
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2018

Computational Methods for Matrix/Tensor Factorization and Computational Methods for Matrix/Tensor Factorization and

Deep Learning Image Denoising Deep Learning Image Denoising

Joon Hee Choi
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Choi, Joon Hee, "Computational Methods for Matrix/Tensor Factorization and Deep Learning Image
Denoising" (2018). Open Access Dissertations. 1919.
https://docs.lib.purdue.edu/open_access_dissertations/1919

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1919?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1919&utm_medium=PDF&utm_campaign=PDFCoverPages

COMPUTATIONAL METHODS FOR MATRIX/TENSOR FACTORIZATION

AND DEEP LEARNING IMAGE DENOISING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Joon Hee Choi

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Stanley Chan, Chair

School of Electrical and Computer Engineering

Dr. Charles A. Bouman

School of Electrical and Computer Engineering

Dr. Mireille Boutin

School of Electrical and Computer Engineering

Dr. Amy R. Reibman

School of Electrical and Computer Engineering

Approved by:

Dr. Venkataramanan Balakrishnan

Head of the School Graduate Program

iii

To My Lovely Wife and Daughter, My Parents and My Parents in Law.

iv

ACKNOWLEDGMENTS

It feels surreal to be writing the acknowledgement section. I returned to academia

after eight years of work experience as a project manager, which placed me on a

challenging journey in the doctoral program. Alongside my much younger peers, I

struggled mentally and physically to relearn and update my academic knowledge and

skills in computer engineering. Therefore, I know I would not have been able to reach

this last milestone in my PhD journey without the help and patience from so many

generous and incredible individuals I have met along the way. I would like to express

my sincerest gratitude to all of them.

First, I would like to extend my deepest appreciation and gratitude to my advisor

and mentor, Professor Stanley Chan. I have been extremely fortunate to have met

Professor Chan at a time when I was without direction and hope. Not only did he

graciously take me under his wings, but he has been infinitely supportive, inspiring,

and genuinely caring for the last three and a half years. Professor Chan genuinely

cares about his students and respects the unique views and research interests each of

us brings to the table. What makes him extraordinary, and myself extremely lucky, is

that he provides firm structure and a nurturing environment for his students so that

we can maximize productivity as well as balance life. Through good times and bad,

he would always listen, patiently work with me to find solutions, and encourage me to

pursue my passion and dreams. I never knew how to express my deep gratitude but

I want to use this space to let him know that he is the best mentor I have met and

that I would not have been able to complete my PhD journey in such a meaningful

way had it not been for him.

Professor SVN Vishwanathan is another person to whom I am deeply indebted.

Professor Vishwanathan was my first advisor at Purdue before he left the school. He

accepted me as his student when I lacked basic knowledge and skills in computer

v

programming. He taught me everything from coding to research. In the end, I was

able to achieve the unthinkable—having my paper accepted to the prestigious Neural

Information Processing Systems (NIPS). Professor Vishwanathan transformed me

from a bewildered older student to a confident and hopeful doctoral student.

I am deeply grateful to my committee members, Professor Charles A. Bouman,

Professor Mireille Boutin and Professor Amy R. Reibman, for their guidance and

insightful discussions on my research. It is a great honor to have my dissertation

work vetted by such renowned scholars in the fields of image processing.

I would also like to acknowledge the helpful guidance and support I have received

from Dr. Abhinav Vishnu at Pacific Northwest National Laboratory (PNNL) during

my internship; the collegiality and support from my labmates Omar Elgendy, Xiran

Wang, Xiangyu Qu, Zhiyuan Mao, Nicholas Chimitt, Yiheng Chi, Pinar Yanardag,

Jiasen Yang, Hyokun Yun, Bin Shen and Nan Ding; and the deep friendship and

love from my fellow Korean colleagues Chiho Choi, Soonam Lee, Woosuk Lee, Song

Noh, Hyundok Cho, Minwoong Kim, Yunsung Nam, Joonsoo Kim, Kangwoo Lee and

Heejin Park, and my friends in South Korea Sungbae Cho, Youngsuk Kim and Kiyong

Kim. Thanks to everyone for helping me through difficult times and laughing with

me during exciting moments in my life.

Last but not least, I would like to express my deepest love and appreciation to

my family, who mean everything to me: My lovely wife Na Youn Lee, my dearest

daughter Jianne Choi, my self-sacrificing parents, my generous parents-in-law, and

my cool brothers Kun Hee and Tae Woo.

This dissertation was made possible thanks to “all” of your strong support. Thank

you again.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Objective 1: Efficient Matrix and Tensor Factorization Methods 1

1.2 Objective 2: Deep Learning for Image Denoising 4

1.3 Contributions of The Thesis . 6

1.4 Publications Resulting from this Thesis 8

2 DFACTO: DISTRIBUTED FACTORIZATION OF TENSORS 11

2.1 Introduction . 11

2.1.1 Matrix, Tensor, and their Applications 11

2.1.2 Tensor Factorization . 12

2.1.3 Related Methods . 14

2.1.4 Our Contributions . 15

2.2 Notation and Preliminaries . 16

2.2.1 Flattening Tensors . 17

2.3 DFacTo . 18

2.3.1 Distributed Memory Implementation 22

2.3.2 Complexity Analysis . 23

2.3.3 Related Work . 23

2.4 Experimental Evaluation . 24

2.5 Discussion and Conclusion . 29

3 COMPARISON OF ADMM ALGORITHMS FOR NOISY NON-NEGATIVE
MATRIX FACTORIZATION . 31

vii

Page

3.1 Introduction . 31

3.1.1 Non-negative Matrix Factorization 31

3.1.2 Problem Statement . 32

3.1.3 Contributions . 33

3.2 Background . 33

3.2.1 Spectral Total Variation . 34

3.2.2 ADMM Algorithm . 34

3.3 Variations of ADMM Algorithms . 36

3.3.1 Single Variable Split . 36

3.3.2 Multiple Variable Split . 37

3.3.3 Half Quadratic Penalty . 38

3.3.4 Algorithm-induced Prior . 40

3.4 Experiments and Discussions . 41

3.4.1 Experimental Results . 41

3.4.2 Discussion . 42

3.5 Conclusion . 43

4 OPTIMAL COMBINATION OF IMAGE DENOISERS 46

4.1 Introduction . 46

4.1.1 Related Work . 48

4.1.2 Contributions . 49

4.1.3 Notation . 50

4.2 Optimal Combination of Estimators . 51

4.2.1 Problem Formulation . 51

4.2.2 Solving (P1) . 53

4.2.3 Geometric Interpretation of (P1) 55

4.2.4 Optimal MSE Lower Bound . 58

4.2.5 Perturbation in Σ . 60

4.3 MSE Estimator . 62

viii

Page

4.3.1 Why not SURE? . 62

4.3.2 Neural Network MSE Estimator 63

4.3.3 Comparison with SSDA . 65

4.4 Booster Network . 66

4.4.1 What is a Booster? . 66

4.4.2 Deep Learning based Booster 67

4.4.3 Performance of Booster . 69

4.5 Experiments . 69

4.5.1 Experiment 1: Noise-Level Mismatch 69

4.5.2 Experiment 2: Different Image Classes 71

4.5.3 Experiment 3: Different Denoiser Types 73

4.5.4 Limitations and Extensions . 74

4.6 Conclusion . 75

5 IMAGE RECONSTRUCTION FOR QUANTA IMAGE SENSORS USING
DEEP NEURAL NETWORKS . 77

5.1 Introduction . 77

5.2 QIS Imaging Model . 79

5.2.1 Spatial-Temporal Oversampling 80

5.2.2 Truncated Poisson Process . 81

5.2.3 Transform-Denoise Approach 81

5.3 Proposed Method . 82

5.3.1 Network Structure . 82

5.3.2 Two Designs for QISNet . 83

5.3.3 Training and Parameters . 84

5.4 Experiments . 85

5.4.1 Reconstruction Quality . 85

5.4.2 Model Mismatch in G . 86

5.5 Conclusion . 87

ix

Page

6 Conclusion . 88

6.1 Summary . 88

6.2 Future Work . 89

A APPENDIX OF DFACTO . 90

A.1 Definitions of Standard Matrix Products 90

A.1.1 An Example of Flattening Tensors 92

A.2 Review of ALS . 93

A.3 Review of GD . 95

A.4 Illustrative Example for tensor factorization 96

A.5 The application of DFacTo - Joint Matrix Completion and Tensor Fac-
torization . 102

A.5.1 Experimental Evaluation . 103

B PROOF OF PROPOSITION 4.2.5 . 106

REFERENCES . 109

VITA . 121

x

LIST OF TABLES

Table Page

2.1 Summary statistics of the datasets used in our experiments. 25

2.2 Times per iteration (in seconds) of DFacTo (ALS), GigaTensor, CPALS,
DFacTo (GD), and CPOPT on datasets which can fit in a single machine
(R=10). 26

2.3 Total Time and CPU time per iteration (in seconds) as a function of
number of machines for the NELL-1 and Amazon datasets (R=10). . . . 28

2.4 Time per iteration (in seconds) on synthetic datasets (non-zeros = 106 or
2I, R=10) . 29

2.5 Time per iteration (in seconds) on various R 29

3.1 PSNR of the algorithms at σ = 5/255, 10/255, 20/255. 42

4.1 Example of Noise-level mismatch. The average PSNRs of REDNet (σb =
10, 20, 30, 40, 50), Blind REDNet with 50 layers and ConsensusNet on 200
test images from BSD500. 70

4.2 Example of different image classes. Class-specific REDNets have bet-
ter performance than BM3D, DnCNN (generic) and REDNet (generic).
CsNet selects the best class. We use 10 images from ImageNet for testing. 72

4.3 Example of different denoiser type. We integrate BM3D [20], DnCNN [16],
REDNet [14], and FFDNet [18], and show CsNet before and after boosting.
We use 200 images from BSD500 for testing. 74

5.1 PSNR in dB for L = 16 and L = 64 . 86

A.1 Best Test MSE of single matrix completion and joint matrix completion
and tensor factorization model after 500 iterations using Gradient Descent. 104

A.2 Best Test MSE of single matrix completion and joint matrix completion
and tensor factorization model after 500 iterations using ALS. 104

xi

LIST OF FIGURES

Figure Page

1.1 Hyperspectral image data [1] . 3

2.1 [Top] Matrix-factorization. [Bottom] Tensor-factorization. 13

2.2 The scalability of DFacTo with respect to the number of machines on the
Amazon dataset . 28

3.1 Non-negative matrix factorization with and without regularization. Here
we show the product of the solution WH 35

3.2 PSNRs of H at every iteration. σ = 20/255. 43

4.1 Comparison of BM3D [20], DnCNN [16] and the proposed CsNet. 47

4.2 Structure of the proposed CsNet: Given a set of K initial denoisers

of each initial denoiser. After the MSEs are estimated, we solve a convex
optimization problem (P1) to determine the optimal weight w1, . . . , wK .
The combined estimate is then boosted using a booster neural network to

D1, . . . , DK , CsNet uses an MSE estimator (M) to estimate the MSE

improve contrast and details. 50

4.3 Comparison of Algorithm 8 and the ADMM algorithm by [108], using the
optimal solution obtained by CVX [106]. 55

4.4 Geometry of the optimal weight minimization problem. 57

4.5 Clipped Noise Example. Compare SURE and the proposed neural network
(NN) on estimating the MSE. In this experiment, we use BM3D to denoise
the cameraman image. The noise level changes from σ = 10 to σ = 50.
The observed images are clipped to [0, 1]N . The error bars are computed
using 50 random trials of the i.i.d. Gaussian noise realizations. 63

4.6 Network structure of a proposed MSE Estimator. 64

4.7 Examples showing the effectiveness of the booster in improving the details
and contrast of the combined result. See Section 4.5.3 for experiment details.66

xii

Figure Page

4.8 Network structure of the proposed booster network. The network contains
3 convolutional layers followed by 3 deconvolutional layers. Convolutional
and deconvolutional layers consists of residual neural network blocks. Skip
connections are used to enforce symmetry of the network. This network
is repeated three times (t = 1, 2, 3). 67

4.9 Example of Noise-level mismatch. The image is House (size 321×481)
from BSD500. The actual noise level is σ = 35. Before and After means
Before Booster and After Booster, respectively. DnCNN, Before and After
uses five DnCNN initial denoisers, and REDNet, Before and After uses five
REDNet initial denoisers. 70

4.10 Noise-level mismatch. Graphical illustration of Table 4.1. The red curve
indicates the performance before boosting. 71

4.11 Image denoising for Building, Face and Flower classes. While class-
specific REDNet has good performance when classes match, CsNet is able
to select the best denoiser. Testing images are from ImageNet. 72

4.12 Example of different denoiser type. The ConsensusNet is used to integrate
BM3D [20], DnCNN [16], REDNet [14], and FFDNet [18]. The testing
image is Bear (size 321×481) from BSD500. 74

5.1 Image reconstruction of QIS. Given the binary bit planes, the algorithm esti-
mates the gray-scale image shown on the right. 78

5.2 Image Reconstruction using ML [137], TD [24], and our proposed RED-Net
method. 79

5.3 Image formation process of QIS. 80

5.4 Transform-Densoise [24]: We apply a pair of transforms (T , T −1) and a Gaus-
sian denoiser D for QIS image reconstruction. 82

5.5 The proposed QISNet consists of 15 convolutional layers followed by 15 decon-
volutional layers. 82

5.6 The two proposed designs. 84

5.7 Reconstructed Images and their PSNR for L = 64. 85

xiii

ABSTRACT

Choi, Joon Hee PhD, Purdue University, August 2018. Computational Methods for
Matrix/Tensor Factorization and Deep Learning Image Denoising . Major Professor:
Stanley Chan.

Feature learning is a technique to automatically extract features from raw data.

It is widely used in areas such as computer vision, image processing, data mining and

natural language processing. In this thesis, we are interested in the computational

aspects of feature learning. We focus on rank matrix and tensor factorization and

deep neural network models for image denoising.

With respect to matrix and tensor factorization, we first present a technique to

speed up alternating least squares (ALS) and gradient descent (GD) − two com-

monly used strategies for tensor factorization. We introduce an efficient, scalable

and distributed algorithm that addresses the data explosion problem. Instead of a

computationally challenging sub-step of ALS and GD, we implement the algorithm

on parallel machines by using only two sparse matrix-vector products. Not only is

the algorithm scalable but it is also on average 4 to 10 times faster than competing

algorithms on various data sets. Next, we discuss our results of non-negative matrix

factorization for hyperspectral image data in the presence of noise. We introduce

a spectral total variation regularization and derive four variants of the alternating

direction method of multiplier algorithm. While all four methods belong to the same

family of algorithms, some perform better than others. Thus, we compare the algo-

rithms using stimulated Raman spectroscopic image will be demonstrated.

For deep neural network models, we focus on its application to image denoising.

We first demonstrate how an optimal procedure leveraging deep neural networks

and convex optimization can combine a given set of denoisers to produce an overall

xiv

better result. The proposed framework estimates the mean squared error (MSE) of

individual denoised outputs using a deep neural network; optimally combines the

denoised outputs via convex optimization; and recovers lost details of the combined

images using another deep neural network. The framework consistently improves

denoising performance for both deterministic denoisers and neural network denoisers.

Next, we apply the deep neural network to solve the image reconstruction issues of the

Quanta Image Sensor (QIS), which is a single-photon image sensor that oversamples

the light field to generate binary measures.

1

1. INTRODUCTION

Modern data analysis is surround by two basic problems: (1) How to efficiently extract

meaningful information from a massive volume of data? (2) How does the massive

data improve classical tasks such as estimating signals embedded in noise? The

former question concerns about the algorithm aspect of large-scale data analysis.

As we will see in this thesis, many well-established computational methods in linear

algebra become computationally inadequate when the data volume grows. The second

question concerns about the performance of estimation methods when data becomes

abundant. The goal of this thesis is to address these two problems from two specific

angles. First, we study a factorization problem for multidimensional arrays (called

the tensors), and develop an efficient algorithm that can be executed on distributed

machines. We then analyze how noise would influence the factorization, and methods

to improve robustness. Second, we study a regression problem using deep neural

networks. We find that despite the abundance of data, many neural networks are

trained under specific conditions, thus limiting their performance. We thus develop

a globally optimal method to combine these neural network estimators. We also

investigate how deep neural networks can help improving image reconstruction on a

new type of image sensors.

1.1 Objective 1: Efficient Matrix and Tensor Factorization Methods

Matrix factorization is a widely used unsupervised learning technique that allows

us to decompose a matrix into products of feature matrices. Traditionally, matrix

factorization has been the backbone of many signal processing techniques such as the

LU decomposition, QR decomposition and singular value decomposition (SVD). Of

all these methods, we are particularly interested in the class of rank factorization.

2

Rank factorization is typically used to provide low-rank matrix approximation of a

matrix so that we can infer meaningful features embedded in the matrix. Given an

m × n matrix Y of rank r, a rank factorization is a product of Y = WH where W

is an m × r matrix and H is an r × n matrix. These rank factorization can also be

represented as a form of the bilinear model

r∑
Y = wi ◦ hi, (1.1)

i=1

where “◦” denotes the outer product of two vectors. Thus, we can build an approxi-

mate representation of the data matrix Y as a sum of rank-one matrices.

The focus of the first part of this thesis is the tensor factorization, an extension

of matrix factorization to multidimensional arrays. For a three-dimensional array,

tensor factorization considers the approximation

r∑
Y ≈ ai ◦ bi ◦ ci (1.2)

i=1

where “◦” denotes the outer product of vectors and Y is a three-dimensional array of

size m × n × k.

Tensor factorization appears naturally in applications involving multi-modal ob-

servations. For example, in hyperspectral imaging we acquire data with two spatial

dimensions and a spectral dimension. (See Figure 1.1). A typical question is then

to evaluate the composition of the material shown in the image, e.g., chemical com-

ponents of soil. In other applications such as recommendation systems, tensor fac-

torization is also common. For example, when analyzing a recommendation system

involving users, items and their evolution over time, we have to consider a three-

dimensional array consisting of a user dimension, an item dimension, and a temporal

dimension. As the size of the array increases, the computational cost to perform the

above stated decompositions will eventually become so high that we will not be able

to process the data quickly without sacrificing the quality.

Mixed pi,xel
(soil+ rocks)

Mixed pixel
(\'cgctat:ion + soil)

Pu.re pi.xcl
(water) ----->

- .-------

0300 eoo ,oo 1200 1,00 ,aoo 21002.ix,

Wa\·elength (nm)

O OQO too 11'00 1:,00 IIOO 2~00 24'00

)00 Wnelencth (nm)

- ---------, ~­c
1!

i 2000

C: ""

3

Fig. 1.1.: Hyperspectral image data [1]

There are two specific sub-objectives of Part 1 of the thesis. We summarize them

in the followings.

Objective 1(a): The objective is to develop an efficient tensor factorization that

can be scaled to billions of non-zero entries. At a high level, our proposed method

considers a flatting technique by rewriting the tensor Y as a matrix Y 1 ∈ Rmn×k, and

decompose Y 1 as

Y 1 ≈ A (B ⊙ C)T . (1.3)

where “⊙” is a Khatri-Rao product (see Chapter 2 for the detail) and (B ⊙ C) ∈

Rmk×r. Typically, (B ⊙ C) is very large, and so it poses significant computational

challenge when computing A (B ⊙ C)T . Algorithms addressing these computational

challenges have been studied in recent years. Bader and Kolda [2] proposed a state-

of-art method solving the data explosion problem. Also, Kang et al. [3] proposed an

algorithm addressing the computational challenges on parallel machines. We tackle

this problem by exploring special structures of the matrices so that sparse computa-

tion techniques can be employed. We will discuss this method in Chapter 2. We com-

4

pare our method with other methods addressing the computational challenges [2, 3]

in terms of computation time.

Objective 1(b): The objective here is to study the algorithmic aspect of a slightly

more specialized matrix factorization problem called the non-negative matrix factor-

ization (NMF). The goal NMF is to factorize a matrix Y as the product of two

non-negative matrices W and H . Typically, this problem is formulate through a

minimization problem

minimize ∥Y − WH∥2
F ,

W ,H

subject to W ≥ 0, H ≥ 0 (1.4)

To solve (1.4), there are many existing approaches, e.g., the multiplicative update

method [4], block principal pivoting method [5], and different online approaches [6–8].

Because of the bilinear quadratic minimization form of (1.4), one of the mainstream

approaches is the alternating nonnegative least squares [9, 10], and other alternating

direction algorithms [11]. In this part of the thesis, we consider a special alternating

direction algorithm. We show that even for the same alternating direction algorithm,

there are various options of controlling how variables are updated. We analyze their

performance, and compare their complexity.

1.2 Objective 2: Deep Learning for Image Denoising

The second part of the thesis is to investigate a class of deep neural network

methods for the task of image restoration, in particular denoising type of problems.

Here, by denoising we meant that given a noisy observation y ∈ Rn, which is assumed

to be corrupted by i.i.d. Gaussian noise:

y = x + η,

5

where x ∈ Rn is the clean image, our goal is to estimate the latent image x. Image

denoising is a testbed for a number of image restoration problems. Therefore, study-

ing image denoising has important implication to other types of image restoration

problems.

Objective 2(a): The objective here is to develop a globally optimal combination

approach to combine neural network image denoisers.

The latest development of image denoising has been focusing on deep learning

based methods, e.g., [12–18]. While these methods have demonstrated superior per-

formance over the deterministic counterparts [19–23], they suffer fundamentally to a

problem known as the model mismatch. In particular, there are three model mismatch

problems we often see in practice:

• Denoiser Characteristic: Different denoiser models have different characteris-

tics. For example, total variation works well for piecewise constant images and

BM3D [20] works well for images with repeated patterns.

• Noise Level: Neural network image denoisers are typically trained under specific

noise levels. However, when the actual noise level deviates from the trained noise

level, the performance of the denoisers drop.

• Image Class: A denoiser trained for a particular class of images may work well

for the class and not work for other classes.

Therefore, the following question should be answered: Given a set of image denois-

ers, each having a different denoising capability, is there a provably optimal way of

combining these denoisers to produce an overall better result? An answer to this ques-

tion is fundamental to designing ensembles of weak estimators for complex scenes.

In Chapter 4, we present an optimal procedure leveraging deep neural networks and

convex optimization. The proposed framework, called the Consensus Neural Net-

work (CsNet), introduces three new concepts in image denoising: (1) A deep neural

network to estimate the mean squared error (MSE) of individual denoised outputs

without needing the ground truth; (2) A provably optimal procedure to combine the

6

denoised outputs via convex optimization; (3) An image boosting procedure using a

deep neural network to improve contrast and to recover lost details of the combined

images.

Objective 2(b): The objective here is to present a set of preliminary results for a

new type of single-photon image sensors called the Quanta Image Sensor (QIS).

QIS is envisioned to be a candidate for the next generation image sensor after

CMOS. However, image reconstruction of the sensor is faced with a problem the

data is binary: if photon count is below the threshold, the value is 0; if above, the

value 1. Most of the existing methods for the image reconstruction of QIS are based

on optimization such as maximum-likelihood (ML) or maximum a-posteriori (MAP)

estimation, but those are very slow. A recent research [24] converted the Poisson

random variable to Gaussian then applied an existing image denoising method instead

of solving complex ML or MAP. We apply a deep neural network to solve the image

reconstruction issues of QIS. In Chapter 5, we present our preliminary findings on this

topic. Experimental results show that the proposed network produces significantly

better reconstruction results compared to existing methods.

1.3 Contributions of The Thesis

There are four main contributions of this thesis. They are listed as follows:

• Objective 1(a): Distributed Factorization of Tensors

We propose a technique for significantly speeding up Alternating Least Squares

(ALS) and Gradient Descent (GD), two widely used algorithms for tensor fac-

torization. By exploiting properties of the Khatri-Rao product, we show how to

efficiently address a computationally challenging sub-step of both algorithms.

Our algorithm, DFacTo, only requires two sparse matrix-vector products and

is easy to parallelize. DFacTo is not only scalable but also on average 4 to 10

times faster than competing algorithms on a variety of datasets. For instance,

DFacTo only takes 480 seconds on 4 machines to perform one iteration of the

7

ALS algorithm and 1,143 seconds to perform one iteration of the GD algorithm

on a 6.5 million × 2.5 million × 1.5 million dimensional tensor with 1.2 billion

non-zero entries.

• Objective 1(b): Comparison of ADMM Algorithms for Noisy Non-negative Ma-

trix Factorization

We present a set of empirical results of non-negative matrix factorization for

hyperspectral image data in the presence of noise. We introduce a spectral to-

tal variation regularization, and derive four variants of the alternating direction

method of multiplier algorithm. While all four methods belong to the same

family of algorithms, we show that some performs better than others. Com-

parisons of the algorithms using stimulated Raman spectroscopic image will be

demonstrated.

• Objective 2(a): Optimal Combination of Image Denoisers

We present an optimal framework combining multiple weak image denoisers,

called Consensus Neural Network (CsNet). The framework consists of three

components: MSE Estimator; Optimal Combination; and Denoising Dooster.

CsNet first uses a novel deep neural network for estimating MSE of the denoised

images from a set of initial image denoisers. Then, using the estimated MSE,

CsNet solves a convex optimization problem where the optimality is guaranteed

and combine the denoised images. Finally, the combined estimate is boosted

by a novel deep neural network booster. Experimental results show CsNet out-

performs other state-of-the-art denoising algorithms on tasks including: over-

coming noise level mismatch combining denoisers for different image classes

combining different denoiser types

• Objective 2(b): Image Reconstruction for Quanta Image Sensors using Deep

Neural Networks

8

Unlike the existing image reconstruction algorithms based on optimization, we

present the first deep neural network approach for QIS image reconstruction.

Our deep neural network takes the binary bit stream of QIS as input, learns

the nonlinear transformation and denoising simultaneously. Different from [25]

which assumes a sparsity prior, our network learns the denoiser directly; And

compared to [26], our network has a significantly deeper layer to learn the

transformation. We present two designs: one mimics the entire Transform-

Denoise pipeline, and the other one substitutes part of the Transform-Denoise

pipeline. We show that both networks has significantly better performance than

the existing Transform-Denoise method [24].

1.4 Publications Resulting from this Thesis

The following papers are results of this thesis.

1. Joon Hee Choi, Omar Elgendy and Stanley Chan, Integrating Disparate

Sources of Experts for Robust Image Denoising, submitted to IEEE Transaction

on Image Processing (TIP), 2018.

2. Joon Hee Choi, Omar Elgendy and Stanley Chan, Image Reconstruction for

Quanta Image Sensors Using Deep Neural Networks, to appear in International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018.

3. Chiman Kwan, Joon Hee Choi, Stanley Chan, Jin Zhou and Bence Budavari,

Resolution Enhancement for Hyperspectral Images: A Super-Resolution and

Fusion Approach, International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), pp 6180-6184, 2017.

4. Chien-Sheng Liao, Joon Hee Choi, Delong Zhang, Stanley H. Chan and Ji-Xin

Cheng. Denoising Stimulated Raman Spectroscopic Images by Total Variation

Minimization, Journal of Physical Chemistry C, 119 (33), pp. 19397-19403,

July, 2015.

9

5. Chiho Choi, Ayan T. Sinha, Joon Hee Choi, Sujin Jang and Karthik Ramani,

Collaborative Filtering Approach to Real-Time Hand Pose Estimation, The

IEEE International Conference on Computer Vision (ICCV), pp. 2336-2344,

2015.

6. Joon Hee Choi and S.V.N. Vishwanathan, DFacTo: Distributed Factorization

of Tensors, Advances in Neural Information Processing Systems (NIPS), pp.

1296-1304, 2014.

10

PART I

MATRIX AND TENSOR FACTORIZATION

11

2. DFACTO: DISTRIBUTED FACTORIZATION OF

TENSORS

In this chapter, we address a computational challenge of tensor factorization by pre-

senting a distributed algorithm. We compare our method with three existing meth-

ods. This work was published in Advances in Neural Information Processing Systems

(NIPS), 2014 [27].

2.1 Introduction

2.1.1 Matrix, Tensor, and their Applications

In classical linear algebra, a matrix can be considered as a rectangular array

consisting of rows and columns of numbers. Because of the planner structure of the

array, mathematical properties of matrices are widely studied, e.g., inverses, norms,

symmetry, spectral decomposition, and computational techniques, [28,29]. For a long

time, matrix-based techniques has been the backbone of many engineering and signal

processing subjects, e.g., filter bank design [30, 31], optimal control [32], and many

other disciplines. However, as we encounter more complicated data in modern data

analytic, e.g., data volumes involving high-dimensional arrays (arrays with dimension

more than just rows and columns), matrices becomes inadequate.

We refer to high-dimensional arrays with finite number of entries as tensors in

this thesis. This is a narrow defined scope of a tensor, as this thesis does not consider

tensors in advanced calculus, e.g., Ricci Calculus in general relativity and differential

geometry [33]. Instead, we consider a tensor as a cubicle storing numbers. Such data

analytic perspective was first discussed by [34] in a psychometric journal, and Sanchez

and Kowalski in an analytic chemistry journal [35]. In modern data science appli-

12

cations, such analytic perspective is becoming more popular [36, 37]. For instance,

on a social network evolving over time, one can form a users-users-time tensor which

contains snapshots of interactions between members of the social network [38]. An-

other example would be an online store such as Amazon.com where users routinely

review various products. One can form a users- items-words tensor from the review

text [39]. A tensor can also be formed by considering the various contexts in which

a user has interacted with an item [40]. One last example: a tensor can be formed

by considering the data collected by the Never Ending Language Learner (the Read

the Web) project which contains triples of noun phrases and the context in which

they occur, such as, (“George Harrison”, “plays”, “guitars”) [41]. [42] considered a

tensor data to represent regions of a particular density in a three-dimensional CT

scan, allowing the visualization of internal organs, bones, or other structures.

2.1.2 Tensor Factorization

Objective: The objective of this study is to investigate efficient algorithms for

factorizing tensors into low rank products. Rank factorization is an important data

analysis tool that provides low-rank approximation so that we can extract features.

Before we discuss our proposed methods, we first discuss the difference between tensor

factorization and matrix factorization.

Given an m-by-n matrix Y of rank r, a matrix rank factorization is a product

of Y = WH where W is an m-by-r matrix and H is an r-by-n matrix. Rank

factorization can also be represented as a form of the bilinear model (see Figure 2.1)

r∑
Y = wi ◦ hi, (2.1)

i=1

where ◦ denotes the outer product of two vectors. Thus, we can build an approximate

representation of the data matrix Y as a sum of rank-one matrices.

https://Amazon.com

+ ... +

W1 W r

C1 Cr

/ /

~ ~
b1

+ + ~ br

V

ll1 a r

13

Fig. 2.1.: [Top] Matrix-factorization. [Bottom] Tensor-factorization.

Tensor factorization extends the matrix factorization to multidimensional arrays.

In this thesis, we are particularly interested in the three-way tensor factorization,

which considers

r∑
Y ≈ ai ◦ bi ◦ ci (2.2)

i=1

where ◦ denotes the outer product of vectors, Y is of size m × n × k, A of size

m × r, B of size n × r and C of size k × r. Figure 2.1 shows this tensor factorization

graphically. Decomposition of this type is also called the CANDECOMP or the

PARAFAC decomposition [37,43–45]. An alternative to PARAFAC is the High-Order

SVD (HOSVD) or the Tucker-3 decomposition, see, e.g., [46–52]. In this thesis, we

shall focus on PARAFAC due to is applicability in many engineering problems.

Challenges: The challenges of tensor factorization can be understood from three

aspects. First, the rank of a tensor is ill-posed. Using the PARAFAC decomposition,

a tensor can be written as a sum of rank-one outer products of vectors. The smallest

number of these rank-one prodducts, R, is called the rank of the tensor. However,

while writing a matrix as a sum of rank-1 outer products (i.e., SVD) is always pos-

sible, writing a tensor as a sum of rank-1 outer products (i.e., PARAFAC) is not

14

always possible. Therefore, unlike matrices, the rank of a tensor Y ∈ Rm×n×k is not

necessarily min (m, n, k). See [53–56] for further discussions. This thesis does not

address the rank issue. Instead, we will focus on developing efficient algorithms.

Second, unlike matrices where we have standard decomposition methods, e.g., QR

factorization and LU factorization, tensors do not have well-defined decomposition

methods. In fact, most of the existing algorithms are based on minimizing certain en-

ergy functions by alternating minimizations [57–60]. However, since the optimization

problem is non-linear, the convergence to a global minimum is generally not guaran-

teed [61]. It might have a local minimum where the cost function ceases to decrease.

Some techniques for improving the guess are discussed in [62]. In this thesis, we will

focus on two classes of minimization techniques: the Alternating Least Squares (ALS)

and the gradient descent (GD). We are specially interested in how these algorithms

can be speed up for large-tensors.

Third, as data size grows, the number of entries of tensors also grow. This problem

is exacerbated when the dimensions of tensor we need to factorize are very large (of the

order of hundreds of thousands or millions), or when sparse tensors contain millions

to billions of non-zero entries. For instance, a tensor we formed using review text

from Amazon.com has dimensions of 6.5 million -by- 2.5 million -by- 1.5 million and

contains approximately 1.2 billion non-zero entries.

2.1.3 Related Methods

The mainstream tensor factorization optimization methods can be classified into

two categories: The Alternating Least Squares (ALS) [58, 61, 63, 64], and Gradient

Descent (GD) [62,65]. We will discuss these two methods in details in Section A.2 and

Section A.3, respectively. In a nutshell, the key step in both methods is to multiply

a matricized tensor and a Khatri-Rao product of two matrices (line 4. However, this

process leads to a computationally-challenging, intermediate data explosion problem

when the data size is large.

https://Amazon.com

15

Some studies have identified this intermediate data explosion problem and have

suggested ways of addressing it. First, the Tensor Toolbox [2] uses the method of

reducing indices of the tensor for sparse datasets and entrywise multiplication of

vectors and matrices for dense datasets. However, it is not clear how to store data

or how to distribute the tensor factorization computation to multiple machines (see

Appendix). That is, there is a lack of distributable algorithms in existing studies.

Another possible strategy to solve the data explosion problem is to use GigaTensor [3].

Unfortunately, while GigaTensor does address the problem of parallel computation, it

is relatively slow. To summarize, existing algorithms for tensor factorization such as

the excellent Tensor Toolbox of [2], or the Map-Reduce based GigaTensor algorithm

of [3] often do not scale to large problems.

2.1.4 Our Contributions

In this chapter, we introduce an efficient, scalable and distributed algorithm,

DFacTo, that addresses the data explosion problem. Since most large-scale real

datasets are sparse, we will focus exclusively on sparse tensors. This is well justi-

fied because previous studies have shown that designing specialized algorithms for

sparse tensors can yield significant speedups [2]. We show that DFacTo can be ap-

plied to both ALS and GD, and naturally lends itself to a distributed implementation.

Therefore, it can be applied to massive real datasets which cannot be stored and ma-

nipulated on a single machine. For ALS, DFacTo is on average around 5 times faster

than GigaTensor and around 10 times faster than the Tensor Toolbox on a variety

of datasets. In the case of GD, DFacTo is on average around 4 times faster than

CP-OPT [66] from the Tensor Toolbox. On the Amazon.com review dataset, DFacTo

only takes 480 seconds on 4 machines to perform one iteration of ALS and 1,143

seconds to perform one iteration of GD.

As with any algorithm, there is a trade-off: DFacTo uses 3 times more memory

than the Tensor Toolbox, since it needs to store 3 flattened matrices as opposed to

https://Amazon.com

16

a single tensor. However, in return, our algorithm only requires two sparse matrix-

vector multiplications, making DFacTo easy to implement using any standard sparse

linear algebra library. Therefore, there are two merits of using our algorithm: 1)

computations are distributed in a natural way; and 2) only standard operations are

required.

2.2 Notation and Preliminaries

Our notation is standard, and closely follows [37]. Also see [36]. Lower case letters

such as x denote scalars, bold lower case letters such as x denote vectors, bold upper

case letters such as X represent matrices, and calligraphic letters such as X denote

three-dimensional tensors.

The i-th element of a vector x is written as xi. In a similar vein, the (i, j)-th entry

of a matrix X is denoted as xi,j and the (i, j, k)-th entry of a tensor X is written as

xi,j,k. Furthermore, xi,: (resp. x:,i) denotes the i-th row (resp. column) of X. We will

use XΩ,: (resp. X:,Ω) to denote the sub-matrix of X which contains the rows (resp.

columns) indexed by the set Ω. For instance, if Ω = {2, 4}, then XΩ,: is a matrix which

contains the second and fourth rows of X. Extending the above notation to tensors,

we will write Xi,:,:, X:,j,: and X:,:,k to respectively denote the horizontal, lateral and

frontal slices of a third-order tensor X. The column, row, and tube fibers of X are

given by x:,j,k, xi,:,k, and xi,j,: respectively.

Sometimes a matrix or tensor may not be fully observed. We will use ΩX or ΩX

respectively to denote the set of indices corresponding to the observed (or equivalently

non-zero) entries in a matrix X or a tensor X. Extending this notation, ΩX (resp. ΩX)i,: :,j

denotes the set of column (resp. row) indices corresponding to the observed entries

in the i-th row (resp. j-th column) of X. We define ΩX , ΩX , and ΩX analogouslyi,:,: :,j,: :,:,k

as the set of indices corresponding to the observed entries of the i-th horizontal, j-th

lateral, or k-th frontal slices of X. Also, nnzr(X) (resp. nnzc(X)) denotes the number

of rows (resp. columns) of X which contain at least one non-zero element.

17

X⊤ denotes the transpose, X† denotes the Moore-Penrose pseudo-inverse, and

∥X∥ (resp. ∥X∥) denotes the Frobenius norm of a matrix X (resp. tensor X) [67].

Given a matrix A ∈ Rn×m, the linear operator vec(A) yields a vector x ∈ Rnm, which

is obtained by stacking the columns of A. On the other hand, given a vector x ∈ Rnm,

the operator unvec(n,m)(x) yields a matrix A ∈ Rn×m.

A ⊗ B denotes the Kronecker product, A ⊙ B the Khatri-Rao product, and A ∗ B

the Hadamard product of matrices A and B. The outer product of vectors a and b

is written as a ◦ b (see e.g., [68]). Definitions of these standard matrix products can

be found in Appendix A.1:

2.2.1 Flattening Tensors

Just like the vec(·) operator flattens a matrix, a tensor X may also be unfolded

or flattened into a matrix in three ways namely by stacking the horizontal, lateral,

and frontal slices. We use Xn to denote the n-mode flattening of a third-order tensor

X ∈ RI×J×K ; X1 is of size I × JK, X2 is of size J × KI, and X3 is of size K × IJ .

The following relationships hold between the entries of X and its unfolded versions:

1 2 3 xi,j,k = xi,j+(k−1)J = xj,k+(i−1)K = xk,i+(j−1)I . (2.3)

We can view X1 as consisting of K stacked frontal slices of X, each of size I × J .

Similarly, X2 consists of I slices of size J × K and X3 is made up of J slices of size

K × I. If we use Xn,m to denote the m-th slice in the n-mode flattening of X, then

observe that the following holds:

1 1,k 2 2,i 3 3,jxi,j+(k−1)J = xi,j , xj,k+(i−1)K = xj,k, xk,i+(j−1)I = xk,i . (2.4)

One can state a relationship between the rows and columns of various flattenings

of a tensor, which will be used to derive our distributed tensor factorization algorithm

in Section 2.3.

■

18

Lemma 2.2.1 Let (n, n ′) ∈ {(2, 1), (3, 2), (1, 3)}, and let Xn and Xn ′ be the n and

n ′-mode flattening respectively of a tensor X. Moreover, let Xn,m be the m-th slice in
′ ′ ′ nXn, and x be the m-th row of Xn . Then, vec(Xn,m) = xn .m,: m,:

Proof Using (2.3) and (2.4), we can write

3 1,k 1 = xxk,i+(j−1)I = xi,j i,j+(k−1)J .

The result for (n, n ′) = (1, 3) follows directly from (A.7) by letting k = m. For other
′values of n and n , the arguments are analogous.

2.3 DFacTo

Recall that the main challenge of implementing ALS or GD for solving tensor

factorization lies in multiplying a matricized tensor and a Khatri-Rao product of two

matrices: X1 (C ⊙ B)1 . If B is of size J × R and C is of size K × R, explicitly

forming (C ⊙ B) requires O(JKR) memory and is infeasible when J and K are

large. This is called the intermediate data explosion problem in the literature [3]. The

lemma below will be used to derive our efficient algorithm, which avoids this problem.

Although the proof can be inferred using results in [37], we give an elementary proof

for completeness.

Lemma 2.3.1 The r-th column of X1 (C ⊙ B) can be computed as

[] [(()⊤
)]⊤

X1 (C ⊙ B)
:,r

= unvec(K,I) X2 b:,r c:,r (2.5)

Proof We need to show that ⎡ ⎤
b⊤ X2,1 [] [(()⊤

)]⊤ ⎢⎢ :,r
.

c:,r ⎥⎥
.X1 (C ⊙ B)

:,r
= unvec(K,I) X2 b:,r c:,r = ⎢⎣

. ⎥⎦
.

b⊤ X2,I
:,r c:,r

1We mainly concentrate on the update to A since the updates to B and C are analogous.

■

■

19

Or equivalently it suffices to show that [X1 (C ⊙ B)]i,r = b:
⊤
,r X

2,i c:,r. Using (A.9)

() () ()
b⊤ X2,i ⊤ X2,ivec :,r c:,r = c:,r ⊗ b:

⊤
,r vec . (2.6)

Observe that b⊤
:,r X

2,i c:,r is a scalar. Moreover, using Lemma 2.2.1 we can write

1vec (X2,i) = xi,:. This allows us to rewrite the above equation as

()⊤ []
X2,i 1b⊤ c:,r = x (c:,r ⊗ b:,r) = X1 (C ⊙ B)

i,r
,:,r i,:

which completes the proof.

Unfortunately, a naive computation of [X1 (C ⊙ B)]:,r by using (2.5) does not solve

the intermediate data explosion problem. This is because (X2)
⊤
b:,r produces a KI

dimensional vector, which is then reshaped by the unvec(K,I)(·) operator into a K ×

I matrix. However, as the next lemma asserts, only a small number of entries of

(X2)
⊤
b:,r are non-zero.

For convenience, let a vector produced by (X2)⊤b:,r be b:,r and a matrix produced

by
[
unvec(K,I)(b:,r)

]⊤ be Mr.

Lemma 2.3.2 The number of non-zeros in b:,r is at most nnzr((X2)⊤) and nnzc(X2).

Proof Multiplying an all-zero row in (X2)⊤ and b:,r produces zero. Therefore, the

number of non-zeros in b:,r is equal to the number of rows in (X2)⊤ that contain at

least one non-zero element. Also, by definition, nnzr((X2)⊤) is equal to nnzc(X2).

As a consequence of the above lemma, we only need to explicitly compute the non-[]⊤zero entries of b:,r. However, the problem of reshaping b:,r via the unvec(K,I)(·)

operator still remains. The next lemma shows how to overcome this difficulty.

Lemma 2.3.3 The location of the non-zero entries of Mr depends on (X2)⊤ and is

independent of b:,r.

Proof The product of the (k+(i−1)K)-th row of (X2)⊤ and b:,r is the (k+(i−1)K)-

th element of b:,r. And, this element is the (i, k)-th entry of Mr by definition of

■

20

[]⊤
unvec(K,I)(·) . Therefore, if all the entries in the (k + (i − 1)K)-th row of (X2)⊤

are zero, then the (i, k)-th entry of Mr is zero regardless of b:,r. Consequently, the

location of the non-zero entries of Mr is independent of b:,r, and is only determined

by (X2)⊤.

Given X one can compute (X2)⊤ to know the locations of the non-zero entries of Mr.

In other words, we can infer the non-zero pattern and therefore preallocate memory for

Mr. We will show below how this allows us to perform the
[
unvec(K,I)(·)

]⊤ operation

for free.

Recall the Compressed Sparse Row (CSR) Format, which stores a sparse matrix

as three arrays namely values, columns, and rows. Here, values represents the non-

zero values of the matrix; while columns stores the column indices of the non-zero

values. Also, rows stores the indices of the columns array where each row starts. For

example, if a sparse matrix Mr is ⎡ ⎤
1 0 2

Mr = ⎣ ⎦ ,
0 3 4

then the CSR of Mr is

[]
value(Mr) = 1 2 3 4 []

col(Mr) = 0 2 1 2 []
row(Mr) = 0 2 4 .

Different matrices with the same sparsity pattern can be represented by simply chang-

ing the entries of the value array. For our particular case, what this means is that we

can pre-compute col(Mr) and row(Mr) and pre-allocate value(Mr). By writing the

non-zero entries of b:,r into value(Mr) we can “reshape” b:,r into Mr.

Let the matrix with all-zero rows in (X2)⊤ removed be (X̂ 2)⊤. Then, Algorithm 1

shows the DFacTo algorithm for computing N := X1 (C ⊙ B). Here, the input values

21

are (X̂ 2)⊤, B, C, and Mr preallocated in CSR format. By storing the results of the

product of (X̂ 2)⊤ and b:,r directly into value(Mr), we can obtain Mr because Mr

was preallocated in the CSR format. Then, the product of Mr and c:,r yields the r-th

column of N. We obtain the output N by repeating these two sparse matrix-vector

products R times.

Algorithm 1: DFacTo algorithm for Tensor Factorization

1 Input: (X̂ 2)⊤, B, C, value(Mr) col(Mr), row(Mr)
2 Output: N
3 while r=1, 2,…, R do
4 value(Mr) ← (X̂ 2)⊤ b:,r

← Mr5 n:,r c:,r

6 end

Algorithm 2: DFacTo(ALS) algorithm for Tensor Factorization

1 Input: X1, X2, X3

2 Initialize: A, B, C
3 while stopping criterion not met do
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 end

while r=1, 2,…, R do ()⊤⊤
n:,r ← unvec(K,I) (X2) b:,r c:,r

end ()−1
A ← N C⊤C ∗ B⊤B
Normalize columns of A
while r=1, 2,…, R do ()⊤⊤

n:,r ← unvec(I,J) (X3) c:,r a:,r

end ()−1
B ← N A⊤A ∗ C⊤C
Normalize columns of B
while r=1, 2,…, Right do ()⊤⊤

n:,r ← unvec(J,K) (X1) a:,r b:,r

end ()−1
C ← N B⊤B ∗ A⊤A
Normalize columns of C

�� ��
22

It is immediately obvious that using the above lemmas to compute N requires no

extra memory other than storing Mr, which contains at most nnzc(X2) ≤ ΩX non-

zero entries. Therefore, we completely avoid the intermediate data explosion problem.

Moreover, the same subroutine can be used for both ALS and GD. The ALS and GD

algorithms of the DFacTo model is summarized in Algorithms 2 and 3. We can solve

the problem of overfitting by adding a λI term in C⊤C ∗ B⊤B, A⊤A ∗ C⊤C, and

B⊤B ∗ A⊤A of Algorithms 2 (lines 7, 12, 17) and 3 (lines 7, 11, 15).

2.3.1 Distributed Memory Implementation

Our algorithm is easy to parallelize using a master-slave architecture of MPI(Message

Passing Interface). At every iteration, the master transmits A, B, and C to the slaves.

Algorithm 3: DFacTo(GD) algorithm for Tensor Factorization

1 Input: X1, X2, X3

2 Initialize: A, B, C
3 while stopping criterion not met do
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

while r=1, 2,…, R do
n:,r ← unvec(K,I)((X

2)⊤b:,r)
⊤ c:,r

end ()
∇A ← N + A C⊤C ∗ B⊤B
while r=1, 2,…, R do ()⊤⊤

n:,r ← unvec(I,J) (X3) c:,r a:,r

end ()
∇B ← N + B A⊤A ∗ C⊤C
while r=1, 2,…, Right do ()⊤⊤

n:,r ← unvec(J,K) (X1) a:,r b:,r

end ()
∇C ← N + C B⊤B ∗ A⊤A
α ← Linesearch(A, B, C, ∇A, ∇B, ∇C)
A ← A − α∇A
B ← B − α∇B
C ← C − α∇C

20 end

�� ��
�� �� �� �� �� ��

�� ��

�� ���� ��

23

The slaves hold a fraction of the rows of X2 using which a fraction of the rows of N

is computed. By performing a synchronization step, the slaves can exchange rows of

N. In ALS, this N is used to compute A which is transmitted back to the master.

Then, the master updates A, and the iteration proceeds. In GD, the slaves transmit

N back to the master, which computes ∇A. Then, the master computes the step size

by a line search algorithm, updates A, and the iteration proceeds.

2.3.2 Complexity Analysis

()
A naive computation of N requires JK + ΩX R flops; forming C ⊙ B requires

JKR flops and performing the matrix-matrix multiplication X1 (C ⊙ B) requires ()
ΩX R flops. Our algorithm requires only nnzc(X2) + ΩX R flops; ΩX R flops

for computing b:,r and nnzc(X2)R flops for computing Mrc:,r. Note that, typically,

nnzc(X2) ≪ both JK and ΩX (see Table 2.1). In terms of memory, the naive algo-

rithm requires O(JKR) extra memory, while our algorithm only requires nnzc(X2)

extra space to store Mr.

2.3.3 Related Work

Two papers that are most closely related to our work are the GigaTensor algo-

rithm proposed by [3] and the Sparse Tensor Toolbox of [2]. As discussed above, both

algorithms attack the problem of computing N efficiently. In order to compute n:,r,()
GigaTensor computes two intermediate matrices N1 := X1 ∗ 1I ⊙ (c:,r ⊗ 1J)

⊤ and ()
N2 := bin (X1) ∗ 1I ⊙ (1K ⊗ b:,r)

⊤ . Next, N3 := N1 ∗ N2 is computed, and n:,r

is obtained by computing N3 1JK . As reported in [3], GigaTensor uses 2 ΩX extra

storage and 5 ΩX flops to compute one column of N. The Sparse Tensor Toolbox

stores a tensor as a vector of non-zero values and a matrix of corresponding indices.

Entries of B and C are replicated appropriately to create intermediate vectors. A

Hadamard product is computed between the non-zero entries of the matrix and inter-

mediate vectors, and a selected set of entries are summed to form columns of N. The

�� �� �� ��
24

algorithm uses 2 ΩX extra storage and 5 ΩX flops to compute one column of N.

See Appendix A.4 for a detailed illustrative example which shows all the intermediate

calculations performed by our algorithm as well as the algorithm of [3] and [2].

Also, [66] suggests the gradient-based optimization of CANDECOMP/PARAFAC

(CP) using the same method as [2] to compute X1 (C ⊙ B). [66] refers to this gradient-

based optimization algorithm as CPOPT and the ALS algorithm of CP using the

method of [2] as CPALS. Following [66], we use these names, CPALS and CPOPT.

2.4 Experimental Evaluation

Our experiments are designed to study the scaling behavior of DFacTo on both

publicly available real-world datasets as well as synthetically generated data. We con-

trast the performance of DFacTo (ALS) with GigaTensor [3] as well as with CPALS [2],

while the performance of DFacTo (GD) is compared with CPOPT [66]. We also

present results to show the scaling behavior of DFacTo when data is distributed

across multiple machines.

Datasets See Table 2.1 for a summary of the real-world datasets we used in our

experiments. The NELL-1 and NELL-2 datasets are from [3] and consists of (noun

phrase 1, context, noun phrase 2) triples from the “Read the Web” project [41].

NELL-2 is a version of NELL-1, which is obtained by removing entries whose values

are below a threshold.

The Yelp Phoenix dataset is from the Yelp Data Challenge 2, while Cellartracker,

Ratebeer, Beeradvocate and Amazon.com are from the Stanford Network Analysis

Project (SNAP) home page. All these datasets consist of product or business reviews.

We converted them into a users × items × words tensor by first splitting the text

into words, removing stop words, using Porter stemming [69], and then removing

user-item pairs which did not have any words associated with them. In addition, for

the Amazon.com dataset we filtered words that appeard less than 5 times or in fewer
2https://www.yelp.com/dataset_challenge/dataset

https://2https://www.yelp.com/dataset_challenge/dataset
https://Amazon.com
https://Amazon.com

��� ���

25

than 5 documents. Note that the number of dimensions as well as the number of

non-zero entries reported in Table 2.1 differ from those reported in [39] because of

our pre-processing.

Table 2.1.: Summary statistics of the datasets used in our experiments.

Dataset I J K X̂Ω nnzc(X1) nnzc(X2) nnzc(X3)

Yelp 46.0K 11.5K 84.5K 9.9M 4.3M 6.1M 229.8K
Cellartracker 36.5K 412.4K 163.5K 25.0M 19.2M 5.9M 1.3M

NELL-2 12.1K 9.2K 28.8K 76.9M 16.6M 21.5M 337.4K
Beeradvocate 33.4K 66.1K 204.1K 78.8M 19.0M 12.1M 1.6M

Ratebeer 29.1K 110.3K 294.0K 77.1M 22.4M 7.8M 2.9M
NELL-1 2.9M 2.1M 25.5M 143.7M 113.3M 119.1M 17.4M
Amazon 6.6M 2.4M 1.7M 1.2B 525.3M 389.6M 29.9M

We also generated the following two kinds of synthetic data for our experiments:

• the number of non-zero entries in the tensor is held fixed but we vary I, J , and

K.

• the dimensions I, J , and K are held fixed but the number of non-zeros entries

varies.

To simulate power law behavior, both the above datasets were generated using the

following preferential attachment model [70]: the probability that a non-zero entry is

added at index (i, j, k) is given by pi ×pj ×pk, where pi (resp. pj and pk) is proportional

to the number of non-zero entries at index i (resp. j and k).

Implementation and Hardware All experiments were conducted on a comput-

ing cluster where each node has two 2.1 GHz 12-core AMD 6172 processors with 48

GB physical memory per node. Our algorithms are implemented in C++ using the

Eigen library3 and compiled with the Intel Compiler. We downloaded Version 2.5 of

the Tensor Toolbox, which is implemented in MATLAB4. Since open source code for
3http://eigen.tuxfamily.org
4http://www.sandia.gov/~tgkolda/TensorToolbox/

http://eigen.tuxfamily.org
http://www.sandia.gov/~tgkolda/TensorToolbox/

26

GigaTensor is not freely available, we developed our own version in C++ following

the description in [3]. Also, we used MPICH25 in order to distribute the tensor factor-

ization computation to multiple machines. All our codes are available for download

under an open source license from http://www.joonheechoi.com/research.

Scaling on Real-World Datasets Both CPALS and our implementation of Gi-

gaTensor are uni-processor codes. Therefore, for this experiment we restricted our-

selves to datasets which can fit on a single machine. When initialized with the same

starting point, DFacTo and its competing algorithms will converge to the same so-

lution. Therefore, we only compare the CPU time per iteration of the different

algorithms. The results are summarized in Table 2.2. On many datasets DFacTo

(ALS) is around 5 times faster than GigaTensor and 10 times faster than CPALS;

the differences are more pronounced on the larger datasets. Also, DFacTo (GD) is

around 4 times faster than CPOPT.

Table 2.2.: Times per iteration (in seconds) of DFacTo (ALS), GigaTensor, CPALS,
DFacTo (GD), and CPOPT on datasets which can fit in a single machine (R=10).

Dataset DFacTo (ALS) GigaTensor CPALS DFacTo (GD) CPOPT
Yelp Phoenix 9.52 26.82 46.52 13.57 45.9
Cellartracker 23.89 80.65 118.25 35.82 130.32

NELL-2 32.59 186.30 376.10 80.79 386.25
Beeradvocate 43.84 224.29 364.98 94.85 481.06

Ratebeer 44.20 240.80 396.63 87.36 349.18
NELL-1 322.45 772.24 - 742.67 -

The differences in performance between DFacTo (ALS) and CPALS and between

DFacTo (GD) and CPOPT can partially be explained by the fact that DFacTo (ALS,

GD) is implemented in C++ while CPALS and CPOPT use MATLAB. However, it

must be borne in mind that both MATLAB and our implementation use an optimized

BLAS library to perform their computationally intensive numerical linear algebra

operations.
5http://www.mpich.org/static/downloads/

http://www.joonheechoi.com/research
http://www.mpich.org/static/downloads/

27

Compared to the Map-Reduce version implemented in Java and used for the ex-

periments reported in [3], our C++ implementation of GigaTensor is significantly

faster and more optimized. As per [3], the Java implementation took approximately

10,000 seconds per iteration to handle a tensor with around 109 non-zero entries, when

using 35 machines. In contrast, the C++ version was able to handle one iteration

of the ALS algorithm on the NELL-1 dataset on a single machine in 772 seconds.

However, because DFacto (ALS) uses a better algorithm, it is able to handsomely

outperform GigaTensor and only takes 322 seconds per iteration.

Also, the execution time of DFacTo (GD) is longer than that of DFacTo (ALS)

because DFacTo (GD) spends more time on the line search algorithm to obtain an

appropriate step size.

Scaling across Machines Our goal is to study scaling behavior of the time per

iteration as datasets are distributed across different machines. Towards this end we

worked with two datasets. NELL-1 is a moderate-size dataset which our algorithm

can handle on a single machine, while Amazon is a large dataset which does not fit

on a single machine. Table 2.3 shows that the iteration time decreases as the number

of machines increases on the NELL-1 and Amazon datasets. While the decrease in

iteration time is not completely linear, the computation time excluding both synchro-

nization and line search time decreases linearly. The Y-axis in Figure 2.2 indicates

T4/Tn where Tn is the single iteration time with n machines on the Amazon dataset.

Synthetic Data Experiments We perform two experiments with synthetically

generated tensor data. In the first experiment we fix the number of non-zero entries

to be 106 and let I = J = K and vary the dimensions of the tensor. For the second ex-

periment we fix the dimensions and let I = J = K and the number of non-zero entries

is set to be 2I. The scaling behavior of the three algorithms on these two datasets

is summarized in Table 2.4. Since we used a preferential attachment model to gen-

erate the datasets, the non-zero indices exhibit a power law behavior. Consequently,

the number of columns with non-zero elements (nnzc(·)) for X1, X2 and X3 is very

:§-2.5
Q)

'iii
~ 2

1.5

1 5 10 15 20 25 30
Number of machines

3

:§-2.5
Q)

'iii
~ 2

1.5

10 15 20 25 30
Number of machines

28

Table 2.3.: Total Time and CPU time per iteration (in seconds) as a function of
number of machines for the NELL-1 and Amazon datasets (R=10).

DFacTo (ALS) DFacTo (GD)
NELL-1 Amazon NELL-1 Amazon

Machines Iter. CPU Iter. CPU Iter. CPU Iter. CPU
1 322.45 322.45 - - 742.67 104.23 - -
2 205.07 167.29 - - 492.38 55.11 - -
4 141.02 101.58 480.21 376.71 322.65 28.55 1143.7 127.57
8 86.09 62.19 292.34 204.41 232.41 16.24 727.79 62.61
16 81.24 46.25 179.23 98.07 178.92 9.70 560.47 28.61
32 90.31 34.54 142.69 54.60 209.39 7.45 471.91 15.78

(a) DFacTo(ALS) (b) DFacTo(GD)

Fig. 2.2.: The scalability of DFacTo with respect to the number of machines on the
Amazon dataset

close to the total number of non-zero entries in the tensor. Therefore, as predicted

by theory, DFacTo (ALS, GD) does not enjoy significant speedups when compared

to GigaTensor, CPALS and CPOPT. However, it must be noted that DFacto (ALS)

is faster than either GigaTensor or CPALS in all but one case and DFacTo (GD) is

faster than CPOPT in all cases. We attribute this to better memory locality which

arises as a consequence of reusing the memory for N as discussed in Section 2.3.

Rank Variation Experiments Table 2.5 shows the time per iteration on various

ranks (R) with the NELL-2 dataset. We see that the computation time of our al-

29

Table 2.4.: Time per iteration (in seconds) on synthetic datasets (non-zeros = 106 or
2I, R=10)

DFacTo DFacTo
I = J = K Non-zeros GigaTensor CPALS CPOPT(ALS) (GD)

104 106 1.14 2.80 5.10 2.32 5.21
105 106 2.72 6.71 6.11 5.87 11.70
106 106 7.26 11.86 16.54 16.51 29.13
107 106 41.64 38.19 175.57 121.30 202.71
104 2 · 104 0.05 0.09 0.52 0.09 0.57
105 2 · 105 0.92 1.61 1.50 1.81 2.98
106 2 · 106 12.06 22.08 15.84 21.74 26.04
107 2 · 107 144.48 251.89 214.37 275.19 324.2

gorithm increases lineraly in R like the time complexity analyzed in Section 2.3.2.

Table 2.5.: Time per iteration (in seconds) on various R

R 5 10 20 50 100 200 500
NELL-2 15.84 31.92 58.71 141.43 298.89 574.63 1498.68

2.5 Discussion and Conclusion

We presented a technique for significantly speeding up the Alternating Least

Squares (ALS) and the Gradient Descent (GD) algorithm for tensor factorization by

exploiting properties of the Khatri-Rao product. Not only is our algorithm, DFacto,

computationally attractive, but it is also more memory efficient compared to existing

algorithms. Furthermore, we presented a strategy for distributing the computations

across multiple machines.

We hope that the availability of a scalable tensor factorization algorithm will

enable practitioners to work on more challenging tensor datasets, and therefore lead

to advances in the analysis and understanding of tensor data. Towards this end we

30

intend to make our code freely available for download under a permissive open source

license.

Although we mainly focused on tensor factorization using ALS and GD, it is worth

noting that one can extend the basic ideas behind DFacTo to other related problems

such as joint matrix completion and tensor factorization. We presented such a model

in Section A.5. In fact, we believe that this joint matrix completion and tensor

factorization model by itself is somewhat new and interesting in its own right, despite

its resemblance to other joint models including tensor factorization such as [71]. In our

joint model, we are given a user × item ratings matrix Y, and some side information

such as a user × item × words tensor X. Preliminary experimental results suggest

that jointly factorizing Y and X outperforms vanilla matrix completion.

-

31

3. COMPARISON OF ADMM ALGORITHMS FOR

NOISY NON-NEGATIVE MATRIX FACTORIZATION

3.1 Introduction

3.1.1 Non-negative Matrix Factorization

We consider the classical non-negative matrix factorization problem with a special

concern about the noise present in the observation. More precisely, we assume that

for a given pair of matrices W ∈ RM×R and H ∈ RR×N , the observation model is

given by

Y = WH + η, (3.1)

where Y ∈ RM×N is the observed data, and η is a zero-mean iid Gaussian noise

matrix with variance σ2. Here, the dimension R specifies the number of columns of

W (also the number of rows of H) on which the rank of the observation model is

defined.

Non-negative matrix factorization has important applications in computer vision

[72], recommendation system [73], remote sensing [74], and hyperspectral imaging

[75]. In this chapter, we are primarily interested in using non-negative factorization

to identify chemical signatures from stimulated Raman scattering (SRS) imaging

data [76]. In chemometrics, such process is widely known as the multivariate curve

resolution (MCR) technique [77].

Given the observation model in (3.1), non-negative matrix factorization is typically

posed as a minimization problem

minimize
1 ∥Y − WH∥2

F , (3.2)
W ≥0,H≥0 2

32

where the goal is to minimize the ℓ2-norm of the residue between the observed data

Y and the predicted data WH . In the absence of noise, (3.2) can be solved by

a multiplicative algorithm [4], the alternating least-squares method [78], or more

recently the alternating direction method of multiplier (ADMM) [11]. However, it

should be reminded that since (3.2) is a non-convex problem, there is in general no

guarantee of global optimality except under some restrictive conditions [79].

3.1.2 Problem Statement

The focus of this chapter is to perform non-negative matrix factorization in the

presence of η. When η is present, solving (3.2) is inadequate to return a pair of clean

(W , H). In this case, a common wisdom is to consider some regularization functions

on W and H and turn the problem into

minimize
1 ∥Y − WH∥2

F + λf(W , H), (3.3)
W ≥0,H≥0 2

where f(W , H) is the regularization on W and H , and λ is the associated parameter.

For example, one may choose f(W , H) = ∥W ∥2
F + ∥H∥2

F to constrain the energy of

W and H [75], or use the spectral total variation regularization [80]- [81]

minimize
1 ∥Y − WH∥2

F + λ∥WH∥ST V , (3.4)
W ≥0,H≥0 2

which we shall discuss in Section 3.2 of this chapter. The price we have to pay, of

course, is that (3.3) is often more difficult than (3.2).

Our primary concern of this chapter is how to solve (3.4) efficiently. Readers

who are familiar with total variation may probably recognize that (3.4) is a vari-

ant of the total variation minimization, which suggests that we can use the ADMM

algorithm. However, as we will discuss in this chapter, the way we setup the aug-

mented Lagrangian function for the ADMM algorithm has some drastic influence on

the performance, even if they are derived from the same procedure.

33

3.1.3 Contributions

The majority of the previous work on non-negative matrix factorization has been

focusing on proposing new algorithms to solve (3.2) [4]- [11], with some others on

finding better f(W , H) in (3.3) [82]- [83]. While we also have these two goals in

mind, we put extra emphasis on the analysis of when the ADMM algorithm works

and when it does not work. The importance of such analysis is that it informs us the

proper design of the ADMM algorithm for some non-convex problems. There are two

contributions of this chapter.

First, we discuss four types of algorithms that can be derived for solving (3.4). We

show that each one is a variant of ADMM, and we comment on where they were used

in the literature. Second, we provide numerical evidence that some performs well but

some performs badly. We provide our preliminary understanding of the situation.

The rest of the chapter is organized in the following way. In Section 3.2 we

discuss the spectral total variation (3.4) in some details. Then, in Section 3.3 we

discuss various possible ways of solving (3.4) using the ADMM algorithm. Since

none of these algorithms can guarantee global optimum, in Section 3.4 we study their

empirical behavior on some synthetic datasets. A discussion and conclusion is given

in Section 3.5.

3.2 Background

In this section we provide a brief discussion of the spectral total variation defined in

(3.4), and a quick review of the ADMM algorithm. For notation simplicity, we define

the operations ten(·), mat(·) and vec(·) for a tensor X , its matrix representation

X ∈ RMN×K , and vector representation x ∈ RMNK×1 as

X = ten(X), X = mat(x) and x = vec(X).

34

Moreover, whenever an inner product is needed, we write

def
XT Y = vec(X)T vec(Y).

3.2.1 Spectral Total Variation

We define the (anisotropic) spectral total variation of X as

∥X∥ST V = βx∥Dxx∥1 + βy∥Dyx∥1 + βz∥Dzx∥1, (3.5)

where (Dx, Dy, Dz) are the forward finite-difference operators along the horizontal,

vertical and temporal directions, with parameters (βx, βy, βz), respectively. ∥X∥ST V

generalizes conventional total variation to multiple dimensions [81].

To illustrate the effectiveness of the STV on real data, we consider a stimulated

Raman scattering image of size 512 × 512 × 80 for a cell. The image shown on the

left hand side is the center 128 × 128 portion of the 45th frame of the product WH

where W and H are results of (3.2) with R = 8. It can be seen that the predicted

observation WH remains noisy, although the rank we posed on the problem is small.

In the same figure we also show the result of solving (3.4) using Algorithm 4. It is

evident from the result that the STV reduces a significant amount of noise in the

data.

3.2.2 ADMM Algorithm

ADMM algorithm solves constrained optimization problems of the following form:

minimize f(x) + g(y), subject to Ax + By = c. (3.6)
x,y

35

(a) Input (b) Solution of (3.2) (c) Solution of (3.4)

Fig. 3.1.: Non-negative matrix factorization with and without regularization. Here
we show the product of the solution WH .

To solve (3.6), we consider the augmented Lagrangian function

L(x, y, z) = f(x) + g(y) + z T (Ax + By − c) + (ρ/2)∥Ax + By − c∥2 , (3.7)

and solve for x, y, z alternatively via the procedure

(k+1) (k)x = argmin L(x, y , z(k)), (3.8a)
x

(k+1) (k+1)y = argmin L(x , y, z(k)), (3.8b)
y ()

(k+1) (k) Ax(k+1) + By(k+1) − cz = z + ρ . (3.8c)

Under mild conditions, e.g., when f(·) is strongly convex and g(·) is convex, the

convergence of the algorithm is guaranteed [84].

One common engineering question about using ADMM is how to convert a given

optimization problem (e.g., (3.4)) into the form of (3.6). Of course, the basic re-

quirement is that the re-formulated problem (i.e., (3.6)) should be equivalent to the

original problem at the optimal solution. However, there are usually multiple ways of

re-formulating the problem by choosing different combinations of (A, B, c) in (3.6).

In what follows we will discuss several possible options of the ADMM.

36

3.3 Variations of ADMM Algorithms

In this section we present four versions of ADMM to solve (3.4).

3.3.1 Single Variable Split

The first method we consider is to define an intermediate variable Z and solve for

minimize
W ≥0,H≥0,Z

1 ∥Y − W H∥2
F + λ∥Z∥ST V

2
(3.9)

subject to W H − Z = 0.

cc

We call this method the single variable split, as it converts the original problem in

(3.4) into the form of (3.6) by using one variable Z. Such approach is very com-

mon in compressive sensing literature [84], where one converts problems of the form

minx ∥y − Ax∥2 + λ∥x∥1 into minx,z ∥y − Ax∥2 + λ∥z∥1, subject to z = x.

To solve (3.9), we consider the augmented Lagrangian function

L(W , H , Z, V) =
1 ∥Y − WH∥2

F + λ∥Z∥ST V
2

+ V T (WH − Z) +
ρ ∥WH − Z∥2

F , (3.10)

c
b

2

c

where V is the Lagrangian multiplier. Then, we solve the following subproblems

alternatively:

W , H) = argmin
1 ∥Y −WH∥F

2 + V T (WH − Z) +
ρ ∥WH −Z∥F

2 (3.11a)

Z W

(
2 2W ≥0,H≥0

argmin λ∥Z∥ST V + V T (WH − Z) +
ρ (3.11b)∥= H −Z∥2

F2Z ccbV W

Since (3.11a) is quadratic, we can show the following result.

(3.11c)V + ρ(H − Zb).=

■

37

Proposition 3.3.1 The optimization problem in (3.11a) is equivalent to

1 Y + ρZ − V 2

(c cW , H) = argmin WH − . (3.12)
2 1 + ρW ≥0,H≥0 F

Proof By completing squares.

The result of Proposition 3.3.1 is in the same form as (3.2). Since (3.2) is the standard

non-negative matrix factorization problem, we can solve (3.12) using an existing NMF

solver. We also note that the problem (3.11b) is a standard STV minimization, which

can be solved using an existing package [81]. To summarize the single variable split

method, we show the algorithm in Algorithm 4. Here, we increase the parameter ρ

by γρ to ensure convergence, where γ > 1.

Algorithm 4: Single Variable Split
1 while not converge do
2 (W , H) ← Solve (3.12)
3 Z ← Solve (3.11b)
4 V ← V + ρ(WH − Z)
5 ρ ← γρ
6 end

3.3.2 Multiple Variable Split

The second method we consider is to introduce multiple intermediate variables to

handle both WH and the STV of WH simultaneously. To simplify our notations

we shall consider one D instead of (Dx, Dy, Dz), and set β = 1. The difference

between multiple variable split and single variable split is the number of intermediate

variables we defined in the ADMM algorithm.

We write (3.4) as the following constrained problem:

38

minimize
1 ∥Y − WH∥2

F + λ∥x∥1 (3.13)
W ,H,Z,x,W+,H+ 2

subject to WH − Z = 0, Dz − x = 0,

W = W+, H = H+, W+ ≥ 0, H+ ≥ 0.

The first constraints in (3.13) is the same as the constraint in (3.9), which is to
defsubstitute WH . The second constraint is ensure that ∥x∥1 = ∥Dz∥1 = ∥Z∥ST V .

The third and the fourth constraints are used to ensure non-negativity of W and H .

The augmented Lagrangian function of (3.13) is

L(W , H , Z, x, W+, H+, V , u, P , Q)

=
1 ∥Y − WH∥2

F + λ∥x∥1 + V T (WH − Z) +
ρ ∥WH − Z∥2

F2 2
µ α1

+ u T (Dz − x) + ∥Dz − x∥2
F + P T (W − W+) + ∥W − W+∥2

F2 2

+ QT (H − H+) +
α2 ∥H − H+∥2

F , (3.14)
2

where V , u, P and Q are Lagrangian multipliers, and ρ, µ, α1 and α2 are parameters.

(3.14) has been previously used in several occasions, e.g., [11], [82], [85], (usually

without the STV term). The intuition behind is that by splitting (3.11a) and (3.11b)

further, we can possibly reduce some computation. Algorithm 5 summarizes the

method after completing squares and scaling the parameters.

3.3.3 Half Quadratic Penalty

The third method we consider is a simple variant of the single variable split. In

this method, we remove the update of the Lagrange multiplier V in (3.11a)-(3.11c).

This returns us a half quadratic penalty method, which solves

minimize
1 ∥Y − WH∥2

F + λ∥Z∥ST V +
ρ ∥WH − Z∥2

W≥0,H≥0,Z 2 2 F

39

Algorithm 5: Multiple Variable Split
1 while not converge do

W ← argmin
1 ∥Y − WH∥2

F + V T (WH − Z) +
ρ ∥WH − Z∥2

F
W 2 22

α1
+ P T (W − W+) + ∥W − W+∥2

F2

H ← argmin
1 ∥Y − WH∥2

F + V T (WH − Z) +
ρ ∥WH − Z∥2

F
H 2 23

α2
+ QT (H − H+) + ∥H − H+∥2

F2
4 Z ← argmin V T (WH − Z) +

2
ρ ∥WH − Z∥F

2 + uT (Dz − x) + µ
2 ∥Dz − x∥F

2

Z

5 x ← argmin λ∥x∥1 + uT (Dz − x) + µ
2 ∥Dz − x∥2

F
x

6 W+ ← argmin P T (W − W+) + α
2
1 ∥W − W+∥2

F
W+≥0

7 H+ ← argmin QT (H − H+) + α
2
2 ∥H − H+∥2

F
H+≥0

8 V ← V + (WH − V), u ← u + (Dz − x)
9 P ← P + (W − W+), Q ← Q + (H − H+)

10 ρ ← γρ, α1 ← γα1, α2 ← γα2, µ ← γµ.
11 end

by alternatingly minimizing

(c cW , H) = argmin
W≥0,H≥0

1 ∥Y − WH∥2
F +

2
ρ ∥WH − Z∥2

F2
(3.15)

bZ = argmin λ∥Z∥ST V
Z

+
ρ ∥WH − Z∥2

F . 2
(3.16)

Half quadratic minimization has been widely used in signal and image processing [86]-

[87]. Using Proposition 3.3.1, we can derive the algorithm as shown in Algorithm 6.

Algorithm 6: Half Quadratic Penalty

1 while not converge do
2

2 (W , H) ← argmin 1 WH − Y +ρZ
2 1+ρ

FW ≥0,H≥0

3 Z ← Solve (3.16)
4 ρ ← γρ
5 end

40

3.3.4 Algorithm-induced Prior

The fourth method we consider is a relatively new concept called algorithm-

induced prior [88], [89]. The idea is to rewrite (3.11b) as

2

Z WH +ccb = argmin
ρ V

Z 2 ρ
− Z + λ∥Z∥ST V , (3.17)

F

which can be done by completing squares. (3.17) can be viewed as a denoising step

where the observed data is WH + V /ρ, and the potential clean estimate is Z.

The denoising perspective suggests us that we can replace ∥Z∥ST V by any other

prior that can lead to better denoising performance. Or more aggressively, we can

replace the entire optimization in (3.17) by an off-the-shelf denoising algorithm (which

we call a denoiser in general):

cc

ccbZ ← denoiser WH + V /ρ

Here, we use BM3D [90] as the denoiser for this problem. The overall algorithm is

shown in Algorithm 7.

Algorithm 7: BM3D induced prior

()
.

1 while not converge do
2 (W , H) ← Solve (3.12)
3 Z ← BM3D (WH + V /ρ)
4 V ← V + ρ(WH − Z)
5 ρ ← γρ
6 end

41

3.4 Experiments and Discussions

3.4.1 Experimental Results

In this experiment, we set the internal parameters as µ = 1, α1 = 100, α2 = 100,

ρ = 0.1 and γ = 1.1. W and H are initialized with random matrices. Whenever

total variation minimization is required, e.g., (3.11b), we use deconvtv [81] to solve,

and whenever a NMF is needed, i.e., (3.2), we use our implementation of the ADMM

algorithm in [11] to solve.

To create synthetic stimulated Raman scattering data so that we can compute

the PSNR, we acquire a 256 × 256 × 50 dimethyl sulfoxide (DMSO) solution with

100% concentration. We then apply a standard NMF to the reshaped data, i.e., a

65536 × 50 matrix, and limit the rank to R = 5. Denoting the decomposed matrices

as W and H , we generate synthetic observations Y using (3.1) by setting η as zero-

mean iid Gaussian noise with standard deviation σ = {5/255, 10/255, 20/255}. The

regularization parameter is set as λ = σ1.1.

Non-negative matrix factorization is known to have permutation and scaling am-

biguity. Therefore, for the estimated W (and H), we compute the optimal permu-

tation P so that columns of WP would match with that of the true W . Moreover,

we normalize W so that all values are in [0, 1]. In other words, we let

() ()c W − Wmin H − Hmin
W = P , and Hc = P ,

Wmax − Wmin Hmax − Hmin

where Wmin and Wmax are the minimum and maximum of W .

We show three sets of results in Table 3.1, namely, the PSNR of W , H , and

WH . It can be seen that the multiple-variable split method is consistently the

worst, and is significantly worse than other three methods. For single-variable split,

half-quadratic, and algorithm-induced prior, the performance is not much different,

although the PSNR of W and H are consistently worse than that of WH (which is

reasonable because we only regularize WH).

42

Table 3.1.: PSNR of the algorithms at σ = 5/255, 10/255, 20/255.

sigma
Single

Variable Split
Multiple

Variable Split
Half Quadratic

Penalty
Algorithm

induced Prior

5
255

W 36.16 10.30 37.73 34.61
H 41.01 16.15 48.57 38.54

W H 48.35 16.62 49.02 46.21

10
255

W 34.57 10.30 35.34 34.53
H 40.61 16.13 42.77 40.52

W H 46.32 16.71 46.22 45.91

20
255

W 32.70 10.31 32.33 32.57
H 41.01 16.09 37.93 38.85

W H 44.94 16.93 43.98 45.07

In Figure 3.2 we show how the PSNR of H iterates for each algorithm. Generally

speaking, all algorithms demonstrate an improving PSNR, despite several spiky be-

havior of the single-variable split and the algorithm-induced prior. The exact reason

of the spikes is unknown, but we suspect it is related to the non-convexity of NMF.

3.4.2 Discussion

The results of this experiment has two implications. First, multiple-variable split

should be avoided, especially when the problem is non-convex. Intuitively, the key

difference between the three methods and multiple-variable split is that the formers

are separate denoise-then-factorize processes whereas the latter is a combined denoise-

factorize process. Since geometrically NMF is seeking support vectors that define a

non-negative cone [91], a separate denoise-then-factorize process allows us to shrink

the uncertainty caused by the noise before factorization. A combined denoise-factorize

process, on the other hand, is more like to cause oscillation.

Second, single-variable split and half-quadratic penalty have similar behavior ex-

cept that single-variable split usually converges faster due to the Lagrange multiplier.

Algorithm-induced prior has some unpredictable behavior. This is most likely caused

by the nonlinearity of BM3D. However, looking at the PSNR at σ = 20/255, al-

I !

43

Iterations
0 5 10 15 20 25 30 35 40 45 50

P
S

N
R

10

15

20

25

30

35

40

45
PSNR (H): sigma =0.078431

Single variable split
Multiple variable split
Half quadratic penalty
Algorithm-induced Prior

Fig. 3.2.: PSNRs of H at every iteration. σ = 20/255.

gorithm induced prior seems to give better WH , implying that the denoiser has a

strong influence on high noise settings.

3.5 Conclusion

We studied four variants of the ADMM algorithm to analyze and compare their

performances of non-negative matrix factorization in the presence of noise. Since

non-negative matrix factorization is non-convex but bi-convex, i.e. convex in a ma-

trix when the other matrix fixed, one has to be careful when choosing the splitting

strategy. We found from the experiment that the multiple-variable split can result in

bad performance, whereas single variable split, half quadratic penalty and algorithm-

induced priors lead to similar performance. We argue that the disparity in the perfor-

44

mance is caused by the extent to which the denoising part and the factorization part

of the ADMM can reach. We also demonstrated the potential of algorithm-induced

prior.

45

PART II

DEEP LEARNING IMAGE DENOISING

46

4. OPTIMAL COMBINATION OF IMAGE DENOISERS

This Chapter addresses given a set of denoisers the optimal combination with two

modules: MSE Estimator and Booster network. It is based on a paper to be submitted

to IEEE Transactions on Image Processing [92].

4.1 Introduction

While image denoising algorithms over the past decade have produced very promis-

ing results, it is also safe to say that there is no single image denoiser can perform

uniformly better than other denoisers. In fact, any image denoiser, either determinis-

tic [19–23] or learning-based [12–18], has an implicit prior model that determines its

denoising characteristics. Since a particular prior model encapsulates the statistics of

a limited set of imaging conditions, the corresponding denoiser is only an expert for

the images that it is designed to handle. We refer to this gap between the imaging

model and the denoising task as a model mismatch.

Model mismatch is common in practice. The followings are three examples:

• Denoiser Characteristic: Every denoiser has a different characteristic. For

example, total variation assumes sparsity of the gradients, thus works well

for piecewise constant images; BM3D [20] assumes patch reoccurrence, thus

works well for images with repeated patterns. Figure 4.1 shows an example

of BM3D [20] and a neural network denoiser DnCNN [16]. For Boat512, it is

clear that DnCNN performs better. However, for Barbara512, BM3D actually

outperforms DnCNN due to the weak oscillating pattern on the cloth, a rare

feature that is difficult to learn.

47

(a) BM3D, 30.85dB (b) DnCNN, 31.14dB (c) Ours, 31.32dB

(d) BM3D, 26.80dB (e) DnCNN, 26.49dB (f) Ours, 26.80dB

Fig. 4.1.: Comparison of BM3D [20], DnCNN [16] and the proposed CsNet.

• Noise Level: For neural network image denoisers, the performance is determined

by the noise level under which the denoiser is trained. For example, if a denoiser

is trained for i.i.d. Gaussian noise of standard deviation σ, it only works well

for this particular σ. As soon as the noise level deviates, the performance will

degrade.

• Image Class: A denoiser could be well trained for a particular class of images

(e.g., building), but it may not work for other classes (e.g., face). For this

type of class-aware issue, the typical solution is by means of scene classification.

However, scene classification itself is an open problem and there is no consensus

of the best approach. Therefore, it would be more convenient if the denoiser

can automatically pick a class that gives the best performance without seeking

classification algorithms.

48

The common question underlying these examples is that if we have a set of de-

noisers, each having a different characteristic, how do we combine them to produce a

better result? Answering this question is fundamental to designing ensembles of ex-

pert image restoration methods for complex scenes. The goal of this work is to present

a framework called the Consensus Neural Network (CsNet) which seeks consensus by

using neural networks and convex optimization.

4.1.1 Related Work

Combining estimators is a long-lasting statistical problem. In as early as 1959,

Graybill and Deal [93] started to consider linearly combining two unbiased scalar

estimators to yield a new estimator that remains unbiased and has lower variance.

More properties of the such combination scheme was discussed by Samuel-Cahn [94].

In [95], Rubin and Weisberg extended the idea by estimating weights from the sam-

ples. However, the estimators are still scalars and are assumed to be independent.

Correlated scalar estimators are later studied by Keller and Olkin [96]. For vector

estimators (which is the case for image denoisers), Odell et al. [97] presented a very

comprehensive study. However, their result is limited to two vector estimators. The

general case of multiple estimators is studied by Lavancier and Rochet [98], who

proposed an optimization approach to estimate the weights.

Specific to image denoising, methods seeking linear combination of denoisers are

scattered in the literature. The most popular approach is perhaps the linear expan-

sion of thresholds by Blu and colleagues [99], using the Stein’s unbiased risk estimator

(SURE). In [100], Chaudhury et al. presented an improved bilateral filter using the

SURE estimator. For learning based methods, the loss-specific training approach by

Jancsary et al. [101] presented a regression tree field model to optimize the denoising

performance over different metrics. There is also an end-to-end neural network solu-

tion for selecting denoisers by Agostinelli et al. [102], where the authors proposed to

learn the weights using an auto-encoder.

49

The noise-level mismatch is discussed more often in the neural network literature.

Conventional approach is to either truncate the noise level to the nearest trained

level [103] or to train the network with a large number of examples covering all noise

levels [16]. A more recent approach is to feed a noise map to the network and train the

network to recognize the noise level [18]. However, this approach requires a redesign

of the network structure. In contrast, CsNet uses the same structure for all initial

denoisers.

4.1.2 Contributions

An overview of the proposed CsNet framework is shown in Figure 4.2. We sum-

marize the three key contributions of this chapter in the followings:

• MSE Estimator. We present a novel deep neural network to estimate the mean

square error (MSE) in the absence of the ground truth. Existing deep neural

network based image quality assessment methods are designed to predict per-

ceptual quality and not MSE. To the best of our knowledge, our deep learning

based MSE estimator is the first of this kind in the literature.

• Optimal Combination. We present an optimal combination framework via con-

vex optimization. By minimizing a quadratic function over a unit simplex, we

prove that resulting combination is optimal in the MSE sense. We provide

geometric interpolation of the solution, and a fast algorithm to determine the

optimal point.

• Denoising Booster. We present a new deep neural network to boost the com-

bined estimates. Unlike the existing deterministic boosters which are iterative,

we cascade several simple neural networks to build the booster.

To help readers understand the design process, we proceed the chapter by first

discussing the optimal combination and its associated theoretical properties in Sec-

tion 4.2. Section 4.3 discusses the neural network estimator for estimating the MSE.

,~ ~--~ ~--~ ',
l

50

ConsensusNet
D1 M w1

D2 M w2

DK M wK

Solve

P1

•

•

•

∑
Booster F

Input Output

Fig. 4.2.: Structure of the proposed CsNet: Given a set of K initial denoisers
D1, . . . , DK , CsNet uses an MSE estimator (M) to estimate the MSE of each ini-
tial denoiser. After the MSEs are estimated, we solve a convex optimization problem
(P1) to determine the optimal weight w1, . . . , wK . The combined estimate is then
boosted using a booster neural network to improve contrast and details.

We emphasize that the neural network presented here is just one of the many possible

ways of estimating the MSE. Readers preferring non-training based approaches can

use estimators such as SURE, although we will provide examples where SURE does

not work. Section 4.4 discusses the booster, and its cascade structure. Experiments

are discussed in Section 4.5.

4.1.3 Notation

Throughout this chapter, we use lower case bold letters to denote vectors, e.g.,

x ∈ RN , and upper case bold letters to denote matrices, e.g., X ∈ RK×K . An

all-one vector is denoted as 1. Standard basis vectors are denoted as ei, i.e., ei =

[0, . . . , 1, . . . , 0]T . For any vector x, ∥x∥2 means the ℓ2-Euclidean norm, and for any

matrix A, ∥A∥2 = max∥x∥2=1 ∥Ax∥2 denotes the matrix operator norm. To specify

that a vector x is non-negative for all its elements, we write x ⪰ 0. For matrices,

A ⪰ 0 means that A is positive semi-definite. Images in this chapter are normalized

so that every pixel is in [0, 1]. Noise level of an i.i.d. Gaussian noise is specified

by its standard deviation σ. For notational simplicity, we write σ in the scale of

[0, 255], e.g., “σ = 20” means σ = 20/255. Finally, an image denoiser D is a mapping

D : [0, 1]N → [0, 1]N . We assume D is bounded and is asymptotically invariant [104].

51

4.2 Optimal Combination of Estimators

4.2.1 Problem Formulation

Consider a linear forward model where a clean image z ∈ RN is corrupted by

additive i.i.d. Gaussian noise η ∼ N (0, σ2I) so that the observed image is y = z + η.

We apply a set of K image denoisers D1, . . . , DK to yield K initial estimates zbk =

Dk(y) for k = 1, . . . , K. For convenience, we concatenate these initial estimates by

constructing a matrix Zb = [zb1, . . . , zbK] ∈ RN×K . In this chapter, we focus on the

linear combination of estimators. That is, for a given Zb, we construct the linearly

combined estimate as
K∑ bzb = wkzbk = Zw, (4.1)
k=1

defwhere w = [w1, . . . , wK]
T ∈ RK is the vector of combination weights. The goal of

our work is to formulate an optimization problem to determine the optimal weights.

For analytic tractability, we use mean squared error (MSE) to measure the opti-

mality, although it is known that alternative visual quality metrics correlate better

to human visual systems [105]. Denote z ∈ RN as the ground truth. We define the

MSE between the combined estimate zb and the ground truth z as

[] [
2
]

def bMSE(zb, z) = E ∥zb − z∥2 = E Zw − z . (4.2)

The optimal combination problem can be posed as minimizing the MSE by seeking

the weight vector w ∈ RK :

[]
∥ bminimize E Zw − z∥2

w (4.3)
subject to wT 1 = 1, and w ⪰ 0.

Here, the constraint wT 1 = 1 ensures that the sum of the weight is 1, and the

constraint w ⪰ 0 ensures that the combined estimate remains in [0, 1]N .

52

Let us simplify (4.3). First, we define Z = [z, . . . , z] ∈ RN×K , i.e., a matrix with

the ground truth z in each column. Since wT 1 = 1, we can show that

[] []
2 2 b bE Zw − z = E Zw − Zw []

= E w T (Zb − Z)T (Zb − Z)w

= w T Σw,

where Σ is defined as []
def

Σ = E (Zb − Z)T (Zb − Z) .

We call Σ the covariance matrix1. Using this result, it can be shown that (4.3) is

equivalent to

minimize wT Σw
w (P1)

subject to wT 1 = 1, and w ⪰ 0,

which is a convex problem because Σ is positive semi-definite and the feasible set is

convex.

Before we discuss how to solve (P1), we should first discuss how to obtain Σ. The

(i, i)-th entry of Σ is [] def
Σii = E ∥zbi − z∥2 = MSEi,

which is the MSE of the i-th estimate. The (i, j)-th entry of Σ is the correlation

between zbi and zbj :
[]

Σij = E (zbi − z)T (zbj − z) . []
def1Straightly speaking, Σ = E (Zb − Z)T (Zb − Z) is not the conventional covariance matrix because

denoisers are not necessarily unbiased, i.e., E[Zb] ≠ Z.

53

To express Σij in terms of MSEi and MSEj , we notice that

[] []
E ∥zbi − zbj ∥2 = E ∥zbi − z + z − zbj ∥2

= E ∥zbi − z∥2 + E ∥zbj − z∥2 + . . . []
− 2E (zbi − z)T (zbj − z) .

Rearranging the terms we can write Σij as

[]
MSEi + MSEj − E ∥zbi − zbj ∥2

Σij = . (4.4)
2

Therefore, when we do not have the true MSEi and MSEj but only the estimates]MSEi []
and MSE]

j , (4.4) provides a convenient way to construct Σij because E ∥zbi − zbj ∥2

does not require the ground truth.

4.2.2 Solving (P1)

The optimization problem in (P1) is a quadratic minimization over a unit sim-

plex. It is known that such problem does not have a closed form solution. Iterative

algorithms are available, e.g., using general purpose semi-definite programming such

as CVX [106, 107], or using projected gradients [108, 109]. However, since (P1) has a

simple structure, efficient algorithms can be derived.

Our algorithm is an accelerated gradient method following from the work of Jaggi

[110]. We briefly describe the algorithm for completeness. Let

f(w) = w T Σw (4.5)

be the objective function, and

def
Ω = {w | w T 1 = 1, and w ⪰ 0} (4.6)

■

54

be the feasible set. The first order linear approximation at the t-th iterate is

f(y) = f(w(t)) + ∇f(w(t))T (y − w(t)), ∀y ∈ Ω.

Thus, for any y ∈ Ω, y − w(t) is a feasible search direction. One choice of y is to

(t))Tmake ∇f(w y minimized so that f(y) has a lower cost. This leads to

(t))Tminimize ∇f(w y, (4.7)
y∈Ω

which has a linear objective function. Once y is determined, we construct a standard

accelerated gradient step:

(t+1) (t) (t)),w = w + α(y − w (4.8)

where α = 2 is the step size.
t+2

It remains to find out an solution for the subproblem (4.7). Note that the sub-

problem (4.7) is a linear programming over the unit simplex. Therefore, the solution

has to lie on one of the vertices. Proposition 4.2.1 provides a full characterization.

The pseudo-code is shown in Algorithm 8.

Proposition 4.2.1 The solution to (4.7) is y = ei∗ , where i∗ = argmini(∇f(w(t)))i.

Proof Let g = ∇f(w(t)). Then it follows that

∑K K∑
T g y = giyi ≥ gmin yi = gmin,

i=1 i=1

∑Kwhere gmin = mini gi, and i=1 yi = 1 because y ∈ Ω. The lower bound can be

attained when y = ei∗ , where i∗ = argmini gi.

Example 1 As an illustration of Algorithm 8, we compare its performance with an

ADMM algorithm by Condat [108]. The reference method is CVX [106]. We repeat

5

4

~2
0 u

.
~\
\ \
\ \

\ \
\

i,. \ \
\ \
\ \

\ \
\ \

\ \

\ \

\ \

\
\
\ .

\ .
\
\
\ .
'·

.. I . .. I . . .

- - -ADMM
----- Algorithm 1
--Optimal Solution .

\
\

\
\

\
\

\

' ' 1 ' i,. '· ' -'·

0
10°

'· ... , .. , .. ' ' ------------ -... --

101 102 103

Iteration

55

Algorithm 8: Algorithm to Solve (P1)
01: Initialize w = e1.

2: for t = 0, 1, . . . , Tmax do
3: Let i∗ = argmin (Σw(t))i

i ()
(t+1) (t) + 2 (t)).4: Update w = w

t+2 (ei∗ − w
5: end for

the experiment 1000 times using different random matrices Σ, and take the average.

As shown in Figure 4.3, Algorithm 8 converges significantly faster than [108]. In

terms of runtime, Algorithm 8 takes about 4.4 msec, [108] takes 13 msec, and CVX

takes 223.1 msec.

Fig. 4.3.: Comparison of Algorithm 8 and the ADMM algorithm by [108], using the
optimal solution obtained by CVX [106].

4.2.3 Geometric Interpretation of (P1)

Uniqueness. The uniqueness of the solution of (P1) is determined by the positive

definiteness of Σ. If Σ is positive definite, then (P1) is strictly convex, and hence the

■

56

optimal weight is unique. If Σ is only positive semi-definite, then there are infinitely

many optimal weights. The following proposition explains this phenomenon.

∗ ∗Proposition 4.2.2 Suppose that Σ is positive semi-definite. Let w1 and w2 be two
def∗ ∗ ∗solutions of (P1). Then, for any 0 ≤ t ≤ 1, the vector w = tw1 + (1 − t)w2 is also

a solution of (P1).

∗ ∗Proof Let f(w) = wT Σw. Since both w1 and w2 are solutions to (P1), we have

∗ ∗ ∗ ∗f(w1) = f(w2). Also, by linearity, we have that 1T w = 1 and w ⪰ 0. Since f is

convex, we can show that

∗) = f(tw ∗ ∗ f(w 1 + (1 − t)w2)

∗ ∗ ∗≤ tf(w1) + (1 − t)f(w2) = f(w1).

∗ ∗But since w1 is an optimal solution, it is impossible for f(w ∗) < f(w1). So the only

∗ ∗possibility is f(w ∗) = f(w1). This implies that w is also a solution.

The implication of Proposition 4.2.2 is that if two initial estimates zbi and zbj are

identical (or scalar multiple of one and other), then Σ will have dependent columns

(hence positive semi-definite). When this happens, there will be infinitely many ways

of combining the two initial estimates. However, in practice this is not an issue

∗ ∗ ∗ ∗because even if the pair (wi , w) is not unique, the combined estimate w zbi + w zbjj i j

remains unique as zbi = zbj .
Geometry. The geometry of (P1) can be interpreted in low dimensions, e.g., Fig-

ure 4.4. In this figure, we consider a 2D case so that Σ is a 2 × 2 matrix. We can

show that the ellipse always has its minor axis pointing to the northeast direction if

the two initial estimates are positively correlated.

Proposition 4.2.3 Consider a two-dimensional Σ. If Σ12 > 0, then Σ always has

its minor axis pointing to the northeast direction and major axis to the northwest

direction.

57

Σ12 > 0 Σ12 < 0

Fig. 4.4.: Geometry of the optimal weight minimization problem.

Proof Consider the eigen-decomposition of Σ = USU T . For a 2×2 matrix, classical

results in matrix analysis [111] shows that the eigen-value and eigen-vectors are

1 1
s1 = (Σ11 + Σ22 − λ) , s2 = (Σ11 + Σ22 + λ) ,

2 2

and ⎡ ⎤ ⎡ ⎤
Σ11−Σ22+λ Σ11−Σ22−λ

2Σ12 2Σ12⎣ ⎦ ⎣ ⎦u1 = , u2 =
1 1

√
where λ = 4Σ2 + (Σ11 − Σ12)2 .12

Note that λ ≥ |Σ11 − Σ22| because Σ2 ≥ 0. Therefore, s2 ≥ s1 and so u1 is the 12

minor axis and u2 is the major axis. The numerator of the first entry of u1 is

Σ11 − Σ22 + λ ≥ Σ11 − Σ22 + |Σ11 − Σ22|⎧ ⎪⎨2|Σ11 − Σ22| ≥ 0, if Σ11 ≥ Σ22,
= ⎩⎪

0, otherwise.

As a result, the numerator of the first entry of u1 is always non-negative, implying

that the sign of the denominator determines the sign of the entry. Therefore, if

■

58

Σ12 > 0, then u1 will be pointing to the northeast direction. By orthogonality of the

eigen-vectors, u2 points to the northwest direction.

Proposition 4.2.3 provides some insights about the solution. If Σ12 > 0 (which is

usually the case), the major axis must point to northwest. Therefore, the solution

is more likely to be at one of the two vertices. In other words, the optimal solution

tends to be sparse. Such sparsity should come with no surprise, because the linear

constraint wT 1 = 1 is equivalent to ∥w∥1 = 1 if w ⪰ 0.

Remark 4.2.1 In practice, if we only have an estimated covariance matrix Σe , there eis no guarantee that Σ is positive semi-definite. (Symmetry can be preserved by econstructing the off-diagonals using (4.4).) When Σ is not positive semi-definite, we eproject Σ onto its closest positive semi-definite matrix by solving

Σ = argmin ∥S − Σe ∥F
2 . (4.9)

S⪰0

The solution to (4.9) is the truncated singular value decomposition where negative esingular values of Σ are set to 0.

4.2.4 Optimal MSE Lower Bound

We derive the MSE lower bound of (P1). To do so, we consider a relaxed opti-

mization by removing the non-negativity constraint:

minimize wT Σw
w (P2)

subject to wT 1 = 1.

Clearly, the feasible set of (P2) includes the feasible set of (P1), and so the MSE

obtained by solving (P2) must be a lower bound of the MSE obtained by solving (P1).

59

∗More precisely, if we let wb be the optimal weight vector obtained by (P1), and w be

that obtained by (P2), then

[] []
2 2 b bE Zwb − z ≥ E Zw ∗ − z . (4.10)

Let us analyze the right hand side of (4.10). The optimization in (P2) is a stan-

dard linear equality constrained quadratic minimization. Closed-form solution can

be derived via the standard Lagrangian approach by defining:

1 T Σw − λ(wL(w, λ) = w T 1 − 1). (4.11)
2

The first order KKT conditions state that

∂L
= 0, w T 1 = 1,

∂w

where the first condition is equivalent to

Σw − λ1 = 0, or w = λΣ†1, (4.12)

where Σ† denotes the pseudo-inverse of a symmetric positive semi-definite matrix Σ.

If Σ is positive definite, then Σ† = Σ−1 and (4.12) can be written as w = λΣ−11.

Substituting (4.12) into the constraint, we have that

() 1
1T λΣ†1 = 1 ⇒ λ = . (4.13)

1T Σ†1

Substituting (4.13) into (4.12), we prove the following.

Proposition 4.2.4 The solution to (P2) is given by

∗ w =
Σ†1

, (4.14)
1T Σ†1

60

where Σ† denotes the pseudo-inverse of the symmetric positive semi-definite matrix

Σ.

∗Given the optimal weight vector w , we can determine the corresponding mean

squared error:

[]
2 b ∗)T Σw ∗E Zw ∗ − z = (w =

1
. (4.15)

1T Σ†1

∗Since the weight w provides a lower bound on the MSE, in particular if we consider

a weight vector ek = [0, . . . , 1, . . . , 0]T (i.e., the k-th standard basis vector), we must

have

1
MSEk = ek

T Σek ≥ (w ∗)T Σw ∗ =
1T Σ†1

. (4.16)

∗The inequality holds because ek is one of the feasible vectors but w is the optimal
∗solution. Therefore, an optimally combined estimate using w has to be no worse

than any initial estimate.

Remark 4.2.2 The MSE lower bound result presented here is more general than the

previous result by Odell et al. [97] which only considered K = 2. When K = 2, we

have

∗ Σ22 − Σ12 ∗ ∗ w = , and w = 1 − w (4.17)1 2 1,Σ11 + Σ22 − 2Σ12

which is the same as Equation 2 of Table 3 in [97]. 2

4.2.5 Perturbation in Σ

We conclude this section by discussing the perturbation issue when we use an eestimated covariance matrix Σ instead of Σ. To facilitate the discussion, we define

two weight vectors:
2In Equation 2 of Table 3 in [97], there is a typo of the numerator which should be corrected as
m22 − m12.

■

61

we = argmin v T Σe v, and w = argmin v T Σv. (4.18)
v∈Ω v∈Ω

That is, we is the optimal weight vector found according to the estimated co-evariance matrix Σ, and w is the optimal weight vector found according to the true

covariance matrix Σ. Correspondingly, we define their combined estimates as

b bze = Zwe, and zb = Zw. (4.19)

The following proposition summarizes the perturbation result.

eProposition 4.2.5 Assume that Σ ≻ 0 and Σ ≻ 0. Then,

E∥ze − zb∥2 ≤ E∥zb − z∥2(2∆ + ∆2), (4.20)

where
def ∥ e Σ−1Σ∥2.∆ = ΣΣ−1 − e

Proof The proof is given in the Appendix B. Our proof simplifies the multi-block

concept of [98]. We also utilize the generalized Rayleigh quotient idea to obtain the

bound.

The implication of Proposition 4.2.5 can be seen from the two terms on the right

hand side of (4.20). First, E∥zb−z∥2 measures the bias between the oracle combination

zb and the ground truth z. That it is an upper bound in (4.20) implies that the

perturbed estimate is upper limited by the bias. The second term ∆ measures the

Σ−1closeness between the oracle covariance Σ and the estimated covariance Σe . If Σ e =

I, then ∆ = 0 and so the perturbation is minimized. In practice, if Σe can be estimated

in n random trials and if ΣΣe
n
−1 →p

I as n →∞, then we can also show that ∆ →p
0.

(See Section 4.3 for an example using the SURE.)

62

4.3 MSE Estimator

The key to make (P1) success is an accurate covariance matrix Σ. Estimating the

covariance matrix requires estimating the mean squared error (MSE). In this section

we discuss a neural network solution.

4.3.1 Why not SURE?

In image processing, perhaps the most popular approach for estimating MSE is the

Stein’s Unbiased Risk Estimator (SURE). (See, e.g., [99, 112] for illustrations, [113]

for a Monte-Carlo version, and [114] for a recent work using SURE in deep neural

network.) As its name suggested, SURE is an unbiased estimator of the true MSE,

i.e., the estimator will approach to the true MSE as the number of samples grows.

While SURE-based estimators work well in ideal situations, it also has many

shortcomings:

• Large Variance. SURE only provide average performance guarantee. For

Monte-Carlo SURE, there is another level of randomness due to the Monte-

Carlo scheme. Therefore, given a single noisy image, SURE can be inaccurate,

especially for non-linear denoises such as BM3D.

• Clipped Noise. SURE is designed to handle additive i.i.d. Gaussian noise.

However, most real images are clipped to [0, 1]N , and most neural network

denoisers clip the noise during training. If the observed image is clipped, then

SURE will fail. See Figure 4.5 for an example. For more discussions of clipped

noise, see [115].

• Beyond Denoisers. While SURE is a good choice for image denoising problems,

one has to re-derive the SURE equations for different forward models, e.g.,

deblurring or super-resolution. This severely limits the generality of the present

optimal combination framework.

x10- 3
5 ~ ... ~,- ,.... -----_,-.;-,..._-_,---~--~---------~---~--~

+ MSE
4 + suRE

+NN
3

2

1

-1

-2

-3

-4

---- -------=----

' ',
' ' ' ', _5......._ __ __._ ____ ____ __ ...,_ __ .._ __ ..__ __ .__ _ __,._.

10 15 20 25 30 35 40 45 50

Noise Level a

63

Fig. 4.5.: Clipped Noise Example. Compare SURE and the proposed neural net-
work (NN) on estimating the MSE. In this experiment, we use BM3D to denoise the
cameraman image. The noise level changes from σ = 10 to σ = 50. The observed
images are clipped to [0, 1]N . The error bars are computed using 50 random trials of
the i.i.d. Gaussian noise realizations.

4.3.2 Neural Network MSE Estimator

Our proposed solution is a deep neural network based MSE estimator. Using deep

neural networks for image quality assessment is an active research topic [116–120].

However, the existing neural network based image quality assessment methods are

tailored to predict the human visual system responses when seeing an image. A pure

MSE estimator, to the best of our knowledge, does not exist.

The proposed neural network based MSE estimator is shown in Figure 4.6. There

are two unique features of the network. First, the input to the network is a pair of

images (y, zbk), i.e., the noisy observation and the k-th denoised image. Using both

y and zbk is reminiscent to the SURE approach, as y provides noise statistics that

cannot be obtained from zbk alone.

64

64x64
1,1

MSE$%&

z(%&

𝑦&

Patch Size
Feature Maps

Conv1-1 Conv2-1
MaxPool

Conv1-2 Conv2-2
MaxPool

C
on

ca
te

na
tio

n

Conv3

64x64
32,32

32x32
32,32

32x32
64

32x32
64

Conv4
MaxPool

16x16
64

16x16
64

Conv5

16x16
1

Conv6
FC1 FC2

512

Fig. 4.6.: Network structure of a proposed MSE Estimator.

Second, instead of feeding the entire image into the network, we partition the

image into non-overlapping patches of size 64× 64. That is, if we denote the MSE of

the i-th patch of the k-th denoiser as M̃SEk,i
def
= M̃SE(yi ,̂ zk,i), then the overall MSE

of the k-th denoiser is

M̃SEk =
1

M

M∑
i=1

M̃SE(yi ,̂ zk,i),

where yi is the i-th patch of y, ẑk,i is the i-th patch of ẑk, and M is the number

of non-overlapping patches in the image. Partitioning the image into small patches

reduces the breath and depth of the neural network.

The network consists of 8 convolutional layers, 3 maxpool layers and 2 fully con-

nected layers. The inputs yi and ẑk,i separately pass through two convolutional

layers, and then concatenate and pass over four convolutional layers. The convoul-

tional layers use 3 × 3 kernels with zero-padding and the leaky rectifier activation

function (LReLU) [121]. The scale of our LReLU is 0.2, i.e., max (x, 0.2x). We apply

maxpool layer with 2×2 kernel every two convoultional layer. Fully connected layers

use ReLU and dropout regularization of ratio 0.5. The cost function is the L1-loss,

defined as

L =
∣∣∣MSEk,i − M̃SEk,i

∣∣∣ (4.21)

where MSEk,i is the true MSE of i-th block of the k-th denoiser. For implementation,

we use ADAM optimizer [122] with learning rate α = 0.0001.

The training data we use is the 300 Training and Validation images in BSD500.

For each image, we randomly extracted 32 patches of size 64 × 64 and generate 6

65

variations by flipping horizontally and vertically and rotating at 0◦, 90◦, 180◦ and

270◦. The noise level is σ ∈ [1, 60], with clipping to [0, 1]N . To prepare denoised

images for training the networks, we use five pre-trained REDNets [14] at noise levels

σb = 10, 20, 30, 40, 50. Therefore, for every noisy input we generate multiple denoised

images, and every denoised image forms an input-output pair with the ground truth

MSE. We trained the MSE estimator network with 100 epochs for around 7 hours.

4.3.3 Comparison with SSDA

Readers familiar with the image denoising literature may ask about the difference

between the proposed method and the AMC-SSDA method by Agostinelli et al. [102].

The AMC-SSDA method is an end-to-end neural network for denoising images of

different noise types, e.g., salt-pepper, Gaussian, and Poisson. We are not interested

in this problem because it is unnatural to have an image denoising problem where the

noise type is totally blind. In contrast, it is more common to have multiple denoisers

for different noise levels (Section 4.5.1), different image classes (Section 4.5.2), and

different denoiser types (Section 4.5.3).

There are other differences. First, the SSDA has a set of fixed neural network

denoisers. CsNet can adapt any initial denoisers, including both deterministic or

learning-based. Second, the weight prediction of the AMC-SSDA is done using a

neural network which does not have any optimality guarantee. CsNet, however, is

provably optimal. Additionally, CsNet estimates the MSE (which is a scalar) from

an image. This is easier than estimating the weight vector in AML-SSDA. Third,

CsNet can be generalized to other estimation problems such as deblurring and super-

resolution. The AMC-SSDA, however, has limited generalization capability because

the initial estimators are limited to the SSDA structure.

66

26.69dB 26.73dB 23.55dB 24.75dB 26.63dB 29.51dB
Before After Before After Before After

Fig. 4.7.: Examples showing the effectiveness of the booster in improving the details
and contrast of the combined result. See Section 4.5.3 for experiment details.

4.4 Booster Network

In our proposed CsNet, besides the convex optimization algorithm and the MSE

estimator, there is a third component known as the booster. The booster is used

to improve the combined estimates by enhancing the contrast and to recover lost

details. To provide readers a quick preview of the booster, we show a few examples

in Figure 4.7.

4.4.1 What is a Booster?

The concept of boosting can be traced back to as early as the 70’s, when Tukey

[123] suggested a “twicing procedure”. In machine learning, the same concept was

studied by Bühlmann and Yu [124]. The essential step of boosting is simple: Given

a current estimate zb(t) and the observation y, we construct a mapping B : RN → RN

(t+1)(usually another denoising algorithm), and then define the next estimate zb in

67

𝑧̂($%&)

𝑦 co
nv

 3
x3

, 6
4𝑧̂($)

co
nv

 3
x3

, 6
4

co
nv

 3
x3

, 6
4

de
co

nv
3x

3,
 6

4

de
co

nv
3x

3,
 6

4

de
co

nv
3x

3,
 1

C
on
ca
te
na
tio
n

Fig. 4.8.: Network structure of the proposed booster network. The network con-
tains 3 convolutional layers followed by 3 deconvolutional layers. Convolutional and
deconvolutional layers consists of residual neural network blocks. Skip connections
are used to enforce symmetry of the network. This network is repeated three times
(t = 1, 2, 3).

terms of zb(t), y and B with the goal to improve the MSE. In Tukey’s “twicing”, the

(t+1) isrelationship between zb(t) and zb

(t+1) (t)zb = B(y − zb(t)) + zb . (4.22)

Thus, if B is a denoiser, then B(y−zb(t)) is the filtered version of the residue. As shown

in [125], MSE is not monotonically decreasing as t →∞ because of the bias-variance

trade-off. However, with proper monitoring such as cross-validation, MSE can be

minimized by stopping the boosting procedure before saturation. (See additional

discussion for the image denoising problem in [126].)

In the image denoising literature, the above idea of boosting has been studied in

multiple places such as [125–127]. There are several variations, e.g., Osher’s iterative

regularization [128], and Romano and Elad’s SOS [129]. In all these boosting methods,

the idea is the take the noisy input and the estimate zb(t) to recursively update the

estimate.

4.4.2 Deep Learning based Booster

Our proposed neural network booster is motivated by the above examples of clas-

sical boosters. The specific network architecture is shown in Figure 4.8. Instead of

68

using a deterministic function B, we use a multi-layer neural network as the building

block of the booster. We then cascade the building blocks to form an overall booster.

Referring to Figure 4.8, if we denote the t-th building block as Bt, then the input-

output relationship of Bt is

(t+1) (t)zb = Bt(y, zb(t)) + zb . (4.23)

Clearly, (4.23) is a generalization of (4.22) as Bt now becomes a nonlinear mapping

trained from the data. Also, when cascading a sequence {Bt}, we generalize (4.22)

by allowing each Bt to have its own network weights.

The architecture of the t-th building block Bt consists of 3 convolutional layers

followed by 3 deconvolutional layers, each using kernels of size 3 × 3. The input

to the network is the pair (y, zb(t)), which is concatenated to form a common input.

The convolutional layers are used to smooth out the noisy input y, whereas the

deconvolutional layers are used to recover the sharp details. Skip connections are

used to ensure that signals are not attenuated as it passes through the layers. Note

(t+1) tothat we purposely add a skip connection from the input zb(t) to the output zb

mimic the addition in (4.22). We cascade Bt for t = 1, . . . , T , where T is typically

small (T = 3).

The training data we use is the 300 train and validation images in BSD500. We

extract 32 patches of size 64 × 64 from each training dataset. For each patch we

generate 6 variations by flipping horizontally and vertically and rotating at 0◦, 90◦,

180◦ and 270◦. The cost function we use in training the booster network is the

standard L1-loss:

L = ∥z − zb(T)∥1 (4.24)

where MSEk,i is the true MSE of i-th block of the k-th denoiser. During the training,

we use ADAM optimizer with learning rate 10−4. We trained booster network with

100 epochs for 12 hours.

69

4.4.3 Performance of Booster

The effectiveness of the booster can be seen in Figure 4.7, where we show a

few examples taken from the BSD500 dataset. In this example, we consider a neural

network denoiser trained at five different noise levels (See Section 4.5.3 for experiment

details).

As we see in Figure 4.7, the booster is doing particularly well for two types of

improvements. The first type of improvement is the recovery of the fine details. For

example, in the Swam image we can recover the lines on the feather; in the House

image we can recover branches of the tree. These are also reflected in the PSNR.

The second type of improvement is the contrast enhancement. For example, before

boosting the House image we see that the background sky has a gray-ish intensity.

However, after boosting the background sky has a brighter background.

4.5 Experiments

We build our neural networks using Tensorflow and are run on Intel(R) Core(TM)

i5-4690K CPU 3.50GHz with an Nvidia Titan-X GPU, except DnCNN which is down-

loaded from the author’s website.

4.5.1 Experiment 1: Noise-Level Mismatch

There are two objectives of this experiment. First, we want to evaluate the effec-

tiveness of CsNet in interpolating denoising performance when the initial denoisers

are not trained for every noise level. Second, we want to compare the performance of

CsNet with existing blind denoisers such as [16] because these denoisers can handle

multiple noise level.

Regarding the initial denoisers, we use the 300 training and validation images in

BSD500 to train five initial denoisers D1, . . . , D5 using two neural network denoisers:

DnCNN [16] and REDNet [14]. For each denoiser, the denoising strength is set as

70

24.56dB 24.61dB 25.14dB 25.41dB
Groundtruth DnCNN, σb=30 DnCNN, σb=40 DnCNN, Before DnCNN, After

17.54dB 24.54dB 24.67dB 25.22dB 25.47dB
Input, σ=35 REDNet, σb=30 REDNet, σb=40 REDNet, Before REDNet, After

Fig. 4.9.: Example of Noise-level mismatch. The image is House (size 321×481) from
BSD500. The actual noise level is σ = 35. Before and After means Before Booster
and After Booster, respectively. DnCNN, Before and After uses five DnCNN initial
denoisers, and REDNet, Before and After uses five REDNet initial denoisers.

Table 4.1.: Example of Noise-level mismatch. The average PSNRs of REDNet (σb =
10, 20, 30, 40, 50), Blind REDNet with 50 layers and ConsensusNet on 200 test images
from BSD500.

σ
RED
(10)

RED
(20)

RED
(30)

RED
(40)

RED
(50)

Before
(NN)

After
(NN)

Before
(ora)

After
(ora)

RED
Blind

10
15
20
25
30
35
40
45
50

34.14
28.43
24.43
21.84
19.96
18.49
17.29
16.27
15.40

30.69
30.75
30.35
27.00
23.42
21.05
19.34
18.01
16.91

28.25
28.30
28.36
28.42
28.21
26.20
23.26
20.97
19.21

26.83
26.84
26.84
26.85
26.84
26.80
26.63
25.57
23.40

25.86
25.85
25.84
25.81
25.77
25.71
25.64
25.53
25.35

34.08
31.32
30.31
28.90
28.20
27.26
26.65
25.95
25.40

33.92
31.79
30.46
29.31
28.52
27.78
27.21
26.69
26.26

34.14
31.39
30.35
28.93
28.22
27.28
26.68
25.98
25.44

33.91
31.80
30.48
29.31
28.52
27.78
27.22
26.70
26.27

33.77
31.61
30.13
28.99
28.06
27.27
26.58
25.95
25.37

one of the values σb = 10, 20, 30, 40, and 50. When testing, we use a noise level of

σ ∈ [10, 50].

The results of this experiment are shown in Table 4.1 and Figure 4.9. Table 4.1

shows the comparison with REDNet as initial denoisers, whereas Figure 4.9 shows a

visual comparison of an image in the BSD500 dataset. To illustrate the behavior of

.......
·-·-·

D
a
a
a
a
a

-···•:. , ___ ..,

-;:~~,'~-~

71

10 15 20 25 30 35 40 45 50

 Noise

15

20

25

30

35

A
v
e
ra

g
e
 P

S
N

R
 [
d
B

]

REDNet (=10)

REDNet (=20)

REDNet (=30)

REDNet (=40)

REDNet (=50)

CsNet (Before)

CsNet (After)

Fig. 4.10.: Noise-level mismatch. Graphical illustration of Table 4.1. The red curve
indicates the performance before boosting.

CsNet of all the noise levels, we show in Figure 4.10 a PSNR plot as a function of σ.

This is a comparison between individual REDNets and the CsNet before the boosting

step. There are two observations in this experiment.

First, for each σ, the best performing REDNet is the one with σb right above σ.

This result is consistent with the suggestion made in [16]. However, CsNet is able to

boost the performance by an average of 0.45dB for noise levels that are originally not

trained for, i.e., σ = 15, 25, 35, 45.

Second, compared to blind REDNet, we observe that CsNet generally has a similar

performance before boosting, and better after boosting. This suggests that instead

of training a blind denoiser, one can train a set of weak denoisers and use CsNet

to combine the results. The advantage of doing so, besides reducing the training

cost, is that CsNet allows us to plug-in any off-the-shelf image denoiser as the initial

estimators whereas blind denoiser is a fixed network.

4.5.2 Experiment 2: Different Image Classes

The objective of this experiment is to evaluate the performance of CsNet when the

initial denoisers are trained for different image classes. To this end, we fix the type

of initial denoisers as REDNet, and train three different REDNets using three classes

72

Groundtruth 22.56dB 29.53dB 28.62dB 28.89dB 29.52dB 29.69dB
Bldg Input RED-Bldg RED-Face RED-Flwr Before After

Groundtruth 22.41dB 29.78 29.94dB 29.91dB 29.99dB 30.22dB
Face Input RED-Bldg RED-Face RED-Flwr Before After

Groundtruth 22.62dB 33.39dB 33.11dB 33.48dB 33.48dB 34.36dB
Flower Input RED-Bldg RED-Face RED-Flwr Before After

Fig. 4.11.: Image denoising for Building, Face and Flower classes. While class-
specific REDNet has good performance when classes match, CsNet is able to select
the best denoiser. Testing images are from ImageNet.

Table 4.2.: Example of different image classes. Class-specific REDNets have better
performance than BM3D, DnCNN (generic) and REDNet (generic). CsNet selects
the best class. We use 10 images from ImageNet for testing.

RED RED RED
(Bldg) (Face) (Flwr)

Before After
(est) (est)

Before After
(ora) (ora)

BM3D DnCNN
(Gen) (Gen)

RED
(Gen)

Bldg
Face
Flwr

30.40 28.96 29.35
30.19 30.39 30.34
31.09 30.95 31.31

30.33 30.41
30.45 30.74
31.32 31.50

30.40 30.47
30.51 30.80
31.38 31.54

29.30 29.77
29.97 30.28
30.42 31.15

29.77
30.29
31.18

of images: Flower, Face and Building. We have experimented with other initial

denoisers such as DnCNN, but the results are similar. In training the initial denoisers,

we manually select 200 class-specific images for each class from the ImageNet [130].

73

We fix the noise level as σ = 20 to eliminate the complication of having uncertainty

in both noise levels and image classes.

The result of this experiment is shown in Table 4.2 with a few representative

examples in Figure 4.11. We observe that denoisers trained with generic database such

as DnCNN and REDNet perform worse than class-specific denoisers. For example,

in the Building image, DnCNN (generic) and REDNet (generic) attain 29.7722dB

and 29.7743dB respectively. A REDNet trained with Building class has a PSNR

of 30.39dB, approximately 0.7dB above the generic REDNet. For Face and Flower

classes, the same observation can be found, although the gap is less substantial. One

reason is that for Building class, the vertical and horizontal features learned by the

network are less common in generic images.

4.5.3 Experiment 3: Different Denoiser Types

The objective of this experiment is to evaluate CsNet for different types of initial

denoisers. To this end, we consider four denoisers running at specific noise levels σb

that match with the actual noise level σ. These denoisers are BM3D [20], DnCNN [16],

REDNet [14] and FFDNet [18]. We use the original implementation by the authors

for DnCNN and FFDNet, and build our own REDNet.

The results of this experiment are shown in Table 4.3. Among the four denoisers,

FFDNet and REDNet have comparable performance at the top, followed by DnCNN

and then BM3D. For the five noise levels we tested, CsNet consistently improves the

performance. The PSNR gain with respect to the best denoiser is less significant

for small σ, but becomes more substantial for large σ. One reason is that for high

noise the initial denoisers tend to oversmooth. The boosting of the CsNet is thus

effective. Figure 4.12 shows a visual comparison on the Bear image. In this image,

BM3D actually performs better than DnCNN. The proposed CsNet can pick this best

estimate (24.79dB), and boost the PSNR to 25.76dB.

74

Groundtruth Input, σ=50 BM3D DnCNN
15.03dB 24.77dB 24.35dB

FFDNet, σb=50 REDNet, σb=50 Before Booster, σb=50 After Booster, σb=50
24.39dB 24.31dB 24.79dB 25.76dB

Fig. 4.12.: Example of different denoiser type. The ConsensusNet is used to integrate
BM3D [20], DnCNN [16], REDNet [14], and FFDNet [18]. The testing image is Bear
(size 321×481) from BSD500.

Table 4.3.: Example of different denoiser type. We integrate BM3D [20], DnCNN [16],
REDNet [14], and FFDNet [18], and show CsNet before and after boosting. We use
200 images from BSD500 for testing.

σ
BM3D

[20]
DnCNN

[16]
FFDNet

[18]
REDNet

[14]

Before
Boost
(est)

After
Boost
(est)

Before
Boost
(ora)

After
Boost
(ora)

10 33.56 34.10 33.94 34.12 34.14 33.89 34.16 33.90
20 29.73 30.33 30.27 30.34 30.37 30.48 30.40 30.51
30 27.68 28.17 28.18 28.20 28.23 28.52 28.28 28.55
40 26.22 26.60 26.65 26.62 26.68 27.19 26.72 27.21
50 24.99 25.34 25.35 25.35 25.40 26.16 25.44 26.18

4.5.4 Limitations and Extensions

The effectiveness of CsNet is mainly dominated by the accuracy of the MSE

estimate. If the noise is truly i.i.d. Gaussian (i.e., unclipped) and the noise level is

low, then a deterministic MSE estimator such as SURE would be the ideal candidate.

When noise level increases and when noise becomes clipped, then a neural network

75

based MSE estimator is a better option. If the images are large and complex, we can

partition the image into sub-regions and use CsNet to handle each region separately.

The bottleneck, again, is the accuracy in estimating the MSE. In the presence of MSE

uncertainty, one solution is to consider regularization to (P1). Possible choices of

regularization include forcing similar weights for denoisers that are known to perform

similarly. We leave the discussion of such regularization to future work.

When training the neural networks we choose to use the L1 metric, for it gives

slightly better visual quality then the usual L2 metric. We do not heavily tune this

metric because it is not the focus of the chapter. For readers who are concerned about

the loss function, we refer to [131] for some recent empirical findings on the topic.

The advantage of CsNet relative to other class-aware neural network denoisers

is that we allow combination of multiple denoisers. Typical class-aware denoisers,

e.g., [15], rely on semantic classifiers to greedily select only one denoiser. As we

demonstrated in Section 4.5.2, a combination of the denoisers is better than the best

of the individuals.

CsNet is a general framework for combining estimators. That is, one is not lim-

ited to applying CsNet to image denoising problems, although we use denoising as

a demonstration. A straight forward extension of CsNet is to combine multiple de-

blurring algorithms, or to combine multiple image super-resolution algorithms. In

complex imaging scenarios where no single method performs uniformly better than

the others, CsNet offers a solution to integrate individual weak estimators.

4.6 Conclusion

We present an optimal framework called the Consensus Neural Network (CsNet)

to combine multiple weak image denoisers. CsNet consists of three major compo-

nents. Starting with a set of initial image denoisers, CsNet first uses a novel deep

neural network to estimate the MSE. The deep neural network is more robust than

the traditional estimators such as SURE for estimating the MSE. Once the MSE

76

is estimated, CsNet solves a convex optimization problem. The optimality of the

CsNet is guaranteed by the convex formulation. Finally, the combined estimate is

boosted using a new deep neural network image booster. Experimental results con-

firm the effectiveness of CsNet, where it shows superior performance compared to

other state-of-the-art denoising algorithms on tasks including: overcoming noise level

mismatch, combining denoisers for different image classes, and combining different

denoiser types.

77

5. IMAGE RECONSTRUCTION FOR QUANTA IMAGE

SENSORS USING DEEP NEURAL NETWORKS

In this chapter, we propose deep neural networks for reconstructing images for Quanta

Image Sensors. This work is based on a paper to appear in International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), 2018 [132].

5.1 Introduction

Quanta Image Sensor (QIS) is a new type of image sensor envisioned to supersede

CMOS and CCD [133]. Having a very small full-well capacity (1−250 photoelectrons)

and single-photon sensitivity, QIS is perceived as an ideal candidate for compensating

the deterioration of signal-to-noise ratio in small pixels. The sensor has an extremely

high readout rate (10k fps as in [134], and 156k fps in [135]), and can potentially be

made for very high spatial resolution [133, 136]. However, the QIS data is binary: A

pixel has a value 1 if the photon count exceeds certain threshold, and has a value

0 if the photon count is below the threshold. As a result, non-traditional image

reconstruction algorithms are need to recover the images, as illustrated in Figure 5.1.

Existing image reconstruction methods for QIS are largely based on maximum-

likelihood (ML) or maximum a-posteriori (MAP) estimation. These optimizations

are done using gradient descent [137], dynamic programming [138] or ADMM [139],

which are all time consuming. A significantly faster algorithm is the Transform-

Denoise method by Chan et al. [24], where the authors use the variance stabilizing

transform (VST) to convert the truncated Poisson random variables to Gaussian,

and then apply denoising algorithms for smoothing. In this chapter, we propose a

deep neural network approach for QIS image reconstruction. As shown in Figure 5.2,

78

the neural network has better performance than Transform-Denoise by a substantial

margin.

Using deep neural networks for image restoration problems is relatively new but

has a strong momentum [140–146]. In [25], the authors proposed a neural network to

unroll the ISTA iteration with a sparsity prior. However, sparsity priors are generally

inferior to discriminative priors learned directly by the neural networks [142]. A simple

QIS reconstruction network is proposed by Rojas et al. [26], where they presented a

two-layer neural network to learn the Transform-Denoise pipeline in [24]. However,

despite the speed-up offered by the network, the PSNR performance is worse than

Transform-Denoise using BM3D as the denoiser.

The key contribution of this chapter is a new deep neural network based solution

for QIS image reconstruction. Different from [25] which assumes a sparsity prior,

our network learns the denoiser directly; And compared to [26], our network has a

significantly deeper layer to learn the transformation. We present two designs: one

mimics the entire Transform-Denoise pipeline, and the other one substitutes part of

the Transform-Denoise pipeline. We show that both networks has significantly better

performance than the existing Transform-Denoise method.

{K{

T

M
︷ ︸︸ ︷

T

{

Reconstruction

−−−→

N
︷ ︸︸ ︷

Fig. 5.1.: Image reconstruction of QIS. Given the binary bit planes, the algorithm estimates
the gray-scale image shown on the right.

79

(a) ML closed-form [137], 21.64 dB (b) Transform-Denoise [24], 30.53 dB

(c) Proposed Method, 31.45 dB (d) Ground Truth

Fig. 5.2.: Image Reconstruction using ML [137], TD [24], and our proposed RED-Net
method.

5.2 QIS Imaging Model

In this section we provide an overview of the QIS imaging model. A pictorial

illustration is shown in Figure 5.3. We shall focus on a few important highlights of

the model. Readers interested in the details can refer to [137], [24] or [147].

I ,- \

I
I

I r ~_-_-_-_-_-_- - - -_-_-_-_-_-_ \

i---+l-'-....-1-1 1------1 _J L.....-''

\. _____________ /

80

•

•

•

K gk Poisson×

α

cn
θm Ym bm,1

bm,2

bm,T
θ = αGc

Fig. 5.3.: Image formation process of QIS.

5.2.1 Spatial-Temporal Oversampling

We model the incoming light intensity as a vector c = [c0, . . . , cN−1]
T . We assume

that cn is normalized to the range [0, 1] for all n, and use a constant α > 0 to model

the gain factor.
defQIS uses M ≫ N jots to oversample c. The ratio K = M/N is the spatial

oversampling factor. The oversampling process is modeled by an up-sampling opera-

tor and a lowpass filter {gk} as shown in Figure 5.3. Mathematically, we define the

output of the oversampling process as

θ = αGc, (5.1)

where θ = [θ0, . . . , θM−1]
T denotes the light intensity sampled at the M jots, and the

matrix G ∈ RM×N is a matrix capturing the upsampling and the lowpass filter {gk}.

The lowpass filter {gk} can be arbitrary, e.g., B-spline as mentioned in [137]. How-

ever, for efficient reconstruction we shall assume that the filter is box-car. Physically,

by using a box-car filter we implicitly assume that the incident light is focused on each

jot, which is reasonable to some extent because QIS is equipped with micro-lenses

to focus incident light. If {gk} deviates from the box-car but we still use box-car

for reconstruction, we say that there is model mismatch, which will be studied in

Section 5.4.

81

5.2.2 Truncated Poisson Process

The oversampled signal θ generates a sequence of Poisson random variables ac-

cording to the distribution

P(Ym,t = ym,t) =
θm
ym,t e−θm

, (5.2)
ym,t!

where m ∈ {0, 1, . . . ,M −1} and t ∈ {0, 1, . . . , T −1} denote the m-th jot and the t-th

independent measurement in time, respectively. Denoting q ∈ N as the quantization

threshold, the final observed binary measurement Bm,t is a truncation of Ym,t, i.e.,

Bm,t = 1 when Ym,t ≥ q, and Bm,t = 0 otherwise. Hence, the distribution of Bm,t is

P(Bm,t = bm,t) =

⎧ ⎪⎨ ⎪⎩

Ψq(θm), if bm,t = 0,
(5.3)

1 − Ψq(θm), if bm,t = 1.

where Ψq : R+ → [0, 1] is the upper incomplete Gamma function [148].

The goal of image reconstruction is to reconstruct the underlying image c from

the binary measurements B = {Bm,t | m = 0, . . . ,M − 1, and t = 0, . . . , T − 1} as

shown in Figure 5.1. With the box-car kernel assumption, one can show that the ML

solution has a closed-form [24]:

ĉn =
K
α
Ψ−1

q

(
1 −

Sn

L

)
, (5.4)

def ∑T −1 ∑K−1where Sn = BKn+k,t is the spatial-temporal binning of the binary mea-t=0 k=0

defsurements, and L = KT is the combined spatial-temporal oversampling factor.

5.2.3 Transform-Denoise Approach

Our proposed deep neural network shares some similarity with the Transform-

Denoise in [24]. In Transform-Denoise, the key observation is that the random variable

Sn in (5.4) is binomial. The binomial random variable in QIS has spatially varying

C1 C2

X

I
I
I

\

X3
Relu
X4

I

-· -- ' -· -- '
: D3 : D4

Relu

82

1− Sn

L T D T
−1 K

α
Ψ−1q (.)

Fig. 5.4.: Transform-Densoise [24]: We apply a pair of transforms (T , T −1) and a Gaussian
denoiser D for QIS image reconstruction.

Fig. 5.5.: The proposed QISNet consists of 15 convolutional layers followed by 15 decon-
volutional layers.

variance. Thus, one needs to stabilize its variance using variance stabilizing transform

(VST). The VST used in Transform-Denoise is the Anscombe binomial transform

[149]: √ (√)
def 1 Sn + 3

= T (Sn) = L + sin−1 8 . (5.5)Zn 32 L +
4

After VST, standard Gaussian denoisers can be used to smooth the image. The final

result is obtained by an inverse VST. The overall Transform-Denoise pipeline is shown

in Figure 5.4.

5.3 Proposed Method

5.3.1 Network Structure

The structure of our proposed neural network is shown in Figure 5.5. We call our

network the QISNet. On the network level, QISNet has the same structure as the

very deep Residual Encoder-Decoder Network “RED-Net” architecture [150], which

83

was originally proposed for denoising. In this network structure, there is a sequence

of N convolutional layers and N deconvolutional layers. The convolutional layers

extract the features from the input image, and the deconvolutional layers recover the

details lost during the convolutional steps. As mentioned in [151], the deconvolutional

layers are necessary for image restoration tasks because the convolutional layers tend

to oversmooth the image.

What makes QISNet different from RED-Net is that RED-Net cannot be directly

applied to the QIS image reconstruction problem as RED-Net is designed for i.i.d.

Gaussian noise. The QIS data, as discussed, is binary following from the truncated

Poisson distribution. Therefore, in order to apply the network to QIS, modifications

are needed.

Our modification is based on the Transform-Denoise pipeline. The insight is that

while individual bits of the QIS data follow a truncated Poisson distribution, the

average of the bits within a small spatial-temporal block 1 − S
L
n is a Binomial random

variable. If we further assume that the blocks do not overlap, then 1 − S
L
n can be

regarded as an noisy pixel where the distribution is independent (but not identical)

Binomial. As a result, if we feed 1 − S
L
n into the network, then a denoising network

will be sufficient.

5.3.2 Two Designs for QISNet

Knowing that the input data to the QIS image reconstruction is independent Bino-

mial, we can now design different combinations of the networks for the reconstruction

task. Here we present two designs.

The first design is to use the neural network to replace the Gaussian denoiser in

Transform-Denoise. We call this design QISNet-TD (See Figure 5.5). The idea of

QISNet-TD is that since the performance of Transform-Denoise depends heavily on

the denoiser, we should use a good denoiser. However, we cannot simply put a pre-

trained Gaussian noise network denoiser for this task because the pipeline involves

84

other components. We train the network while forcing it to learn the presence of T ,

T −1 and K
α
Ψ−1

q ().

The second design is to use the QISNet to replace the entire Transform-Denoise

pipeline (See Figure 5.6). This design is slightly more aggressive as we ask the neural

network to learn the denoiser, the nonlinear functions T and T −1, and K
α
Ψ−1

q (). The

difference between QISNet-TD and QISNet is the transforms T and T −1 (and the

nonlinear function K
α
Ψ−1

q () which is less important here). The inverse transform T −1

is the algebraic inverse, which is a biased inverse transformation. As L grows, the bias

of T will cause the estimate to deviate from its ideal value. Therefore, as one may

expect, QISNet-TD performs worse than QISNet in general. We will demonstrate

this behavior in the experiment section.

T QISNet T −1 K
α
Ψ−1

q (.)

(a) QISNet-TD: Embeds QISNet into the TD framework.

QISNet-TD

QISNet

(b) QISNet: Use QISNet to learn the entire framework.

~------------------------,
I

-[.._____ ___ }-

·

·

·

Fig. 5.6.: The two proposed designs.

5.3.3 Training and Parameters

We implement both QISNet-TD and QISNet using 15 convolutional and 15 de-

convolutional layers. Each layer uses 3×3 kernels, and 64 feature maps. The network

nonlinearity is obtained using ReLu. The training dataset consists of 2000 images

selected from the Pascal VOC 2008 dataset [152]. 128 patches of size 50 × 50 are ran-

domly extracted from each image. The inputs used to train the networks are 1 − Sn

which are images with Binomial “‘noise”. The ground truths are the clean images.

The loss function is L2-loss, which is optimized using Adam optimizer with a learning

rate of 0.0001. The training converges to a local minimum [150] and it takes 8 hours

,
L

85

(a) Input (1 of 64 frames) (b) ML solution [137], 21.91 dB (c) TD-BM3D [24], 26.60 dB

(d) QISNet-TD, 27.35 dB (e) QISNet, 27.36 dB (f) Ground Truth

Fig. 5.7.: Reconstructed Images and their PSNR for L = 64.

using NVidia Geforce GTX TITAN GPU. For parameters, we set q = 1, α = 2K2,

and T = 16.

5.4 Experiments

We synthesize QIS data from 77 images captured using a Canon EOS Rebel T6i

camera. The images are captured on Purdue campus, which are guaranteed to be

different from the Pascal VOC 2008 dataset used for training.

5.4.1 Reconstruction Quality

We compare the proposed networks with the Transform-Denoise using BM3D [24]

and the classical MLE approach [137]. We study two cases: K = 1 and K = 2. Since

T = 16, these correspond to L = K2T = 16 and L = 64, respectively.

The results of the experiments are shown in Table 5.1. In this table, we divide

the study into two parts. The first part is the “Match” experiment, where during

86

the QIS data synthesis we assume that the lowpass filter gk is box-car. It is called

“Match” because the variable Sn also assumes a box-car filter.

We observe that while TD-BM3D [24] offers almost 10dB improvement over MLE

[137], the proposed networks give additional improvements. QISNet performs as good

as than QISNet-TD for small L (27.41dB). For large L, QISNet is better (30.62dB

with 30.51dB). This suggests that QISNet is indeed able to learn the transforms

(T , T −1) with sufficient amount of data. Visually, the results in Figure 5.7 show that

the neural networks reconstruct more details.

5.4.2 Model Mismatch in G

The second part of the experiment is the “Mismatch” case. Here, by mismatch

we meant that the box-car filter used in calculating Sn does not match with the

lowpass filter used for generating the QIS data. Note that if the lowpass filter gk is

not box-car, one has to use an iterative algorithm such as gradient descent [137] or

ADMM [139] to do the reconstruction. Iterative algorithms are not preferred as they

are practically slow. Thus it is important to see how well the neural networks can

tolerate the model mismatch.

Table 5.1.: PSNR in dB for L = 16 and L = 64

Method
Mismatch Match

Linear Quad Cubic Box-Car

L
 =

 1
6

MLE
TD-BM3D
QISNet-TD

QISNet

15.74
25.67
26.38
26.39

15.69
25.44
26.04
26.05

15.64
25.23
25.74
25.76

15.84
26.40
27.41
27.40

L
 =

 6
4

MLE
TD-BM3D
QISNet-TD

QISNet

19.94
25.45
25.51
25.57

19.93
25.40
25.47
25.52

19.92
25.33
25.39
25.45

21.12
29.90
30.51
30.62

The results of this part of the experiment are shown in Table 5.1. Our proposed

QISNet-TD and QISNet are trained assuming box-car functions. As we can see

87

from the table, as the mismatch becomes worse (from linear to cubic splines), the

reconstruction PSNR also drops. However, the PSNR drop in the neural network

approaches are not worse than Transform-Denoise. In fact, for all the mismatch

filters, the networks still produce better reconstruction quality. One thing to note,

however, is that if we know the lowpass filter, we can easily re-train the network to

adapt to the filter. Transform-Denoise does not have this flexibility.

5.5 Conclusion

We proposed deep neural networks for reconstructing images for Quanta Image

Sensors. Our networks can replace the existing Transform-Denoise pipeline, while

offering better image reconstruction results. Practically, we anticipate that the net-

works can eventually be put on neuromorphic chips for better speed and performance.

88

6. CONCLUSION

6.1 Summary

Matrix and Tensor Factorization

In Chapter 2, we presented a computationally-attractive and memory-efficient ten-

sor factorization algorithm by addressing the exploiting problem of the Khatri-Rao

product. Also, we discussed a strategy for distributing the computations across mul-

tiple machines. In Chapter 3, we studied four variants of ADMM algorithm for non-

negative matrix factorization in the presense of noise by variable split strategy. We

found from the experiments that the multiple-variable split method performs worse

than the single-variable split method, the half quadratic penalty and the algorithm-

induced priors.

Deep Neural Network for Image Denoising

In Chapter 4, we presented an optimal framework to combine multiple, weak im-

age denoisers. The framework consists of three steps: Estimate the MSE using deep

neural network; optimally combine the images from multiple denoisers via convex

formulation; boost the combined image. The experimental results support our frame-

work as they show superior performance compared to other state-of-the-art denoising

algorithms. In Chapter 5, we proposed applying deep neural networks to Quanta Im-

age Sensors for image reconstruction. Our deep neural network replaces the existing

Transform-Denoise pipeline and offers better image reconstruction results.

89

6.2 Future Work

There are notable limitations to both the tensor factorization and the deep neu-

ral network models in this thesis. First, our distributed tensor factorization model

suffered a substantial increase in communication time on more than 8 nodes. To

reduce the communication time, an algorithm should avoid synchronization which

forces computationally completed nodes to wait until all other nodes are finished.

To solve this problem, we will further pursue an asynchronous tensor factorization

method using a queue per each node. We expect this method will work well in terms

of computational efficiency and accuracy.

As for the deep neural network model, we used noisy images clipped to values

between 0 and 1 as input for our Consensus Neural Network (CsNet). To imitate

reality, we should use unclipped noisy images that include negative values. Therefore,

our next set of experiments includes unclipped noisy images and an updated deep

neural network model that is capable of handling negative values.

APPENDICES

90

A. APPENDIX OF DFACTO

A.1 Definitions of Standard Matrix Products

Definition A.1.1 The Kronecker product A ⊗ B ∈ Rmp×nq of matrices A ∈ Rm×n

and B ∈ Rp×q is defined as ⎤⎡

A ⊗ B =
⎢⎢⎢⎣

a1,1B a1,2B . . . a1,nB
.

⎥⎥⎥⎦
. (A.1)

am,1B am,2B . . . am,nB

Definition A.1.2 The Khatri-Rao product A ⊙ B ∈ Rmp×n of matrices A ∈ Rm×n

and B ∈ Rp×n is given by the Kronecker product of the corresponding columns of the

two matrices:

A ⊙ B =
[
a:,1 ⊗ b:,1 a:,2 ⊗ b:,2 . . . a:,n ⊗ b:,n

]
. (A.2)

Definition A.1.3 The Hadamard product A∗B ∈ Rn×m of two conforming matrices

A ∈ Rn×m and B ∈ Rn×m is given by ⎤⎡

A ∗ B =
⎢⎢⎢⎣

a1,1b1,1 a1,2b1,2 . . . a1,mb1,m

.

an,1bn,1 an,2bn,2 . . . an,mbn,m

⎥⎥⎥⎦ (A.3)

Definition A.1.4 The outer product a ◦ b of vectors a ∈ Rm and b ∈ Rn is given by

a matrix M ∈ Rm×n such that

mi,j = aibj. (A.4)

91

The definition can be extended to tensors by defining the outer product a ◦ b ◦ c of

three vectors a ∈ Rm, b ∈ Rn, and c ∈ Rp as a tensor M ∈ Rm×n×p with

mi,j,k = aibj ck. (A.5)

Definition A.1.5 Given a matrix A ∈ Rn×m, the linear operator vec(A) yields a

vector x ∈ Rnm, which is obtained by stacking the columns of A: ⎤⎡

vec(A) = x =

⎢⎢⎢⎢⎢⎢⎣

a:,1

a:,2

...

a:,n

⎥⎥⎥⎥⎥⎥⎦

. (A.6)

Observe that

xi+(j−1)n = ai,j . (A.7)

On the other hand, given a vector x ∈ Rnm, the operator unvec(n,m)(x) yields a matrix

A ∈ Rn×m:

unvec(n,m)(x) = A =
[
a:,1 a:,2 . . . a:,n

]
. (A.8)

The Kronecker product satisfies the following well known relationship (see e.g., propo-

sition 7.1.9 of [68]):

vec(ABC) =
(
C⊤ ⊗ A

)
vec(B). (A.9)

The Khatri-Rao product satisfies (see e.g., chapter 2 of [36]):

(A ⊙ B)⊤ (A ⊙ B) = A⊤A ∗ B⊤B. (A.10)

92

Plugging this into the definition of the Moore-Penrose pseudo-inverse [68] immediately

shows that

(A ⊙ B)† =
(
A⊤A ∗ B⊤B

)−1
(A ⊙ B)⊤ . (A.11)

A.1.1 An Example of Flattening Tensors

Let X be a 3 × 4 × 3 tensor with frontal slices ⎤⎡⎤⎡⎤⎡
1 1 4 2 4 5 5 1 1 0 2 4⎢⎢⎢⎣

⎢⎢⎢⎣

⎥⎥⎥⎦

⎢⎢⎢⎣

⎥⎥⎥⎦

⎥⎥⎥⎦ , then3 4 5 3 1 1 1 4 4 1 5 1

5 0 5 1 1 1 0 3 5 2 4 1

⎤⎡
1 1 4 2 4 5 5 1 1 0 2 4

3 4 5 3 1 1 1 4 4 1 5 1

5 0 5 1 1 1 0 3 5 2 4 1

=
⎢⎢⎢⎣

⎥⎥⎥⎦
X1

⎤⎡

X2 =

⎢⎢⎢⎢⎢⎢⎣

1 4 1 3 1 4 5 1 5

1 5 0 4 1 1 0 1 2

4 5 2 5 1 5 5 0 4

2 1 4 3 4 1 1 3 1

⎥⎥⎥⎥⎥⎥⎦

⎤⎡
1 3 5 1 4 0 4 5 5 2 3 1

4 1 1 5 1 1 5 1 0 1 4 3

1 4 5 0 1 2 2 5 4 4 1 1

=
⎢⎢⎢⎣

⎥⎥⎥⎦
X3

93

A.2 Review of ALS

In this section, we will introduce the CANDECOMP / PARAFAC (CP) decom-

position model, and the ALS algorithm. The CP decomposition is a multi-way tensor

factorization model. Given a tensor X ∈ RI×J×K , the R-rank CP decomposition of

X is given by three matrices A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R such that

R∑
X ≈ λr · a:,r ◦ b:,r ◦ c:,r. (A.12)

r=1

Note that the columns of A, B, and C are normalized to have unit length. The CP

decomposition is computed by solving

R∑
min X − X̂ with X̂ = λr · a:,r ◦ b:,r ◦ c:,r. (A.13)
X̂

r=1

The most popular method to solve the above problem is the Alternating Least Squares

(ALS) algorithm [37]. The basic idea here is to fix all the matrices except one, and

solve a least squares problem. Fixing B and C and rewriting (A.13), this amounts to

setting

Â ← argmin X1 − Â (C ⊙ B)⊤ (A.14)
Â

The optimal solution of (A.14) can be rewritten using (A.11) as

()†
Â = X1 (C ⊙ B)⊤ (A.15) ()−1

= X1 (C ⊙ B) C⊤C ∗ B⊤B . (A.16)

We obtain A by normalizing the columns of Â . The ALS procedure repeats anal-

ogously to find B̂ and Ĉ until a stopping criterion is met. The general CP-ALS

algorithm is summarized in Algorithm 9.

94

Algorithm 9: CP-ALS algorithm

1 Input: X1, X2, X3

2 Initialize: A, B, C
3 while stopping criterion not met do
4

5

6

7

8

9

10

11

12

13 end

M1 ← X1 (C ⊙ B)()−1
A ← M1 C

⊤C ∗ B⊤B
Normalize columns of A
M2 ← X2 (A ⊙ C)()−1
B ← M2 A

⊤A ∗ C⊤C
Normalize columns of B
M3 ← X3 (B ⊙ A)()−1
C ← M3 B

⊤B ∗ A⊤A
Normalize columns of C

In tensor factorization, occasionally the problem of overfitting occurs. Thus, we

add regularization terms to the objective function. Accordingly, we obtain the fol-

lowing new objective function:

R
1 () ∑

min X − X̂ + λ ∥A∥2 + ∥B∥2 + ∥C∥2 with X̂ = λr · a:,r ◦ b:,r ◦ c:,r.
X̂ 2

r=1

(A.17)

Then, the optimal solution of (A.17) becomes

()−1
Â = X1 (C ⊙ B) C⊤C ∗ B⊤B + λI . (A.18)

95

A.3 Review of GD

In this section, we will introduce the GD algorithm using CANDECOMP / PARAFAC

(CP) decomposition model introduced in Section A.2. This algorithm uses the same

objective function as CP-ALS except for normalization. Thus, we solve

R

s.t. X̂ = a:,r ◦ b:,r ◦ c:,r (A.19)
∑∑ 1 2(xi,j,k − x̂i,j,k)min

X̂ 2
i,j,k r=1

We can rewrite the equation in (A.19) as

2 ⊤f =
1

X1 − A (C ⊙ B) . (A.20)
2

Next, the gradient of (A.20) with respect to A can be presented as

(
C⊤C ∗ B⊤B

)
.

∂
∂A

f = −X1 (C ⊙ B) + A (A.21)

In GD, the gradient of f will be written as ⎤⎡ ()
∂ fvec ⎢⎢⎢⎣

∂A ⎥⎥⎥⎦ (A.22)∂
∂B

∂

∇f = fvec .
(())

fvec
∂C

Then, we can compute the factor matrices A, B and C with f̂ = f − α ∇f . The

general CP-GD algorithm is summarized in Algorithm 10.

We add regularization terms to the objective function to solve the problem of

overfitting. The new objective function is now

λ
(
∥A∥2 + ∥B∥2 + ∥C∥2

)
ˆs.t. X =

∑R

r=1

a:,r ◦ b:,r ◦ c:,r

(A.23)

∑ 1 2 1
(xi,j,k − x̂i,j,k)min

2 2ˆ
i,j,k X

96

5

4

6

7

8

9

A.4

Algorithm 10: CP-OPT algorithm

1 Input: X1, X2, X3

2 Initialize: A, B, C
3 while stopping criterion not met do

M1 ← X1 (C ⊙ B)
∇A ← −M1 + A
M2 ← X2 (A ⊙ C)

M3 ← X3 (B ⊙ A)

(
(
A⊤A ∗ C⊤C

)
) C⊤C ∗ B⊤B

∇B ← −M2 + B)
B⊤B ∗ A⊤A∇C ← −M3 + C

10 Calculate Step Size α
11 A ← A − α∇A
12 B ← B − α∇B
13 C ← C − α∇C

(

14 end

Then, the gradient of (A.23) with respect to A becomes

f = −X1 (C ⊙ B) + A
(
C⊤C ∗ B⊤B + λI

)
. (A.24)∂

∂A

Illustrative Example for tensor factorization

We illustrate the differences between our algorithm for computing M := X1 (C ⊙ B)

vs the algorithms proposed by [2] and [3] on the following example: Consider X ∈

R2×3×3 and let ⎤⎡ ⎤⎡ 1 0 2 0 3 0

0 4 0 0 0 5

6 7 0 0 8 9

and X2 =
⎢⎢⎢⎣

⎥⎥⎥⎦
.⎣ 1 0 6 0 4 7 2 0 0

0 0 0 3 0 8 0 5 9
⎦X1 =

97

Moreover, let ⎤⎡⎤⎡

B =
⎢⎢⎢⎣

3 1 ⎥⎥⎥⎦
and C =

⎢⎢⎢⎣

1 2

1 1 2 1
⎥⎥⎥⎦
.

2 3 1 3

[2] propose to store the above tensor as

⎤⎡⎤⎡

bX =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

3

4

5

6

7

8

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and SX =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 2

1 0 1

0 1 1

1 1 2

0 2 0

0 2 1

1 2 1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

9 1 2 2

98

where bX denotes the vector of non-zero entries of X, while SX denotes the corre-

sponding vector of indices. The algorithm proposed in Sections 3.2.4 and 3.2.7 of [2]

first computes

⎤⎡⎤⎡⎤⎡⎤⎡

m1 =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2

3

4

5

6

7

8

3

3

1

1

2

2

2

1

2

2

1

1

2

2

6

18

8

5

12

28

32

9 2 1 18

The above Hadamard product involves three vectors namely bX, a vector formed by

repeating entries of B:,1 based on SX
:,2, and a vector formed by repeating entries of C:,1

based on SX
:,3. Similarly, we compute the vector below but by using bX and repeated

entries from B:,2 and C:,2 respectively:

⎤⎡⎤⎡⎤⎡⎤⎡

m2 =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2

3

4

5

6

7

8

1

1

1

1

3

3

3

3

1

1

3

2

1

1

6

3

4

15

36

21

24

9 3 3 81

Finally, we use

�� �� �� ��

99

⎤⎡

SX
:,1 =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

1

0

0

1

1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

to sum the appropriate entries of m1 and m2 to form M: ⎤⎡⎤⎡
3 + 6 + 8 + 12 + 28 2 + 6 + 4 + 36 + 21 57 69

M = ⎣ ⎦ = ⎣ ⎦ .
18 + 5 + 32 + 18 3 + 15 + 24 + 81 73 123

The algorithm uses 2 ΩX extra storage and 5 ΩX flops to compute one column of

M. On the other hand, the algorithm of [3] computes M as follows:

⎤⎡⎤
)(

⎡
0 0

⊤ = X1 ∗N1 1I ⊙ (c:,0 ⊗ 1J)

1 6 0 4 7 2 0 1 1 1 2 2 2 1 1 1⎣ ⎦ ∗ ⎣ ⎦=
0 0 0 3 0 8 0 5 9 1 1 1 2 2 2 1 1 1 ⎤⎡
1 0 6 0 8 14 2 0 0⎣ ⎦= .
0 0 0 6 0 16 0 5 9

Here 1n denotes a vector of size n with all entries set to one. Similarly, if bin (X1)

denotes an indicator matrix for the non-zero entries of X1, then

100

()() ⊤X1N2 = bin ∗ 1I ⊙ (1K ⊗ b:,0)⎡ ⎤ ⎡
1 0 1 0 1 1 1 0 0⎣ ⎣= ⎦ ∗
0 0 0 1 0 1 0 1 1 ⎡ ⎤
3 0 2 0 1 2 3 0 0⎣ ⎦= .
0 0 0 3 0 2 0 1 2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

⎤ ⎦

Finally we compute N3 = N1 ∗ N2 ⎡
3 0⎣N3 =
0 0

via

12

0

0

18

8

0

28

32

6

0

0

5

0

18

⎤ ⎦

to obtain

m:,1 = N3 1JK

⎡ ⎣=
57

73

⎤ ⎦ .

To compute the second column of M we use ()
⊤N1 = X1 ∗ 1I ⊙ (c:,1 ⊗ 1J)⎡ ⎤ ⎡

1 0 6 0 4 7 2 0 0 2⎣ ⎣= ⎦ ∗
0 0 0 3 0 8 0 5 9 2 ⎡ ⎤
2 0 12 0 4 7 6 0 0⎣ ⎦= .
0 0 0 3 0 8 0 15 27

2

2

2

2

1

1

1

1

1

1

3

3

3

3

3

3

⎤ ⎦

()() ⊤X1N2 = bin ∗ 1I ⊙ (1K ⊗ b:,1)⎡ ⎤ ⎡
1 0 1 0 1 1 1 0 0⎣ ⎣= ⎦ ∗
0 0 0 1 0 1 0 1 1 ⎡ ⎤
1 0 3 0 1 3 1 0 0⎣ ⎦= .

1

1

1

1

3

3

1

1

1

1

3

3

1

1

1

1

3

3

⎤ ⎦

0 0 0 1 0 3 0 1 3

�� �� �� �� �� ��

�� ��

101

Finally we compute N3 = N1 ∗ N2 via ⎤⎡
2 0 36 0 4 21 6 0 0

N3 = ⎣ ⎦
0 0 0 3 0 24 0 15 81

and then compute ⎤⎡ ⎣ 69

123
⎦ .m:,1 = N3 1JK =

The algorithm uses max

pute one column of M.

(
J + ΩX , K + ΩX

)
extra storage and 5 ΩX flops to com-

In contrast, our algorithm computes M as follows:

⎞⎤⎡⎛ ⊤ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 6

0 4 7

2 0 0

0 0 0

3 0 8

0 5 9

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎡ ⎤⎡⎤⎡ ⎤⎡ ⎤⎡3 1 1⎢⎢⎢⎣

⎥⎥⎥⎦

⎢⎢⎢⎣

⎥⎥⎥⎦
=

⎢⎢⎢⎣

⎥⎥⎥⎦
⎣ 15 18 6

0 25 23
⎦ ⎣ 57

73
⎦1 2 2m:,0 = unvec(2,3) =

2 1 1

⎞⎤⎡⎛ ⊤ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 6

0 4 7

2 0 0

0 0 0

3 0 8

0 5 9

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎡ ⎤⎡⎤⎡ ⎤⎡ ⎤⎡1 2 2⎢⎢⎢⎣

⎥⎥⎥⎦

⎢⎢⎢⎣

⎥⎥⎥⎦
=

⎢⎢⎢⎣

⎥⎥⎥⎦
⎣ 19 25 2

0 27 32
⎦ ⎣ 69

123
1 1 1m:,1 = unvec(2,3) = .

3 3 3

Our algorithm only requires nnzc(X2) extra storage space and 2 ΩX flops for com-

puting M.

⎦

102

A.5 The application of DFacTo - Joint Matrix Completion and Tensor

Factorization

Generally, matrix completion is used when predicting how users will rate items

based on data of how these users have previously rated other items. Occasionally,

however, the accuracy of prediction from matrix completion is poor because matrix

completion only uses prior information on the user, item, and rating. Thus, we

suggest a joint matrix completion and tensor factorization model. In this model, we

add a word count tensor X with user-item-word dimensions to the previous rating

matrix Y. This model is similar to [71]; but instead of sharing just one dimension

(item), we introduce a model that shares both the user and item dimensions. Also,

while [71] applies joint tensor completion and matrix factorization, we suggest using

joint matrix completion and tensor factorization.

Our joint model can be computed by solving

∑ ∑1 1 1 ()2 2min (yi,j − ŷi,j) + µ (xi,j,k − x̂i,j,k) + λ ∥A∥2 + ∥B∥2 + ∥C∥2

X̂ ,Ŷ 2 2 2
(i,j)∈ΩY i,j,k

(A.25)
R R∑ ∑

ˆ ˆs.t. X = a:,r ◦ b:,r ◦ c:,r, Y = a:,r ◦ b:,r

r=1 r=1

We can rewrite the equation in (A.25) as

1 ∑ ()2 1 ∑()2 11 ⊤ ⊤f = yi,j − ai,:b
⊤
j,: + µ xi,j − ai,: (C ⊙ B) + λai,:ai,:. (A.26)j,:2 2 2

j∈ΩY j
i,:

Next, the gradient of (A.26) with respect to ai,: can be presented as

⎡ ⎤
∂ [] ∑

1 ⎣ b⊤ ⎦f = − yi,:B + µ xi,: (C ⊙ B) + ai,: j,:bj,: + µ C⊤C ∗ B⊤B + λI .
∂ai,:

j∈ΩY

(A.27)

103

The two optimization methods we use to solve the minimization problem in this

chapter are the Gradient Descent (GD) and the Alternative Least Squares (ALS).

In GD, the gradient of f will be written as ⎤⎡ ()
∂ fvec ⎢⎢⎢⎣

∂A ⎥⎥⎥⎦
. (A.28)∂

∂B

∂

∇f = fvec
(())

fvec
∂C

And each vec(·) of (A.28) will be computed by the gradient of f in (A.27) that

corresponds to aj,:, bj,: and ck,:, respectively because

⎡ ⎤(
(

)⊤
∂ f

∂a1,:)⊤
∂ f

∂a2,:

.

⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎦

vec

(
∂
∂A

f

)
= . . . ()⊤

∂ f
∂aI,:

Then, we can compute the factor matrices A, B and C with f̂ = f − α ∇f .

On the other hand, in ALS, setting (A.27) to zero shows that the optimal solution

of (A.26) is given by

⎤ ∑
⎡ −1

âi,: =
[
yi,:B + µ x 1

i,: (C ⊙ B) ⎣] b⊤
j,:bj,: + µ C⊤C ∗ B⊤B + λI⎦ .

j∈ΩY

In both cases, we will use DFacTo, which we suggested in Section 2.3, to avoid

the intermediate data explosion problem of X1(C ⊙ B).

A.5.1 Experimental Evaluation

We evaluate the joint tensor factorization and matrix completion model on a

subset of datasets from Table 2.1. Arguably, our experimental evaluation is very

preliminary, but promising. The experimental setup is as follows: We split each

104

dataset into train, test, and validation. We randomly select 60% of review, rating

pairs and designate them as training data. We then select 20% of the remaining

review, rating pairs, discard the reviews, remove users or items which do not occur in

the training data, and use it for validation. A similar procedure is used to generate

the test dataset. Cellartracker and RateBeer datasets contain ratings which are not

in a 0 to 5 scale. For consistency, we normalize these ratings to be in 0 to 5. Our

evaluation metric is the mean square error which is given by
∑

(i, j) ∈ ΩY(yi,j − ŷi,j),

were yi,j is a test rating and ŷi,j is the rating predicted by our model.

We train our model with µ ∈ {102 , 101 , ..., 10−9 , 10−10} and λ ∈ {100, 10, 1, 0.1, 0.01},

evaluate its performance on the validation set, and pick the best model based on its

mean square error. We use this model to predict on the test dataset and report av-

erage mean square error. In Tables A.1 and A.2, we show the MSEs from both the

matrix completion and our joint model using GD and ALS. For GD, the method of

backtracking line search was used.

Table A.1.: Best Test MSE of single matrix completion and joint matrix completion
and tensor factorization model after 500 iterations using Gradient Descent.

Dataset Matrix Completion Joint (MC + TF)
λ Test MSE µ λ Test MSE

Yelp Phoenix
Cellartracker
Beeradvocate

Ratebeer

10
1
1

0.01

3.133650
1.506590
0.603431
0.390188

10−6

10−7

10−7

10−9

0.1
1

0.1
1

1.481320
0.927066
0.459174
0.389653

Table A.2.: Best Test MSE of single matrix completion and joint matrix completion
and tensor factorization model after 500 iterations using ALS.

Dataset Matrix Completion Joint (MC + TF)
λ Test MSE µ λ Test MSE

Yelp Phoenix
Cellartracker
Beeradvocate

Ratebeer

1
1

0.1
0.1

2.904320
1.148010
0.465695
0.355989

1
100
10
0.1

1
0.01
0.1

1

1.944050
0.363496
0.373827
0.318692

105

The results show that our joint model produces better MSEs than matrix com-

pletion across all datasets and methods. All in all, our joint model improves the

accuracy of prediction when compared to matrix completion.

106

B. PROOF OF PROPOSITION 4.2.5

Proof First, we show that

z∥2 defE∥ze − b E∥Zbwe − b = E∥Zbwe − z + z − b= Zw∥2 Zw∥2

= E∥(Zb e w) − (bw − Z e Zw − Zw)∥2

= E∥(Zb − Z)(we − w)∥2 = (we − w)T Σ(we − w).

The term (we − w)T Σ(we − w) can be upper bounded by

(we − w)T Σ(we − w) = weT Σwe − w T Σw − 2(we − w)T Σw

≤ we T Σwe − w T Σw.

The last inequality holds because the function f(w) = wT Σw attains its first order

optimality at w when

∇f(w)T (we − w) ≥ 0.

Therefore,

T e T ewe T Σwe − w T Σw = we T Σwe − we Σwe + we Σwe − w T Σw

T e T e≤ we T Σwe − we Σwe + w Σw − w T Σw () ()
weT Σwe wT Σe wT e= we Σwe − 1 + w T Σw − 1

T e wT Σwwe Σwe

≤ (we T Σe we + w T Σw)δ,

���� ����
�����

�����

�����
�����

�����
�����

�����
�������� ���

107

where ()
weT Σwe wT Σe w

δ = max − 1 , − 1 (B.1)
wT e wT Σwe Σwe

We can also show that

w T Σe w ≤ w T Σw(1 + δ)

Continue the calculation, we have

T e T e(we Σwe + w T Σw)δ ≤ (w Σw + w T Σw)δ

≤ (w T Σw)(2δ + δ2)

This implies that

E∥ze − zb∥2 ≤ E∥zb − z∥2(2δ + δ2).

It remains to derive an upper bound on δ. To this end, we consider the generalized

Rayleigh quotient of two positive definite matrices A and B. It is known that [153]

wT Aw (
B− 1

2AB− 1
2

)
.

=0w ̸ wT Bw

Therefore,

max = λmax

T e T ew Σw w Σw wT (Σe − Σ)w − 1 ≤ max − 1 = max
wT Σw w ̸ wT Σw w=0 wT Σw=0 ̸

= max λi
i

(
Σ− 1

2 (Σe − Σ)Σ− 1
2

)
,

where λi(A) denotes the i-th eigen-value of the matrix A. With some additional

algebra we can show that

��� ��� ��� ������ ���������
������

�����
�����

■

108

1 1 1 1
max λi

i

(
Σ−

2 (Σe − Σ)Σ−
2

) (
= max 1 − λi

i (
2

)
Σ−

2 eΣΣ−)
Σ−1 eΣ= max

i
1 − λi

1 ≤ max () − λi
i Σ−1 eλi Σ

()
Σ−1 eΣ ,

where the last inequality holds because for any t ≥ 0, |1 − t| ≤ |t − 1 |. By recalling
t

the definition of the matrix operator norm, we have that

T ew Σw def
Σ−1 − Σ−1 e− 1 ≤ Σ e Σ = ∆.

wT Σw 2

Substituting this result into (B.1), and by symmetry, we complete the proof.

REFERENCES

109

REFERENCES

[1] M. Ciznicki, K. Kurowski, and A. Plaza, “Graphics processing unit implementa-
tion of jpeg2000 for hyperspectral image compression,” J. Appl. Remote Sens.,
vol. 6, no. 1, Jun 2012.

[2] B. W. Bader and T. G. Kolda, “Efficient matlab computations with sparse and
factored tensors,” SIAM Journal on Scientific Computing, vol. 30, no. 1, pp.
205–231, 2007.

[3] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor: scaling
tensor analysis up by 100 times - algorithms and discoveries,” in kdd, 2012, pp.
316–324.

[4] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,”
in Advances in Neural Information Processing Systems, vol. 13, 2001, pp. 556–
562.

[5] J. Kim and H. Park, “Fast nonnegative matrix factorization: An activeset-like
method and comparisons,” SIAM Journal on Scientific Computing, vol. 33,
no. 6, pp. 3261–3281, 2011.

[6] B. Cao, D. Shen, J.-T. Sun, X. Wang, Q. Yang, and Z. Chen, “Detect and track
latent factors with online nonnegative matrix factorization,” in Proceedings of
the 20th International Joint Conference on Artifical Intelligence, ser. IJCAI’07,
2007, pp. 2689–2694.

[7] Y.-H. Fung, C.-H. Li, and W. K. Cheung, “Online discussion participation pre-
diction using non-negative matrix factorization,” in Proceedings of the 2007
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelli-
gent Agent Technology - Workshops, ser. WI-IATW ’07, 2007, pp. 284–287.

[8] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Online nonnegative matrix factor-
ization with robust stochastic approximation,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 7, pp. 1087–1099, July 2012.

[9] C.-J. Lin, “Projected gradient methods for nonnegative matrix factorization,”
Neural Comput., vol. 19, no. 10, pp. 2756–2779, Oct. 2007.

[10] J. Yu, D. Liu, D. Tao, and H. S. Seah, “Complex object correspondence con-
struction in two-dimensional animation,” IEEE Transactions on Image Pro-
cessing, vol. 20, no. 11, pp. 3257–3269, Nov 2011.

[11] Y. Zhang, “An alternating direction algorithm for nonnegative matrix factor-
ization,” Rice, Tech. Rep., 2010.

110

[12] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can plain
neural networks compete with bm3d?” in Proc. IEEE Comput Soc Conf Comput
Vis Pattern Recognit, Jun. 2012, pp. 2392–2399.

[13] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep neu-
ral networks,” in Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., 2012,
pp. 341–349.

[14] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep convo-
lutional encoder-decoder networks with symmetric skip connections,” in Adv
Neural Inf Process Syst 29, 2016, pp. 2802–2810.

[15] T. Remez, O. Litany, R. Giryes, and A. M. Bronstein, “Deep class-aware image
denoising,” in Proc. Int Conf Sampling Theory and Applications (SampTA),
Jul. 2017, pp. 138–142.

[16] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE Trans Image
Process, vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[17] S. Lefkimmiatis, “Non-local color image denoising with convolutional neural
networks,” in Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit, Jul.
2017.

[18] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible
solution for CNN based image denoising,” Oct. 2017, available online at:
https://arxiv.org/abs/1710.04026.

[19] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denois-
ing,” in Proc. IEEE Comput Soc Conf Comput Vis Pattern Recognit, vol. 2,
Jun. 2005, pp. 60–65 vol. 2.

[20] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-d transform-domain collaborative filtering,” IEEE Trans Image Pro-
cess, vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[21] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained to-
tal variation image denoising and deblurring problems,” IEEE Trans Image
Process, vol. 18, no. 11, pp. 2419–2434, Nov. 2009.

[22] D. Zoran and Y. Weiss, “From learning models of natural image patches to
whole image restoration,” in Proc. Int Conf Computer Vis, Nov 2011, pp. 479–
486.

[23] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization
with application to image denoising,” in Proc. IEEE Comput Soc Conf Comput
Vis Pattern Recognit, Jun. 2014, pp. 2862–2869.

[24] S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: Non-iterative
image reconstruction for quanta image sensors,” MDPI Sensors, vol. 16, no. 11,
p. 1961, 2016.

[25] T. Remez, O. Litany, and A. Bronstein, “A picture is worth a billion bits: Real-
time image reconstruction from dense binary threshold pixels,” in Proc. 2016
IEEE Int. Conf. Comp. Photography (ICCP), May 2016, pp. 1–9.

https://arxiv.org/abs/1710.04026

111

[26] R. A. Rojas, W. Luo, V. Murray, and Y. M. Lu, “Learning optimal parameters
for binary sensing image reconstruction algorithms,” in Proc. IEEE Int. Conf.
Image Process. (ICIP’17), Sep. 2017, pp. 2791–2795.

[27] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization of tensors,”
in Advances in Neural Information Processing Systems 27, 2014, pp. 1296–1304.

[28] G. H. Golub and C. F. V. Loan, Matrix Computations. JHU Press, 2012.

[29] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. New York, NY, USA:
Cambridge University Press, 2012.

[30] P. Q. Hoang and P. P. Vaidyanathan, “Non-uniform multirate filter banks:
theory and design,” in IEEE International Symposium on Circuits and Systems,,
May 1989, pp. 371–374 vol.1.

[31] M. Vetterli and J. Kovačevic, Wavelets and Subband Coding. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1995.

[32] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004.

[33] J. A. Schouten, Ricci Calculus - An introduction in the latest methods and
problems in multi-dimmensional differential geometry. Springer Verlag, 1924.

[34] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, Sep 1966. [Online]. Available:
https://doi.org/10.1007/BF02289464

[35] E. Sanchez and B. R. Kowalski, “Generalized rank annihilation factor
analysis,” Analytical Chemistry, vol. 58, no. 2, pp. 496–499, 1986. [Online].
Available: https://doi.org/10.1021/ac00293a054

[36] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis with Applications in the
Chemical Sciences. John Wiley and Sons, Ltd, 2004.

[37] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
Review, vol. 51, no. 3, pp. 455–500, 2009.

[38] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densification
laws, shrinking diameters and possible explanations,” in Proceedings of the
eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining. ACM, 2005, pp. 177–187.

[39] J. McAuley and J. Leskovec, “Hidden Factors and Hidden Topics:
Understanding Rating Dimensions with Review Text,” in Proceedings of the
7th ACM Conference on Recommender Systems, 2013, pp. 165–172. [Online].
Available: http://doi.acm.org/10.1145/2507157.2507163

[40] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse recom-
mendation: N-dimensional tensor factorization for context-aware collaborative
filtering,” in Proceeedings of the 4th ACM Conference on Recommender Systems
(RecSys), 2010.

https://doi.org/10.1007/BF02289464
https://doi.org/10.1021/ac00293a054
http://doi.acm.org/10.1145/2507157.2507163

112

[41] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. H. Jr., and T. Mitchell,
“Toward an architecture for never-ending language learning,” in In Proceedings
of the Conference on Artificial Intelligence (AAAI), 2010.

[42] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative Matrix and
Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis
and Blind Source Separation. Wiley Publishing, 2009.

[43] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, Sep 1970. [Online].
Available: https://doi.org/10.1007/BF02310791

[44] R. Harshman, “Foundations of the parafac procedure: models and conditions
for an ’exploratory’ multimodal factor analysis,” in UCLA Working Papers in
Phonetics, 1970, pp. 1–84.

[45] M. Lundy and A. Mees, “Convergence of an annealing algorithm,”
Mathematical Programming, vol. 34, no. 1, pp. 111–124, Jan 1986. [Online].
Available: https://doi.org/10.1007/BF01582166

[46] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear singular value
decomposition,” SIAM Journal on Matrix Analysis and Applications, vol. 21,
no. 4, pp. 1253–1278, 2000.

[47] ——, “Independent component analysis and (simultaneous) third-order tensor
diagonalization,” IEEE Transactions on Signal Processing, vol. 49, no. 10, pp.
2262–2271, Oct 2001.

[48] L. D. Lathauwer, “Decompositions of a higher-order tensor in block terms?
part i: Lemmas for partitioned matrices,” SIAM Journal on Matrix Analysis
and Applications, vol. 30, no. 3, pp. 1022–1032, 2008.

[49] ——, “Decompositions of a higher-order tensor in block terms? part ii: Defi-
nitions and uniqueness,” SIAM Journal on Matrix Analysis and Applications,
vol. 30, no. 3, pp. 1033–1066, 2008.

[50] C. A. Andersson and R. Bro, “Improving the speed of multi-way
algorithms:: Part i. tucker3,” Chemometrics and Intelligent Laboratory
Systems, vol. 42, no. 1, pp. 93 – 103, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0169743998000100

[51] L. Elden and B. Savas, “A newton?grassmann method for computing the
best multilinear rank-(r1, r2, r3) approximation of a tensor,” SIAM Journal on
Matrix Analysis and Applications, vol. 31, no. 2, pp. 248–271, 2009. [Online].
Available: https://doi.org/10.1137/070688316

[52] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov, “Tucker
dimensionality reduction of three-dimensional arrays in linear time,” SIAM
Journal on Matrix Analysis and Applications, vol. 30, no. 3, pp. 939–956, 2008.
[Online]. Available: https://doi.org/10.1137/060655894

[53] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”
J. Math. Phys., vol. 6, pp. 164–189, 1927.

https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF01582166
http://www.sciencedirect.com/science/article/pii/S0169743998000100
https://doi.org/10.1137/070688316
https://doi.org/10.1137/060655894

113

[54] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decomposi-
tions, with application to arithmetic complexity and statistics,” Linear Algebra
Appl., vol. 18, pp. 95–138, 1977.

[55] ——, “Rank, decomposition, and uniqueness for 3-way and n-way arrays,” in
Multiway Data Analysis. Amsterdam, The Netherlands, The Netherlands:
North-Holland Publishing Co., 1989, pp. 7–18.

[56] V. de Silva and L.-H. Lim, “Tensor rank and the ill-posedness of
the best low-rank approximation problem,” SIAM J. Matrix Anal.
Appl., vol. 30, no. 3, pp. 1084–1127, Sep. 2008. [Online]. Available:
http://dx.doi.org/10.1137/06066518X

[57] J. M. F. ten Berge, J. de Leeuw, and P. M. Kroonenberg, “Some additional
results on principal components analysis of three-mode data by means of
alternating least squares algorithms,” Psychometrika, vol. 52, no. 2, pp.
183–191, Jun 1987. [Online]. Available: https://doi.org/10.1007/BF02294233

[58] H. A. Kiers, “An alternating least squares algorithm for parafac2
and three-way dedicom,” Computational Statistics & Data Analysis,
vol. 16, no. 1, pp. 103 – 118, 1993. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/016794739390247Q

[59] P. M. Kroonenberg and J. de Leeuw, “Principal component analysis
of three-mode data by means of alternating least squares algorithms,”
Psychometrika, vol. 45, no. 1, pp. 69–97, Mar 1980. [Online]. Available:
https://doi.org/10.1007/BF02293599

[60] J. Jian-hui, W. Hai-long, L. Yang, and Y. Ru-qin, “Three-way data resolution by
alternating slice-wise diagonalization (asd) method,” Journal of Chemometrics,
vol. 14, no. 1, pp. 15–36, 2000.

[61] P. Comon, X. Luciani, and A. L. F. de Almeida, “Tensor decompositions, al-
ternating least squares and other tales,” pp. 393–405, Aug. 2009.

[62] G. Tomasi, “Use of the properties of the khatri-rao product for the computation
of jacobian, hessian, and gradient of the parafac model under matlab,” 2005,
private communication.

[63] J. Berg, J. D. Leeuw, and P. Kroonenberg, “Some additional results on principal
components analysis of three-mode data by means of alternating least squares
algorithms,” Psychometrika, vol. 52, pp. 183–191, 1987.

[64] M. J. Reynolds, A. Doostan, and G. Beylkin, “Randomized alternating least
squares for canonical tensor decompositions: Application to a pde with random
data,” SIAM J. Scientific Computing, vol. 38, 2016.

[65] S. Zhe, K. Zhang, P. Wang, K.-c. Lee, Z. Xu, Y. Qi, and Z. Gharamani,
“Distributed flexible nonlinear tensor factorization,” in Proceedings of the
30th International Conference on Neural Information Processing Systems, ser.
NIPS’16. USA: Curran Associates Inc., 2016, pp. 928–936. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3157096.3157200

http://dx.doi.org/10.1137/06066518X
https://doi.org/10.1007/BF02294233
http://www.sciencedirect.com/science/article/pii/016794739390247Q
http://www.sciencedirect.com/science/article/pii/016794739390247Q
https://doi.org/10.1007/BF02293599
http://dl.acm.org/citation.cfm?id=3157096.3157200

114

[66] E. Acar, D. M. Dunlavy, and T. G. Kolda, “A scalable optimization approach
for fitting canonical tensor decompositions,” Journal of Chemometrics, vol. 25,
no. 2, pp. 67–86, February 2011.

[67] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge Univ Press, 1990.

[68] D. S. Bernstein, Matrix Mathematics. Princeton University Press, 2005.

[69] M. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp.
130–137, 1980.

[70] A. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science,
vol. 286, pp. 509–512, 1999.

[71] E. Acar, T. G. Kolda, and D. M. Dunlavy, “All-at-once optimization for cou-
pled matrix and tensor factorizations,” in MLG’11: Proceedings of Mining and
Learning with Graphs, August 2011.

[72] D. D. Lee and H. S. Seung, “Learning the parts of objects by nonnegative matrix
factorization,” Nature, vol. 401, pp. 788–791, Oct. 1999.

[73] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for rec-
ommender systems,” IEEE Computer Society, vol. 42, pp. 30–37, Aug. 2009.

[74] M. Craig, “Minimum-volume transforms for remotely sensed data,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 32, pp. 542–552, May
1994.

[75] V. P. Pauca, J. Piper, and R. J. Plemmons, “Nonnegative matrix factorization
for spectral data analysis,” Linear Algebra and its Applications, vol. 416, pp.
29–47, Jul. 2006.

[76] D. L. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and
J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated
raman scattering microscopy and multivariate curve resolution analysis,” Ana-
lytical Chemistry, vol. 85, pp. 98–106, Jan. 2013.

[77] R. Tauler, B. Kowalski, and S. Fleming, “Multivariate curve resolution applied
to spectral data from multiple runs of an industrial process,” Analytical Chem-
istry, vol. 65, pp. 2040–2047, Aug. 1993.

[78] H. Kim and H. Park, “Sparse non-negative matrix factorizations via alternating
non-negativity-constrained least squares for microarray data analysis,” Bioin-
formatics, vol. 23, pp. 1495–1502, Apr. 2007.

[79] D. Donoho and V. Stodden, “When does non-negative matrix factorization
give a correct decomposition into parts?” in Advances in Neural Information
Processing, 2003.

[80] C.-S. Liao, J. H. Choi, D. Zhang, S. H. Chan, and J.-X. Cheng, “Denoising stim-
ulated raman spectroscopic images by total variation minimization,” Journal of
Physical Chemistry C, vol. 119, pp. 19 397–19 403, Jul. 2015.

[81] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen,
“An augmented lagrangian method for total variation video restoration,” IEEE
Transactions on Image Processing, vol. 20, pp. 3097–3111, Nov. 2011.

115

[82] T. Zhang, B. Fang, W. Liu, Y. Y. Tang, G. He, and J. Wen, “Total variation
norm-based nonnegative matrix factorization for identifying discriminant rep-
resentation of image patterns,” Neurocomputing, vol. 71, pp. 1824–1831, Jun.
2008.

[83] N. Seichepine, S. Essid, C. Fevotte, and O. Cappe, “Piecewise constant non-
negative matrix factorization,” in IEEE International Conference on Acoustic,
Speech and Signal Processing, May 2014, pp. 6721–6725.

[84] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, pp. 1–122, Nov. 2010.

[85] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction algorithm for
matrix completion with nonnegative factors,” Journal of Frontiers of Mathe-
matics in China, vol. 7, pp. 365–384, Apr. 2011.

[86] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-laplacian
priors,” in Advances in Neural Information Processing Systems, Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, Eds. Curran Asso-
ciates, Inc., 2009, pp. 1033–1041.

[87] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regu-
larization,” Image Processing, IEEE Transactions on, vol. 4, pp. 932–946, Jul.
1995.

[88] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors
for model based reconstruction,” in IEEE global conference signal and informa-
tion processing, Dec. 2013, pp. 945–948.

[89] S. H. Chan, “Algorithm induced prior for image restoration,” Feb. 2016, sub-
mitted, IEEE Signal Process. Letters.

[90] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse
3-d transform-domain collaborative filtering,” Image Processing, IEEE Trans-
actions on, vol. 16, pp. 2080–2095, Aug. 2007.

[91] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical,
and sparse regression-based approaches,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 5, pp. 354–379, 2012.

[92] J. H. Choi, O. Elgendy, and S. Chan, “Integrating disparate sources of experts
for robust image denoising,” 2018, submitted to IEEE Transaction on Image
Processing (TIP).

[93] F. A. Graybill and R. B. Deal, “Combining unbiased estimators,” Biometrics,
vol. 15, no. 4, pp. 543–550, Dec 1959.

[94] E. Samuel-Cahn, “Combining unbiased estimators,” The American Statistician,
vol. 48, no. 1, pp. 34–36, Feb 1994.

[95] D. B. Rubin and S. Weisberg, “The variance of a linear combination of inde-
pendent estimators using estimated weights,” Biometrika, vol. 62, no. 3, pp.
708–��709, Dec 1975.

116

[96] T. Keller and I. Olkin, “Combining correlated unbiased estimators of the mean
of a normal distribution,” United States Department of Agriculture, National
Agricultural Statistics Service, NASS Research Reports 234919, Mar 2002.
[Online]. Available: https://EconPapers.repec.org/RePEc:ags:unasrr:234919

[97] P. Odell, D. Dorsett, D. Young, and J. Igwe, “Estimator models
for combining vector estimators,” Mathematical and Computer Modelling,
vol. 12, no. 12, pp. 1627 – 1642, 1989. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0895717789903385

[98] F. Lavancier and P. Rochet, “A general procedure to combine estimators,”
Comput Stat Data Anal, vol. 94, pp. 175–192, Feb 2016.

[99] T. Blu and F. Luisier, “The SURE-LET approach to image denoising,” IEEE
Trans Image Process, vol. 16, no. 11, pp. 2778–2786, Nov. 2007.

[100] K. N. Chaudhury and K. Rithwik, “Image denoising using optimally weighted
bilateral filters: A sure and fast approach,” in Proc. IEEE Int Conf Image
Process, Sep. 2015, pp. 108–112.

[101] J. Jancsary, S. Nowozin, and C. Rother, “Loss-specific training of non-
parametric image restoration models: A new state of the art,” in Computer
Vision – ECCV 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 112–125.

[102] F. Agostinelli, M. R. Anderson, and H. Lee, “Adaptive multi-column
deep neural networks with application to robust image denoising,” in Adv
Neural Inf Process Syst 26. Curran Associates, Inc., 2013, pp. 1493–1501.
[Online]. Available: http://papers.nips.cc/paper/5030-adaptive-multi-column-
deep-neural-networks-with-application-to-robust-image-denoising.pdf

[103] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser prior
for image restoration,” in Proc. IEEE Comput Soc Conf Comput Vis Pattern
Recognit, 2017.

[104] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-Play ADMM for image
restoration: Fixed-point convergence and applications,” IEEE Trans Computa-
tional Imaging, vol. 3, no. 1, pp. 84–98, Mar. 2017.

[105] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans Image
Process, vol. 13, no. 4, pp. 600–612, April 2004.

[106] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex program-
ming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[107] M. C. Grant and S. P. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, ser. Lecture Notes in
Control and Information Sciences. Springer-Verlag Limited, 2008, pp. 95–110.

[108] L. Condat, “Least-squares on the simplex for multispectral unmixing,” Feb
2017, gIPSA-lab, Univ. Grenoble Alpes, F-38000 Grenoble, France.

[109] J. Mairal, “Optimization with first-order surrogate functions,” in Proc. Int Conf
on Machine Learning, 2013, pp. 783–791.

https://EconPapers.repec.org/RePEc:ags:unasrr:234919
http://www.sciencedirect.com/science/article/pii/0895717789903385
http://www.sciencedirect.com/science/article/pii/0895717789903385
http://papers.nips.cc/paper/5030-adaptive-multi-column-deep-neural-networks-with-application-to-robust-image-denoising.pdf
http://papers.nips.cc/paper/5030-adaptive-multi-column-deep-neural-networks-with-application-to-robust-image-denoising.pdf
http://cvxr.com/cvx

117

[110] M. Jaggi, “Convex optimization without projection steps,” Dec 2011, available
online at: https://arxiv.org/abs/1108.1170.

[111] C.-A. Deledalle, L. Denis, S. Tabti, and F. Tupin, “Closed-form
expressions of the eigen decomposition of 2 x 2 and 3 x 3 Hermitian
matrices,” Université de Lyon, Research Report, 2017. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01501221

[112] F. Luisier, T. Blu, and M. Unser, “A new SURE approach to image denois-
ing: Interscale orthonormal wavelet thresholding,” IEEE Trans Image Process,
vol. 16, no. 3, pp. 593–606, Mar. 2007.

[113] S. Ramani, T. Blu, and M. Unser, “Monte-carlo Sure: A black-box optimization
of regularization parameters for general denoising algorithms,” IEEE Trans
Image Process, vol. 17, no. 9, pp. 1540–1554, Sep. 2008.

[114] S. Cha and T. Moon, “Neural adaptive image denoiser,” in Proc. IEEE Int
Conf Acoust Speech Signal Process (ICASSP’18), 2018. [Online]. Available:
http://sigport.org/2825

[115] A. Foi, “Clipped noisy images: Heteroskedastic modeling and practical
denoising,” Signal Processing, vol. 89, no. 12, pp. 2609 – 2629, 2009,
special Section: Visual Information Analysis for Security. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165168409001996

[116] L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural networks for no-
reference image quality assessment,” in Proc. IEEE Comput Soc Conf Comput
Vis Pattern Recognit, Washington, DC, USA, 2014, pp. 1733–1740.

[117] Y. Li, L. M. Po, L. Feng, and F. Yuan, “No-reference image quality assessment
with deep convolutional neural networks,” in Proc. IEEE Int Conf Digital Signal
Processing (DSP), Oct 2016, pp. 685–689.

[118] S. Bosse, D. Maniry, T. Wiegand, and W. Samek, “A deep neural network for
image quality assessment,” in Proc. IEEE Int Conf Image Process (ICIP), Sept
2016, pp. 3773–3777.

[119] J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang, and A. C. Bovik, “Deep
convolutional neural models for picture-quality prediction: Challenges and so-
lutions to data-driven image quality assessment,” IEEE Signal Process Mag,
vol. 34, no. 6, pp. 130–141, Nov 2017.

[120] Y. Li, X. Ye, and Y. Li, “Image quality assessment using deep convolutional
networks,” AIP Advances, vol. 7, no. 12, p. 125324, 2017. [Online]. Available:
https://doi.org/10.1063/1.5010804

[121] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve
neural network acoustic models,” in in ICML Workshop on Deep Learning for
Audio, Speech and Language Processing, 2013.

[122] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[123] J. W. Tukey, Exploratory data analysis. MA: Addison-Wesley, 1977, vol. 2.

https://hal.archives-ouvertes.fr/hal-01501221
http://sigport.org/2825
http://www.sciencedirect.com/science/article/pii/S0165168409001996
https://doi.org/10.1063/1.5010804
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1108.1170

118

[124] P. Bühlmann and B. Yu, “Boosting with the l2 loss,” J Am Stat
Assoc, vol. 98, no. 462, pp. 324–339, 2003. [Online]. Available: https:
//doi.org/10.1198/016214503000125

[125] M. R. Charest and P. Milanfar, “On iterative regularization and its application,”
IEEE Trans Circuits and Systems for Video Technology, vol. 18, no. 3, pp. 406–
411, March 2008.

[126] H. Talebi, X. Zhu, and P. Milanfar, “How to saif-ly boost denoising perfor-
mance,” IEEE Trans Image Process, vol. 22, no. 4, pp. 1470–1485, Apr 2013.

[127] M. R. Charest, M. Elad, and P. Milanfar, “A general iterative regularization
framework for image denoising,” in Proc. 40th Annual Conf Information Sci-
ences and Systems, March 2006, pp. 452–457.

[128] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative
regularization method for total variation-based image restoration,” Multiscale
Modeling & Simulation, vol. 4, no. 2, pp. 460–489, 2005. [Online]. Available:
https://doi.org/10.1137/040605412

[129] Y. Romano and M. Elad, “Boosting of image denoising algorithms,” SIAM J
Imaging Sci, vol. 8, no. 2, pp. 1187–1219, 2015.

[130] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in Proc. IEEE Comput Soc Conf
Comput Vis Pattern Recognit, 2009.

[131] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restoration
with neural networks,” IEEE Trans Comput. Imaging, vol. 3, no. 1, pp. 47–57,
Mar 2017.

[132] J. H. Choi, O. Elgendy, and S. Chan, “Image reconstruction for quanta image
sensors using deep neural networks,” Apr. 2018, to appear in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP).

[133] E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta
image sensor: Every photon counts,” MDPI Sensors, vol. 16, no. 8, 2016.
[Online]. Available: http://www.mdpi.com/1424-8220/16/8/1260

[134] N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson,
“320 × 240 oversampled digital single photon counting image sensor,” in Proc.
Symp VLSI Circuits, Jun. 2014, pp. 1–2.

[135] I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuni-
formity analysis of a 65k pixel CMOS SPAD imager,” IEEE Trans. Electron
Devices, vol. 63, no. 1, pp. 57–64, Jan. 2016.

[136] S. Masoodian, J. M. D. Starkey, Y. Yamashita, and E. R. Fossum, “A 1mjot
1040fps 0.22e-rms stacked bsi quanta image sensor with cluster-parallel read-
out,” in Proc. Int. Image Sensor Workshop, Hiroshima, Japan., 2017, pp. 230–
233.

[137] F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons: Oversampled
image acquisition using binary poisson statistics,” IEEE Trans. Image Process.,
vol. 21, no. 4, pp. 1421–1436, Apr. 2012.

https://doi.org/10.1198/016214503000125
https://doi.org/10.1198/016214503000125
https://doi.org/10.1137/040605412
http://www.mdpi.com/1424-8220/16/8/1260

119

[138] F. Yang, L. Sbaiz, E. Charbon, S. Süsstrunk, and M. Vetterli, “Image recon-
struction in the gigavision camera,” in Proc. IEEE 12th Int. Conf. on Computer
Vision Workshops (ICCV Workshops), 2009, Sep. 2009, pp. 2212–2219.

[139] S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum
image sensors,” in Proc. IEEE Global Conf. Signal and Information Processing
(GlobalSIP’14), Dec. 2014, pp. 312–316.

[140] U. S. Kamilov and H. Mansour, “Learning optimal nonlinearities for iterative
thresholding algorithms,” IEEE Signal Process. Lett., vol. 23, no. 5, pp. 747–
751, May 2016.

[141] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Super-resolution of com-
pressed videos using convolutional neural networks,” in Proc. IEEE Int. Conf.
Image Process. (ICIP’16), Sept 2016, pp. 1150–1154.

[142] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans
Image Process, vol. 26, no. 7, pp. 3142–3155, July 2017.

[143] T. Meinhardt, M. Moeller, C. Hazirbas, and D. Cremers, “Learning proximal
operators: Using denoising networks for regularizing inverse imaging problems,”
Apr. 2017, available online at: https://arxiv.org/abs/1704.03488.

[144] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional
neural network for inverse problems in imaging,” IEEE Tran Image Process,
vol. 26, no. 9, pp. 4509–4522, Sept 2017.

[145] C. A. Metzler, A. Mousavi, and R. G. Baraniuk, “Learned D-AMP: Principled
neural network based compressive image recovery,” Nov. 2017, available online
at: https://arxiv.org/abs/1704.06625.

[146] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, “Deep fully-connected
networks for video compressive sensing,” Digit Signal Process, vol. 72, pp. 9
– 18, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1051200417302130

[147] O. A. Elgendy and S. H. Chan, “Optimal threshold design for quanta image
sensor,” IEEE Trans. Comput. Imaging, vol. 4, no. 1, pp. 99–111, March 2018.

[148] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover Publications: New York,
USA, 1965.

[149] F. J. Anscombe, “The transformation of Poisson, binomial and negative-
binomial data,” Biometrika, vol. 35, no. 3-4, pp. 246–254, 1948.

[150] X. Mao, C. Shen, and Y. Yang, “Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections,” in Proc. Advances
in Neural Inf. Process. Syst., 2016.

[151] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional
networks,” in Proc. IEEE CS Conf Comp Vis Pattern Recognition, Jun 2010,
pp. 2528–2535.

http://www.sciencedirect.com/science/article/pii/S1051200417302130
http://www.sciencedirect.com/science/article/pii/S1051200417302130
https://arxiv.org/abs/1704.06625
https://arxiv.org/abs/1704.03488

120

[152] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2008 (VOC2008) Results,” http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html.

[153] S. Boyd and L. E. Ghaoui, “Method of centers for minimizing generalized eigen-
values,” Linear Algebra Appl, vol. 188-189, pp. 63 – 111, 1993. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/002437959390465Z

http://www.sciencedirect.com/science/article/pii/002437959390465Z
https://network.org/challenges/VOC/voc2008/workshop/index.html
http://www.pascal

VITA

121

VITA

Joon Hee Choi received his B.E. in Electronics Engineering and B.B.A. in Busi-

ness Administration from Sogang University in 2004; and a master’s degree in 2014

and a doctoral degree in 2018 in Electrical and Computer Engineering from Purdue

University. Prior to Purdue, he was an assistant manager at Samsung Electronics

in South Korea from 2003 to 2012. His research interests include machine learning,

image/video restoration, computer vision, and optimization algorithms for large-scale

datasets.

	Computational Methods for Matrix/Tensor Factorization and Deep Learning Image Denoising
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Objective 1: Efficient Matrix and Tensor Factorization Methods
	Objective 2: Deep Learning for Image Denoising
	Contributions of The Thesis
	 Publications Resulting from this Thesis

	DFACTO: DISTRIBUTED FACTORIZATION OF TENSORS
	Introduction
	Matrix, Tensor, and their Applications
	Tensor Factorization
	Related Methods
	Our Contributions

	Notation and Preliminaries
	Flattening Tensors

	DFacTo
	Distributed Memory Implementation
	Complexity Analysis
	Related Work

	Experimental Evaluation
	Discussion and Conclusion

	COMPARISON OF ADMM ALGORITHMS FOR NOISY NON-NEGATIVE MATRIX FACTORIZATION
	Introduction
	Non-negative Matrix Factorization
	Problem Statement
	Contributions

	Background
	Spectral Total Variation
	ADMM Algorithm

	Variations of ADMM Algorithms
	Single Variable Split
	Multiple Variable Split
	Half Quadratic Penalty
	Algorithm-induced Prior

	Experiments and Discussions
	Experimental Results
	Discussion

	Conclusion

	OPTIMAL COMBINATION OF IMAGE DENOISERS
	Introduction
	Related Work
	Contributions
	Notation

	Optimal Combination of Estimators
	Problem Formulation
	Solving (P1)
	Geometric Interpretation of (P1)
	Optimal MSE Lower Bound
	Perturbation in

	MSE Estimator
	Why not SURE?
	Neural Network MSE Estimator
	Comparison with SSDA

	Booster Network
	What is a Booster?
	Deep Learning based Booster
	Performance of Booster

	Experiments
	Experiment 1: Noise-Level Mismatch
	Experiment 2: Different Image Classes
	Experiment 3: Different Denoiser Types
	Limitations and Extensions

	Conclusion

	IMAGE RECONSTRUCTION FOR QUANTA IMAGE SENSORS USING DEEP NEURAL NETWORKS
	Introduction
	QIS Imaging Model
	Spatial-Temporal Oversampling
	Truncated Poisson Process
	Transform-Denoise Approach

	Proposed Method
	Network Structure
	Two Designs for QISNet
	Training and Parameters

	Experiments
	Reconstruction Quality
	Model Mismatch in G

	Conclusion

	Conclusion
	Summary
	Future Work

	APPENDIX OF DFACTO
	Definitions of Standard Matrix Products
	An Example of Flattening Tensors

	Review of ALS
	Review of GD
	Illustrative Example for tensor factorization
	The application of DFacTo - Joint Matrix Completion and Tensor Factorization
	Experimental Evaluation

	PROOF OF PROPOSITION 4.2.5
	REFERENCES
	VITA

