in [24]. In Transform-Denoise, the key observation is that the random variable 

Sn in (5.4) is binomial. The binomial random variable in QIS has spatially varying 
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1− Sn

L T D T
−1 K

α
Ψ−1q (.)

Fig. 5.4.: Transform-Densoise [24]: We apply a pair of transforms (T , T −1) and a Gaussian 
denoiser D for QIS image reconstruction. 

Fig. 5.5.: The proposed QISNet consists of 15 convolutional layers followed by 15 decon-
volutional layers. 

variance. Thus, one needs to stabilize its variance using variance stabilizing transform 

(VST). The VST used in Transform-Denoise is the Anscombe binomial transform 

[149]: √ (√ )
def 1 Sn + 3 

= T (Sn) = L + sin−1 8 . (5.5)Zn 32 L + 
4 

After VST, standard Gaussian denoisers can be used to smooth the image. The final 

result is obtained by an inverse VST. The overall Transform-Denoise pipeline is shown 

in Figure 5.4. 

5.3 Proposed Method 

5.3.1 Network Structure 

The structure of our proposed neural network is shown in Figure 5.5. We call our 

network the QISNet. On the network level, QISNet has the same structure as the 

very deep Residual Encoder-Decoder Network “RED-Net” architecture [150], which 
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was originally proposed for denoising. In this network structure, there is a sequence 

of N convolutional layers and N deconvolutional layers. The convolutional layers 

extract the features from the input image, and the deconvolutional layers recover the 

details lost during the convolutional steps. As mentioned in [151], the deconvolutional 

layers are necessary for image restoration tasks because the convolutional layers tend 

to oversmooth the image. 

What makes QISNet different from RED-Net is that RED-Net cannot be directly 

applied to the QIS image reconstruction problem as RED-Net is designed for i.i.d. 

Gaussian noise. The QIS data, as discussed, is binary following from the truncated 

Poisson distribution. Therefore, in order to apply the network to QIS, modifications 

are needed. 

Our modification is based on the Transform-Denoise pipeline. The insight is that 

while individual bits of the QIS data follow a truncated Poisson distribution, the 

average of the bits within a small spatial-temporal block 1 − S
L 
n is a Binomial random 

variable. If we further assume that the blocks do not overlap, then 1 − S
L 
n can be 

regarded as an noisy pixel where the distribution is independent (but not identical) 

Binomial. As a result, if we feed 1 − S
L 
n into the network, then a denoising network 

will be sufficient. 

5.3.2 Two Designs for QISNet 

Knowing that the input data to the QIS image reconstruction is independent Bino-

mial, we can now design different combinations of the networks for the reconstruction 

task. Here we present two designs. 

The first design is to use the neural network to replace the Gaussian denoiser in 

Transform-Denoise. We call this design QISNet-TD (See Figure 5.5). The idea of 

QISNet-TD is that since the performance of Transform-Denoise depends heavily on 

the denoiser, we should use a good denoiser. However, we cannot simply put a pre-

trained Gaussian noise network denoiser for this task because the pipeline involves 
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other components. We train the network while forcing it to learn the presence of T , 

T −1 and K 
α
Ψ−1 

q ( ). 

The second design is to use the QISNet to replace the entire Transform-Denoise 

pipeline (See Figure 5.6). This design is slightly more aggressive as we ask the neural 

network to learn the denoiser, the nonlinear functions T and T −1, and K 
α
Ψ−1 

q ( ). The 

difference between QISNet-TD and QISNet is the transforms T and T −1 (and the 

nonlinear function K 
α
Ψ−1 

q ( ) which is less important here). The inverse transform T −1 

is the algebraic inverse, which is a biased inverse transformation. As L grows, the bias 

of T will cause the estimate to deviate from its ideal value. Therefore, as one may 

expect, QISNet-TD performs worse than QISNet in general. We will demonstrate 

this behavior in the experiment section. 

T QISNet T −1 K 
α
Ψ−1 

q (.) 

(a) QISNet-TD: Embeds QISNet into the TD framework. 

QISNet-TD 

QISNet 

(b) QISNet: Use QISNet to learn the entire framework. 

~------------------------, 
I 

-[.._____ ___ }-

· 

· 

· 

Fig. 5.6.: The two proposed designs. 

5.3.3 Training and Parameters 

We implement both QISNet-TD and QISNet using 15 convolutional and 15 de-

convolutional layers. Each layer uses 3×3 kernels, and 64 feature maps. The network 

nonlinearity is obtained using ReLu. The training dataset consists of 2000 images 

selected from the Pascal VOC 2008 dataset [152]. 128 patches of size 50 × 50 are ran-

domly extracted from each image. The inputs used to train the networks are 1 − Sn 

which are images with Binomial “‘noise”. The ground truths are the clean images. 

The loss function is L2-loss, which is optimized using Adam optimizer with a learning 

rate of 0.0001. The training converges to a local minimum [150] and it takes 8 hours 

,
L 
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(a) Input (1 of 64 frames) (b) ML solution [137], 21.91 dB (c) TD-BM3D [24], 26.60 dB 

(d) QISNet-TD, 27.35 dB (e) QISNet, 27.36 dB (f) Ground Truth 

Fig. 5.7.: Reconstructed Images and their PSNR for L = 64. 

using NVidia Geforce GTX TITAN GPU. For parameters, we set q = 1, α = 2K2, 

and T = 16. 

5.4 Experiments 

We synthesize QIS data from 77 images captured using a Canon EOS Rebel T6i 

camera. The images are captured on Purdue campus, which are guaranteed to be 

different from the Pascal VOC 2008 dataset used for training. 

5.4.1 Reconstruction Quality 

We compare the proposed networks with the Transform-Denoise using BM3D [24] 

and the classical MLE approach [137]. We study two cases: K = 1 and K = 2. Since 

T = 16, these correspond to L = K2T = 16 and L = 64, respectively. 

The results of the experiments are shown in Table 5.1. In this table, we divide 

the study into two parts. The first part is the “Match” experiment, where during 
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the QIS data synthesis we assume that the lowpass filter gk is box-car. It is called 

“Match” because the variable Sn also assumes a box-car filter. 

We observe that while TD-BM3D [24] offers almost 10dB improvement over MLE 

[137], the proposed networks give additional improvements. QISNet performs as good 

as than QISNet-TD for small L (27.41dB). For large L, QISNet is better (30.62dB 

with 30.51dB). This suggests that QISNet is indeed able to learn the transforms 

(T , T −1) with sufficient amount of data. Visually, the results in Figure 5.7 show that 

the neural networks reconstruct more details. 

5.4.2 Model Mismatch in G 

The second part of the experiment is the “Mismatch” case. Here, by mismatch 

we meant that the box-car filter used in calculating Sn does not match with the 

lowpass filter used for generating the QIS data. Note that if the lowpass filter gk is 

not box-car, one has to use an iterative algorithm such as gradient descent [137] or 

ADMM [139] to do the reconstruction. Iterative algorithms are not preferred as they 

are practically slow. Thus it is important to see how well the neural networks can 

tolerate the model mismatch. 

Table 5.1.: PSNR in dB for L = 16 and L = 64 

Method 
Mismatch Match 

Linear Quad Cubic Box-Car 

L
 =

 1
6 

MLE 
TD-BM3D 
QISNet-TD 

QISNet 

15.74 
25.67 
26.38 
26.39 

15.69 
25.44 
26.04 
26.05 

15.64 
25.23 
25.74 
25.76 

15.84 
26.40 
27.41 
27.40 

L
 =

 6
4 

MLE 
TD-BM3D 
QISNet-TD 

QISNet 

19.94 
25.45 
25.51 
25.57 

19.93 
25.40 
25.47 
25.52 

19.92 
25.33 
25.39 
25.45 

21.12 
29.90 
30.51 
30.62 

The results of this part of the experiment are shown in Table 5.1. Our proposed 

QISNet-TD and QISNet are trained assuming box-car functions. As we can see 
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from the table, as the mismatch becomes worse (from linear to cubic splines), the 

reconstruction PSNR also drops. However, the PSNR drop in the neural network 

approaches are not worse than Transform-Denoise. In fact, for all the mismatch 

filters, the networks still produce better reconstruction quality. One thing to note, 

however, is that if we know the lowpass filter, we can easily re-train the network to 

adapt to the filter. Transform-Denoise does not have this flexibility. 

5.5 Conclusion 

We proposed deep neural networks for reconstructing images for Quanta Image 

Sensors. Our networks can replace the existing Transform-Denoise pipeline, while 

offering better image reconstruction results. Practically, we anticipate that the net-

works can eventually be put on neuromorphic chips for better speed and performance. 
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6. CONCLUSION 

6.1 Summary 

Matrix and Tensor Factorization 

In Chapter 2, we presented a computationally-attractive and memory-efficient ten-

sor factorization algorithm by addressing the exploiting problem of the Khatri-Rao 

product. Also, we discussed a strategy for distributing the computations across mul-

tiple machines. In Chapter 3, we studied four variants of ADMM algorithm for non-

negative matrix factorization in the presense of noise by variable split strategy. We 

found from the experiments that the multiple-variable split method performs worse 

than the single-variable split method, the half quadratic penalty and the algorithm-

induced priors. 

Deep Neural Network for Image Denoising 

In Chapter 4, we presented an optimal framework to combine multiple, weak im-

age denoisers. The framework consists of three steps: Estimate the MSE using deep 

neural network; optimally combine the images from multiple denoisers via convex 

formulation; boost the combined image. The experimental results support our frame-

work as they show superior performance compared to other state-of-the-art denoising 

algorithms. In Chapter 5, we proposed applying deep neural networks to Quanta Im-

age Sensors for image reconstruction. Our deep neural network replaces the existing 

Transform-Denoise pipeline and offers better image reconstruction results. 
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6.2 Future Work 

There are notable limitations to both the tensor factorization and the deep neu-

ral network models in this thesis. First, our distributed tensor factorization model 

suffered a substantial increase in communication time on more than 8 nodes. To 

reduce the communication time, an algorithm should avoid synchronization which 

forces computationally completed nodes to wait until all other nodes are finished. 

To solve this problem, we will further pursue an asynchronous tensor factorization 

method using a queue per each node. We expect this method will work well in terms 

of computational efficiency and accuracy. 

As for the deep neural network model, we used noisy images clipped to values 

between 0 and 1 as input for our Consensus Neural Network (CsNet). To imitate 

reality, we should use unclipped noisy images that include negative values. Therefore, 

our next set of experiments includes unclipped noisy images and an updated deep 

neural network model that is capable of handling negative values. 



APPENDICES 



90 

A. APPENDIX OF DFACTO 

A.1 Definitions of Standard Matrix Products 

Definition A.1.1 The Kronecker product A ⊗ B ∈ Rmp×nq of matrices A ∈ Rm×n 

and B ∈ Rp×q is defined as ⎤⎡ 

A ⊗ B = 
⎢⎢⎢⎣ 

a1,1B a1,2B . . . a1,nB 
. . . .. . . .. . . . 

⎥⎥⎥⎦ 
. (A.1) 

am,1B am,2B . . . am,nB 

Definition A.1.2 The Khatri-Rao product A ⊙ B ∈ Rmp×n of matrices A ∈ Rm×n 

and B ∈ Rp×n is given by the Kronecker product of the corresponding columns of the 

two matrices: 

A ⊙ B =
[
a:,1 ⊗ b:,1 a:,2 ⊗ b:,2 . . . a:,n ⊗ b:,n

]
. (A.2) 

Definition A.1.3 The Hadamard product A∗B ∈ Rn×m of two conforming matrices 

A ∈ Rn×m and B ∈ Rn×m is given by ⎤⎡ 

A ∗ B = 
⎢⎢⎢⎣ 

a1,1b1,1 a1,2b1,2 . . . a1,mb1,m 

. . . .. . . .. . . . 

an,1bn,1 an,2bn,2 . . . an,mbn,m 

⎥⎥⎥⎦ (A.3) 

Definition A.1.4 The outer product a ◦ b of vectors a ∈ Rm and b ∈ Rn is given by 

a matrix M ∈ Rm×n such that 

mi,j = aibj. (A.4) 
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The definition can be extended to tensors by defining the outer product a ◦ b ◦ c of 

three vectors a ∈ Rm, b ∈ Rn, and c ∈ Rp as a tensor M ∈ Rm×n×p with 

mi,j,k = aibj ck. (A.5) 

Definition A.1.5 Given a matrix A ∈ Rn×m, the linear operator vec(A) yields a 

vector x ∈ Rnm, which is obtained by stacking the columns of A: ⎤⎡ 

vec(A) = x = 

⎢⎢⎢⎢⎢⎢⎣ 

a:,1 

a:,2 

... 

a:,n 

⎥⎥⎥⎥⎥⎥⎦ 

. (A.6) 

Observe that 

xi+(j−1)n = ai,j . (A.7) 

On the other hand, given a vector x ∈ Rnm, the operator unvec(n,m)(x) yields a matrix 

A ∈ Rn×m: 

unvec(n,m)(x) = A =
[
a:,1 a:,2 . . . a:,n

]
. (A.8) 

The Kronecker product satisfies the following well known relationship (see e.g., propo-

sition 7.1.9 of [68]): 

vec(ABC) =
(
C⊤ ⊗ A

)
vec(B). (A.9) 

The Khatri-Rao product satisfies (see e.g., chapter 2 of [36]): 

(A ⊙ B)⊤ (A ⊙ B) = A⊤A ∗ B⊤B. (A.10) 
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Plugging this into the definition of the Moore-Penrose pseudo-inverse [68] immediately 

shows that 

(A ⊙ B)† =
(
A⊤A ∗ B⊤B

)−1 
(A ⊙ B)⊤ . (A.11) 

A.1.1 An Example of Flattening Tensors 

Let X be a 3 × 4 × 3 tensor with frontal slices ⎤⎡⎤⎡⎤⎡ 
1 1 4 2 4 5 5 1 1 0 2 4⎢⎢⎢⎣ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎥⎥⎥⎦ , then3 4 5 3 1 1 1 4 4 1 5 1 

5 0 5 1 1 1 0 3 5 2 4 1 

⎤⎡ 
1 1 4 2 4 5 5 1 1 0 2 4 

3 4 5 3 1 1 1 4 4 1 5 1 

5 0 5 1 1 1 0 3 5 2 4 1 

= 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
X1 

⎤⎡ 

X2 = 

⎢⎢⎢⎢⎢⎢⎣ 

1 4 1 3 1 4 5 1 5 

1 5 0 4 1 1 0 1 2 

4 5 2 5 1 5 5 0 4 

2 1 4 3 4 1 1 3 1 

⎥⎥⎥⎥⎥⎥⎦ 

⎤⎡ 
1 3 5 1 4 0 4 5 5 2 3 1 

4 1 1 5 1 1 5 1 0 1 4 3 

1 4 5 0 1 2 2 5 4 4 1 1 

= 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
X3 
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A.2 Review of ALS 

In this section, we will introduce the CANDECOMP / PARAFAC (CP) decom-

position model, and the ALS algorithm. The CP decomposition is a multi-way tensor 

factorization model. Given a tensor X ∈ RI×J×K , the R-rank CP decomposition of 

X is given by three matrices A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R such that 

R∑ 
X ≈ λr · a:,r ◦ b:,r ◦ c:,r. (A.12) 

r=1 

Note that the columns of A, B, and C are normalized to have unit length. The CP 

decomposition is computed by solving 

R∑ 
min X − X̂ with X̂ = λr · a:,r ◦ b:,r ◦ c:,r. (A.13)
X̂ 

r=1 

The most popular method to solve the above problem is the Alternating Least Squares 

(ALS) algorithm [37]. The basic idea here is to fix all the matrices except one, and 

solve a least squares problem. Fixing B and C and rewriting (A.13), this amounts to 

setting 

Â ← argmin X1 − Â (C ⊙ B)⊤ (A.14) 
Â 

The optimal solution of (A.14) can be rewritten using (A.11) as 

( )† 
Â = X1 (C ⊙ B)⊤ (A.15) ( )−1 

= X1 (C ⊙ B) C⊤C ∗ B⊤B . (A.16) 

We obtain A by normalizing the columns of Â . The ALS procedure repeats anal-

ogously to find B̂ and Ĉ until a stopping criterion is met. The general CP-ALS 

algorithm is summarized in Algorithm 9. 
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Algorithm 9: CP-ALS algorithm 

1 Input: X1, X2, X3 

2 Initialize: A, B, C 
3 while stopping criterion not met do 
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 end 

M1 ← X1 (C ⊙ B)( )−1 
A ← M1 C

⊤C ∗ B⊤B 
Normalize columns of A 
M2 ← X2 (A ⊙ C)( )−1 
B ← M2 A

⊤A ∗ C⊤C 
Normalize columns of B 
M3 ← X3 (B ⊙ A)( )−1 
C ← M3 B

⊤B ∗ A⊤A 
Normalize columns of C 

In tensor factorization, occasionally the problem of overfitting occurs. Thus, we 

add regularization terms to the objective function. Accordingly, we obtain the fol-

lowing new objective function: 

R
1 ( ) ∑ 

min X − X̂ + λ ∥A∥2 + ∥B∥2 + ∥C∥2 with X̂ = λr · a:,r ◦ b:,r ◦ c:,r. 
X̂ 2 

r=1 

(A.17) 

Then, the optimal solution of (A.17) becomes 

( )−1 
Â = X1 (C ⊙ B) C⊤C ∗ B⊤B + λI . (A.18) 
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A.3 Review of GD 

In this section, we will introduce the GD algorithm using CANDECOMP / PARAFAC 

(CP) decomposition model introduced in Section A.2. This algorithm uses the same 

objective function as CP-ALS except for normalization. Thus, we solve 

R 

s.t. X̂ = a:,r ◦ b:,r ◦ c:,r (A.19) 
∑∑ 1 2(xi,j,k − x̂i,j,k)min 

X̂ 2 
i,j,k r=1 

We can rewrite the equation in (A.19) as 

2 ⊤f =
1 

X1 − A (C ⊙ B) . (A.20)
2 

Next, the gradient of (A.20) with respect to A can be presented as 

(
C⊤C ∗ B⊤B

)
. 

∂ 
∂A 

f = −X1 (C ⊙ B) + A (A.21) 

In GD, the gradient of f will be written as ⎤⎡ ( )
∂ fvec ⎢⎢⎢⎣ 

∂A ⎥⎥⎥⎦ (A.22)∂ 
∂B 

∂ 

∇f = fvec .
(( ))

fvec 
∂C 

Then, we can compute the factor matrices A, B and C with f̂ = f − α ∇f . The 

general CP-GD algorithm is summarized in Algorithm 10. 

We add regularization terms to the objective function to solve the problem of 

overfitting. The new objective function is now 

λ
(
∥A∥2 + ∥B∥2 + ∥C∥2

)
ˆs.t. X = 

∑R 

r=1 

a:,r ◦ b:,r ◦ c:,r 

(A.23) 

∑ 1 2 1 
(xi,j,k − x̂i,j,k)min 

2 2ˆ 
i,j,k X 
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5 

4 

6 

7 

8 

9 

A.4 

Algorithm 10: CP-OPT algorithm 

1 Input: X1, X2, X3 

2 Initialize: A, B, C 
3 while stopping criterion not met do 

M1 ← X1 (C ⊙ B) 
∇A ← −M1 + A 
M2 ← X2 (A ⊙ C) 

M3 ← X3 (B ⊙ A) 

(
(
A⊤A ∗ C⊤C

)
) C⊤C ∗ B⊤B 

∇B ← −M2 + B )
B⊤B ∗ A⊤A∇C ← −M3 + C 

10 Calculate Step Size α 
11 A ← A − α∇A 
12 B ← B − α∇B 
13 C ← C − α∇C 

( 

14 end 

Then, the gradient of (A.23) with respect to A becomes 

f = −X1 (C ⊙ B) + A
(
C⊤C ∗ B⊤B + λI

)
. (A.24)∂ 

∂A 

Illustrative Example for tensor factorization 

We illustrate the differences between our algorithm for computing M := X1 (C ⊙ B) 

vs the algorithms proposed by [2] and [3] on the following example: Consider X ∈ 

R2×3×3 and let ⎤⎡ ⎤⎡ 1 0 2 0 3 0 

0 4 0 0 0 5 

6 7 0 0 8 9 

and X2 = 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
.⎣ 1 0 6 0 4 7 2 0 0 

0 0 0 3 0 8 0 5 9 
⎦X1 = 
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Moreover, let ⎤⎡⎤⎡ 

B = 
⎢⎢⎢⎣ 

3 1 ⎥⎥⎥⎦ 
and C = 

⎢⎢⎢⎣ 

1 2 

1 1 2 1 
⎥⎥⎥⎦ 
. 

2 3 1 3 

[2] propose to store the above tensor as 

⎤⎡⎤⎡ 

bX = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 

2 

3 

4 

5 

6 

7 

8 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

and SX = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 0 

0 0 2 

1 0 1 

0 1 1 

1 1 2 

0 2 0 

0 2 1 

1 2 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 

9 1 2 2 
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where bX denotes the vector of non-zero entries of X, while SX denotes the corre-

sponding vector of indices. The algorithm proposed in Sections 3.2.4 and 3.2.7 of [2] 

first computes 

⎤⎡⎤⎡⎤⎡⎤⎡ 

m1 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

∗ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

3 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

∗ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

3 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. 

2 

3 

4 

5 

6 

7 

8 

3 

3 

1 

1 

2 

2 

2 

1 

2 

2 

1 

1 

2 

2 

6 

18 

8 

5 

12 

28 

32 

9 2 1 18 

The above Hadamard product involves three vectors namely bX, a vector formed by 

repeating entries of B:,1 based on SX 
:,2, and a vector formed by repeating entries of C:,1 

based on SX 
:,3. Similarly, we compute the vector below but by using bX and repeated 

entries from B:,2 and C:,2 respectively: 

⎤⎡⎤⎡⎤⎡⎤⎡ 

m2 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

∗ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

∗ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

2 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

2 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. 

2 

3 

4 

5 

6 

7 

8 

1 

1 

1 

1 

3 

3 

3 

3 

1 

1 

3 

2 

1 

1 

6 

3 

4 

15 

36 

21 

24 

9 3 3 81 

Finally, we use 
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⎤⎡ 

SX 
:,1 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 

0 

1 

0 

1 

0 

0 

1 

1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

to sum the appropriate entries of m1 and m2 to form M: ⎤⎡⎤⎡ 
3 + 6 + 8 + 12 + 28 2 + 6 + 4 + 36 + 21 57 69 

M = ⎣ ⎦ = ⎣ ⎦ . 
18 + 5 + 32 + 18 3 + 15 + 24 + 81 73 123 

The algorithm uses 2 ΩX extra storage and 5 ΩX flops to compute one column of 

M. On the other hand, the algorithm of [3] computes M as follows: 

⎤⎡⎤
)(

⎡ 
0 0 

⊤ = X1 ∗N1 1I ⊙ (c:,0 ⊗ 1J ) 

1 6 0 4 7 2 0 1 1 1 2 2 2 1 1 1⎣ ⎦ ∗ ⎣ ⎦= 
0 0 0 3 0 8 0 5 9 1 1 1 2 2 2 1 1 1 ⎤⎡ 
1 0 6 0 8 14 2 0 0⎣ ⎦= . 
0 0 0 6 0 16 0 5 9 

Here 1n denotes a vector of size n with all entries set to one. Similarly, if bin (X1) 

denotes an indicator matrix for the non-zero entries of X1, then 
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( )( ) ⊤X1N2 = bin ∗ 1I ⊙ (1K ⊗ b:,0)⎡ ⎤ ⎡ 
1 0 1 0 1 1 1 0 0⎣ ⎣= ⎦ ∗ 
0 0 0 1 0 1 0 1 1 ⎡ ⎤ 
3 0 2 0 1 2 3 0 0⎣ ⎦= . 
0 0 0 3 0 2 0 1 2 

3 

3 

1 

1 

2 

2 

3 

3 

1 

1 

2 

2 

3 

3 

1 

1 

2 

2 

⎤ ⎦ 

Finally we compute N3 = N1 ∗ N2 ⎡ 
3 0⎣N3 = 
0 0 

via 

12 

0 

0 

18 

8 

0 

28 

32 

6 

0 

0 

5 

0 

18 

⎤ ⎦ 

to obtain 

m:,1 = N3 1JK 

⎡ ⎣= 
57 

73 

⎤ ⎦ . 

To compute the second column of M we use ( )
⊤N1 = X1 ∗ 1I ⊙ (c:,1 ⊗ 1J )⎡ ⎤ ⎡ 

1 0 6 0 4 7 2 0 0 2⎣ ⎣= ⎦ ∗ 
0 0 0 3 0 8 0 5 9 2 ⎡ ⎤ 
2 0 12 0 4 7 6 0 0⎣ ⎦= . 
0 0 0 3 0 8 0 15 27 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

3 

3 

3 

3 

3 

3 

⎤ ⎦ 

( )( ) ⊤X1N2 = bin ∗ 1I ⊙ (1K ⊗ b:,1)⎡ ⎤ ⎡ 
1 0 1 0 1 1 1 0 0⎣ ⎣= ⎦ ∗ 
0 0 0 1 0 1 0 1 1 ⎡ ⎤ 
1 0 3 0 1 3 1 0 0⎣ ⎦= . 

1 

1 

1 

1 

3 

3 

1 

1 

1 

1 

3 

3 

1 

1 

1 

1 

3 

3 

⎤ ⎦ 

0 0 0 1 0 3 0 1 3 
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Finally we compute N3 = N1 ∗ N2 via ⎤⎡ 
2 0 36 0 4 21 6 0 0 

N3 = ⎣ ⎦ 
0 0 0 3 0 24 0 15 81 

and then compute ⎤⎡ ⎣ 69 

123
⎦ .m:,1 = N3 1JK = 

The algorithm uses max 

pute one column of M.

(
J + ΩX , K + ΩX

)
extra storage and 5 ΩX flops to com-

In contrast, our algorithm computes M as follows: 

⎞⎤⎡⎛ ⊤ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 6 

0 4 7 

2 0 0 

0 0 0 

3 0 8 

0 5 9 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎤⎡ ⎤⎡⎤⎡ ⎤⎡ ⎤⎡3 1 1⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
= 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
⎣ 15 18 6 

0 25 23 
⎦ ⎣ 57 

73 
⎦1 2 2m:,0 = unvec(2,3) = 

2 1 1 

⎞⎤⎡⎛ ⊤ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 6 

0 4 7 

2 0 0 

0 0 0 

3 0 8 

0 5 9 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎤⎡ ⎤⎡⎤⎡ ⎤⎡ ⎤⎡1 2 2⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
= 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
⎣ 19 25 2 

0 27 32 
⎦ ⎣ 69 

123 
1 1 1m:,1 = unvec(2,3) = . 

3 3 3 

Our algorithm only requires nnzc(X2) extra storage space and 2 ΩX flops for com-

puting M. 

⎦ 
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A.5 The application of DFacTo - Joint Matrix Completion and Tensor 

Factorization 

Generally, matrix completion is used when predicting how users will rate items 

based on data of how these users have previously rated other items. Occasionally, 

however, the accuracy of prediction from matrix completion is poor because matrix 

completion only uses prior information on the user, item, and rating. Thus, we 

suggest a joint matrix completion and tensor factorization model. In this model, we 

add a word count tensor X with user-item-word dimensions to the previous rating 

matrix Y. This model is similar to [71]; but instead of sharing just one dimension 

(item), we introduce a model that shares both the user and item dimensions. Also, 

while [71] applies joint tensor completion and matrix factorization, we suggest using 

joint matrix completion and tensor factorization. 

Our joint model can be computed by solving 

∑ ∑1 1 1 ( )2 2min (yi,j − ŷi,j ) + µ (xi,j,k − x̂i,j,k) + λ ∥A∥2 + ∥B∥2 + ∥C∥2 

X̂ ,Ŷ 2 2 2 
(i,j)∈ΩY i,j,k 

(A.25) 
R R∑ ∑ 

ˆ ˆs.t. X = a:,r ◦ b:,r ◦ c:,r, Y = a:,r ◦ b:,r 

r=1 r=1 

We can rewrite the equation in (A.25) as 

1 ∑ ( )2 1 ∑( )2 11 ⊤ ⊤f = yi,j − ai,:b
⊤ 
j,: + µ xi,j − ai,: (C ⊙ B) + λai,:ai,:. (A.26)j,:2 2 2 

j∈ΩY j
i,: 

Next, the gradient of (A.26) with respect to ai,: can be presented as 

⎡ ⎤ 
∂ [ ] ∑ 

1 ⎣ b⊤ ⎦f = − yi,:B + µ xi,: (C ⊙ B) + ai,: j,:bj,: + µ C⊤C ∗ B⊤B + λI . 
∂ai,: 

j∈ΩY 

(A.27) 
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The two optimization methods we use to solve the minimization problem in this 

chapter are the Gradient Descent (GD) and the Alternative Least Squares (ALS). 

In GD, the gradient of f will be written as ⎤⎡ ( )
∂ fvec ⎢⎢⎢⎣ 

∂A ⎥⎥⎥⎦ 
. (A.28)∂ 

∂B 

∂ 

∇f = fvec 
(( ))

fvec 
∂C 

And each vec(·) of (A.28) will be computed by the gradient of f in (A.27) that 

corresponds to aj,:, bj,: and ck,:, respectively because 

⎡ ⎤(
(

)⊤ 
∂ f

∂a1,: )⊤ 
∂ f

∂a2,: 

. 

⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

vec 

(
∂ 
∂A 

f

)
= . . . ( )⊤ 

∂ f
∂aI,: 

Then, we can compute the factor matrices A, B and C with f̂ = f − α ∇f . 

On the other hand, in ALS, setting (A.27) to zero shows that the optimal solution 

of (A.26) is given by 

⎤ ∑ 
⎡ −1 

âi,: =
[
yi,:B + µ x 1 

i,: (C ⊙ B) ⎣] b⊤ 
j,:bj,: + µ C⊤C ∗ B⊤B + λI⎦ . 

j∈ΩY 

In both cases, we will use DFacTo, which we suggested in Section 2.3, to avoid 

the intermediate data explosion problem of X1(C ⊙ B). 

A.5.1 Experimental Evaluation 

We evaluate the joint tensor factorization and matrix completion model on a 

subset of datasets from Table 2.1. Arguably, our experimental evaluation is very 

preliminary, but promising. The experimental setup is as follows: We split each 
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dataset into train, test, and validation. We randomly select 60% of review, rating 

pairs and designate them as training data. We then select 20% of the remaining 

review, rating pairs, discard the reviews, remove users or items which do not occur in 

the training data, and use it for validation. A similar procedure is used to generate 

the test dataset. Cellartracker and RateBeer datasets contain ratings which are not 

in a 0 to 5 scale. For consistency, we normalize these ratings to be in 0 to 5. Our 

evaluation metric is the mean square error which is given by 
∑ 

(i, j) ∈ ΩY(yi,j − ŷi,j ), 

were yi,j is a test rating and ŷi,j is the rating predicted by our model. 

We train our model with µ ∈ {102 , 101 , ..., 10−9 , 10−10} and λ ∈ {100, 10, 1, 0.1, 0.01}, 

evaluate its performance on the validation set, and pick the best model based on its 

mean square error. We use this model to predict on the test dataset and report av-

erage mean square error. In Tables A.1 and A.2, we show the MSEs from both the 

matrix completion and our joint model using GD and ALS. For GD, the method of 

backtracking line search was used. 

Table A.1.: Best Test MSE of single matrix completion and joint matrix completion 
and tensor factorization model after 500 iterations using Gradient Descent. 

Dataset Matrix Completion Joint (MC + TF) 
λ Test MSE µ λ Test MSE 

Yelp Phoenix 
Cellartracker 
Beeradvocate 

Ratebeer 

10 
1 
1 

0.01 

3.133650 
1.506590 
0.603431 
0.390188 

10−6 

10−7 

10−7 

10−9 

0.1 
1 

0.1 
1 

1.481320 
0.927066 
0.459174 
0.389653 

Table A.2.: Best Test MSE of single matrix completion and joint matrix completion 
and tensor factorization model after 500 iterations using ALS. 

Dataset Matrix Completion Joint (MC + TF) 
λ Test MSE µ λ Test MSE 

Yelp Phoenix 
Cellartracker 
Beeradvocate 

Ratebeer 

1 
1 

0.1 
0.1 

2.904320 
1.148010 
0.465695 
0.355989 

1 
100 
10 
0.1 

1 
0.01 
0.1 

1 

1.944050 
0.363496 
0.373827 
0.318692 
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The results show that our joint model produces better MSEs than matrix com-

pletion across all datasets and methods. All in all, our joint model improves the 

accuracy of prediction when compared to matrix completion. 
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B. PROOF OF PROPOSITION 4.2.5 

Proof First, we show that 

z∥2 defE∥ze − b E∥Zbwe − b = E∥Zbwe − z + z − b= Zw∥2 Zw∥2 

= E∥(Zb e w) − ( bw − Z e Zw − Zw)∥2 

= E∥(Zb − Z)(we − w)∥2 = (we − w)T Σ(we − w). 

The term (we − w)T Σ(we − w) can be upper bounded by 

(we − w)T Σ(we − w) = weT Σwe − w T Σw − 2(we − w)T Σw 

≤ we T Σwe − w T Σw. 

The last inequality holds because the function f(w) = wT Σw attains its first order 

optimality at w when 

∇f(w)T (we − w) ≥ 0. 

Therefore, 

T e T ewe T Σwe − w T Σw = we T Σwe − we Σwe + we Σwe − w T Σw 

T e T e≤ we T Σwe − we Σwe + w Σw − w T Σw ( ) ( )
weT Σwe wT Σe wT e= we Σwe − 1 + w T Σw − 1 

T e wT Σwwe Σwe 

≤ (we T Σe we + w T Σw)δ, 
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where ( )
weT Σwe wT Σe w 

δ = max − 1 , − 1 (B.1) 
wT e wT Σwe Σwe 

We can also show that 

w T Σe w ≤ w T Σw(1 + δ) 

Continue the calculation, we have 

T e T e(we Σwe + w T Σw)δ ≤ (w Σw + w T Σw)δ 

≤ (w T Σw)(2δ + δ2) 

This implies that 

E∥ze − zb∥2 ≤ E∥zb − z∥2(2δ + δ2). 

It remains to derive an upper bound on δ. To this end, we consider the generalized 

Rayleigh quotient of two positive definite matrices A and B. It is known that [153] 

wT Aw (
B− 1 

2AB− 1 
2

) 
. 

=0w ̸ wT Bw 

Therefore, 

max = λmax 

T e T ew Σw w Σw wT (Σe − Σ)w − 1 ≤ max − 1 = max 
wT Σw w ̸ wT Σw w=0 wT Σw=0 ̸ 

= max λi 
i 

(
Σ− 1 

2 (Σe − Σ)Σ− 1 
2

) 
, 

where λi(A) denotes the i-th eigen-value of the matrix A. With some additional 

algebra we can show that 
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1 1 1 1 
max λi 

i 

(
Σ−

2 (Σe − Σ)Σ−
2

) (
= max 1 − λi 

i ( 
2

)
Σ−

2 eΣΣ− )
Σ−1 eΣ= max 

i 
1 − λi 

1 ≤ max ( ) − λi 
i Σ−1 eλi Σ 

( )
Σ−1 eΣ , 

where the last inequality holds because for any t ≥ 0, |1 − t| ≤ |t − 1 |. By recalling 
t 

the definition of the matrix operator norm, we have that 

T ew Σw def
Σ−1 − Σ−1 e− 1 ≤ Σ e Σ = ∆. 

wT Σw 2 

Substituting this result into (B.1), and by symmetry, we complete the proof. 
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