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Summary (English)

In recent years, the interest in using magnetic resonance (MR) imaging in ra-
diotherapy (RT) has increased. This is because MR has a superior soft tissue
contrast compared to computed tomography (CT), which makes it a better
modality for delineating the target volume (tumor) and possible organs at risk
(OARs). In an MR/CT work-flow, independent MR and CT scans are acquired.
The target and possible OARs are delineated on the MR and then transferred to
CT by aligning the data using a registration. This introduces the risk of system-
atic registration errors especially in non-rigid body structures, the consequence
being a systematic miss of target or increased dose to healthy tissue.

Radiotherapy based on MR as the only modality removes this uncertainty and
simplifies the clinical work-flow. However, the information on electron density
which is usually contained in the CT must now be derived from the MR. A way
to achieve this is to computationally estimate a so-called synthetic CT (sCT)
from the MR data, which can then act as a substitute for the CT. This is a
challenging task, since no unique relationship between MR and electron density
exists.

The goal of this thesis is to develop and investigate the right combination of
MR acquisition protocols and computational models for accurate MR-based CT
synthesis for use in RT. We investigate different categories of methods for CT
synthesis and validate them using clinically relevant quality measures. Specifi-
cally, we implement a patch-based multi-atlas method in the brain, which com-
pares favorably to state-of-the-art methods. In our next effort, we substantially
improve the speed of the method and apply it in the pelvis, again with promising
results. Our final contribution is a voxel-based method, which is developed to



ii

be registration-free and broadly applicable. In initial results, the performance
of this method is close to the patch-based.



Summary (Danish)

I de senere år har der været en stigende interesse for at bruge magnetisk reso-
nans (MR) skanninger i stråleterapi. Dette skyldes, at MR har en langt bedre
bløddels-kontrast i forhold til computed tomography (CT), hvilket gør det til
et bedre modalitet til indtegning af target volumener (tumor) samt organer der
skal skånes for stråling. I et MR/CT work-flow, optages uafhængige MR- og CT-
skanninger. Indtegninger foretages på MR-skanningen, som her efter registreres
med CT-skanningen for at kunne overføre indtegningerne til dosisoptimering.
Denne registrering introducerer en risiko for systematiske registreringsfejl, især
i ikke-rigide kropsdele. Konsekvensen af en sådan fejl kan i værste tilfælde være
en systematisk underdosering af tumoren eller en øget dosis til raskt væv.

Stråleterapi baseret på MR som den eneste modalitet fjerner denne usikkerhed
og forenkler det kliniske work-flow. Dog skal oplysningerne om elektrondensitet,
som sædvanligvis fås fra CT, nu afledes fra MR. En måde at opnå dette er
at estimere en såkaldt syntetisk CT (sCT) skanning ud fra MR-skanningen.
Denne skanning kan derefter fungere som erstatning for CT. Det er en særdeles
udfordrende opgave at omdanne en MR-skanning til en sCT, da der ikke er et
unikt forhold mellem MR og elektrondensitet.

Målet med denne afhandling er at udvikle og undersøge den rette kombination
af MR-protokoller og beregningsmodeller til nøjagtig MR-baseret sCT-dannelse
til brug i stråleterapi. Vi undersøger forskellige kategorier af metoder til sCT-
dannelse og validerer dem ved hjælp af klinisk relevante kvalitetsmål. Specifikt,
implementerer vi en patch-baseret multi-atlas metode i hjernen, som klarer sig
godt i en sammenligning med state-of-the-art metoder. I vores næste indsats
forbedrer vi hastigheden af den patch-baserede metode betydeligt og anvender
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den i pelvis med lovende resultater. Vores sidste bidrag er en voxel-baseret me-
tode, som er udviklet til at virke uden brug af registreringer og til at være bredt
anvendelig. I vores initielle resultater er metoden performance-mæssigt tæt på
den patch-baserede.
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Chapter 1

Introduction

The field of medical imaging for diagnosis and treatment has seen tremendous
advances in the last few decades and has become more and more multi-modal
with the routine clinical use of computed tomography (CT), positron emission
tomography (PET), and magnetic resonance (MR) imaging among others. The
multi-contrast ability of MR imaging makes it one of the most versatile among
the modalities. By adjusting the acquisition parameters, one can acquire de-
tailed anatomical images with widely different tissue contrasts as well as func-
tional images. The complementary information provided by multi-contrast MR
aids not only in diagnosis and treatment of patients, but also in revealing neuro-
physiological patterns in both diseased and healthy subjects.

The use of multiple modalities and multi-contrast MR also introduces new chal-
lenges. As an example, the total scan time of a patient increases for each ad-
ditional MR contrast required. This not only increases patient discomfort, but
also adds the risk of unwanted changes due to organ motion and deformation
between each acquisition. This risk grows even further when the patient has to
be moved between two different scanners. To truly benefit from complementary
scans acquired on different scanners or at different time points, there is a need to
spatially align, or register, the different images. Even without motion-induced
changes, this is not an easy task and the process can introduce systematic errors
in e.g., a treatment situation.
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In this thesis, we have approached the above challenges by attempting to make
the treatment work-flow in radiotherapy as mono-modal as possible such that
the need for accurate multi-modal registrations is eliminated.

1.1 Image synthesis for MR-only radiotherapy

In external beam radiotherapy (RT), the objective is to kill cancer cells by
means of high-energy ionizing radiation. The patient is irradiated in such a way
as to maximize the amount of dose delivered to the tumor while minimizing
the amount of dose given to healthy tissue. This poses a complex optimization
problem, where the radiation attenuation properties of the different tissues must
be known in order to calculate the three-dimensional (3D) dose distribution in
the irradiated tissues. CT contains such information because the intensity in
these images is directly related to the electron density of the tissue being imaged.
Furthermore, CT has an accurate geometric representation of bone, which is
used in combination with a planar X-ray or a cone beam CT (CBCT) to align
the patient with respect to the isocenter of the linear accelerator (Linac). For
these reasons, CT is being used in both the planning and treatment phase of
external beam RT.

In recent years, the interest in using MR imaging in RT has steadily increased.
This is because MR has a superior soft tissue contrast compared to CT, which
makes it a better modality for delineating the target volume (tumor) and pos-
sible organs at risk (OARs). In the MR/CT workflow, independent MR and
CT scans are acquired. The target and possible OARs are delineated on the
MR and then transferred to CT by aligning the data using a rigid registration.
This introduces the risk of systematic registration errors especially in non-rigid
body structures, with a systematic miss of target or increased dose to healthy
tissue as possible consequences. These errors could be eliminated, if the CT was
removed entirely from the RT planning and treatment process. This would in
addition simplify the clinical work-flow, leading to reduced health care costs and
sparing the patient of the discomfort of having two separate scans made. A way
to achieve this is to computationally estimate a so-called synthetic CT (sCT)
from the MR data. This is a challenging task because a direct mapping of MR
intensities to CT intensities is not possible. This is because the MR signal is
not related to electron density but is a relative measure of the proton density
and magnetic relaxation properties of tissue. It is critically dependent on the
pulse sequence used, i.e., timing and shape of radio frequency pulses, type of
gradients and timing of signal detection. In addition, compact bone has a short
magnetic relaxation time, which means that in conventional MR imaging little
or no signal is detected from compact bone making it indistinguishable from air.
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1.2 Goals of the project

The main focus of this PhD project was to develop and investigate the right
combination of MR acquisition protocols and computational models for accurate
MR-based sCT prediction for use in RT. Furthermore, the aim was also to
validate the resulting methods in clinically relevant external beam RT settings.

1.3 Scientific contributions

Peer-reviewed papers included in this thesis

Paper A J. M. Edmund, H. M. Kjer, K. Van Leemput, R. H. Hansen, J. A.
Andersen, and D. Andreasen, ”A voxel-based investigation for MRI-only radio-
therapy of the brain using ultra short echo times,” Phys. Med. Biol. 59(23),
7501 (2014).

Paper B D. Andreasen, K. Van Leemput, R. H. Hansen, J. A. L. Andersen,
and J. M. Edmund, ”Patch-based generation of a pseudo CT from conventional
MRI sequences for MRI-only radiotherapy of the brain”, Medical Physics 42,
1596–1605 (2015). Editor’s pick Medical Physics April issue.

Paper C D. Andreasen, K. Van Leemput, and J. M. Edmund, ”A patch-based
pseudo-CT approach for MRI-only radiotherapy in the pelvis” Medical Physics,
43, 4742-4752 (2016).

Paper D D. Andreasen, J. M. Edmund, V. Zografos, B. H. Menze, and K. Van
Leemput, ”Computed tomography synthesis from magnetic resonance images in
the pelvis using multiple random forests and auto-context features”, in SPIE
Medical Imaging (International Society for Optics and Photonics, 2016) pp.
978417–978417.
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Peer-reviewed contributions not included in this thesis

The following contributions were carried out during my PhD studies but are
not discussed in this thesis either because of overlap with the above papers or
because the theme did not match the thesis.

Paper E J. M. Edmund, D. Andreasen, F. Mahmood, and K. Van Leem-
put,”Cone beam computed tomography guided treatment delivery and planning
verification for magnetic resonance imaging only radiotherapy of the brain”,Acta
Oncologica 54, 1496–1500 (2015)

Abstract A D. Andreasen, K. Van Leemput, R.H. Hansen, J.A.L. Andersen,
and J.M. Edmund: ”Predicting a Pseudo-CT scan from T1-weighted MR Images
using Patches – towards MRI-only based radiotherapy”. Accepted for e-poster
at ESTRO 33, Vienna, Austria, 2014

Abstract B D. Andreasen, K. Van Leemput, and J.M. Edmund: ”Patch-
based Generation of a pseudo-CT Scan for MRI-only based Radiotherapy in
the Pelvic Region”. Accepted for poster presentation at 3rd ESTRO Forum,
Barcelona, Spain, 2015.

1.4 Overview of the thesis

The main part of this thesis focuses on the three papers that I am first author of
(papers B-D). Paper A has no dedicated chapter, but is referenced throughout
the thesis and serves as the basis for much of Chapter 2.

This thesis is structured as follows:

• Chapter 2 provides an overview of the development in approaches to sCT
prediction as well as a description of the a priori most promising solutions.
I highlight the advantages and limitations of these methods in order to set
the stage for our choices of sCT strategies.

• Chapter 3 provides an introduction to a patch-based approach for sCT
prediction as well as a summary and discussion of the results presented in
paper B.
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• Chapter 4 provides an introduction to a speeded up version of the patch-
based approach applied in the pelvic region as well as a summary and
discussion of the results presented in paper C.

• Chapter 5 highlights issues with intensity normalization in MR scans which
can affect the patch-based approach.

• Chapter 6 provides an introduction to a voxel-based sCT method as well
as a summary and discussion of the results presented in paper D.

• Chapter 7 summarizes the main findings of this thesis and points out
future directions.
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Chapter 2

Background

Over the last decade, there has been a tremendous rise in the number of pub-
lications dealing with MR-only RT and, especially, in publications describing
new methods for sCT prediction.
In this chapter, I provide a short introduction to MR-only RT and its chal-
lenges. I establish commonly used measures of sCT quality. Finally, I provide
an overview of the current sCT methods and attempt to categorize them ac-
cording to their underlying principles. Partly based on our results in paper
A, I highlight the limitations and challenges with the different categories and
propose possible directions to overcome some of these challenges.

2.1 MR-only: the idea and the challenges

In RT treatment planning, MR is increasingly being used in combination with
the traditional CT. The main advantage of MR is its superior soft tissue con-
trast, which improves target and OAR definition in the brain and other sites
as compared to CT-based delineations [1–3]. Furthermore, functional imaging
using MR is being investigated as an exciting prospect for tumor response eval-
uation and prediction as well as for so-called dose-painting, where regions in a
tumor requiring higher doses are automatically detected [4]. The introduction
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of the MR-Linac 1 further establishes the potential of MR in RT with promises
of accurate, real-time image guided RT (IGRT) during treatment delivery [5].

Still, the CT is a necessary part of today’s RT treatment planning because it con-
tains the crucial information about tissue electron density needed for dose cal-
culation and simulation. Furthermore, reference images based on bone anatomy
can easily be generated and used for patient positioning in combination with
X-ray images or cone beam CTs (CBCTs) taken at the Linac. In the combined
MR/CT workflow, the delineations are done on the MR and then transferred to
the CT by spatially aligning the two scans. This is usually done by a manual
and/or automatic rigid registration between the CT and MRI scan. This is
inherently difficult due to the difference in contrast between the scans; the soft
tissue contrast in the MR is not present in the CT, and the bone anatomy shown
in the CT is not necessarily well depicted in the MR. In addition, non-rigid organ
deformations are potentially happening between the scans in non-brain regions,
meaning that a rigid registration is insufficient for aligning them. Even for a
relatively rigid structure such as the brain, it has been estimated that a mean
registration error of approximately 2 mm is introduced in the process [6, 7].
Similar values have been reported for other body sites such as the prostate [8].
These errors produce a systematic shift in the delineations which, considering
the tight margins used in modern RT (< 5 mm), may ultimately lead to a critical
target under-dosage and/or an increased dose to the adjacent OARs.

The above observations spurred an interest in eliminating the CT entirely from
the treatment chain and performing MR-only radiotherapy. In essence, this
requires that a so-called synthetic CT (sCT) (also referred to as a pseudo-CT
or substitute CT) can be generated from the MR such that the tissue electron
density can be obtained from the synthetic values. This is a complicated task
since the voxel intensities in MR are not uniquely related to electron density. On
the contrary, the intensities are relative measures of proton density and tissue
magnetic relaxation properties, and they vary depending on the equipment and
choice of acquisition parameters. Furthermore, with conventional MR sequences,
the signal from compact bone is quickly lost due to its rapid transversal signal
relaxation time (T2) in the range 0.5-2 ms [9–11]. This yields an intensity
ambiguity between bone and air, even if they are at opposite ends in terms of
electron density, see Figure 2.1.

1The MR linear accelerator provides MR imaging of the patient during treatment delivery
in order to track and respond to anatomical changes/movement.
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Figure 2.1: With conventional MR sequences, there is an intensity ambigu-
ity between compact bone and air regions. This is shown here
for a T1-weighted MR scan (left) and the corresponding CT scan
(right).

2.2 Evaluation of sCT methods

Before describing the sCT methods themselves, I will establish a number of
measures to evaluate the quality of an sCT. This is important in order to test
a method’s feasibility and to benchmark different methods. To do this, the
generated sCT must be compared to the ground truth CT, which can be done
in numerous ways to highlight different properties of the sCT. Below I describe
some of the most common evaluation criteria.

2.2.1 Voxel-wise and geometric measures

Probably the simplest and most commonly used measure is the voxel-wise mean
absolute error (MAEvox) and mean error (MEvox), defined as

MAEvox =
1

N

N∑

n=1

|CT(n)− sCT(n)|, (2.1)

and

MEvox =
1

N

N∑

n=1

(CT(n)− sCT(n)), (2.2)
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where N is the total number of voxels inside the body outline of the MR, and
CT and sCT are ordered as 1×N vectors indexed by n containing the Hounsfield
unit (HU) intensity values of the CT and sCT at corresponding spatial positions.
These measures are usually calculated only for voxels inside the body contour of
the patient, since the surrounding air often constitutes a relatively large part of
the image and is straightforward to predict. Including this region would make
the measures dependent on the amount of surrounding air and could result in
artificially low errors. The MAEvox provides an evaluation of the general quality
of the sCT, whereas the MEvox can reveal if there is a bias towards under- or
overestimating the CT intensity.

Aside from using the electron density information for dose calculation, the CT
scan is also used for patient setup at the Linac. One way to do this is by
matching X-ray radiographs taken at the Linac with 2D projections generated
from the CT, so-called digitally reconstructed radiographs (DRRs). A matching
can also be performed based on CBCTs. In essence, this is a matching based
on bone anatomy, which means that an sCT should depict bone with a high
geometrical accuracy. A way to evaluate the geometry of the predicted bone
volume is using the Dice similarity coefficient (DSC) [12] defined for bone as:

DSCbone =
2〈V sCTbone ∩ V CTbone〉
〈V sCTbone 〉+ 〈V CTbone〉

, (2.3)

where V sCTbone and V CTbone are binarized volumetric bone structures in the sCT and
the CT, respectively, and 〈·〉 denotes the number of elements in a structure. The
DSC measures the overlap of the two structures and takes on a value between
0 and 1, where 1 means complete overlap and 0 means no overlap. In order to
estimate the bone structures, a threshold is usually applied to the CT and sCT
in order to segment the bone. The DSC is therefore dependent on the chosen
threshold.

2.2.2 Radiologic measure

The pure voxel-wise and geometric error measures reviewed above do not take
the radiologic properties of different tissues into account. The relationship be-
tween the HU and electron density is piece-wise linear, which means that pre-
diction errors in one part of the HU scale may not have as severe an impact
on the converted electron density as in other parts. An example of a verified
calibration curve is shown in Figure 2.2. Furthermore, the voxel-wise measures
do not account for the fact that during RT treatment, radiation travels through
various tissues. Because errors in individual voxels may cancel each other along
a path while adding up in the MAEvox measure, it may be more relevant to
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Figure 2.2: Example of a calibration curve for converting HU to electron den-
sity used in the treatment planning system.

evaluate the sCT along such simulated radiation paths. The water-equivalent
path length (WEPL) provides a means for doing this, while at the same time
accounting for the piece-wise linear relationship of the HU and electron density.
The WEPL is defined as [13,14]:

WEPL =
∑

n

∆ln × ρn, (2.4)

where ∆ln is the physical path length of voxel n, and ρn is a radiological scaling
factor that depends on the type of radiation and tissue. For MeV photons, it
is the electron density relative to water. The value of ρn is found from the
voxel CT number using a calibration curve similar to the one shown in Figure
2.2. The WEPL can be evaluated along desired paths through the CT and sCT,
and mean absolute errors (MAEWEPL) and mean errors (MEWEPL) between the
paths lengths can be used as quality measure:

MAEWEPL =
1

L

L∑

l=1

|WEPLCT
l −WEPLsCT

l |, (2.5)

and

MEWEPL =
1

L

L∑

l=1

(WEPLCT
l −WEPLsCT

l ), (2.6)

where L is the number of paths and WEPLl is the WEPL of the lth path.
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2.2.3 Dosimetric measure

Probably the most important measure of sCT quality is the dosimetric accuracy
when using the sCT for dose planning instead of the CT. A way to evaluate this,
is to create and optimize a treatment plan on the sCT and then transfer the
plan to the CT and re-calculate using the same plan parameters and monitor
units. This provides a basis for comparing the obtained dose distributions in
various ways. Using a so-called cumulative dose-volume histogram (DVH), the
3D dose distribution for a single OAR or tumor volume can be summed up in
an interpretable fashion. A cumulative DVH shows the minimum dose, D, that
a given percentage of a structure received, see Figure 2.3. By comparing points
on the DVHs resulting from the sCT dose calculation and the CT re-calculation,
an estimate of the similarity in dose between the two calculations is obtained.
Typically used DVH points are those recommended for reporting PTV coverage
and/or those recommended as optimization constraints for OARs. Another way
to utilize the DVH is to calculate a normalized mean absolute dosimetric error
(nMAEdos):

nMAEdos =
1

M

M∑

m=1

|DCT
vol(m) −DsCT

vol(m)|
Dpre

, (2.7)

where Dpre is the prescribed dose, Dvol(m) is the accumulated dose in Gy given
to vol(m)% of the volume in either the CT or sCT, andM is the total number of
DVH points between D100% and D0%. Similarly, the normalized mean dosimetric
error (nMEdos) can be calculated as:

nMEdos =
1

M

M∑

m=1

DCT
vol(m) −DsCT

vol(m)

Dpre
. (2.8)

Finally, the combined dosimetric score (CDS) is a combination, which penalizes
bias in the errors [11]:

CDS = nMAEdos + |nMEdos|. (2.9)

A downside of evaluating the DVH is that all spatial information is lost, which
means that the spatial position of the calculated dose is not accounted for. Two
dose matrices can also be quantitatively compared using a γ-index evaluation
[15]. To do this, a passing criterion is chosen consisting of the maximum allowed
deviation in dose (DD) and the maximum allowed distance to agreement (DTA)
of the DD. As an example, a DD/DTA = 3%/3mm criterion means that for
a given voxel in one dose matrix, D1, a dose value within 3% must be found
within 3mm of that voxel in a second dose matrix, D2. Let r1 and r2 represent
spatial locations in D1 and D2, respectively. The γ-index is then defined as [15]:

γ(r1) = min{Γ(r1, r2)} ∀r2 ∈ D2, (2.10)
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Figure 2.3: Example of a cumulative dose-volume histogram for a PTV
(prostate) and an OAR (right femoral head, fem. dxt.). 75 Gy
or more was received by 100 % of the PTV, i.e., D100% = 75 Gy,
while approximately 30 Gy or more was received by 40 % of the
OAR, i.e., D40% = 30 Gy.

with

Γ(r1, r2) =

√
r2(r1, r2)

DTA2
+
δ2(r1, r2)

DD2
, (2.11)

where r(r1, r2) is the distance between r1 and r2, and δ(r1, r2) is the percentage
difference in doses observed at r1 and r2. This definition means that if γ ≤ 1 the
criterion is met, otherwise the voxel fails. The results of a γ-index evaluation
can be shown as a γ-index map showing the value of γ at each voxel. This can
be combined with reporting the overall pass-rate.

2.2.4 Considerations regarding sCT quality

The evaluation of sCTs comes with some considerable challenges due to the
nature of the problem we are trying to solve. One of the issues that MR-only RT
tries to address is the registration uncertainty between CT and MR. However,
in order to evaluate the quality of an sCT, we need to compare it to the ground
truth, which is the CT. This comparison can only be realized if the sCT (and
hence the underlying MR) is registered with the CT. Therefore, the uncertainty
that we are trying to remove is always included in the evaluation of an sCT.
Furthermore, the measured quality of the sCT becomes somewhat dependent on
an accurate registration. The dependency is usually ignored when reporting sCT
quality as it is difficult to quantify for individual patients. However, it is assumed
that a sub-optimal MR-CT registration will negatively bias the sCT quality and
as such, reported sCT quality measures can be regarded as worst-case estimates.
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Furthermore, it is worth noting that observed differences between the planning
CT and MR in e.g., the body outline or organ positions are for the most part
no different from differences observed between planning CT and a CBCT of the
day.

2.3 sCT methods

There are several different ways to categorize sCT methods. This could be
according to body region (brain, pelvis, head and neck, etc.), application (RT
or PET/MR attenuation correction), supervised or unsupervised, using special
or conventional MR sequences, etc. Although hybrid methods exist, I choose
to split the approaches according to their underlying principles, which yields
two categories: voxel-based and atlas-based. This is probably the most general
categorization and contains all of the above categories.

2.3.1 Voxel-based methods

The idea of the voxel-based approaches is to convert individual MR voxels
to their corresponding CT HU value based on a learned criterion such as a
regression model or a combination of classification and bulk density assign-
ment [10,11,16–18]. Many approaches in this category use intensity as the main
feature, which means that bone/air ambiguities must be solved by e.g., using
specialized MR sequences such as the ultrashort echo time (UTE) sequence. Us-
ing an unconventional acquisition approach and dual echo times, this sequence
is optimized to maximize the amount of signal coming from short T2 compo-
nents [19]. An example of dual echo UTE images is shown in Figure 2.4, where
the contrast between bone and air is evident.

Aside from assigning a bulk water-equivalent CT number to the entire patient,
the simplest voxel-based approaches use manually determined thresholds and
morphological operations to label voxels of UTE images according to tissue
classes such as soft tissue, bone, and air. A bulk density is then assigned to
the classes in order to create the sCT [10, 17, 21]. In paper A, we found that
the main drawback of these methods is the need for manual intervention; the
difficulty in tuning the relative intensity thresholds and choosing the appropriate
bulk density values could place the voxel-wise and geometric accuracy of these
methods in the lower end with DSCbone ≈ 0.5 and MAEvox≥ 200 HU in the
brain region [11]. More sophisticated methods are supervised, where model
parameters are learned in a training phase from pre-acquired and co-registered



2.3 sCT methods 15

Figure 2.4: Dual echo UTE images. Left: Image acquired at TE = 0.09 ms.
Right: Image acquired at TE = 3.5 ms. The signal has been lost
from short T2 components in the second echo image. Images from
from [20].

MR and CT data. This automates the sCT generation, and can yield either a
continuous-valued or a segmented sCT depending on the chosen model [16, 18,
20]. Once the model parameters have been determined from the training phase,
these methods are fast in predicting an sCT and they generally perform better
than the above-mentioned threshold-based approaches. In paper A, we found
that regression models such as a random forest [20] or a kernel regression model
parameterized by a mixture of Gaussians [16] are among the most promising
methods in the voxel-based category when using UTE scans of the brain. These
methods have DCSbone ≥ 0.7 and MAEvox ≈ 130 HU as well as < 2% deviation
in relevant DVH points in the brain [11]. Examples of different voxel-based sCTs
created from UTE scans are shown in Figure 2.5.

The common denominator of the above methods is the need for the non-standard
UTE sequence. From a practical point of view, introducing additional MR
sequences in the RT work-flow is unappealing since it prolongs the MR scan
time of each patient and introduces the risk of PTV and/or OAR movement
between the sCT sequence and the delineation sequence. Furthermore, a low
signal-to-noise ratio and partial volume effects in the UTE scans means that
sCT predictions suffer at tissue interfaces such as in the ear and nasal cavities
[10, 18, 22]. To overcome the latter issues, some authors have included spatial
information in their models resulting in a decrease in average MAEvox from 140
HU to 130 HU [22].

Another class of voxel-based approaches uses conventional MR sequences such
as T1-weighted or T2-weighted scans. This puts additional demands on the
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(a) CT scan

(b) Threshold-based
method of [10].
MAEvox = 222 HU,
DSCbone = 0.52.

(c) Gaussian Mixture
Regression method
of [16].
MAEvox = 126 HU,
DSCbone = 0.69.

(d) Random Forest
method of [20].
MAEvox = 115 HU,
DSCbone = 0.72

Figure 2.5: Examples of (a) CT and (b)-(d) sCTs created from UTE scans
with different voxel-based approaches. For the supervised
methods (c) and (d), training data consisted of pre-aligned
MR/CT scans from 3 other patients. The reported quality
measures are for the shown patient. Data taken from paper
A [11].
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model, since the MR intensity ambiguities must be solved in some way. One
way to achieve this is to train separate regression models; one for the bone
region and one for the remaining regions [23, 24]. This approach, however, re-
quires a segmentation of the bone region, which in the reported approaches,
requires a manual delineation. Another way to solve the intensity ambiguities
is to extract features from the MR images. These features can then be used in
combination with the gray-scale intensity to help distinguish otherwise similar
voxels. Aside from spatial features and anatomical knowledge [25], typical fea-
tures from computer vision describing neighborhood and texture can be used
for bone segmentation [26]. A concern with voxel-based methods is that MR
voxel intensities can vary between different scanners and different scans even for
the same MR sequence and patient. If the methods should be generally appli-
cable, this means that special care should be taken when choosing the input to
a voxel-based model. Intensity alone, or features that directly rely on the inten-
sity could yield an approach that is only applicable to certain data or certain
scanners.

2.3.2 Atlas-based methods

With conventional atlas-based methods, the sCT prediction relies on a non-
linear registration between the patient MR scan to be converted and one or
multiple atlases of MR scans with known correspondence to a CT and possibly
an organ label-map [27–33]. The MR intensity ambiguities are thus resolved by
the spatial information provided by the registration, which means that conven-
tional MR sequences can be used. With a population-based atlas technique, the
atlas consists of an average MR scan and a registered average CT. The average
scans are formed by registering and averaging a population of MR/CT atlases in
a common space prior to observing the patient MR. The sCT is created by non-
linearly registering the average MR with the patient MR and applying the same
transformation to the average CT, which then provides the sCT estimate [27].
With a multi-atlas technique, the sCT is formed by averaging (or fusing) mul-
tiple atlases after a non-linear alignment with the patient MR [28–32,34]. Each
atlas consists of an MR scan and a co-registered CT scan. The procedure is to
non-linearly register each atlas MR with the patient MR, after which the same
transformations are applied to each atlas CT. The atlas CTs are then fused to
provide the sCT estimate. The fusion can be done in a number of ways, e.g., us-
ing a local similarity measure to create a locally weighted averaging [28,30–32].
This gives less weight to regions in the atlases where the non-linear registration
was sub-optimal. Figure 2.6 shows an illustration of the multi-atlas approach.

Atlas-based methods generally perform well compared to voxel-based techniques
with an MAEvox of ≤ 100 HU [30,35] in the brain. A concern, however, is that
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Figure 2.6: Illustration of a multi-atlas approach. The individual atlas
MR/CT pairs have been pre-registered. For each atlas MR, a
non-linear deformation is estimated that registers the atlas MR
with the patient MR. The same deformations are applied to the
atlas CTs, which are then fused to provide the sCT estimate.

they depend entirely on the accuracy of the registration; in cases where the
patient geometry is very different from the atlas(es), this may pose a problem.
The multi-atlas technique remedies this to some degree by using multiple reg-
istrations and assuming that at least one of the atlases will be well aligned in
a given region of the patient MR. This provides a better sCT estimate than
the population-based atlas technique [27,28]. The improved sCT quality comes
at the cost of computation time due to the number of required non-linear reg-
istrations between the patient MR and the atlases. Typically between 15-38
patients are used as atlases, meaning that the same number of registrations are
required [28,30,34].

A way that relies less on the accuracy of the non-linear registration is to perform
pattern recognition after aligning the atlases with the patient MR. By defining
a rectangular image sub-region (a patch) around each MR voxel and extracting
all such patches from the patient MR and registered atlas MRs, a Gaussian
process regression model can predict an sCT value based on spatially close
and similar atlas MR patches, which have a known correspondence to the atlas
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CTs [33]. This improves the prediction accuracy compared to simpler multi-atlas
techniques [35]. Some authors, however, point out that the added computational
complexity of a pattern recognition step on top of the non-linear registrations
may not make it worthwhile [35]. Both the pattern recognition technique and
most similarity measures used to create a locally weighted averaging of the
atlas CTs rely on an intensity-based similarity measure between the atlas MRs
and the patient MR. Similar to the voxel-based approaches, these methods are
therefore affected by the relative nature of the MR voxel intensities. An intensity
normalization step is usually performed to account for this.

2.4 Considerations regarding treatment site

Most reported techniques for sCT generation have focused on the brain [10,16–
18, 26, 29, 30, 35–38], while relatively fewer attempts have been made for other
body sites such as the pelvis [23, 24, 27, 28, 34]. The brain is probably the most
straightforward region for CT synthesis. As shown by phantom studies, the
limited spatial extent of this region means that geometrical distortions in the
MR scans are not a concern as long as the scanner built-in distortion correction
is switched on [1,39]. Furthermore, the brain is a relatively rigid structure, which
simplifies a registration between the MR and CT scans of the same patient. The
assumption of a correct one-to-one spatial correspondence between pre-acquired
MR and CT scans forms the basis of all supervised voxel-based approaches as
well as atlas-based approaches.

Other body sites can have severe non-rigid deformations between two scans
of the same patient. This complicates the intra-patient registration between
MR and CT and thus affects the sCT methods. Furthermore, the inter-patient
anatomical variation is larger for sites such as the pelvis due to factors like
body mass index, patient gender, patient age etc. This mainly affects atlas-
based approaches, since they rely on some degree of similarity between the
patient and the atlases [27]. Lastly, the greater spatial extent of some body
sites may be a concern regarding geometrical distortions in the MR scans. Some
authors have reported differences in body contour between pelvic MR and CT
scans of the same patients [24, 28]. These differences may also be caused by
the aforementioned naturally occuring non-rigid deformations. Other studies
suggest that geometrical distortions have a limited magnitude and impact also
for larger fields of view [40,41]
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2.5 Conclusion

This chapter has provided an overview of MR-only RT and the different meth-
ods for CT synthesis. To sum up, supervised voxel-based approaches are fast at
predicting an sCT. However, they require some way of distinguishing bone from
air in the MR scans. This can be solved by using UTE scans or by extracting
features from conventional MR scans. The UTE scans prolong the patient scan
time and are of lower quality than conventional MR scans. The features used
are usually not intensity invariant, which may hinder their general applicability
across different scanners at different clinics. Atlas-based approaches are appeal-
ing since they solve the intensity ambiguities by a non-linear spatial alignment,
which means that conventional MR scans can be used. They generally have
a higher accuracy than the voxel-based approaches. However, they may be
sensitive to anatomical variation between patients and usually require several
non-linear registrations, which can be time-consuming.

In the following chapters, I will describe our efforts to address the above issues
by: 1) Implementing and validating a patch-based multi-atlas approach for sCT
prediction without using non-linear registrations. 2) Speeding up the patch-
based pattern recognition step to a clinically acceptable level and testing the
developed approach in a challenging non-brain region 3) Implementing a voxel-
based method using conventional MR sequences and intensity invariance with a
performance close to our atlas-based approach.



Chapter 3

Patch-based generation of
sCTs from conventional MR

This chapter introduces the methodology and summarizes the main findings of
paper B. In that paper, we introduced a patch-based approach for sCT predic-
tion that did not rely on specialized MR scans, nor on non-linear registrations.
Furthermore, we thoroughly compared the method with two state-of-the-art
approaches in the voxel-based and atlas-based categories.

3.1 Introduction

In the previous chapter, we briefly mentioned a multi-atlas method utilizing
patch-based pattern recognition for improving sCT predictions in regions where
non-linear registration was inaccurate [33]. Previously, patch-based methods
have seen widespread application in a range of domains such as image denoising,
image in-painting, and texture synthesis among others [42–44]. Patch-based
segmentation methods have also been proposed in the field of automated MR-
based brain and cardiac segmentation with promising results [45–49]. In these
approaches, 3D patches (i.e., small cuboidal image subregions) are extracted
from the MR and a spatially local search for the most similar patches in a
pre-acquired database of labeled MR scans is performed. The known labels
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of the resulting database patches are then fused to give the predicted label at
each position. An interesting property of some of these methods is that, unlike
in [33], they rely only on affine registrations as a rough linear alignment between
the database MR scans and the MR to be segmented [45, 47]. The need for an
accurate non-linear registration is thus removed and the segmentation is driven
mainly by patch similarities.

Based on the promising results of the patch-based approaches for MR segmenta-
tion, we chose to investigate the potential of a patch-based method for predicting
a continuous-valued sCT of the brain using conventional T1-weighted MR scans.
In particular, we adopted the methodology of [45] and [46], but incorporated
the CT HU numbers as label information in the patch model to enable patch-
based regression. Furthermore, we investigated the dosimetric properties of the
resulting sCT as compared with the CT.

3.2 Patch-based prediction

The assumption behind the patch-based prediction model is that a local simi-
larity in structure and intensity in the MR images of two different patients also
translates into a local similarity in their corresponding CT images. With this
in mind, we can synthesize an sCT for a new test subject by comparing local
regions in the subject MR image with local regions in atlases of MR images with
known correspondence to a CT image. When two regions are similar, we can
use the known MR-to-CT intensity relationship of the atlas to provide a pre-
dicted sCT value. With typical multi-atlas methods, each atlas provides only
one weighted candidate for intensity fusion and this candidate is determined en-
tirely by a non-linear registration. The patch-based method, on the other hand,
is not limited to using just a single candidate from each atlas patient. Indeed,
there may be several patches in one patient that resemble a patch in another, all
of which can be used in the intensity fusion. This means that the total number
of candidate CT values is increased compared to typical atlas-based methods.

3.2.1 Intensity normalization

The main driver of the patch-based approach is an intensity-based similarity
search. Since the tissues in MR scans do not necessarily have a consistent inten-
sity between different scans, a step is needed to rectify this. We use a histogram-
matching approach based on intensity landmarks in the MR scans [50]. To nor-
malize the intensities for a group of MR scans, first a simple foreground mask
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is created for each scan by thresholding based on their mean intensity. Next,
three intensity landmarks are computed from the foreground of each scan: p1,
the minimum intensity, p2, the intensity at the 99.8th percentile, as well as pmed,
the median intensity. The intensities of each scan are then scaled to a chosen
range (e.g., [s1, s2] = [0, 255]) and a common landmark, smed is calculated as
the average median intensity of the foreground of all scans in the new inten-
sity range. Now for each scan in the original intensity space, the intensities in
[p1, pmed] are linearly scaled to [s1, smed] and intensities in [pmed, p2] are scaled
to [smed, s2]. An illustration of the resulting piece-wise linear scaling segments is
shown in Figure 3.1. In Figure 3.2, histograms of T1-weighted MR scans of five
patients acquired on the same scanner are shown before and after normalization.

Figure 3.1: Intensities in each MR scan are normalized using individual land-
marks {p1, pmed, p2} and common landmarks {s1, smed, s2}. Arti-
ficial data was use here for illustrative purposes.

3.2.2 Similarity search and intensity fusion

A patch, P (x), is defined as a cube with side length p voxels centered on the
spatial location x = (x, y, z) in an MR image. Similarly, a target value, T (x), is
defined for each P (x) as the Hounsfield unit (HU) value at x in the corresponding
aligned CT image. For S patients, patches and corresponding target values
are extracted for all positions, x, to create a database of patches, Ps(x), with
corresponding target values, Ts(x), where s denotes one of S patients. Using
this database, an sCT for a test patient is predicted by extracting patches from
his/her MR scan and performing an intensity-based nearest neighbor search in
the patch database. For a patch at position x′ = (x′, y′, z′) in the MR of the
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Figure 3.2: Intensity histograms of five T1-weighted brain MR scans of differ-
ent patients before and after normalization. Background values
have been excluded. Each scan is color-coded differently. The
scans were acquired on a 1 T Philips Panorama scanner.

test patient, the similarity measure is the squared L2-norm defined as:

d(s,x) = ||P (x′)− Ps(x)||22. (3.1)

The search then consists of finding the database patch that minimizes d(s,x)
and storing the corresponding patient and spatial position:

(smin,xmin) = argmin
s,x

d(s,x). (3.2)

The search can be extended to find the K most similar database patches and
the K relevant target values are extracted from the database as Tsmin

k
(xmink )

with k = 1, ..,K. To assign an sCT HU value, a similarity-weighted average is
computed:

sCT(x′) =

∑

k

wk × Tsmin
k

(xmink )

∑

k

wk
, (3.3)

with weights defined as:

wk = exp


 −d(smink ,xmink )

min
k

d(smink ,xmink )


 . (3.4)

This ensures that if one patch is more similar than the rest, this patch is weighted
highly; conversely, if all patches are equally similar, they are weighted equally.
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3.2.3 Search space reduction

The above procedure requires a patch similarity search in the entire database of
patches for each patch in the patient MR. Since a typical MR scan consists of
millions of voxels, this would be computationally very expensive. A straightfor-
ward way to reduce the computational burden is to only consider voxels within
the patient and simply assigning a bulk density of −1000 HU (air) to all back-
ground voxels. A further way to reduce the search space is to put a spatial
constraint on the database patches such that only database patches that are
spatially close to x′ will be considered. To infer the spatial relationship between
the database MRs and the patient MR, an affine alignment of each database MR
and the patient MR is therefore performed. The search is then constrained to
only contain database patches in a local cuboidal search volume, Vsearch, of side
length v voxels around x′, such that x ∈ Vsearch in Equation 3.2. This reduces
the number of database patch candidates to S×v3 for each patch in the patient
MR. Finally, highly dissimilar patches can be discarded using a computation-
ally cheaper similarity measure. The structural similarity measure (SSIM) [51]
is based on the mean and variance in each patch, and is defined as:

SSIM(x, s) =
(2µx′µx,s + c1)(2σx′σx,s + c2)

(µ2
x′ + µ2

x,s + c1)(σ2
x′ + σ2

x,s + c2)
(3.5)

where µx′ and σx′ are the mean an standard deviation of the patch at position
x′ in the test patient and µx,s and σx,s are the same for a patch at position
x in database patient s. c1 and c2 are small constants to avoid infinity. All
patches with SSIM < 0.95 are discarded prior to the patch search performed in
Equation 3.2. A situation may arise where all patches are discarded in a search
volume. In such situations, the sCT value in the affected voxel is flagged as
unknown and in post-processing, the voxel is assigned the average sCT value of
the closest assigned voxels. For the intensity fusion in Equation 3.3, the K = 8
most similar patches are used unless the SSIM only allows a smaller number.
An illustration of the patch-based sCT generation is shown in Figure 3.3 for a
simplified 2D case.
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Figure 3.3: 2D patch-based sCT prediction. Step 1: A patch, P (x′), is ex-
tracted from the patient MR at position x′. Step 2: The SSIM
between MR patches is used to reduce the database of spatially
close patches, Ps(x), stored with their corresponding CT value,
Ts(x). Step 3: Using Equation 3.2, the k = 1, .., 8 most similar
database patches, Psmin

k
(xmink ), and their CT values, Tsmin

k
(xmink ),

are found from the remaining database. Step 4: Using Equation
3.3, the CT values, Tsmin

k
(xmink ), are combined to produce the final

sCT value at position x′.
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3.3 Experiments and results

In this section we summarize the main results presented in paper B [52]. This
paper consists of a thorough comparison of the patch-based approach with two
state-of-the-art approaches within the voxel-based and multi-atlas-based cate-
gories, respectively. The voxel-based method was based on dual echo UTE scans
and used a Gaussian mixture regression (GMR) model to learn the relationship
between MR and CT intensities [16]. The multi-atlas method used non-linear
registrations of T1-weighted scans and local normalized cross-correlation for the
intensity fusion step [30]. We refer to paper B for the exact implementation
details, but note that the main parameters for each method were chosen based
on a nested cross-validation in order to ensure a fair comparison.

3.3.1 Data

Data consisted of MR and CT scans of five whole brain RT patients, three male
and two female, aged 55-82 years. The CT scans were acquired on a Philips
Brilliance Big Bore CT with a voxel resolution 0.6×0.6×2 mm, 512×512×110
voxels using a standard protocol for brain scans (120 kV, 300 mAs). The MR
scans were acquired on a Philips Panorama 1 T open scanner. The sequences
were a T1-weighted 3D Fast Field Echo (FFE), TE/TR = 6.9/25 ms, voxel
resolution 0.85× 0.85× 1.2 mm, 188× 188× 152 voxels and two UTE scans at
flip angles 10◦ and 25◦ with TE1/TE2/TR = 0.09/3.5/7.1 ms and an isotropic
voxel resolution of 1 mm with 2563 voxels. The patients were fixed in treatment
position during both the MR and CT scanning using thermoplastic masks. Each
patient’s MR/CT pair was rigidly aligned using mutual information with the
default settings as implemented in 3D Slicer [53].

3.3.2 Evaluation

The sCTs were evaluated using a leave-one-out scheme in terms of their voxel-
wise, geometric, radiologic, and dosimetric accuracy using the measures de-
scribed in Chapter 2. For the WEPL evaluation, paths were defined as radial
spokes from the center of the brain towards the skin of the patient. For the dosi-
metric evaluation, two planning target volumes (PTVs) were defined for each
patient; one in an anatomically homogeneous region (PTV 1) and one in a chal-
lenging heterogeneous region (PTV 2). As shown in Table 3.1 and Figure 3.4, we
found that the voxel-based GMR approach had a lower voxel-wise, geometric,
and radiologic accuracy compared to the other two methods. This is also clear
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from the visual quality of the sCTs shown in Figure 3.5. In all non-dosimetric
measures, the patch-based approach had the smallest error, closely followed by
the multi-atlas approach. A study containing more patients is probably still
needed to determine whether there is a significant difference between the two.
In the dosimetric evaluation, PTV2 proved challenging for both the GMR and
multi-atlas approach, see Figure 3.6. This can potentially be explained by a
lower sCT quality in the nasal cavity of these approaches, since PTV2 was po-
sitioned next to these cavities. Currently there is no consensus on the required
dosimetric accuracy of an sCT, however, a conservative requirement could be to
state that for 95% of patients the dosimetric deviation in PTV coverage should
be within 2% [54]. A population-based study is required to establish if this
requirement is met; however, the patch-based method passed this criterion for
both PTVs for the five patients used here.

Patch-based Multi-atlas GMR
MAEvox [HU] 85 (σ = 14) 97 (σ = 19) 148 (σ = 22)
MEvox [HU] 1 (σ = 14) −4 (σ = 17) 22 (σ = 28)

DSCbone
0.84

(σ = 0.02)
0.83

(σ = 0.01)
0.67

(σ = 0.03)

MAEWEPL [mm] 2.2 (σ = 1.0) 2.7 (σ = 0.8) 4.8 (σ = 1.3)
MEWEPL [mm] 0.4 (σ = 1.8) −0.6 (σ = 1.9) 1.1 (σ = 2.1)

Table 3.1: Voxel-wise, geometric and radiologic error measures. Average value
and standard deviation (σ) for five patients are shown.
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Figure 3.4: MAEvox calculated in bins of 20 HU and averaged across the five
patients. Figure from [52].
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3.3.3 Discussion

With these promising results, we demonstrated that the patch-based approach
could be used for sCT prediction without relying on non-linear registrations. A
rough affine alignment is computationally simpler and potentially less prone to
fail even for regions with large anatomical variation (i.e., non-brain regions). A
concern, however, could be that for such regions, an affine registration would
be insufficient to bring similar structures into the necessary alignment for the
local patch search. A larger search volume would then be needed, which would
slow down the method. Computation time for the patch search step is another
concern. The time saved by using affine registrations instead of non-linear ones is
by far exceeded by the time required for the patch search. As already pointed out
in [35], the improvement from a patch search may not be worth-while compared
to simpler atlas-based approaches. Using the patch-based approach, we achieved
an average prediction time of approximately 15 hours for one sCT, which is too
much to enable same-day planning and treatment of e.g., palliative patients.



30 Patch-based generation of sCTs from conventional MR

Figure 3.5: Transverse slices for comparison of sCTs with the CT. (a)-(d)
shows the CT, the GMR sCT, the multi-atlas sCT and the patch-
based sCT, respectively. (f)-(h) shows the difference maps between
the CT and the GMR, the multi-atlas and the patch-based sCTs,
respectively. Negative values indicate an overestimation of the
HU value and positive values indicate an underestimation. Figure
from [52].
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Chapter 4

Speeded up patch-based
generation of sCTs in the

pelvis

This chapter introduces the methodology and summarizes the main findings of
paper C. In that paper, we introduced an approximate nearest neighbor algo-
rithm for speeding up the patch-based approach for sCT prediction. Further-
more, we applied the method in the pelvic region and thoroughly evaluated the
resulting sCTs.

4.1 Introduction

In the previous chapter, the patch-based approach showed a promising potential
for MR-only RT in the brain region. This served as motivation for also testing
the method in other body regions. A downside of the method was the com-
putation time, which made a clinical implementation applicable to all patient
groups difficult. The search for similar patches is a nearest-neighbor problem
in a high-dimensional vector space, which becomes increasingly demanding as
the patch size and number of candidates increase. Due to the high dimension-
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ality, a linear search is often the most efficient for solving this problem [55],
but this is prohibitively slow for our application. So-called approximate near-
est neighbor algorithms try to speed up the search by not guaranteeing to find
the exact nearest neighbors but only good approximations. One such approach,
specifically designed for patch matching in 2D images, is the PatchMatch (PM)
algorithm [56]. Because it is designed to utilize the coherency and spatial struc-
ture in images, it uses less memory and is faster than other approximate algo-
rithms such as kd-trees [56,57]. Like the patch-based approach described in the
previous chapter, PM is another example of a computer vision/image editing
algorithm that finds usage in medical image analysis. Different authors have
successfully adapted PM for patch matching in a multi-atlas setting with MR
data [58–60]. For some, the reported speed-up enables near real-time hippocam-
pus segmentation of MR images whilst maintaining a competitive accuracy [60].
With these promising results, the adapted PM algorithm could potentially also
speed up sCT prediction.

As described in Chapter 2, non-brain body sites have some intrinsic challenges,
which may affect an atlas-based method such as the patch-based approach.
After introducing the adapted PM algorithm, we proceed with a description of
the changes needed to adapt the patch-based method for the pelvis.

4.2 PatchMatch Algorithm

The original PM algorithm is designed for finding patch correspondences in two
2D images, A and B. It exploits a spatial coherence in the patch correspondences
such that if a good match is found for one patch, good matches for its adjacent
patches are assumed to be present adjacent to that match. This drastically cuts
down on the required number of distance calculations compared to a brute-force
search. It consists of 3 main steps: a random initialization, a propagation phase,
and a random search phase.

Initialization The algorithm is initialized by randomly assigning a matching
patch in B to each patch in A. Let f be a mapping function that for each pixel
coordinate (i, j) in A stores the pixel coordinates (i′, j′) of the current best
matching patches in B such that f(i, j) = (i′, j′). For each pixel coordinate in
A, the value of f is initialized by a uniform random sampling of coordinates
(i′, j′) in B.



4.2 PatchMatch Algorithm 35

Propagation After the initialization, a propagation of good matches is carried
out. Given a patch, P (i, j), centered on the coordinate (i, j) in A, the idea is
that if a good match is found at f(i − 1, j) in B for the adjacent patch (one
pixel to the left) P (i− 1, j) in A, then the patch at f(i− 1, j) + (1, 0) (one pixel
to the right) in B is going to be a good match for P (i, j) in A. By checking
for improved candidates at f(i − 1, j) + (1, 0) and f(i, j − 1) + (0, 1) in scan
order (left to right, top to bottom) in the image, good matches are propagated
between adjacent patches.

Random search After propagation, a random search for better candidates is
carried out at an exponentially decreasing spatial search radius from the current
best matches. Usually this search radius initially spans the entire image and is
exponentially decreased a number of times until a pre-defined threshold. The
random search is done to avoid that the propagation phase gets stuck in a local
minimum.

Iterations The algorithm proceeds by switching between propagation and
random search for a fixed number of iterations or until convergence. At even
iterations the propagation is done by checking the patches at f(i+ 1, j)− (1, 0)
and f(i, j + 1)− (0, 1) in reverse scan order.

4.2.1 Adaptation for a multi-atlas setting

A number of changes are needed to adapt the PM algorithm for use with vol-
umetric data and multiple atlases. We follow most of the methodology of [58]
and [60]. An illustration of the different steps of the adapted PM algorithm are
shown in Figure 4.1.

Initialization As the data are volumetric and consist of multiple atlases, a
random voxel coordinate (i′, j′, k′) and atlas patient, s, for the candidate near-
est neighbors must now be chosen such that f(i, j, k) = (s, i′, j′, k′) for each
patch in the patient MR. Furthermore, the search volume, Vsearch, used in the
patch-based prediction model is used to constrain the initialization. In Figure
4.1, three adjacent patches (red, green, and blue) are initialized with candidate
nearest neighbors in three different atlas patients within Vsearch (yellow dashed
line).
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Propagation The propagation phase is similar to the original PM algorithm
except that the third dimension (i, j, k ± 1) is included in the check for better
candidates. In Figure 4.1, propagation of a better candidate to the red patch
at (i, j, k) in the patient MR is shown. The blue patch is at (i, j − 1, k) and
assuming that the nearest neighbor of the blue patch is at f(i, j − 1, k) in atlas
1, the patch at f(i, j− 1, k) + (0, 0, 1, 0) is checked for a better match to the red
patch. Assuming a better match is found, the nearest neighbor of the red patch
is now situated in atlas 1 instead of 3. By also checking at f(i−1, j, k)+(0, 1, 0, 0)
(the match for the green patch), the nearest neighbor could move to atlas 2.

Random search The random search is constrained by Vsearch and is only
performed in the atlas patient of the current nearest neighbor. The tested
candidates are chosen randomly within Vsearch, and not within an exponentially
decreasing spatial search radius. In this step, candidate nearest neighbors can
not jump between atlas patients as in the propagation phase.
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Figure 4.1: The PM algorithm used with multiple atlases. 1. For each patch in
the patient MR image (here shown as adjacent red, green, and blue
patches), a random initialization of candidate nearest neighbors
(shown in same-colored dashes) are assigned by choosing a ran-
dom atlas and a random position within a constrained neighbor-
hood (shown in yellow dashes). 2. In the propagation phase good
matches are propagated between adjacent patches, here shown for
the red patch: The blue patch is to left of the red patch in the pa-
tient MR, so we check if the patch to the right of the current near-
est neighbor of the blue patch is a better match for the red patch.
Similarly, we check in the "above" (green patch) and "in" direc-
tions (not shown). 3. A random search for improved candidates of
the red patch is carried out in the constrained search area of the at-
las of the current nearest neighbor. The process is iteratively going
between 2. and 3., in each propagation phase switching the direc-
tion (left/above/in or right/below/out) in which adjacent patches
are considered.
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4.3 Adaptation for the pelvic region

Aside from using an approximate patch search, we also make some other changes
to the approach described in paper B in order to adapt the method for the pelvis.

Non-linear intra-subject registration To ensure spatial correspondence
between voxels and to account for organ movement between the scans, we non-
linearly align each atlas patient’s MR scan to his CT scan using Elastix [61]. This
is required due to the non-rigidity of the pelvic region, which causes intra-patient
differences in the MR and CT scans. These differences are mainly observed in
the body outline, bladder shape and positions of air in the intestines. The
non-linear registration is performed once to prepare a good training MR/CT
database but is not required during sCT prediction.

Atlas pre-selection The patch-based method relies on affine registrations to
roughly align the atlases with the patient MR. On our data of ten patients,
this worked for the most part without issues, i.e., registering nine atlases to one
patient MR. However, there were cases where one or more atlas patients were
poorly aligned with the test patient MR after the registration. Misalignment
happened frequently for two patients, where the field of view covered a slightly
different part of the pelvis than the rest of the patients, e.g., when parts of
the femoral heads were missing. The consequence of the misalignment was
that the limited patch search volume became situated in wrong regions of the
atlas patient. It seemed that when this happened, similar patches could still be
found in the wrong region, causing prediction errors. A popular solution used
in atlas-based brain segmentation is to introduce an atlas pre-selection step,
which leaves out the most dissimilar patients [62]. We employ such an atlas pre-
selection based on the squared Euclidean distance between the registered atlas
MR and the patient MR, calculated within the body contour of the patient
MR after intensity normalization. We keep the five most similar atlases for the
remaining steps.

Intensity normalization In paper B, we used a single intensity landmark to
split the intensity scaling in two linear segments (Figure 3.1). This landmark was
the median intensity and the assumption was that it would robustly correspond
to the same tissue type across patients. In order for this assumption to be valid,
the relative amounts of each tissue type have to be constant across patients,
which was not the case in the pelvis. The fat-to-muscle ratio was not constant
and since fat and muscle have distinct intensities in T1-weighted MR, the median
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Figure 4.2: Intensity histograms of 10 T1-weighted pelvic MR scans of differ-
ent patients after intensity normalization. Left panel shows the
normalization using the median landmark. Right panel shows the
normalization using two landmarks.

intensity was sensitive to this ratio. Instead of the median intensity we therefore
use two landmarks determined as the histogram peaks corresponding to muscle
and fat. This provides a more robust intensity normalization as shown in Figure
4.2.

4.4 Experiments and results

In this section we summarize the main results presented in paper C [63]. This
paper consists of a thorough evaluation of the approximate patch-based ap-
proach applied in the pelvis. Furthermore, a comparison with a simple bulk
density sCT approach (called MRw), where the whole patient was assigned a
water-equivalent HU, is carried out.

4.4.1 Data

MR and CT scans of ten prostate RT patients aged 55-82 years were retrospec-
tively obtained. The CT scans were acquired on a Philips Brilliance Big Bore
CT using a standard protocol for pelvic scans (120 kVp, 232-503 mAs). The
scans were acquired with a voxel spacing of between 0.78 × 0.78 × 2 mm and
1.4× 1.4× 2 mm, for an in-plane matrix of 512× 512 voxels and 129-199 slices.
The MR scans were acquired on a Philips Panorama 1 T open scanner using a
bridge body coil with a T1-weighted sequence, TE/TR = 10/623 ms. The voxel
spacing was 0.80× 0.80× 4 mm, for an in-plane matrix between 528× 528 and
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640×640 voxels and 16-24 slices. The approximate duration of the T1-weighted
sequence was 5-7 minutes. The patients were fixed in treatment position during
both the MR and CT scanning using the same fixation devices.

4.4.2 Algorithm speed-up

As a first test of the PM algorithm, we ran the algorithm on the same brain
data as used in paper B, with the same parameter settings (patch size, search
volume size). As shown in Table 4.1, the speed-up of sCT prediction is sub-
stantial. On average, the MAEvox was increased by 12 HU, which we find is a
worthwhile compromise. We note, however, that the average MAEvox is now
equal to what we achieved with the multi-atlas approach in paper B, which is
still low compared to many of the approaches described in chapter 2. Whether
the same is the case for the dosimetric performance, remains to be investigated.
The average prediction time for the pelvis scans was 20.8 minutes.

Median prediction time Avg. MAEvox

PM 12.4 min 97 HU
Brute force 16.3 hours 85 HU

Table 4.1: Comparison of the adapted PM algorithm with the brute force
search used in paper B. The time needed for affine registrations
is not included.

4.4.3 Evaluation

sCTs were predicted for each patient in a leave-one-out fashion, using the re-
maining nine patients as atlases. In Figure 4.3, examples of the resulting sCTs
using the approximate patch-based approach and the MRw approach are shown.
In most regions, the patch-based method predicts the correct HU value as illus-
trated by the difference maps. The compact bone region is slightly underesti-
mated, illustrating the challenging nature of these voxels.
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Figure 4.3: Qualitative comparison of CT and sCTs. (a)-(f) show alternately
the CT and the MR (non-linearly registered to the CT) that the
sCTs are based on, for different views. (g)-(l) show alternately
the patch-based sCT and the difference maps between the patch-
based sCT and CT. (m)-(r) show alternately the MRw sCT and the
difference maps between the MRw sCT and CT. The top colorbar
relates to the sCTs and the bottom colorbar to the difference maps.
A negative HU difference indicates an overestimation of the true
HU value.
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In Table 4.2, voxel-wise, radiologic and dosimetric (γ-index pass rates) error
measures are shown. The patch-based approach performs significantly better
than the MRw method, which should be the case given the simplicity of the
MRw.

Metric Patch-based MRw p-value
MAEvox [HU] 54 (8) 105 (12) < 10−7

MEvox [HU] −1 (7) −16 (11) 0.003

MAEWEPL [mm] 1.2 (0.3) 2.5 (0.3) < 10−10

MEWEPL [mm] −0.3 (0.7) 0.5 (0.5) < 10−4

Pass rate γ2%/2mm 0.99 (0.01) 0.98 (0.01) 0.014

Pass rate γ1%/1mm 0.97 (0.02) 0.94 (0.03) 0.019

Table 4.2: Voxel-wise and radiologic error (rows 1-4) as well as the mean 2D
γ-index pass rates for all dose points greater than 10% of the pre-
scribed dose (rows 5-6). Average value and standard deviation (σ)
for ten patients are shown. In the rightmost column are the results
of a paired t-test on the difference between the patch-based and
MRw methods.

In Figure 4.4, the percentage deviation in dose volume histogram (DVH) points
relevant to the planning target volume (PTV), rectum, and the femoral heads
are shown. The median deviation for the patch-based approach is close to
0% for all the evaluated DVH points. In general, our DVH analysis shows the
importance of evaluating not just the high dose PTV region, but also the OARs,
which are typically situated in the medium and lower dose regions. It is mostly
in these regions that the patch-based sCT strategy demonstrates its advantages,
showing a significant difference from the MRw approach.

4.4.4 Discussion

With the sCTs generated using the approximate patch-based method, we showed
promising results for the pelvic region. This region is more challenging than the
brain, due to the greater anatomical variation and non-rigid nature of the pelvis.
On the other hand, the large amount of soft tissue compared to compact bone in
this region may make it more forgiving towards incorrect bone predictions. In
our opinion, the MRw approach performed surprisingly well in the DVH analysis
of the PTV as well as in the γ pass rates. The lack of bone predictions did,
however, cause significant dosimetric differences in the femoral heads.
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Figure 4.4: Tukey-style boxplots showing the relative deviation in percent for
the different methods in relevant DVH points for the PTV and
OARs. ∗∗ indicates a significant difference at the α = 0.01 level
and ∗ indicates a significant difference at the α = 0.05 level.
The dashed horizontal line indicates zero deviation. rect: rectum,
fem.s: femur sinister, fem.d: femur dexter.

The non-rigidity of the pelvic region poses a substantial challenge, as non-linear
registration is required to align the intra-patient MR and CT scans in the atlas
database. Since we cyclically use each atlas as test subject in the leave-one-out
cross-validation, the accuracy of this registration affects both the evaluation and
prediction, as it determines the ground truth relationship between MR and CT
and thus also between sCT and CT. The general outcome of the registration was
satisfactory, but for some patients a difference between MR and CT was still
observed post-registration. It should be noted that the non-linear registrations
only need to be performed once in order to create spatial correspondences in the
atlases. This is done in a separate offline step. When this is done, the method
only relies on affine registrations to predict an sCT. Since it does not affect the
algorithm run-time but is important for the sCT prediction, it could potentially
be worth the effort to improve the quality of the non-linear registrations when
creating the atlases. This could be achieved by a structure-guided registration
[28].

Due to variations in the data acquisition, the inter-patient affine registration
of atlas MRs with the patient MR failed for some patients. This affected the
prediction accuracy of the patch-based approach. An atlas pre-selection step
to remove globally dissimilar atlases solved this issue. Ensuring that the exact
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same anatomical region is always covered in the scan could potentially remove
it altogether. A more robust affine alignment could also be investigated [32].

The above observations regarding the difficulty in registrations show one of the
main points in switching to MR-only RT in the first place, which is to avoid intro-
ducing a registration-induced uncertainty when transferring delineations from
the MR to the CT. Some authors have argued against atlas-based approaches
because of the contradiction in trying to remove registration uncertainties by
using registrations [64, 65]. The patch-based approach is dependent on rough
affine alignments of the atlas MRs with the patient MR. It is important to note,
however, that unlike the single MR to CT registration performed to transfer de-
lineations in the MR/CT treatment planning workflow, the patch-based method
relies on multiple MR to MR registrations, which only need to roughly align the
scans. If one completely fails, atlas pre-selection ensures that the sCT is not nec-
essarily affected. Still, it is theoretically possible to encounter a patient for which
all registrations fail, which is the intrinsic weakness of an atlas-based method.
Another potential issue with atlas-based approaches (including the patch-based
method) is that they are non-parametric. This means that the main computa-
tions are done in the prediction step, i.e., when registering the atlases with the
patient MR and doing the intensity fusion of the atlas CTs. We have presented
a substantially faster patch-based approach than in paper B with a prediction
time of approximately 12 minutes in the brain and approximately 20 minutes
in the pelvis. This enables same-day planning and treatment of patients. With
the introduction of the MR-Linac, even faster prediction times would probably
still be preferred to generate an adapted treatment. This could potentially be
achieved by a GPU-based implementation.



Chapter 5

MR normalization tests and
impact of different MR

scanners on sCT prediction

This chapter describes some preliminary tests of the patch-based approach de-
scribed in chapters 3 and 4 in the scenario that the atlas MR scans are acquired
on a different scanner than the patient MR. Furthermore, it includes a test of
the method when unexpected anatomical differences are present in the patient
MR.

5.1 Introduction

Our patch-based approach relies on finding similar patches by comparing inten-
sity values in the MR scan of the patient and the MR scans in the atlas-database.
To enable this comparison, the method includes a normalization step, which at-
tempts to align the intensity histograms of atlas and patient MRs. The method
is landmark-based, which means that it attempts to find consistent landmarks
that correspond to the same tissue type in the histogram of each MR scan. The
landmarks are then aligned by a piece-wise linear scaling of the histograms. For
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the brain, we used a single histogram landmark, the median intensity, which was
aligned across patients. For the pelvis, we found that the median intensity was
not a robust landmark because the relative amounts of fat and muscle varied
between patients. This could skew the median value either toward the intensity
of fat or the intensity of muscle depending on the patient. We found that the
distinct shapes of the histograms in the pelvic region required two landmarks
to robustly normalize the intensities. These landmarks corresponded approxi-
mately to the intensity of fat and the muscle, respectively, and were found by a
simple peak detection algorithm.

Until now, all the MR normalizations were carried out on data from the same
MR scanner, a 1 T Philips Panorama. In practice, it would be desirable to have
a method that can be applied across scanner platforms, imaging protocols, and
disease states. For both the approximate and the exact patch-based method,
being scanner-independent requires that the pre-acquired atlas database can
be used to convert patient data coming from different MR scanners than the
one used to acquire the atlases. For this reason, we decided to test the use of
scans from a Panorama scanner as atlases to predict sCTs of the brain on data
coming from a 1.5 T Philips Achieva scanner. We also decided to further test the
robustness of the normalization procedure by predicting sCTs from Gadolinium
(Gd) contrast-enhanced scans acquired on the Achieva scanner, again using the
Panorama scans as atlases. This is a test of both the algorithm’s robustness to
data from a different source as well as to data containing abnormalities (Gd-
enhanced tumors), which are not present in the atlas scans.

5.2 Experiments and results

We apply the previously described approximate patch-based method to predict
sCTs from the Achieva scans with and without contrast-enhancement.

5.2.1 Data

The atlases we used consisted of four patients scanned at the 1 T Panorama with
a 3D T1-weighted sequence (TE/TR = 6.9/25 ms, voxel spacing 0.85×0.85×1.2
mm, 188 × 188 × 152 voxels). The test patients consisted of four other pa-
tients scanned at the 1.5 T Achieva scanner using a 3D T1-weighted sequence
(TE/TR = 4.1/25 ms, voxel spacing 0.4 × 0.4 × 0.9 mm, slice thickness 1.8
mm, 512× 512× 180 voxels). In addition, each test patient had a Gd contrast-
enhanced scan, highlighting tumors, also acquired on the Achieva. One of the
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Figure 5.1: Intensity histograms of T1-weighted brain MR scans of different
patients before (left) and after (right) intensity normalization. The
red curve is for a scan acquired on an Achieva scanner and the
remaining ones are for the atlas scans acquired on a Panorama
scanner.

test patients also had a scan on the Panorama, which enabled a direct compar-
ison of the resulting sCTs predicted from the different data sources but with
the same atlases. All patients had one corresponding CT scan for comparison,
which was acquired on a Philips Big Bore CT scanner using a standard proto-
col. All MR scans were registered to the CT with a rigid registration using the
Elastix toolbox [61].

5.2.2 Normalization and prediction with different scan-
ners

In Figure 5.1, examples of the histograms of one Achieva patient (red curve)
and 4 Panorama patients are shown before and after normalization. In the
histograms before normalization, the intensities have been scaled to [0, 255] to
remove global intensity scaling differences. After normalization using a single
landmark, the histograms seem to have a satisfactory alignment. Using the
approximate patch-based sCT prediction method of Chapter 4, we achieved an
average MAEvox of 117 HU (σ = 17 HU) for the four patients scanned on the
Achieva scanner. For the patient who had both a Panorama and an Achieva
scan, the MAEvox was 122 HU and 133 HU, respectively.
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Figure 5.2: Example of Gd-enhanced data. Left: CT scan. Middle: Gd-
enhanced T1-weighted scan. Right: Predicted sCT using the ap-
proximate patch-based approach.

5.2.3 Normalization and prediction with different scan-
ners and abnormalities

In Figure 5.2, an example of the Gd-enhanced scan is shown along with the pre-
dicted sCT and the CT. The Gd-enhanced tumors seem to not visually degrade
the sCT quality.

Due to the contrast-enhancement, the histogram of a contrast-enhanced scan
differs from a scan without contrast-enhancement. The bright spots in the
enhanced tumor regions cause an additional small peak in the high intensity
range (see Figure 5.3, left). Similar to the pelvis scans, using the median value
as a single landmark in the normalization procedure may therefore not describe
the same tissue type in all histograms if the atlases do not contain the contrast-
enhancement. Using a simple detection of the largest peak in the histograms
seemed to provide a robust landmark contained in all scans (see Figure 5.3,
right). This procedure, we believe, could be employed on all T1-weighted brain
scans instead of the median landmark. Using the approximate patch-based
approach, the average MAEvox of the sCTs based on the contrast-enhanced
scans was 131 HU.

5.2.4 Discussion

In this preliminary study, we tested the approximate patch-based method’s ro-
bustness to data from a different source as well to data containing previously
unseen abnormalities. The results of our normalization tests indicate that as
long as the imaging sequence is similar, it is possible to normalize data coming
from different scanners to some degree. Using landmarks centered on peaks of
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Figure 5.3: Histograms of brain scans from different scanners including con-
trast. Left panel: Histograms before normalization. The red curve
is for a contrast-enhanced scan acquired on the Achieva scanner.
Notice the additional peak at an intensity of around 150. The
remaining curves are the histograms of the atlas scans acquired
on the Panorama. Right panel: Histograms after normalization
using a single landmark placed at the most frequently occurring
intensity.

the histograms is the most robust as it is not affected by the relative amounts
of voxels in different tissue types. Looking at the histograms in Figure 5.1
and Figure 5.3, there are still small differences in their shape. This may be
due to natural anatomical variation between patients, which can explain the
varying amounts of voxels with a specific intensity. It could also be caused by
a sub-optimal normalization. For brain data of five patients scanned on the
Panorama, we previously found an average MAEvox of 97 HU using the approx-
imate patch-based algorithm with an atlas of four patients also acquired on the
Panorama MR scanner (see Table 4.1). We observe a slightly higher average
prediction error of 117 HU for the Achieva scans. For the patient who had both
a Panorama scan and an Achieva scan, the Achieva scan also had the highest
prediction error.

When adding contrast to the Achieva scans, we saw a further average increase
in MAEvox compared to the scans without contrast (131 HU vs. 117 HU).
Looking at the histogram normalization in Figure 5.3, the procedure is able
to align the largest peaks. However, the shape of the histogram in the high
intensity region still differs from the atlas scans (red curve vs. other curves).
The contrast enhancement does not only affect tumor regions but also blood
vessels and the dura surrounding the brain. This potentially makes it harder
to find similar patches in these regions and may explain the higher MAEvox.
To minimize motion-related differences, it is favorable to carry out all steps
in the MR-only RT chain on one MR scan, i.e., delineation, sCT prediction,
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and treatment planning. From the results shown here, one additional MR scan
before Gd injection might be necessary for sCT prediction of the brain.

From the current preliminary study of the impact of predicting sCTs based on
scans that are different from the atlas scans, we observed that the predictions of
the patch-based method seem affected to some degree. However, the relatively
small patient group in this study can only serve as an indication of the true per-
formance. An evaluation of the dosimetric impact of the higher MAEvox when
predicting from different source scans should also be carried out since this im-
pact may be negligible. It should be noted that the Gd-enhanced scans provide
just one example of an abnormality/pathology that affects prediction with the
patch-based approach. How other abnormalities affect the method remains to
be investigated. We conclude that care should be taken when implementing the
method in a clinical setting, where the scans are acquired on a different scanner
or with different scan parameters than what is used to acquire the atlases. A cal-
ibration procedure could be considered in order to ensure that the normalization
and prediction is satisfactory. Furthermore, the impact of abnormalities should
be investigated further and QA procedures should be established to ensure that
potential outliers in terms of prediction quality are detected.



Chapter 6

Voxel-based sCT generation
from conventional MR

This chapter introduces the methodology and summarizes the main findings of
paper D. In that paper, we used a voxel-based approach with conventional MR
sequences for sCT prediction in the pelvis.

6.1 Introduction

In Chapter 4, we outlined some of the potential issues with an atlas-based
method. These included the dependency on accurate registrations and the fact
that the main computations are performed during prediction. Although our
patch-based approach is an atlas-based method that relies less on accurate reg-
istrations and is relatively fast, it does not remove these issues entirely. Fur-
thermore, as demonstrated in Chapter 5, the normalization required for the
patch search may not always be straightforward and could require individual
calibration procedures for different scanners.

A voxel-based parametric model theoretically removes the issues with heavy
online computations and registration dependencies. Here, all parameters to
predict an sCT are learned in a separate offline training stage. This stage



52 Voxel-based sCT generation from conventional MR

is usually computationally demanding, but once the parameters are learned,
prediction is a matter of applying the parameters to the new data without the
need for registrations. This is usually computationally simpler, yielding fast
prediction times. As mentioned in Chapter 2, the main challenge with a voxel-
based approach is to distinguish between identical compact bone and air voxels
in MR. With conventional MR sequences, this must be solved using additional
features extracted from the MR. Furthermore, a voxel-based approach will suffer
from the same potential issues with cross-scanner MR normalization as the
patch-based approach unless special care is taken when choosing the input to
the model. Intensity alone, or features that directly rely on the intensity could
yield an approach that is only applicable to certain data or certain scanners.

Random forests (RFs) [66] have shown to compare favorably against other pre-
diction models, especially as the dimension of the input data increases [67]. As
such, RFs have become a go-to tool in many supervised learning tasks in com-
puter vision. Probably the most well-known application is in Microsoft’s Kinect
sensor, where RFs are used for real-time human pose estimation [68, 69]. RFs
have also shown their versatility for different classification and regression tasks
in medical image analysis [70–73]. Furthermore, they have been proposed for
predicting one MR contrast from another [74, 75]. This task differs somewhat
from CT synthesis because the bone/air ambiguity does not need to be solved;
the prediction model only needs to identify and predict the lack of signal in
these regions, but is not required to distinguish whether it is caused by bone or
air. In paper A, we applied an RF for sCT prediction based on UTE MR scans,
achieving competitive results compared to other UTE-based methods [11]. RFs
have also been used to segment bone and air in conventional MR images of the
brain using PET data, textural and contextual features as input [26].

In paper D, we use RF models to predict sCTs based on conventional T1-
weighted MR scans without using any registrations during CT synthesis. We
overcome intensity-ambiguities by using local texture descriptors, spatial fea-
tures and edge information. Furthermore, inspired by recent works in tumor
and organ segmentation [76, 77], we use the concept of auto-context (AC) [78]
to iteratively learn and improve context features. We use a combination of clas-
sification RFs for learning context features and a regression RF to ultimately
predict an sCT. In an attempt to make the method broadly applicable, we use
intensity invariant features: the gray-scale intensities are at no stage used di-
rectly as input. We apply the model in the pelvic region using the same data
as in paper C, i.e., ten prostate patients. In paper D, we compared the method
with simple baseline methods since paper C was not yet published. Here, we
instead compare the quality measures to the patch-based approach of paper C
and discuss the pros and cons of the two methods.
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6.2 sCTs using multiple random forests and auto-
context features

The RF-based sCT method consists of three main steps:

1. Initial classification.

2. Building auto-context features.

3. Converting features to an sCT estimate.

Below we provide a brief introduction to random forests and describe the steps
of the sCT method in detail.

6.2.1 Random forests in short

An RF is an ensemble method consisting of multiple randomized decision trees.
By training the decision trees randomly, they individually provide sub-optimal
classifications or predictions. An average of the contributions from each decision
tree improves the accuracy and generalization error of the RF [66,79].

A decision tree has an internal structure consisting of nodes. At each internal
node, a binary decision function is used to split data to left and right child nodes
according to a criterion. The binary decision function takes the following form:

h(Xt,βt) ∈ {0, 1} (6.1)

where Xt is a matrix of the data reaching node t and βt contains the split
parameters at node t. The split is achieved by choosing one or more of the input
variables in Xt and then choosing a threshold on the value of those variables
(or a linear combination thereof) to decide which data goes left and right. The
chosen input variable and threshold is stored in βt.

The criterion that decides the threshold often measures the impurity of the
nodes, which takes on lower values when a node contains many instances of the
same class/value and higher values when it contains multiple classes/values in
equal amounts. A commonly used impurity measure for classification is the Gini
impurity and for regression the variance [80].

The objective is thus to split the data such that the sum of the impurities in
the left and right child nodes becomes smaller than the impurity in the parent
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node. Using training data, the optimal βts are learned and the tree is grown
until all terminal nodes are pure or until a pre-specified stopping criterion is
met. At the terminal nodes a prediction is stored based on the training data.
For classification, it could be the majority class at the node and for regression
it could be the mean value in the node. To predict using the decision tree, test
data are propagated down the tree using the learned thresholds. At the terminal
nodes, the stored classes/values in each node are assigned to the data that reach
those nodes. Randomness can be induced in the decision trees by training them
on a random subsets of the data. Furthermore, the node optimization can be
randomized by only allowing a random subset of βt to be tested. Below follows
a description of our RF-based method.

6.2.2 Step 1: Initial classification

The MR intensity information can be used directly to train a prediction model
but this may limit its general applicability. For this reason, we use features that
to some degree are independent of linear gray-scale changes.

Local binary patterns We use local binary pattern-like (LBP) features [81]
to capture textural information. For each voxel, we do a relational comparison
of the mean value of a cuboidal region centered on that voxel with mean values
of 26 cuboidal regions positioned on a sphere around that voxel. This results in a
26 digit binary number which is converted to a decimal texture feature (dubbed
LBPµ). We also incorporate a variant of the LBP where the standard deviation
of the regions is compared instead (dubbed LBPσ). We use three LBPµ and two
LBPσ features with differing region size (RS), 33 - 53 voxels, and sphere radius
(SR), 5 - 13 voxels, to capture information at different scales.

Edge detector As a simple edge detector, we use the standard deviation of a
3×3×3 neighborhood around each voxel, dubbed σ. It should be noted that the
standard deviation is invariant to intensity offsets but not to intensity scaling.

Spatial information As spatial features, we use the (x, y) position of each
voxel in a patient-dependent coordinate system. The origin is situated in the
center-of-mass of the patient and the coordinate axes are scaled to unity at the
surface of the patient. This spatial feature takes into account the varying sizes
of patients and requires no registration to a common space. Figure 6.1 shows
examples of the initial features.
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We train a classification RF to segment an MR scan into air, fat, soft tissue
and bone classes based on the features described above. The training target
segmentations are generated by thresholding the CT scans using the following
criteria: air = [−1000,−200] HU, fat = ]−200, 0[ HU, soft tissue = [0, 150], bone
= ]150,∞[ HU. For each training patient, we then sample our features at 6×105

and 105 random positions within the body outline and within the bone volume,
respectively. This defines our training set for the classification RF.

(1, 1)

(a)

(b) (c)

(d) (e)

Figure 6.1: Features are extracted from the T1-weighted MR shown in (a).
(b) and (c) shows examples of the LBPµ (SR/RS = 11/53 voxels)
and LBPσ (SR/RS = 7/53 voxels), respectively. (d) shows the
standard deviation feature. (e) shows the coordinate system used
to derive the spatial features; the origin is positioned in the center
of mass of the patient and the axes are scaled relative to the outer
contour of the patient. Figure from [82].

6.2.3 Step 2: Building auto-context features

We apply the trained initial RF to create a variant of auto-context (AC) fea-
tures [78] for all training patients, which are then used in combination with the
initial features to train an improved classification RF. This process is repeated
three times, each time using the most recently trained RF to improve the AC
features. The AC features are calculated based on the three probability maps
of a voxel belonging to the fat, soft tissue or bone classes. For each voxel, the
feature extracts the mean probability of belonging to each class in a small region
centered on that voxel, along with the same mean probabilities of six regions
chosen at a fixed distance from it in the posterior/anterior, superior/inferior and
lateral directions. The AC feature extraction is illustrated in Figure 6.2. In this
way, we encode the approximate locations and relations of the tissue classes.
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Classification with level 1 AC features Classification with level 2 AC features Classification with level 3 AC features

(a) (b) (c) (d)

Figure 6.2: Examples of the output probability maps of the bone class for
a test patient after sending the data through (a) the first clas-
sification RF and (b)-(d) the subsequent classification RFs with
improving AC features. The AC feature for a voxel consists of
the mean probability of a small region (shown in black) around
the voxel along with the mean probability of 6 small regions at
a fixed distance in the posterior/anterior, superior/inferior and
lateral directions (shown in white for the posterior/anterior and
lateral directions). Figure from [82].

6.2.4 Step 3: Converting features to an sCT estimate

As the final step, we train a regression RF based on the initial features and
the last level of AC features. We use the non-thresholded CT scans as target
values and sample our features from each training patient at 1.3× 106 and 105

random positions within the body outline and bone volume (defined as voxels
with HU > 150), respectively.

6.3 Experiments and results

We carry out all model training in a leave-one-out manner using nine patients
as training data and applying the model on the tenth. The prediction time
for one sCT is approximately 10 minutes. This should be compared to the
approximately 20 minutes (excluding registrations) used by the approximate
patch-based method on the same data.

In Figure 6.3, transverse slices are shown for the RF-based method and the
patch-based method of paper C. As shown in Table 6.1, the RF-based approach
is on par with the patch-based approach although the MEvox shows a greater
tendency for overestimation of the true HU values. Qualitatively, the RF-based
sCT is blurrier than the patch-based as seen in Figure 6.3. This can probably
be explained by the type of features used, which are mainly derived from small
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RF-based Patch-based p-value
MAEvox [HU] 58 (σ = 9) 54(σ = 8) 0.05

MEvox [HU] −10 (σ = 10) −1 (σ = 7) 0.001

MAEWEPL [mm] 1.3 (σ = 0.4) 1.2 (σ = 0.3) 0.11

MEWEPL [mm] −0.7 (σ = 0.6) −0.3 (σ = 0.7) 0.01

Table 6.1: The voxel-wise and radiologic errors. Average value and standard
deviation (σ) for 10 patients are shown for the two methods along
with the p-value from a paired t-test on the difference between the
two methods.

box regions. Using more features at the voxel-level could potentially provide a
more crisp sCT. The RF-based sCTs seem to have fewer ”hot-spots” of underes-
timation in the compact bone region than the patch-based method, see Figure
6.3 (e) and (f).

Figure 6.3: Transverse slices of the CT and sCTs for one patient. (a) and
(d) show the CT and corresponding T1-weighted MR. (b) and
(c) show the sCTs generated with the RF-based method and the
patch-based method, respectively. (e) and (f) show the difference
in HU between the CT and the sCTs in (b) and (c), respectively.
No colorbar is shown for the MR image.
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6.3.1 Discussion

Given the fact that our RF-based method works on conventional MR without
any registrations at run-time makes the approach an appealing alternative to
atlas-based approaches such as our patch-based method. One of the arguments
for using a voxel-based model is the theoretically fast prediction times. Since
each tree in an RF is completely independent of the others, RFs have especially
demonstrated their speed in fully parallelized and/or GPU-based versions [69,
73]. The resulting prediction time of approximately 10 minutes for an sCT is
therefore not impressive, although it is faster than the patch-based approach
described in paper C. The CPU-based RF implementation that we used here
[83] was not parallelized, which is otherwise key to achieving fast prediction
times. The average prediction time of one tree was approximately 1 second. By
parallelizing the RF, substantial speed-ups could likely be achieved.

By specifically avoiding intensity-based features, the method could potentially
be broadly applicable on data from different scanners. However, this remains to
be investigated. In paper B and C, a histogram matching approach was needed
to normalize the intensities for the patch search. In this step, assumptions about
the intensity frequencies in different tissues must hold. As we saw in Chapter 5,
the normalization procedure and resulting sCTs seem affected with data from
different scanners. Theoretically, histogram matching should not be necessary
with the proposed RF-based approach, although we did apply it in paper D as
well. The only reason for this was that it was part of the pre-processing pipeline
that we also used in paper C. After realizing this, we ran the algorithm on the
same scans without histogram matching. This resulted in an average MAEvox

of 63 HU, which is 5 HU more than the average MAEvox when using histogram
matching but still almost within the standard deviation. Whether this has a
significant dosimetric impact remains to be investigated. We found that a global
intensity-scaling of the scans to a common range of [0, 255] was still needed, since
the scaling of the intensities affects the local standard deviation features. As
future work, we think it would be beneficial to remove/replace these features.

We note that with the rather limited amount of data available to train our
models, there is a risk of over-fitting to the data from our scanner. Testing
the method’s robustness using data from various scanners as well as training
models based on more data remains part of our future work. Furthermore,
the dosimetric accuracy of the RF-based sCTs remains to be investigated to
determine if the quality is indeed as close to the patch-based as this initial
investigation suggests.

An interesting property of RFs is the ability to get estimates of the feature
importance during training. This can be estimated by calculating the sum of
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Figure 6.4: Mean decrease in Gini impurity caused by the different variables.
Left: The results for the initial classification forest. The super-
script in the LBP features increases as the scale of the features
increases. Right: The results for the final level of auto-context
training. The first feature in each of the AC groups is the mean
probability of belonging to the subscripted class, computed in a
box centered on each voxel. The remaining six features in each
group are the mean probabilities of six neighboring regions.

the decrease in impurity that a given feature causes across all trees and nodes
in the RF. A feature that is decreasing impurity more than others is considered
more important. This information can be used for feature selection and model
reduction. In Figure 6.4, the feature importance is shown as the mean decrease
in Gini impurity for the initial classification RF and the final AC classification
RF. In the initial classification, the y position is causing the largest decrease in
impurity, whereas the LBPσ features are less important. These could potentially
be removed. In the final stage of classification using the AC features, the central
AC features of each class dominate, whereas the neighboring AC features are less
important. At this stage, the classification from the previous stage is thus the
most informative for deciding the splits. In Figure 6.5, the feature importance
is shown for the final regression RF. The same pattern is observed as for the
classification RF in Figure 6.4. However, the neighboring ACbone features are
almost as important as the central ACsoft. From the results shown here, it
could be interesting to further investigate the role of the current features as well
as new features in order to find an optimal model with no redundancy in the
inputs.
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Figure 6.5: Mean decrease in mean squared error caused by the different vari-
ables used in training the final regression RF.



Chapter 7

Conclusion and future
directions

During the relatively short course of these PhD studies, MR-only radiotherapy
and specifically CT synthesis methods have developed rapidly and have gone
from being a small niche field to its first commercial implementations [34, 84].
What seems to be missing at the moment is a thorough large-population study,
which could establish proper confidence intervals on the dosimetric implications
of using MR-only for RT. As an initial step, this could be done parallel to
the standard MR/CT work-flow. To my knowledge, such a study is currently
beginning in Sweden with the ambitious ”Gentle Radiotherapy” initiative [85].
Otherwise, most other studies so far have introduced a novel sCT approach
and then performed evaluations on limited data. In that sense, this thesis falls
in line with the rest of the field. We have proposed and investigated several
different methods for CT synthesis using limited available data. However, we
have attempted to always include a benchmark for comparing new and existing
methods such that strengths and weaknesses could be illustrated on the basis
of the same data.

In an attempt to identify the most promising method, our initial efforts in
paper A were aimed at voxel-based approaches in the brain using specialized
UTE MR sequences to overcome bone/air ambiguities. We found regression-
based methods to be promising candidates, but also realized some of the short-
comings of using specialized MR. These included the added scan time, which was
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uncomfortable for the patients. Furthermore, the limited quality of the UTE
scans seemed to also put an upper limit on the possible quality of the predicted
sCTs. We therefore decided to investigate sCT methods based on conventional
MR sequences. These approaches were dominated by atlas-based methods that
relied on non-linear registrations to overcome intensity ambiguities. Inspired
by work in brain MR segmentation, we proposed a patch-based method, which
only required affine registrations of the atlases and we showed a competitive
performance compared to voxel-based and more traditional atlas-based methods.
The competitive performance did, however, come at the cost of computation
time, which yielded a method that could not be used for same-day planning and
treatment of patients.

Our next effort was aimed at improving the speed of the algorithm while in-
vestigating a different and more challenging treatment site. We applied an
approximate patch search algorithm to predict sCTs in the pelvic region with
a substantial speed-up compared to our previous implementation. The sCT
quality measures were on par with other reported atlas-based methods.

Interestingly, this thesis ended where it started: with a voxel-based approach.
However, considerable improvements were incorporated such that the method
now worked with conventional MR sequences with broad applicability in mind.
The initial results suggested that the method was close in performance to our
patch-based approach but theoretically without having many of the potential
shortcomings of an atlas-based approach. An investigation of the method on
more data is still needed, however. Furthermore, the method could potentially
be improved by investigating and improving the input features.

Even though a large-scale feasibility study of MR-only RT is still missing, it
should be noted that all small-scale studies published so far show only small
dosimetric deviations (< 2%) between using an sCT or a CT [34,35,52,63,65,86].
Many consider these deviations clinically unimportant compared to the possible
systematic errors introduced in the MR/CT work-flow [34,65,87]. The promising
potential of using synthetic CTs for MR-only RT has therefore been shown
multiple times. What is needed next, is to confirm this potential on a larger
scale and to develop quality assurance procedures of the sCTs [88].
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Abstract 

Introduction 

Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, 

would remove the systematic registration error between MR and computed tomography (CT), and provide 

co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, 

need to be assigned to the MRI images for dose calculation and patient setup based on digitally 

reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a 

number of popular voxel-based methods to generate a so-called pseudo CT (pCT). 

Material and methods 

Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. 

An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for 

three popular types of voxel-based approaches; 1) Threshold-based segmentation, 2) Bayesian 

segmentation and 3) statistical regression. Each approach contained two methods. Approach 1 used bulk 

density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse 

relaxation time T2 of the bone.  Approach 2 used similar bulk density assignments with Bayesian statistics 

including or excluding additional spatial information. Approach 3 used a statistical regression correlating 

MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated 

for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with 

the pCT of each method was quantified and compared with the other methods geometrically and 

dosimetrically using both a number of reported metrics and introducing some novel metrics. 

Results 

The best geometrical agreement with CT was obtained with the statistical regression methods which 

performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial 

information). All methods agreed significantly better with CT than a reference water MRI comparison.  The 

mean dosimetric deviation for photons and protons compared to the CT was about 2 % and highest in the 
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gradient dose region of the brainstem. Both the threshold based method and the statistical regression 

methods showed the highest dosimetrical agreement. 

Conclusions 

Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT 

of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric 

considerations regardless of their correct geometrical position. 

 

Introduction 

Magnetic resonance imaging (MRI) has proven advantageous as compared to computed tomography (CT) in 

the delineation precision of target volume and organs at risks (OARs) in the brain and for other body sites 

[1-3]. In addition, matched MR and CT images reduce interobserver delineation variability [4]. Therefore, CT 

is now routinely combined with MRI in the planning of radiotherapy (RT) in many centers. This procedure, 

however, introduces a systematic error arising from the registration between the two modalities. A mean 

registration error of about 2 mm has been reported for RT treatment in the cranial region using a 

stereotactic head frame on the CT [5]. As cranial stereotactic radiation surgery (SRS) is increasingly 

performed on conventional Linacs in frameless head-and-neck fixation devices [6, 7], registration errors are 

comparable to those of head and neck. These have been reported to be around 2 mm with a 95% 

confidence interval of up 5 mm [8]. With the tight margins used in modern IMRT and VMAT plans (< 5 mm) 

such registration errors could lead to target miss and/or OARs overdose and could prove critical. This is 

especially true in SRS cases with proton therapy using pencil beam scanning [9, 10].  

Removing the CT scan and basing the entire treatment workflow, i.e. simulation, planning and delivery on 

MRI as the single modality, so-called MRI-only RT, would eliminate this registration error.  Also, intrinsically 

registered functional images such as diffusion weighted MRI could act as a non-invasive guidance for dose 

escalation volumes within the tumor [11, 12] . The main concerns with MRI-only RT are scanner induced 

geometrical distortions arising from gradient non-linearity and magnet inhomogeneities, patient induced 

artifacts such as susceptibility and chemical shift, and, which is the focus of this study, no direct relation 

between voxel grayscale values and electron density [13].  The latter is needed for dose calculation and 

bone visualization in the generation of digitally reconstructed radiographs (DRRs) for patient setup 

verification and delineation guidance of e.g. bone demarcation of lymph nodes. Further, bone density 

assignment on MRI has proven necessary in attenuation correction of hybrid PET/MRI systems for correct 

standard uptake volume (SUV) estimation [14]. 

In general, both atlas- and voxel-based approaches have been pursued for electron density assignment of 

MR images [15-17]. Here, we will investigate a number of strategies within the voxel-based approach. An 

MRI sequence which has shown a great potential for voxel-based assignment of electron densities is the 

dual ultrashort echo times (dUTE) sequence [18, 19]. By fast k-space sampling and a minimum delay in coil 

transmit-to-receive mode (the so-called tune delay), an acquisition can be obtained immediately after 

excitation (TE1) and one at a later time (TE2). Hence, visualization of contrast for solid-state like structures 

with a very short T2 relaxation time such as the cortical bone (between 0.5 ms and 1.7 ms at 1.5 and 0.5 T, 

respectively) becomes possible [20, 21]. A number of investigators have used the dUTE sequence to make 
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bulk density assignments based on somewhat flexibly designed thresholds [21-25] or create a so-called 

pseudo-CT (pCT) using statistical regression [26, 27]. Multiple studies have reported on the dosimetric 

feasibility of MR bulk density based photon treatment plans for various treatment sites [28-33] but only 

recently have a few studies emerged in which the CT data is completely absent in the density assignment 

[34, 35].  

Voxel-based segmentation approaches have mostly been investigated individually in the literature with 

diverging application endpoints in mind. Here, we investigate three categories of approaches which are 

commonly reported; threshold-based segmentation (hybrid PET/MRI system) [21, 24], Bayesian statistics 

(brain tissue classification) [37-39] and statistical regression (MRI-only RT) [17, 26, 27].We will investigate 

and compare the approaches using two methods within each category on the same dataset for 

radiotherapy purposes by generating pCTs and comparing the geometrical agreement with their 

corresponding CTs. Further, we investigate the dosimetric impact of pCT dose planning for a similar photon 

and proton treatment generated on all the patients. Finally, the geometrical and dosimetrical agreement 

for the methods are compared and discussed.   

Material and methods 

Imaging 

Five patients, three men and two women age 55-82 years, receiving cranial irradiation with palliative intent 
were included in the study and informed consent was obtained from all patients to acquire extra MR 
images in addition to their standard treatment. Each patient data contains a co-registered MRI (Philips 1T 
Panorama HFO) and CT scan (Philips Big Bore CT) with the patient immobilized in a thermoplastic mask 
both at the CT and MRI scanner. The MR images were obtained with dual flex coils to make room for the 
patient immobilization devices. Two dUTE scans were acquired at flip angles 10 and 25o each using the 
minimum and an optimized echo time at TE1=0.09 and TE2=3.5 ms, respectively. The two flip angles are 
introduced to discriminate between T2 identical tissues with different T1 properties [15, 26] and are used as 
input for the statistical regression methods. For the other methods, only the dUTE images at 25o were 
applied. The TE2=3.5 ms was found to yield the highest contrast-to-noise ratio for soft tissue versus bone in 
a bovine knee phantom over a 1.7-6.0 ms investigated interval [36]. Other dUTE MRI parameters were 
TR=7.1 ms and a FOV and isotropic resolution of 256 and 1 mm, respectively. One dUTE sequence at one 
flip angle had 512 slices, 256 for each TE (the CT had about half), and had a scan time of about 5 minutes in 
a radial 3D acquisition mode. In addition, a T1w 3D MRI scan with TE=6.9 ms, TR=25 ms and 1.2 mm 
resolution was acquired and used for auto-delineation of the brainstem and other OARs.  A typical dUTE 
image can be viewed in Figure 1 at TE1 (left) and TE2 (middle). The study was approved by the Capital 
Regional Ethics Committee (protocol number H-3-2011-107). 
 
Voxel-based approaches 

To illustrate the different voxel-based methods, a synthetic patient containing four tissue classes was 

created from the dUTE images in Figure 1. The four tissue types with distinct attenuation coefficients were: 

air cavity, adipose and soft tissue, and cortical bone (Figure 1, right). The dUTE intensity histogram of the 

synthetic patient is illustrated in Figure 2. Here, each tissue is color coded and the optimal TE2 acquisition 

time is illustrated when the tissue intensities are separated the most (Figure 2, middle). A bulk or 

continuous density assigned MRI is collectively referred to as a pseudo-CT (pCT) in the following.   

Threshold-based segmentation 
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Bulk tissue classification based on thresholds has received an increasing interest for attenuation correction 

in hybrid PET/MRI systems [21, 24].  Figure 3A illustrates a method we label as R2, since it is based on the 

decay constant of the bone (R2=1/T2) [21]. Below a manually set threshold in the TE1 intensity, all voxels are 

set to air. If the intensities are above this value and have decayed faster than the decay constant of bone, 

then voxels are classified as bone and otherwise as soft tissue (soft and adipose). Figure 3B illustrates a 

method we label as Logic based on the Boolean operations performed [23]. An air threshold for the TE1 

intensities is again assigned. If the TE2 intensities are below a threshold and the TE1-TE2 difference 

intensities are above another threshold (here bone will light up) then voxels are considered as bone. 

Otherwise, voxels are again assigned to soft tissue(s). For the threshold-based segmentation, the threshold 

values were manually determined for each individual patient by inspection of the MRI intensities. The 

decay constant for cortical bone was estimated from the dUTE sequence to be around 0.4 ms-1 why this 

value was used for all the patients. 

Bayesian segmentation 

Bayesian statistics including spatial information have been investigated for tissue segmentation on MR 

images of the brain [37-39]. The basic assumption in Figure 3C and D is that the TE1 and TE2 voxels come 

from a mixture of multivariate normal distributions. An expectation maximization (EM) algorithm [40] was 

used to estimate the parameters of the underlying Gaussian distributions.  A posterior probability for 

belonging to each Gaussian distribution, i.e. tissue class, can then be estimated for every voxel. Finally, 

voxels are assigned to the tissue class with the highest posterior probability. This describes the method 

named Bayes in Figure 3C which has a known four class distribution. The Markov Random Field, MRF, 

method in Figure 3D further takes the tissue class of neighborhood voxels into account when estimating the 

posterior probability. From the EM algorithm, the Bayes and MRF methods use an initial value of 7 tissue 

classes (multiple soft tissue classes were collected to the same HU) for the patients. The neighborhood 

weighting for MRF was set to 0.7 based on 26 neighboring voxels. At a weighting factor of 0, the MRF 

method reduces to the Bayes method.  

Statistical regression 

Statistical regression has shown a great potential for MRI-only RT and PET/MR attenuation correction of the 

brain [17, 26, 27]. In Figure 3E, Gaussian mixture regression (GMR) is visualized in a simplistic way for the 

TE2 intensities. Again, the intensities are assumed to origin from a mixture of normal tissue class 

distributions but now the co-registered CT data are also included, yielding a multidimensional Gaussian 

mixture model [26]. In this way, a model to perform regression between MRI and CT intensities can be 

trained with the EM algorithm on multiple patients and a pCT can be estimated from the MRI input data of 

a patient not included in the training. Random forest regression (RaF) can be inspected in Figure 3F. Here, 

the MRI training data are split at the nodes in a binary decision tree using thresholds to optimize some 

criteria, e.g. minimize the absolute deviation of the corresponding registered CT data from the mean CT 

number of the split [41]. Performing the RaF on a random subgroup of the training data and limiting the 

number of possible splits results in a sub-optimal regression tree (Figure 3F, gray lines). Using a number of 

regression trees (a forest), the average of the suboptimal regressions improves the generalization error 

(Figure 3F, thick black line).  
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In addition to the 4 dUTE images (2 echo times at 2 flip angles), 8 derived filtered images containing dUTE 
means and standard deviations were included as inputs in the regression training of the patients. The GMR 
method had 20 initial tissue classes and a k means clustering algorithm provided the initial cluster centers 
as input for the EM algorithm [26].  The RaF method used CART criteria for tree training [42], 80 trees and a 
minimum terminal node size of 10. Both models included an air mask to reduce the amount of data. The 
GMR and RaF models were trained with the MRI and CT data of three patients and predicted the pCT of a 
patient not included in the training using only the MRI input of that patient. 
 

Treatment planning 

A photon and proton treatment plan with three equally weighted fields, two lateral opposing and one 
anterior field, were created for each patient in Eclipse v. 11 (Varian Inc.). The apertures were cropped to 
the target tumor with a 5 mm margin. In the lateral opposing fields, however, the margin was compromised 
dorsally due to the brainstem which was either shielded (photons) or given a zero mm margin (protons). 
Dose calculations were made with the AAA algorithm for the 6 MV photons and the CAPGEN algorithm for 
the 70-250 MeV protons (CAP general accelerator and the uniform scanning technique). The treatment 
planning was carried out on each pCT. The plan was then transferred and re-calculated on the real CT using 
the same planning parameters, i.e. the same monitor units for the photon plans and same beamline 
settings and normalization value for proton plans. A spherical tumor target with a 3 cm diameter was 
identically positioned between the nasal cavity and brainstem for all the patients. The tumor was 
subsequently cropped to the cavity. The brainstem was auto-delineated with iPlan v. 1.5.0 (Brainlab) on the 
high resolution T1 weighted MRI scan, see Figure 4. In this way, the performance of the pCTs were tested in 
a worst case scenario in which a large portion of the radiation fields travels through alternating tissues with 
large density differences  before depositing the dose in the tumor (high dose volume) and brainstem 
(gradient dose volume). A mean absorbed dose of 2 Gy in 30 fractions was prescribed to the tumor volume. 
For the threshold and Bayesian segmentation methods, soft tissues, bone and air cavities were assigned CT 
numbers equal to 0, 971 (cranial bone [43]) and -993 HU, respectively. A calculation in which the entire MRI 
is set to water (MRIw) was included for comparison. An example of the pCT-CT pair wise DVH comparisons 
can be seen in Figure 5. 
 

Metrics  

A number of metrics were introduced to quantify the geometric and dosimetric performance of the pCTs as 

compared to the corresponding CTs. The dice similarity coefficient [16, 44] was calculated for soft tissue 

and bone as 

pCT
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     (1) 

where Vx is the volume of tissue x. The bone volume included all voxels with a CT number > 200 HU giving a 

density of 1.14 g/cm3 according to our CT calibration curve which is between the density of cartilage and 

spongious bone [43]. Soft tissue volumes included voxels with CT numbers > - 100 and ≤ 200 HU giving a 

minimal density of 0.95 g/cm3 including most adipose tissue. To further quantify the geometrical 

agreement between pCT and CT, the mean absolute error, MAE, and mean error, ME, were calculated [17]. 

They are given by

N

i

ii pCTCT
N

MAE
1

1

 and 

N

i

ii pCTCT
N

ME
1

1
 
where N is the total number 
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of voxels and i is the voxel index. Both quantities have the unit of HU. The percentage of patient voxels 

classified as air cavity (< -200 HU ), bone (> 200 HU) and soft tissue (all additional voxels) was calculated for 

all pCTs and the percentage point difference as compared to the CT was extracted for each tissue. The 

cumulative percentage point difference was then calculated. Here, we define the mean absolute 

percentage deviation as 
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Similar, the mean percentage deviation is defined as 
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For geometrical comparisons, y is the CT value in HU of voxel i and for dosimetrical comparisons y is the 

dose value in Gy of DVH point i. 
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is the mean CT value to avoid singularities, especially for 

geometrical HU values around the value of water. We now define a combined geometrical score as 
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where M is the total number of tissue classes and j is the tissue class index. In our case, M is 2 for soft tissue 

and bone. The absolute value of MPD is taken to avoid a cancellation with the MAPD value. The normalized 

summation term of the dice similarity coefficients is approaching zero for perfect agreement (DSC →1) or 1 

for maximum disagreement (DSC →0). In this way, the term containing the MAPD and MPD is scaled with a 

factor between 0 and 1. A good agreement is characterized by a low CGS value. The combined dosimetric 

score is more simply given as 

MPDMAPDCDS      (5)  

Further, the percentage difference from CT for a number of pCT DVH points was calculated. The tumor DVH 

points were the near-maximum absorbed dose (D2), the near minimum absorbed dose (D98) and the 

median absorbed dose (Dmedian) collectively describing the target coverage [45]. For the brainstem, the 

difference in Dmax was scored as this is commonly used as a DVH constrain in clinical practice [46, 47]. In 

addition to the CDS score, a DVH-reduction model was introduced to quantify the biological effect of the 

differences in the entire DVH [46, 48]. This is done through the generalized equivalent uniform dose (gEUD) 

given by 

aN

i

a

iidvgEUD

1

1

     (6) 

where vi is unitless and represents the i’th partial volume receiving dose di in Gy. N is the total number of 
partial volumes and a is a unitless model parameter specific to the tumor or Brainstem. di was converted to 
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an equivalent dose in 2 Gy fractions (eqd2) using  =3 for the brainstem and =10 for the tumor. a=7 
for the brainstem and a=-10 for the tumor [48, 49]. 
 

Results 

Geometrical performance 

The pCT performance in terms of geometrical agreement with the corresponding CT for the different 

methods is summarized in Table 1. The dice scores (DSCb, DSCs), errors (MAE, ME) and prediction deviations 

(MAPD, MPD) are showing an increasing agreement between pCT and CT with an increasing level of model 

sophistication and complexity, i.e. from water (top), through the threshold and Bayesian based methods to 

the statistical regression (bottom). A box plot for the CGS, including its individual components, shows the 

same trend in Figure 6. A two-tailed pairwise t-test (pooled standard deviation and p adjusted values [50, 

51])  between the CGS of the different methods showed a significant (p<0.05) lower value for the GMR and 

RaF methods compared to the R2, Logic and Bayes methods (not MRF). All methods’ CGS was significantly 

lower than that of water. The MAE of the statistical regression methods (GMR and RaF) in Table 1 are in the 

same range as those reported in the literature (117-176 HU) [26, 27, 35]. The ME showed a systematic 

underestimation of the HU values as compared to CT for the water and threshold methods and the 

opposite for the Bayesian based methods. The statistical regression methods showed almost no systematic 

tendency. In Figure 7, the DRRs of all the methods are visualized for a patient. By inspection of the DRRs, a 

lower CGS results in a better image quality of the DRR images. 

Dosimetrical performance 

A box plot for the CDS for the tumor and brainstem, including its individual components, is shown in Figure 

8. For all panels, the CDS is highest for the reference MRI water plan reflecting the largest deviation 

compared to the re-calculation on the CT. This has the highest impact for protons. The MPD for the tumor 

is in opposite directions for the photon and proton plans in the high dose region (tumor) whereas they are 

in the same direction in the gradient dose region (brainstem). This is also apparent in Figure 5 for the MRIw 

panels.  For the photon plans, the CDS of the Bayesian statistics methods (Bayes and MRF) seem to perform 

just as poorly as the MRI water reference calculation. The deviation scored by the CDS is about a factor of 

10 smaller for the high dose region as compared to the gradient dose region. The changes in density of the 

pCTs seem to have largest impact for photons as compared to protons in the high dose region and the 

opposite in the gradient dose region. Surprisingly, the threshold based methods (R2 and Logic) which have 

a high CGS value (poor geometrical agreement) show the lowest dosimetric deviation compared to CT for 

both photons and protons (see discussion).  Dose metrics for tumor coverage, brainstem Dmax and 

biological effect (gEUD) are shown in Figure 9. In general, dose calculations performed on pCTs using 

protons overestimates the dose compared to CT (deviations below zero) whereas the opposite is the case 

for photons (deviations above zero). Although the MRI water calculation overall result in the largest 

deviations and the statistical regression methods in general have the smallest deviations, the trends in data 

are somewhat heterogeneous.  Especially, the threshold based methods seem to give the best agreement 

with the CT re-calculation and this is most pronounced for photons. Except for water, the mean deviation is 

within 2 percent for most panels and highest in the gradient dose region of the brainstem especially when 

considering the deviation of the entire DVH. 
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Discussion 

MRI is increasingly becoming a more integral part of the RT simulation process, and recently, also 

introduced as an image modality at the accelerator for online treatment adaptation [52]. For online MRI 

guided systems, a calculation performed on the MRI scan obtained onsite would be needed to get a plan of 

the day. This calculation could either be made on a density corrected MRI (a pCT) or through deformable 

registration of the MRI to the planning CT.  Such issues together with the need for elimination of CT-MRI 

registration error raise focus on density corrected MRIs. Here, we have investigated and quantified 

different voxel-based strategies to obtain a pCT. Both from a geometric and dosimetric point of view, 

making some form of density correction is always better than assigning all tissue to water at least in the 

challenging parts of the brain region. 

As scored by the CGS, the threshold based methods do not perform well as compared to the other methods 

although good geometric agreement was reported previously [21, 24, 25]. The dependence of manually set 

thresholds represents both the strength and weakness of these methods; they can be optimized to a 

particular dataset but can be hard to reproduce on other datasets. Conversely, the statistical regression 

methods show the best geometrical agreement and seem to be robust across scanning platforms and 

patient data [15, 17, 26]. A correlation between geometrical and dosimetrical agreement can be observed 

for the reference water MRI (poor) and the statistical regression methods (good). This is, however, not the 

case for the threshold and Bayesian methods. Especially the threshold methods demonstrate a surprisingly 

good dosimetric agreement which is most pronounced when considering deviations of the entire DVH (DSC 

and gEUD for tumor and brainstem). Some explanation might be found in column 4-5 of Table 1. Although 

the threshold based methods have a low voxel-wise geometrical agreement, the deviation in different 

tissue amount is low and of the same order as the statistical regression methods.  In Figure 10, the 

dosimetric consequence of tissue location and tissue amount is tested for a three field treatment plan 

similar to the patient plans. From this test, it is clear that tissue amount (Figure 10B, low deviation) rather 

tissue position (Figure 10C, high deviation) is of dosimetric importance. In other words, it is the photon 

attenuation and proton stopping power (continuous-slowing-down approximation range [53]) that is of 

primary concern rather than changes in the fluence spectra entering the different materials. Protons, 

however, seem to be less forgiving for the latter which can be observed in Figure 9 where the low deviation 

for the threshold methods  is less pronounced as compared to photons. The cumulative error is defined in 

the caption of Table 1. It corresponds well with the dosimetric agreement for the phantom since it is low 

(zero) in Figure 10B which has a low dosimetric deviation and poor geometrical agreement (low DSC) and 

high in Figure 10C which has a high dosimetric deviation and good geometrical agreement (high DSC). This 

metric seem to be of importance when considering the dosimetric properties of a pCT. The metric, 

however, is probably a too simplistic measure as both the threshold and statistical regression based 

methods show a low cumulative error but diverse dosimetric results. One could, for example, imagine the 

inserts in Figure 9 lying outside the irradiated volume affecting the dice similarity coefficient and 

cumulative error but leaving the dosimetric deviation unaffected. A measure combining the correct amount 

of a given tissue and the correct position of it would probably be a better alternative (the MAE of water 

equivalent path lengths did not resolve the ambiguity in the data). 
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The overall 2 % dosimetric deviation was set in the context of registration errors by shifting the treatment 

plans 2 mm in the longitudinally, transverse and vertical direction for all patients. This resulted in an overall 

displacement vector of 3.4 mm which is between the cited mean of 2 mm and 95% CI of 5 mm [8]. A re-

calculation resulted in a Dmedian and D2 deviation between 0.5-1% which is about the same as the pCT 

deviations shown in Figure 9. Due to the gradient dose regions within field aperture (which is present in 

intensity modulated treatment plans), however, large differences were observed for D98 (≈18%), 

gEUD.tumor (≈ 13%), gEUD.brainstem (≈ 21%) and Dmax (16-29%). This illustrates the critical impact of 

registration errors on clinically relevant dosimetric parameters. 

Rank et al. used discriminant analysis in a Gaussian Mixture Model framework to generate pCTs [17]. They 

reported on the dose differences in the PTV mean dose in a beam arrangement with lateral opposing 

proton or carbon ion fields [35]. These deviations were within 0.4-1.8 % which is in in good agreement with 

our results (the Dmedian deviation of the GMR point of upper left panel in Figure 9) although in the lower 

range. This could probably be explained by the more challenging position of our target behind the nasal 

cavity compared to their target which was positioned in the posterior part of the brain. Also, the addition of 

an anterior field through the nasal cavity in our study could add to an increased deviation. They also 

reported on a very low deviation, about 0.2 %, for a 7 field photon plan for the same target. It is hard to 

compare this result with the dosimetric photon deviation of this study since the beam arrangement and 

target position is different.   Jonsson et al. generated pCTs  using the GMR method [34] . They reported on 

the dose deviation for D90 of a PTV positioned superior, medial and inferior in the brain, the latter being 

most similar to our target position. The inferior PTV had the largest D90 deviation of 0.9 % for all the PTVs 

which is about a percentage point lower than the GMR photon deviations observed in the D98 panel of 

Figure 9. Although they operated with a three field beam arrangement similar to this study, the anterior 

field was given only half the weight of the lateral opposing fields. Overall, it seems that we indeed have 

presented a worst case dosimetric setup and that the methods are likely to perform better in less 

heterogeneous parts of the brain. 

A statistical criterion for the safe use of MRI-only RT was reported to require a deviation less than 2% on 

the PTV coverage for 95% of the patients compared to a standard CT-based calculation  (≈ max|mean 

deviation ±2 standard deviations|)  [28]. Although this study probably has too few patients (low statistical 

power) for such considerations, the RaF method for both protons and photons seem to be the most 

promising candidate to fulfill such a criterion when inspecting the error bars (1 standard deviation) in the 

upper panels of Figure 9. To improve the statistical regression methods, addition of spatial information 

[27], a water-fat separating MRI mDixon sequence [54] and multiple T1 and T2 weighted sequences [17, 26] 

have been tested. Scored by the MAE, however, this did not improve the CT number agreement 

significantly; MAE=130 HU (spatial, GMR), MAE=128 HU (mDixon, GMR) and MAE=113 HU (mDixon, RaF). 

This suggests that focus should be on improving the prediction algorithms rather than the amount of input 

data.  

Conclusions 

We investigated the geometrical and dosimetrical performance of pseudo CTs as compared to their 

corresponding CT for a number of voxel-based algorithms.  Overall, pCTs generated from statistical 

regression methods seem to be the most promising candidates for MRI-only RT of the brain keeping the 

mean dosimetric deviation within 2 percent and a geometrical deviation to a minimum. The amount of 
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tissue with distinct absorption properties, however, also seems to be of dosimetric importance regardless 

of correct position.  
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Figures and tables 

 

Figure 1:  dUTE MRI images of a patient at times TE1=0.09 ms (left) and TE2=3.5 ms (middle). Four tissue 
classes; air cavity, adipose and soft tissue, and bone, were manually drawn (white lines). A synthetic patient 
was created containing the four tissues each with the mean and standard deviation from the TE1 image 
normalized to the mean intensity of adipose tissue and some Gaussian noise (right). 

 

Figure 2: The dUTE intensity histogram of the synthetic patient at different TE2 acquisition times: 0.35 ms 
(left), 3.5 ms (middle) and 175 ms (right). The intensities are normalized as in Figure 1. At TE2 ≈ 3.5 ms, the 
tissue classes are separated the most. White gray=air, T2 constant=0 ms. Light gray=adipose tissue, T2 
constant = 80 ms. Dark gray=soft tissue, T2 constant = 100 ms. Black=bone, T2 constant =0.5 ms. 
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Figure 3: The different methods used in this study illustrated on the synthetic patient at TE2=3.5 ms. The 
MRI intensities are normalized as in Figure 1 and tissues are color coded as in Figure 2. A R2: bone if decay 
≥ 0.35 ms-1 and intensity of TE1 image > 0.1715. B Logic: Air if intensity of TE1 image < 0.1715. Bone if 
intensity of TE2 image < 0.24 and intensity of TE1-TE2 image > 0.12. Otherwise soft tissue. C Bayes: Trained 
with 4 classes. Estimated classes are color coded and black ellipses represent the Gaussian distributions. D 
MRF: As in C with 8 neighbors with a neighbor weighting factor of 0.4. 2 voxels are shown with thin black 
lines to the 8 nearest neighbors to indicate a different classification than in the Bayes method. E GMR: MRI 
registered to the corresponding CT and manually assigned to 4 classes. The model included only the TE2 
images and manually set classes for illustrative purposes. Regression is shown with black line and the 
original color coding from the synthetic patient. F RaF: 4 initial classes on the TE2 image only and color 
coding as in E. Each tree regression (tree depth=3) is shown with gray lines and the forest (40 trees) 
regression with black line.     

 

 

Figure 4: A three field photon (A) and proton (B) plan. Delineated structures (black lines): tumor (thick) and 
brainstem (thin). Isodose curves (white): 50% (outer most), 95% and 100% (inner most). 
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Figure 5: Pair wise comparison of the pCT calculated DVH (dashed line) and the corresponding re-calculated CT DVH (solid line) of a patient.  The 
tumor (rightmost DVH) and brainstem (leftmost DVH) are shown for the proton (top) and photon (bottom) plan.  
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Table 1: Metrics of geometrical agreement between pCT and CT. Average value and standard deviation ( x) for the 5 patients are shown. Column 1: 
Dice similarity scores for bone (DSCb) and soft tissue (DSCs). Column 2: Mean absolute error (MAE) and mean error (ME) in units of HU. Column 3: 
Mean absolute prediction deviation (MAPD) and mean prediction deviation (MPD). Column 4: Percent point deviation between relative tissue amount 

in CT and pCT. Column 5: The cumulative error of column 4, 222

softbonecav . 

 

 

 

 

Method DSCb DSCb DSCs DSCs MAE MAE ME ME MAPD MAPD MPD MPD cav cav bone bone soft soft 

MRIw 0.00 0.00 0.85 0.02 213 28 108 34 2.1 0.6 1.0 0.0 -4.0 0.8 -17 2 21 2 27 3

Logic 0.49 0.05 0.87 0.02 226 20 50 36 2.2 0.6 0.4 0.2 0.3 0.4 0 4 -1 4 4 3

R2 0.48 0.03 0.86 0.02 241 29 50 32 2.4 0.6 0.5 0.3 -0.3 0.5 3 2 -3 2 4 3

Bayes 0.53 0.03 0.87 0.02 247 35 -59 29 2.4 0.6 -0.6 0.3 -1.8 0.5 11 3 -9 3 15 4

MRF 0.59 0.04 0.89 0.02 204 36 -27 37 2.0 0.5 -0.3 0.3 -2.0 0.4 3 4 -1 5 5 4

GMR 0.72 0.02 0.90 0.01 136 18 2 22 1.3 0.3 0.0 0.2 -0.7 0.3 3 4 -3 4 5 6

RaF 0.74 0.02 0.91 0.01 128 18 8 24 1.2 0.3 0.0 0.2 -0.5 0.3 3 4 -2 4 4 5
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Figure 6: Boxplots of the combined geometrical score (CGS, rightmost) including its individual components 
for the different methods. Horizontal lines=median values, box=first and third quartiles, vertical lines=1.5 
times the interquartile range and points=values > 1.5 times the interquartile range (outliers). For the DSC 
panel, soft tissue=gray and bone=black. In each panel, the best value, i.e. best agreement, is indicated with 
a dashed line. MRIw indicates an MRI with all voxels assigned to the density of water (HU=0). 
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Figure 7: Frontal (top) and lateral (bottom) setup DRRs of a patient. CT: A and I, MRI T1w: B and J (smaller caudal FOV ), R2: C and K, Logic: D and L, 
Bayes: E and M, MRF: F and N, GMR: G and O, RaF: H and P. 
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Figure 8: Boxplots of the combined geometrical score (CDS, rightmost) including its individual components 
for the different methods. Tumor (top) and brainstem (bottom). Photons: Black horizontal line= median 
value, white box= first and third quartile, black vertical line= 1.5 times the interquartile range and open 
circle=outliers. Protons: Closed black circle= median value, gray box= first and third quartile, gray vertical 
line= 1.5 times the interquartile range and closed gray circles=outliers. In each panel, the best value, i.e. 
best agreement, is indicated with a dashed line. 
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Figure 9: DVH points deviation of the pCT calculated value from the re-calculated CT value in %. Mean 
values and standard deviations are plotted for photons (gray lines, open circle) and protons (black lines, 
closed circle). The tree upper panels are the tumor coverage Dmedian (left), D98 (middle) and D2 (right). 
The three lower panels are gEUD for the tumor (left), Dmax for the brainstem (middle) and gEUD for the 
brainstem (right). Connected lines are introduced only to illustrate trends in data. 
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Figure 10: A virtual cylindrical water phantom (0 HU, gray) with air (-1000 HU, black) and bone (1000 HU, 
white) inserts in the three beam directions. A: The reference phantom with a 3 field equally weighted 
photon and proton plan giving a dose of 2 Gy in 30 fractions to a spherical 5 cm diameter target (black 
circle). Tissue percentages are given in the figure. The plan is re-calculated on the phantoms in B and C. B: 
Air and bone inserts are interchanged. Dice coefficients and cumulative error are given in the figure. 
Deviations photons/protons: CDS·10-3=1.6/ 0.2, Dmedian=0.05/0.0%, D98=0.2/0.01%, D2=0.04/-0.01%, 
Dmax=0%. C: Air/bone insert volumes are decreased/increased about 50%. Dice coefficients and 
cumulative error are given in the figure. Deviations photons/protons: CDS·10-3=45.1/ 5.6, 
Dmedian=1.2/5.0%, D98=1.6/3.7%, D2=1.4/0.01%, Dmax=1.2/0.3%. 
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Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modal-
ity, the information on electron density must be derived from the MRI scan by creating a so-called
pseudo computed tomography (pCT). This is a non-trivial task, since the voxel-intensities in an
MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based
models have typically been used. The voxel-based models require a specialized dual ultrashort echo
time (dUTE) MRI sequence for bone visualization and the atlas-based models require deformable
registrations of conventional MRI scans. In this study, we investigate the potential of a patch-based
method for creating a pCT based on conventional T1-weighted MRI scans without using deformable
registrations. We compare this method against two state-of-the-art methods within the voxel-based
and atlas-based categories.
Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the
performance of the different methods, a nested cross validation was done to find optimal model
parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Fur-
thermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing
the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was
tested and compared for a photon treatment plan.
Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric and
radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the
dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures
related to target coverage.
Conclusions: We showed that a patch-based method could generate an accurate pCT based on
conventional T1-weighted MRI sequences and without deformable registrations. In our evaluations,
the method performed better than existing voxel-based and atlas-based methods and showed a
promising potential for RT of the brain based only on MRI.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is increasingly be-
ing used in modern radiotherapy (RT) treatment plan-
ning in combination with Computed Tomography (CT).
The main reason is the superior soft tissue contrast which
improves target and organ at risk (OAR) definition in
the brain and other sites as compared to CT-based de-
lineations [1–3]. In order to transfer the MRI delineations
to the CT, the two scans must be aligned. This is usually
done by a manual and/or automatic rigid registration be-
tween the CT and MRI scan. It has been estimated that

∗ Corresponding author email: dana@dtu.dk

a mean cranial registration error of approximately 2 mm
is introduced in this process [4, 5] with similar values for
other body sites such as the prostate [6]. These errors
produce a systematic shift in the delineations and may
ultimately lead to target under-dosage or an increased
dose to the adjacent OARs.

Basing the entire RT chain on MRI as the only
modality, so-called MRI-only RT, would remove these
systematic errors and reduce patient discomfort as well
as lower the workload and financial cost. It is, however,
non-trivial to exclude the CT, since the MRI images do
not contain information about electron density which
is needed for accurate dose calculations. Furthermore,
with conventional MRI sequences, the signal from
cortical bone is weak or non-existing due to its rapid
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transversal signal relaxation time (T2) in the range 0.5-2
ms [7, 8]. This means that MRI voxels containing bone
are indistinguishable from air, and that patient setup
based on digitally reconstructed radiographs (DRRs) is
unfeasible. In order to solve these problems, electron
density assignment must be done based on the MRI,
which can then be used for dose calculation and patient
setup in an RT setting.

Two different approaches for automatic density as-
signment have typically been taken to derive a so-called
pseudo CT (pCT) from MRI: voxel-based and atlas-
based. In the voxel-based approach, a pCT is generated
from individual voxel intensities in the MRI scan,
either by segmentation and subsequent bulk density
assignment [8–11] or using a regression model to predict
a continuous-valued pCT [11–14]. Common for these
methods is the need for a specialized dual ultrashort
echo time (dUTE) MRI sequence that captures the
signal from components with a short T2 relaxation
time. This makes bone voxels separable from air in
the resulting MRI images [15]. However, adding this
non-standard sequence is not only inconvenient, it also
causes prediction errors in the pCT scans at tissue
interfaces such as in the ear and nasal cavities. This
has been attributed to partial volume and susceptibility
effects as well as a low signal-to-noise ratio (SNR) of the
dUTE scans [8, 16, 17].

Atlas-based methods, on the other hand, estimate
pCTs using conventional (non-dUTE) MRI sequences,
and must therefore compensate for the bone/air ambigu-
ity in the MRI images. This is achieved using deformable
registration of one or multiple atlases of paired MRI/CT
scans to the patient MRI scan and then using the
warped atlas CT scan(s) as a pCT estimate [18–20]. The
pure atlas-based methods rely on a correct deformable
registration between atlas and patient MRI. This can be
both time consuming (in the case of multiple atlases)
and problematic if the patient is dissimilar to the atlas
[8]. To correct for deformation errors, the method can be
extended with a subsequent step of pattern recognition
using Gaussian process regression based on 2D patches
[21]. Though this improves robustness, the gain may
be marginal compared to the added computational
complexity [20].

In the field of automated brain MRI segmentation,
patch-based segmentation methods have recently been
proposed with promising results [22, 23]. In these ap-
proaches, 3D patches (i.e., small cuboidal image subre-
gions) are extracted from the MRI and a spatially lo-
cal search for the most similar patches in a pre-acquired
database of labeled MRI scans is performed. The known
labels of the resulting database patches are then fused
to give the predicted label at each position. To facilitate
the spatially local patch search, most patch-based meth-
ods use a rough linear alignment between the database
MRI scans and the MRI to be segmented. The need for

an accurate deformable registration is thus removed and
the segmentation is driven mainly by patch similarities.

Based on these results, in this study we investigate
the potential of patch-based methods for predicting a
continuous-valued pCT of the brain based on T1-weighted
MRI scans. In particular, we incorporate the CT num-
bers as label information in the patch model to en-
able patch-based regression. We compare this method
with two state-of-the-art methods in voxel-based and
atlas-based pCT prediction, namely (1) Gaussian mix-
ture regression (GMR) based on dUTE scans [12], and
(2) multi-atlas information propagation based on T1-
weighted scans [19]. We perform a voxel-wise, geometric
and radiologic evaluation as well as a dosimetric evalua-
tion for a photon treatment plan.

II. MATERIALS AND METHODS

A. Imaging

The data used in this study consisted of MRI and CT
scans of five whole brain RT patients, three male and two
female, aged 55-82 years. The study was approved by
the Capital Regional Ethics Committee (protocol num-
ber H-3-2011-107). The CT scans were acquired on a
Philips Brilliance Big Bore CT with a voxel resolution
0.6 × 0.6 × 2 mm, 512 × 512 × 110 voxels using a stan-
dard protocol for brain scans (120 kV, 300 mAs). The
MRI scans were acquired on a Philips Panorama 1 T
open scanner. The sequences were a T1-weighted 3D
Fast Field Echo (FFE), TE/TR = 6.9/25 ms, voxel res-
olution 0.85 × 0.85 × 1.2 mm, 188 × 188 × 152 voxels
and two dUTE scans at flip angles 10◦ and 25◦ with
TE1/TE2/TR = 0.09/3.5/7.1 ms and an isotropic voxel
resolution of 1 mm with 2563 voxels. The scan time
of a dUTE scan at one flip angle was approximately 7
minutes. The patients were fixed in treatment position
during both the MRI and CT scanning using thermo-
plastic masks. Informed consent was obtained from all
patients prior to acquiring the MRI scans additional to
their standard imaging. Each patient’s MRI/CT pair
was rigidly aligned using mutual information with the
default settings as implemented in 3D Slicer [24]. The
CT scans were resliced and cropped to match the resolu-
tion and field of view of the MRI scans, thus generating
dUTE/CT scan pairs at the dUTE scan resolution and
T1-weighted/CT scan pairs at the T1-weighted scan res-
olution.

B. Patch-based pCT Prediction

In order to facilitate an intensity-based similarity
search, the tissues should have a consistent intensity
throughout all T1-weighted scans. To achieve this, a
histogram-matching approach was used with two linear
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mapping segments separated at the average median in-
tensity [25].

A patch, P (x), was defined as a cube with side length
m voxels centered on the spatial location x in an MRI
image. Similarly, a target value, T (x), was defined for
each P (x) as the Hounsfield unit (HU) value at x in the
corresponding rigidly aligned CT image. For S patients,
corresponding patches and target values were extracted
for all positions, x, to create a database of patches, Ps(x),
with corresponding target values, Ts(x), where s denotes
one of S patients. Using this database, a pCT for a test
patient was predicted by extracting patches from his/her
MRI scan and doing an intensity-based nearest neighbor
search in the patch database. For a patch at position y in
the MRI of the test patient, the similarity measure was
defined as:

d(s, x) = ||P (y)− Ps(x)||22, (1)

where d(s, x) denotes the squared L2-norm between P (y)
and Ps(x). The search then consisted of finding the
database patch that minimized d(s, x) and storing the
corresponding patient and spatial position:

(smin, xmin) = argmin
s,x

d(s, x). (2)

The search was extended to find the K most simi-
lar database patches and the K relevant target values
were extracted from the database as Tsmin

k
(xmin

k ) with

k = 1, ..,K. To assign a pCT HU value, a similarity-
weighted average was computed:

pCT(y) =

∑

k

wk × Tsmin
k

(xmin
k )

∑

k

wk

, (3)

with weights defined as:

wk = exp


 −d(smin

k , xmin
k )

min
k

d(smin
k , xmin

k )


 . (4)

This ensured that if one patch was more similar than the
rest, this patch would be weighted highly; conversely, if
all patches were equally similar, they would be weighted
equally.

To ensure that the local similarity search was indeed
local, and to limit the number of similarity comparisons
required per patch, we applied the search space reduction
and patch pre-selection method as described by Coupé
et al. [22]. An affine alignment of each database MRI
and the patient MRI was performed and the search was
constrained to only contain database patches in a local
cubiodal search volume, Vsearch, of side length v voxels
around y, such that x ∈ Vsearch in Equation 2. The struc-
tural similarity measure (SSIM) [26] was used to discard
highly dissimilar patches in the local neighborhood. This
is a computationally simple similarity measure based on

the mean and variance in each patch. All patches with
SSIM < 0.95 were discarded prior to the patch search
performed in Equation 2. If all patches were discarded
in a search volume, the pCT value in the affected voxel
was flagged as unknown. In post-processing, such voxels
were assigned the average pCT value of the closest as-
signed voxels. For the intensity fusion in Equation 3, the
K = 8 most similar patches were used unless the SSIM
only allowed a smaller number. An illustration of the
patch-based pCT generation is shown in Figure 1 for a
simplified 2D case – the actual algorithm works in 3D.

Figure 1. 2D patch-based pCT prediction. (a) A patch, P (y),
is extracted from the test MRI at position y. (b) A database
of spatially close patches, Ps(x) stored with their correspond-
ing CT value, Ts(x). (c) Using the structural similarity mea-
sure (SSIM), highly dissimilar patches are discarded from the
database. (d) Using Equation 2, the 8 most similar database
patches, Psmin

k
(xmin

k ), and their CT values, Tsmin
k

(xmin
k ), are

found from the remaining database. (e) Using Equation 3,
the CT values, Tsmin

k
(xmin

k ), are combined to produce the

final pCT value at position y.

C. Comparison of Algorithms: GMR and
Multi-atlas

The patch-based method was compared with Gaussian
mixture regression based on dUTE scans[12] and multi-
atlas information propagation based on T1-weighted
scans[19]; two state-of-the-art techniques for pCT pre-
diction within the voxel-based and atlas-based categories,
respectively.

The multi-atlas method consists of deformable reg-
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istrations of multiple atlases of MRI/CT pairs to the
patient MRI. A multi-resolution B-spline transform in
Elastix [27] was used for this purpose. Mutual informa-
tion with 32 histogram bins was used as a metric and
the final control point spacing was set to 5 mm. The
local normalized cross correlation (LNCC) between the
patient MRI and the atlas MRI was used to determine a
voxel-wise ranking of each atlas CT before finally fusing
the HU values. A high LNNC means a high degree of lo-
cal similarity between the patient MRI and the deformed
atlas MRI and thus results in a high ranking. Two pa-
rameters were involved in these steps; namely a Gaussian
kernel width, σgk, controlling the local neighborhood size
involved in the LNCC calculation, and a weight constant,
β, controlling the decay of an exponential function used
when converting the LNCC ranking to a fusing weight.

For the GMR method, the joint distribution of MRI
and CT intensities was estimated as a mixture of mul-
tivariate Gaussian distributions using expectation maxi-
mization (EM) [28]. Using this model, the expected value
of the CT conditioned on newly observed MRI values can
be found and used as a pCT prediction. Input images in
addition to the dUTE scans were created using mean
and standard deviation filters on the dUTE scans. A
mask was then created to exclude air surrounding the
head from the model training data. 50 independent runs
of k -means clustering with k -means++ initialization [29]
were performed on the training data to estimate the ini-
tial values of the means, covariance matrices and mixing
proportions. The values resulting in the minimum total
energy were chosen as initialization for the EM algorithm.

D. Model Optimization

In order to ensure a fair comparison between the differ-
ent methods, a nested cross validation scheme was used
to find the optimal parameters for all methods. This
meant that for each test patient, leave-one-out cross vali-
dation (LOOCV) was performed cyclically on the remain-
ing four patients. In each of these four LOOCV folds,
three patients were used to predict pCTs of the fourth
using all possible combinations of a manually defined sub-
set of model parameters. For each parameter configura-
tion, the voxel-wise mean absolute error (MAEvox, as
defined later in Equation 5) was used to evaluate the
pCT. The parameter configuration that resulted in the
average best performance across the four folds were then
chosen as the optimal for that test patient and was used
to predict his/her pCT using the remaining four patients.
This scheme is well suited for model comparisons since
each test patient is not involved in the parameter opti-
mization, which gives an almost unbiased estimate of the
true prediction error[30]. For the patch-based method,
the optimal patch side length was found to be m = 5 or
m = 7 voxels (depending on the patient) and the optimal
search volume side length was v = 15 voxels, yielding a
maximum of 153× 4 = 13500 database patches to search

through for each pCT voxel. Note that the value of K,
used in Equation 3 was set empirically to K = 8 and
therefore not optimized. For the multi-atlas method, pa-
rameters for the LNCC ranking scheme were optimized.
The Gaussian kernel width, σgk, was 5–9 voxels depend-
ing on the patient, and the weight constant was β = 0.9
for all patients. Note that the deformable registration
parameters were chosen empirically and thus were not
included in the nested cross validation. For the GMR
method, the number of Gaussians to use in the model
was found and set to 20–23, again depending on the pa-
tient.

E. Geometric Evaluation

The pCTs were compared in terms of the voxel-wise
mean absolute error MAEvox in the head region (exclud-
ing surrounding air):

MAEvox =
1

N

N∑

i=1

|CT (i)− pCT (i)|, (5)

where N is the total number of voxels in the head region.
To reveal in which tissue regions errors were present, the
MAEvox in bins of 20 HU across the HU scale was also
calculated. To determine whether the predictions were
biased towards an underestimation or overestimation of
the real CT number, the mean voxel-wise error was cal-
culated:

MEvox =
1

N

N∑

i=1

[CT (i)− pCT (i)]. (6)

To evaluate the correctness of the pCT bone geometry,
the Dice similarity coefficient (DSC)[31] of bone was cal-
culated:

DSC =
2(V pCT

bone ∩ V CT
bone)

V pCT
bone + V CT

bone

, (7)

where V pCT
bone and V CT

bone are the volumes of bone in the
pCT and the real CT, respectively. We defined the bone
volume as all voxels with a value > 200 HU giving a
density of 1.14 g/cm3 according to our CT calibration
curve. DSC = 1 means complete overlap between the
volumes, and DSC = 0 means no overlap.

The MAEvox, MEvox and DSC are pure voxel-wise and
geometric measures of the pCT accuracy. To provide
a radiologic error measure, an evaluation based on the
water equivalent path length (WEPL) was introduced
[10, 32]:

l′ =
∑

i

∆li × ρi, (8)

where ∆li is the physical path length of voxel i, and ρi is
a radiological scaling factor that depends on the type of
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radiation and tissue. For MeV photons, it is the electron
density relative to water. The value of ρi was found from
the voxel CT number using a verified standard calibra-
tion curve in the treatment planning system. To compare
WEPLs in the CT and pCT, a common point in both was
defined at the level of the nasal cavity centered in the
head. A sphere with its center in that point was defined,
covering the entire head. The WEPL was then calculated
in radial spokes from the center point towards the edge
of the sphere. When the spokes traversed the edge of
the head, the WEPL calculation was terminated so the
length of each spoke varied with the patient anatomy.
The spokes were defined in spherical coordinates with
the center point as origin and with an angular spacing of
2π/60 in both the polar and azimuthal angles. All polar
angles between 0.5π and 1.5π were excluded from the cal-
culation, resulting in a volume including only the upper
hemisphere of the head, covering most of the brain (see
Figure 2). In total this yielded 60 × 31 = 1860 spokes.
The tissue was sampled every ∆l = 0.02mm along each
spoke. The CT number was then found at each sam-
ple by trilinear interpolation. To measure the difference
in WEPL between the CT and pCT, the mean absolute
WEPL error (MAEWEPL) was defined as:

MAEWEPL =
1

L

L∑

j=1

|l′CT
j − l′pCT

j |, (9)

where L is the number of spokes and l′j is the WEPL
of the jth spoke. Similarly, the mean WEPL error
(MEWEPL) was defined as:

MEWEPL =
1

L

L∑

j=1

l′CT
j − l′pCT

j . (10)
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Figure 2. The WEPL was calculated along spokes (not shown)
from the center point (open circle) at (x, y, z) = (0, 0, 0) to-
wards all points on the surface of the patient (dots). Along
the spokes the CT number was sampled and converted to rel-
ative electron density for WEPL calculation.

F. Dosimetric Evaluation

A 6 MV photon treatment plan for two different spher-
ical planning target volumes (PTVs) of 3 cm in diameter
was created for all the patients. The first plan used a
PTV positioned anterior to the center of the cerebrum
(PTV 1, Figure 3) with two 15◦ wedged lateral opposing
fields and one anterior field, all equally weighted. The
second plan had a PTV positioned behind the nasal cav-
ity (PTV 2, Figure 3) with four equally weighted fields,
two lateral opposing and two anterior/posterior oppos-
ing. For all fields, the apertures were cropped to the
PTV plus a 0.5 cm margin. The PTVs were chosen to
represent theoretically easy and difficult cases, respec-
tively, with PTV 1 positioned in a homogeneous part
of the brain and PTV 2 having a large degree of het-
erogeneity in the tissue composition of its surroundings.
The treatment planning was carried out on each patient’s
pCT in Eclipse v11.0 (Varian Medical Systems Inc., Palo
Alto, CA), prescribing a mean dose of 2 Gy in 30 frac-
tions (Dpre = 60 Gy) to the PTV and calculating the
dose distribution using the analytical anisotropic algo-
rithm (AAA). The plan was then transferred to the real
CT and re-calculated using the same plan parameters and
monitor units. The PTV dose volume histogram (DVH)
was used to evaluate the dosimetric difference between
CT and pCT. The percentage point deviation was cal-
culated for the DVH points relevant to PTV coverage,
i.e. the near-minimum (D98%), near-maximum (D2%)
and median (Dmedian) absorbed dose [33]. Furthermore,
a normalized mean absolute dosimetric error (nMAEdos)
was calculated as:

nMAEdos =
1

M

M∑

i=1

|DCT
vol(i) −DpCT

vol(i)|
Dpre

(11)

where M is the total number of DVH points between
D100% and D0% in dose increments of 0.1 Gy, and Dvol(i)

is the accumulated dose in Gy given to vol(i)% of the vol-
ume in either the CT or pCT. Similarly, the normalized
mean dosimetric error (nMEdos) was calculated as:

nMEdos =
1

M

M∑

i=1

DCT
vol(i) −DpCT

vol(i)

Dpre
(12)

nMAEdos explains the magnitude of the errors and
nMEdos reveals if the errors are biased towards under-
estimation or overestimation. The combined dosimetric
score (CDS) is a combination which penalizes bias in the
errors [11]:

CDS = nMAEdos + |nMEdos| (13)

III. RESULTS

In Figure 4, transverse slices of the real CT and pre-
dicted pCTs are shown for the different methods. Visu-
ally, the results based on T1-weighted MRI in (c) and (d)
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Figure 3. Sagittal view of the two PTVs used in the dosimetric
evaluation.

are better than the dUTE-based in (b), especially in the
nasal cavities.

Figure 5 shows the MAEvox calculated as a function of
the real CT value in bins of 20 HU and averaged for the
5 patients. In general, GMR shows the highest errors in
the bone region (> 200 HU), fat region (approximately
[−100;−50] HU) and the region between air (−1000 HU)
and fat tissue. This HU range is dominated by values
of partial volumes effects in the real CT. The patch-
based and multi-atlas methods have similar performance
in most regions. Table I shows the average voxel-wise,
geometric and radiologic errors for the different meth-
ods. On average, the patch-based and multi-atlas meth-
ods have the lowest MAEvox and highest DSC, with a
slight favor for the patch-based method. Looking at the
MEvox, the patch-based and multi-atlas methods have
average values closer to 0, indicating no consistent pat-
tern in the errors. However, given the magnitude of the
standard deviation for GMR, MEvox = 0 is also a plausi-
ble value for this method. Looking at the WEPL evalua-
tion in Table I, the patch-based and multi-atlas methods
have the smallest MAEWEPL, with slightly lower values
for the patch-based method.

In Figure 6, the results of the dosimetric evaluation
are shown. For all methods, the metrics show average
smaller errors, i.e. values closer to 0, for PTV 1 com-
pared to PTV 2, illustrating the more challenging posi-
tion of PTV 2. The difference in performance between
the methods is also generally smaller for PTV 1 than
for PTV 2. Looking at PTV 1, the nMAEdos is sim-
ilar for the patch method and GMR, but the nMEdos

reveals that GMR has a bias towards overestimating the
dose. The multi-atlas method has the largest nMAEdos,
with a bias (nMEdos) towards underestimating the dose.
Looking at the coverage of PTV 1 (lower panels), the
patch-based method has an average deviation close to
0%. The other methods have deviations < 0.5%. When
looking at PTV 2, the average nMAEdos is lowest for the

Figure 4. Transverse slices for comparison of pCTs with real
CT. (a)-(d) shows the real CT, the GMR pCT, the multi-atlas
pCT and the patch-based pCT, respectively. (f)-(h) shows
the difference maps between the real CT and the GMR, the
multi-atlas and the patch-based pCTs, respectively. Negative
values indicate an overestimation of the HU value and positive
values indicate an underestimation.

patch-based method, with GMR and multi-atlas having
higher values and larger standard deviation. We observe
that both the GMR and multi-atlas methods have a bias
towards underestimating the dose as seen in the upper
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Figure 5. MAEvox calculated in bins of 20 HU and averaged
across the five patients.

Patch-based Multi-atlas GMR

MAEvox [HU] 85 (σ = 14) 97 (σ = 19) 148 (σ = 22)

MEvox [HU] 1 (σ = 14) −4 (σ = 17) 22 (σ = 28)

DSC
0.84

(σ = 0.02)

0.83

(σ = 0.01)

0.67

(σ = 0.03)

MAEWEPL [mm] 2.2 (σ = 1.0) 2.7 (σ = 0.8) 4.8 (σ = 1.3)

MEWEPL [mm] 0.4 (σ = 1.8) −0.6 (σ = 1.9) 1.1 (σ = 2.1)

Table I. The voxel-wise and geometric quality measures:
Mean absolute voxel-wise error (MAEvox), mean voxel-wise
error (MEvox) in HU and Dice similarity coefficient of bone
volume (DSC). Radiologic measures: Mean absolute WEPL
error (MAEWEPL) and mean WEPL error (MEWEPL) of the
water equivalent path lengths (in mm). Average value and
standard deviation (σ) for the five patients are shown.

middle panel. With regards to the dose coverage (lower
panels), the patch-based method has the smallest average
deviations, except for D98%, where GMR has a slightly
smaller deviation. On average, multi-atlas has a better
performance than GMR in Dmedian and D2%.

IV. DISCUSSION

In this paper, we evaluated a patch-based method
for predicting brain pCTs based on conventional T1-
weighted MRI images. The method required no de-
formable registrations and was shown to yield compara-
ble or better results than existing methods using Gaus-
sian mixture regression on dUTE scans or multi-atlas in-
formation propagation on T1-weighted scans.

In terms of the MAEvox curves shown in Figure 5, the
dUTE-based method showed the largest voxel-wise er-
rors in most tissue regions of the brain. The errors we
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Figure 6. Dosimetric errors for the two PTVs. PTV 1:
Gray lines and open circles. PTV 2: Black lines and crosses.
Dashed line indicates zero. Top row: normalized mean abso-
lute dosimetric error (nMAEdos), normalized mean dosimetric
error (nMEdos) and combined dosimetric score (CDS). Bot-
tom row: percentage point deviation in Dmedian, D98% and
D2%. Average values are shown along with ±σ interval.

observed in the fat region could be caused by the data
being recorded on a 1 T scanner where water/fat phase
cancellation occurs approximately at 3.5 ms after excita-
tion, i.e. at TE2 of the dUTE sequence. In a previous
study, we tested if adding a Dixon sequence as GMR
model input would aid in discriminating fat/water and
bone [34]. Though this improved bone predictions, it did
not improve predictions in fat voxels. Rank et al. re-
ported errors in pCT bone prediction due to fatty-tissue
appearing hyper-intense in dUTE scans acquired at 3 T
[10]. This suggests that issues in the fat region may be
independent of field strength and not due to phase can-
cellations.

In the bone region, the two methods based on the
T1-weighted MRI had the smallest errors, even though
bone is not uniquely defined in terms of intensity in these
images. The deformable registration used in the multi-
atlas method can compensate for this lack of informa-
tion, assuming a successful alignment of the atlas MRIs
and the patient MRI. In the present study, this assump-
tion seemed to hold, but as implied earlier, this may not
always be the case if the anatomical variation is large.
Furthermore, the deformable registration introduces an-
other set of parameters to adjust, and it can be hard to
find one configuration that provides a successful regis-
tration for all patients. Here, we tested a few parameter
settings and chose the one that resulted in the average
lowest MAEvox. For a more unbiased estimate of the
prediction performance of the multi-atlas method, the
registration parameters could be included in the nested
cross-validation.
The patch-based method, on the other hand, achieved
a lower error in the bone region without a deformable
registration. Instead, the neighborhood information con-
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tained in each patch in combination with the constrained
search volume ensured that bone and air patches were not
confused.

In terms of the voxel-wise errors and DSC presented
in Table I, the patch-based method had the best perfor-
mance. Johansson et al. reported an average MAEvox

of 137 HU for five patients using the GMR method [12],
which is within the standard deviation of our GMR find-
ings. The GMR results could potentially be improved
by adding spatial information to the Gaussian mixture
model or using different MRI reconstruction techniques
[16, 35]. This was not investigated further in our study.
For the multi-atlas method, Burgos et al. reported an
average MAEvox of 102 HU (σ = 10) for 7 patients [19],
which also agrees with our findings. We included the
DSC measure since the bone geometry is important for
generating DRRs. As was shown in Figure 5, the patch
and multi-atlas methods have the highest prediction ac-
curacy in the bone region, which is also reflected in the
DSC results. This suggests that these methods are better
suited for DRR generation. In a qualitative evaluation,
Jonsson et al. described an overall acceptable quality of
DRRs generated on the basis of GMR pCTs, except in
the nasal cavity and sphenoidal sinuses [36]. From our
results, it seems that the pCTs based on T1-weighted
MRI visually have a better quality in this region. How-
ever, the quality of the resulting DRRs and their poten-
tial for treatment setup was not investigated further in
the present study. A factor that could influence the pCT
predictions is the non-uniform intensity variations intrin-
sic to MRI scans. In the present study, we did not apply
a correction for this. From a visual inspection, the ac-
quired MRI scans showed only minor non-uniform inten-
sity variations in the imaged volume, which is probably
due to the relatively low field strength. For the patch-
based method, applying a bias field correction did not
improve predictions. It could potentially improve pre-
dictions of the other methods, however, and it will be
an important step for the patch-based method at higher
field strengths and/or larger fields of view.

The WEPL evaluation was introduced to provide a ra-
diologically more relevant error measure than the pure
voxel-wise errors. It takes into account the piece-wise
linear relationship between the HU and electron density
and also provides a simplistic imitation of the treatment
simulation were radiation encounters several tissues when
sent through the patient. The errors in WEPL are depen-
dent on the position of the center point and the direction
of the radial spokes. Here, we chose to evaluate the whole
upper hemisphere of the head to produce an average es-
timate for all possible planning scenarios. Maybe, due to
this averaging, the results of the WEPL evaluation did
not diverge from the trends observed in the voxel-wise
and geometric evaluation.

For the dosimetric evaluation, an easy and a challeng-
ing PTV site was chosen, which was reflected in the mag-
nitude of the errors in Figure 6. Overall, the patch-based
method had the lowest average errors, following the trend

from the other evaluations. Looking at the CDS, GMR
performed well and was on par with the patch-based
method for PTV 1 and with multi-atlas for PTV 2. We
obtained a comparable value of around 0.02 for the CDS
of GMR for a target similar to PTV 2 in a previous study
[11]. It should be noted that since the CDS only accounts
for the magnitude of nMEdos, the direction of the error
is removed. When averaging across patients, this means
that a method with consistent overestimation of the dose
can get the same CDS as a method where the direction
of error is random. This effect explains why the patch
method and GMR have similar CDS for PTV 1, even
though the patch method performs better in nMEdos.

In D98%, GMR performed well for PTV 2 but with a
larger standard deviation. In a dosimetric evaluation of
the GMR method, Jonsson et al. reported a percentage
point deviation of 0.86% in D90%[36] for a target some-
what similar to PTV 2 in the present study. Though
D90% is less sensitive to changes in the DVH shape, it
seems that the dosimetric error is of the same order as
our findings in D98%.

A statistical criterion for the reliable use of MRI-only
states that for 95% of the patients, the maximum un-
certainty in the DVH points related to target coverage,
should be within 2% [37]. Although a study with more
patients is still needed, we note that for PTV 1, all meth-
ods fulfilled this criterion. This speaks in favor of a re-
liable use of MRI-only for targets positioned away from
cavities. We also note that the patch-based method ful-
filled the criterion for the challenging PTV 2, showing
potential for a more general use of MRI-only RT.

From the voxel-wise and radiologic evaluation, we ex-
pected that the multi-atlas method would have dosimet-
ric errors closer to those of the patch-based method. This
did not seem to be the case, especially for PTV 2, where
the multi-atlas and GMR methods were closer in per-
formance. Therefore, even though the voxel-wise and
radiologic error may serve as a proxy for the dosimetric
performance, they should be accompanied by a dosimet-
ric evaluation to get the full picture. This agrees with
our previous findings[11].

Comparing the two methods based on T1-weighted
MRI, the voxel-wise and radiologic differences were small
with a slight favor of the patch-based method. In terms
of dosimetry, the patch-based method had an average
better performance, especially in PTV 2. The advantage
of both methods is that they work on any MRI sequence
as long as an atlas or database of MRI/CT pairs has
been obtained. This means that they can be adapted
to the clinical practice without the need for extra se-
quences and scan time. The patch-based method fur-
ther has the advantage that it relies only on linear reg-
istrations to provide a rough alignment of the database
MRI and patient MRI. Linear registrations can be per-
formed faster than deformable ones, which could po-
tentially make the patch-based method faster than the
multi-atlas method. In the current Matlab implementa-
tion, however, using a brute force search for the most
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similar patches, it took approximately 15 hours to pre-
dict a pCT with 4 database patients. On the same hard-
ware, the multi-atlas and GMR methods took roughly
36.5 minutes (including deformable registrations) and
6.5 minutes, respectively. None of the implementations
were optimized for speed, and especially the patch-based
method could be improved substantially by using an ap-
proximate nearest neighbor (ANN) patch search algo-
rithm such as OPAL [38]. A subsequent implementation
of an ANN algorithm with similarities to OPAL, reduced
the pCT prediction time for one patient to 38 minutes
with an increase in MAEvox of 9 HU. We believe this
can be further improved, but it was not the focus of the
present study.

The patch-based method is still dependent on anatom-
ical similarity, even without the deformable registration.
Indeed, in smaller regions of the brain in one patient, we
found that all patches in the database were discarded due
to the SSIM being below the threshold value. These dis-
similar regions could be present in the MRI of patients
with tumors or other brain abnormalities that are not
found in the patch database. This poses a problem for
the method. However, based on the SSIM, we were able
to produce a pCT with problematic (dissimilar) regions
marked for quality assurance. This is in contrast to the
multi-atlas approach, where it can be hard to know where
the deformable registrations were unsuccessful without
manual inspection of each atlas. In the cases where no
patches matched, we assigned the average pCT value of
the neighboring assigned voxels, which did not seem to
affect the accuracy of the pCT. Still, this way of handling
the problem may prove too simple in the general case, es-
pecially if the dissimilar regions are large or if the tissue
type of the neighboring voxels differs from that of the
region. Increasing the size of the patient database could
potentially alleviate some of this issue, but a focus of our
future work is to incorporate a more advanced system for
outlier handling.

As mentioned in the introduction, a pattern recogni-
tion step using Gaussian process regression (GPR) based
on 2D patches has previously been investigated for im-
proving an atlas-based method using deformable regis-
trations [21]. The presented patch-based method shares
some similarities with the GPR method since both are ex-
amples of so-called kernel smoothers. The difference lies
in the way the kernel is defined, which is done explicitly

in Equation 4 for the patch-based method and implic-
itly through a covariance function in the GPR method.
Furthermore, the patch-based method uses linear regis-
trations so the assumption of exact spatial correlation
between the patient and database is not met. Therefore,
the position of a patch does not affect its contribution
weight, which is the case in the GPR method. Lastly,
the patch-based method adaptively normalizes the ker-
nel for each test patch with the minimum L2-norm in
Equation 4.
An average MAEvox of 100.7 HU was reported with the
GPR method on T1-weighted scans for 17 patients [21],
which is close to our results using the multi-atlas or
patch-based methods. It was not reported whether this
value was calculated for the entire image volume or only
for the head region, as in the present study.

Overall, the methods for pCT prediction based on sim-
ilarities in conventional MRI scans seem promising for
MRI-only RT. Inter-patient anatomical variability does
introduce an uncertainty in the pCTs, but the higher
voxel-wise, geometric and dosimetric accuracy compared
to current voxel-based methods may make this a worth-
while compromise. A larger study of the robustness of
the patch-based method and the dosimetric uncertainty
is still needed and is part of our future work.

V. CONCLUSION

In this study, we showed that a patch-based method
could generate a pCT based on a conventional T1-
weighted MRI sequence without using deformable regis-
trations or special dUTE sequences. We demonstrated a
competitive performance of the method in several quality
measures when compared to state-of-the-art atlas-based
and voxel-based methods. In terms of dosimetric accu-
racy, the patch-based method showed a promising poten-
tial for use in MRI-only RT of the brain including PTVs
positioned in challenging regions.
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mized patchmatch for near real time and accurate label
fusion. In Golland, P., Hata, N., Barillot, C., Horneg-
ger, J., Howe, R., eds.: Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2014. Vol-
ume 8675 of Lecture Notes in Computer Science. Springer
International Publishing (2014) 105–112



Paper C



A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis

Daniel Andreasen∗

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark and

Radiotherapy Research Unit, Department of Oncology,5

Gentofte and Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark

Koen Van Leemput
Department of Applied Mathematics and Computer Science,

Technical University of Denmark, 2800 Kgs. Lyngby, Denmark and
A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,10

Harvard Medical School, Charlestown, MA 02129 USA

Jens M. Edmund
Radiotherapy Research Unit, Department of Oncology,

Gentofte and Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
(Dated: February 23, 2017)15

Purpose: In radiotherapy (RT) based only on magnetic resonance imaging (MRI), knowledge
about tissue electron densities must be derived from the MRI. This can be achieved by converting
the MRI scan to a so-called pseudo-computed tomography (pCT). An obstacle is that the voxel
intensities in conventional MRI scans are not uniquely related to electron density.
We previously demonstrated that a patch-based method could produce accurate pCTs of the brain20

using conventional T1-weighted MRI scans. The method was driven mainly by local patch similar-
ities and relied on simple affine registrations between an atlas database of co-registered MRI/CT
scan pairs and the MRI scan to be converted. In this study, we investigate the applicability of
the patch-based approach in the pelvis. This region is challenging for a method based on local
similarities due to the greater inter-patient variation. We benchmark the method against a baseline25

pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density.
Furthermore, we implement a parallelized approximate patch search strategy to speed up the pCT
generation time to a more clinically relevant level.
Methods: The data consisted of CT and T1-weighted MRI scans of 10 prostate patients. pCTs
were generated using an approximate patch search algorithm in a leave-one-out fashion and com-30

pared with the CT using frequently described metrics such as the voxel-wise mean absolute error
(MAEvox) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accu-
racy was tested for a volumetric modulated arc therapy (VMAT) plan using dose volume histogram
(DVH) point deviations and γ-index analysis.
Results: The patch-based approach had an average MAEvox of 54 HU; median deviations of less35

than 0.4% in relevant DVH points, and a γ-index pass rate of 0.97 using a 1%/1mm criterion. The
patch-based approach showed a significantly better performance than the baseline water pCT in
almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search,
with an average prediction time of 20.8 minutes.
Conclusion: We showed that a patch-based method based on affine registrations and T1-weighted40

MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and
CT was positional changes of air pockets and body outline.

I. INTRODUCTION

The introduction of magnetic resonance imaging
(MRI) in external beam radiotherapy (RT) has spurred45

an interest in removing computed tomography (CT) from
the treatment chain; so-called MRI-only RT [1–5]. MRI
provides superior soft tissue contrast and improves the
precision in delineations [6, 7]. Basing the entire work-
flow on MRI would additionally eliminate systematic reg-50

istration uncertainties between MRI and CT [8, 9]. It is

∗ Corresponding author email: dana@dtu.dk

non-trivial to exclude the CT from the RT chain, how-
ever, since the MRI signal is not uniquely related to the
tissue electron density which is needed for accurate dose
calculations. Furthermore, with conventional MRI se-55

quences, the signal from the cortical bone is weak or
non-existent due to its short transverse relaxation time
T2 [10]. This results in an ambiguity between bone and
air voxels, which complicates direct assignment of CT
equivalent numbers to the MRI scan and makes patient60

setup based on bony anatomy difficult.

Using mathematical models based on a-priori knowl-
edge or pre-acquired and correlated MRI and CT scans
to predict a so-called pseudo-CT (pCT) from the MRI
scan is a promising solution, which has been applied and65
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validated in numerous forms for brain pCT generation
[1, 11–20]. Relatively fewer attempts, however, have been
made to create pCTs for other body parts such as the
pelvis [21–25]. Nonetheless, multiple studies have shown
the benefit of accounting for bone in MRI-only RT of70

the pelvis [2, 26, 27], and additionally accounting for the
heterogeneity of bones in the pelvis [28].

In general, the methods for pCT estimation can be
split into two categories: 1) voxel-based and 2) atlas-
based. With the voxel-based methods, a model is used75

to convert individual MRI voxels to their corresponding
CT Hounsfield unit (HU) value, either by regression or a
combination of classification and bulk density assignment
[1, 12–14, 16]. Some of these methods include a train-
ing phase using MRI and CT scans where the relation is80

known. The drawback of the voxel-based methods is the
need to uniquely distinguish air and bone voxels in the
MRI. This has previously been addressed by introducing
specialized ultrashort echo time (UTE) MRI sequences
[1, 13] or by manual delineation of the bone volume and85

using a separate model for this region [23, 24]. These
approaches however, prolong the MRI scan time or put
an extra workload on the personnel who have to do the
manual bone delineation. Using spatial information or
edge position and orientation of the MRI scan can poten-90

tially also be used to overcome the intensity ambiguities
[29, 30].

With atlas-based methods, the pCT prediction often
relies on a non-linear registration between the MRI scan
to be converted and one or multiple atlases of MRI scans95

with known correspondence to the CT [15, 17, 21, 22, 31].
The MRI intensity ambiguities are thus resolved by uti-
lizing the spatial information provided by the registration
and specialized MRI sequences are no longer needed. A
concern with atlas-based methods is that they depend en-100

tirely on the accuracy of the registration; in cases where
the patient geometry is very different from the atlas(es),
this may pose a problem. When using multiple atlases,
an attempt to overcome this is to use a similarity measure
such as the local cross-correlation or the sum of squared105

difference in a patch to create a locally weighted fusion
of the atlas CTs [21, 31]. This gives less weight to re-
gions in the atlases where the non-linear registration was
sub-optimal. Another approach is to refine the atlas-
based prediction using pattern recognition on multiple110

2D patches per atlas after the non-linear registration [15].

We previously proposed using a multi-atlas approach
based on affine registrations and letting brain pCT pre-
diction be driven mainly by patch similarities between
the patient MRI scan and the atlas database of MRI115

scans [20]. For the brain, this method compared favor-
ably to a multi-atlas method based on non-linear regis-
tration and a voxel-based method based on UTE scans.
Concerning its applicability to other body sites, as well
as its clinical relevance, we identified two possible limi-120

tations of the patch-based approach: 1) For sites such as
the pelvis where the inter-patient anatomical variation
is larger than in the brain, the approach might fail be-

cause similar anatomical regions are too far apart to be
roughly aligned by an affine transformation. This would125

cause problems when searching for similar patches in a
limited search volume. 2) When using a brute-force patch
search strategy, the computational speed benefit of using
affine registrations instead of non-linear ones was heavily
outweighed by the time used for the patch search. This130

resulted in a pCT prediction time of around 15 hours,
which could hinder its clinical relevance.

In this paper, we evaluate the robustness of the patch-
based approach for predicting pCTs of the pelvic re-
gion without using non-linear registrations. To adapt the135

method for the pelvic region, we introduce an atlas pre-
selection step in order to discard highly dissimilar atlas
patients prior to the patch search step. This avoids atlas
patients where the affine alignment could not bring sim-
ilar anatomical regions within the limited patch search140

volume. Furthermore, we use an approximate nearest-
neighbor algorithm to dramatically speed up the search
for similar patches, making the method more suitable for
a clinical setting than our previously proposed method.
We evaluate the approach in terms of its geometric, radi-145

ologic and dosimetric accuracy using frequently described
metrics and we compare the performance with a baseline
water pCT where all voxels within the MRI body contour
are assigned a water-equivalent bulk density.

II. MATERIALS AND METHODS150

A. Imaging

Data consisting of MRI and CT scans of ten prostate
RT patients aged 55-82 years were retrospectively ob-
tained. The CT scans were acquired on a Philips Bril-
liance Big Bore CT using a standard protocol for pelvic155

scans (120 kVp, 232-503 mAs). The scans were acquired
with a voxel spacing of between 0.78× 0.78× 2 mm and
1.4×1.4×2 mm, for an in-plane matrix of 512×512 vox-
els and 129-199 slices. The MRI scans were acquired on a
Philips Panorama 1 T open scanner using a bridge body160

coil with a T1-weighted sequence, TE/TR = 10/623 ms.
The voxel spacing was 0.80 × 0.80 × 4 mm, for an in-
plane matrix between 528 × 528 and 640 × 640 voxels
and 16-24 slices. The approximate duration of the T1-
weighted sequence was 5-7 minutes. The patients were165

fixed in treatment position during both the MRI and CT
scanning using the same fixation devices.

B. Pre-processing

To give the voxel intensities a consistent tissue mean-
ing in all MRI scans, we applied bias field correction170

[32] and intensity normalization using a piece-wise lin-
ear histogram-matching approach [33]. We found that
two distinct peaks corresponding to muscle and fat were
consistently present in the MRI intensity histograms and
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used these peaks as landmarks for the piece-wise normal-175

ization. This differs from the single landmark we used in
our previous work on the brain region. To ensure spa-
tial correspondence between voxels and to account for or-
gan movement between the scans, we non-linearly aligned
each patient’s MRI scan to his CT scan using Elastix180

[34]. The registration included four steps: (1) To guide
the registration to the correct region of the CT, a mask
which covered the same anatomy as the MRI was de-
fined for the CT scan. Elastix samples the cost function
only within this mask. (2) To roughly position the MRI185

within the mask region of the CT, an initial manual rigid
alignment was carried out. (3) To get a proper linear
alignment, an automatic affine registration of the MRI
to CT was done. (4) A non-linear registration was ap-
plied using a multi-resolution B-spline deformation model190

with local normalized mutual information as the similar-
ity metric. The parameters used for the different steps of
the intra-patient registration are summarized in Table I.
These parameters were manually determined by visually
inspecting the scans for a satisfactory alignment. The195

registration resulted in a resampling of the MRI scans to
match the CT resolution, leaving the MRI in CT space.
To allow a one-to-one comparison with the CT with min-
imal impact of between-scan motion, all pCTs were pre-
dicted from the non-linearly co-registered MRI.200

C. Patch-based approach

We used a previously described patch-based method
[20] to predict a pCT for each patient using a leave-one-
out strategy. For a new test patient, the essential steps
consisted of 1) Linearly aligning a pre-acquired database205

of co-registered atlas MRI/CT pairs with the patient
MRI. 2) For each position x in the test patient MRI,
extracting a 3D subvolume of voxels (a patch) and per-
forming a search for the K most similar patches using the
L2 distance (square root of the sum of squared difference)210

between patch intensities in a search volume, V , centered
on x in the database MRIs. 3) Based on the degree of
MRI patch similarity, assigning a weighted average of the
corresponding database CT values as the predicted value
at position x. The inter-patient alignment required in215

step 1 was achieved using an affine registration of each
atlas MRI to the test patient MRI and then applying
the same transformation to the corresponding atlas CT
scans. The registration parameters are summarized in
Table I. Since the test patient MRI was previously non-220

linearly co-registered with its corresponding CT, this left
all scans (atlases and patient) in the test patient’s CT
space prior to the subsequent steps.

We made a few modifications to the previously de-
scribed model for the brain. To discard the globally most225

dissimilar atlases or atlases where the registration to the
test patient scan was sub-optimal, we defined a global
similarity between the test patient MRI and each atlas
MRI. This has previously been shown to benefit multi-

atlas-based brain segmentation methods [43]. After per-230

forming step 1, we calculated the global similarity as the
intensity-based L2 distance between corresponding vox-
els in the atlas and test patient MRI. We only used voxels
situated inside the MRI body contour of the test patient.
The body contour was automatically found in the MRI235

using Otsu’s method [39] and morphological operations.
We manually tweaked the parameters for the morpho-
logical operations to establish a reasonable baseline and
used the same parameters for all scans. We empirically
chose to keep only the five most similar atlases for the240

subsequent local patch search steps. To improve predic-
tion accuracy, we used the whole CT patch instead of
just the center voxel of the patch when fusing the corre-
sponding CT values of the most similar MRI patches [35].
This meant that, for each voxel, the found CT patches245

of neighboring voxels also contributed to the prediction,
and that each pCT voxel was an average of K ×m voxel
intensities, where m is the number of voxels in a patch.

To speed up the patch search we implemented an ap-
proximate nearest neighbor algorithm inspired by the250

PatchMatch (PM) algorithm [36] and with similarities to
the work of Shi et al. [37] and Ta et al. [38] who also used
PM in combination with a database of MRI scans. The
PM algorithm was originally proposed for finding patch
correspondences in 2D images. It does not guarantee255

finding the nearest patch (i.e., most similar), but a good
approximation, and it drastically cuts down on both the
required number of L2 distance calculations compared to
a brute-force search, and the memory requirements com-
pared to other approximate algorithms [36]. It consists260

of a random initialization of nearest neighbor candidates,
followed by an iterative process of propagation of good
candidates using adjacent voxels and a random search to
avoid local minima (see Barnes et al. for details [36]).
To use PM for our purpose, we performed the random265

initialization for each x by picking a random database
patient and a random patch within the search volume,
V , around x. At even iteration numbers in the propaga-
tion phase, we tested for improved candidates at each x
in three directions (posterior, superior and right lateral).270

At uneven iterations, we tested in the opposite directions
(anterior, inferior and left lateral). In the random search
phase, we searched for improved candidates at random
positions inside V in the same database patient as the
current best candidate. Contrary to the brute-force ap-275

proach, the run-time of this multi-atlas PM algorithm is
independent of both the number of atlases and the size
of V . The accuracy of the algorithm is to some degree
dependent on the number of iterations. We found that
in practice, the pCT prediction no longer changed con-280

siderably after about 15 iterations.

We empirically set the patch and search volume sizes
to m = 7×7×5 and V = 13×13×11 voxels, respectively.
We set the number of similar patches to find at each voxel
to K = 8 and ran the PM algorithm in eight independent285

parallel sessions.
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Registration type: Intra-patient Inter-patient

Affine Non-linear Affine

Direction MRI → CT MRI → CT MRI → MRI

Metric NMI NMI+BE NMI

Fixed image mask X X
Samples 2000 2048 2048

Resolutions 4 3 4

Max iterations 1000 1500 500

Final B-spline

grid spacing [mm]
Not used

x/y/z:

8/8/10
Not used

Table I. Summary of registration parameters. NMI: normal-
ized mutual information (32 histogram bins). BE: bending
energy penalty. For all registrations, adaptive stochastic gra-
dient descent was used as optimizer. For the affine regis-
tration, Gaussian smoothing was applied to achieve multiple
resolutions. For the non-linear registration, the B-spline grid
was also made coarser at lower resolutions. Inter-patient reg-
istration refers to the alignment of atlas MRIs with the test
patient MRI.

D. Benchmark method

To benchmark the proposed method, we created an
additional pCT by assigning a bulk density to the MRI.
We set all voxels within the body outline to 0 HU, thus290

assuming all tissues to be water (called MRIw). The
body region was found using the approach described in
Section II C. This represents the simplest possible way of
creating a pCT and any method should outperform this
to justify any additional correction steps.295

E. Geometric and radiologic evaluation

We evaluated the pCTs in terms of their geometric and
radiologic similarity to the CT. A measure of the overall
geometric quality of the pCTs is the voxel-wise mean
absolute error (MAEvox) within the MRI body outline300

(excluding surrounding air):

MAEvox =
1

N

N∑

i=1

|CT(i)− pCT(i)|, (1)

where N is the total number of voxels inside the body
outline of the MRI. Similarly the voxel-wise mean error
(MEvox) can be calculated:305

MEvox =
1

N

N∑

i=1

(CT(i)− pCT(i)). (2)

We also calculated the Pearson correlation coefficient be-
tween the CT and pCT for voxels within the MRI body
contour.

To get an estimate of the radiologic accuracy of310

the pCTs, we compared water-equivalent path lengths

(WEPL) in the CT and pCTs. The water-equivalent path
length is defined as:

l′ =
∑

i

∆li × ρi, (3)

where ∆li is the physical distance traveled by a photon315

in voxel i, and ρi is the voxel’s electron density relative to
water, which is relevant for MeV photons. The value of ρi
is found from the voxel CT number using a verified stan-
dard calibration curve in the treatment planning system
(Eclipse v11.0, Varian Medical Systems Inc., Palo Alto,320

CA). We defined the approximate center in the prostate
region and calculated l′ in 1800 radial spokes towards the
surface of the patient in both the CT and the pCT. The
mean absolute WEPL error is then defined as:

MAEWEPL =
1

L

L∑

j=1

|l′CT
j − l′pCT

j |, (4)325

where L is the number of spokes and l′j is the WEPL
of the jth spoke. Again, a similar mean WEPL error is
given as:

MEWEPL =
1

L

L∑

j=1

(l′CT
j − l′pCT

j ). (5)

F. Dosimetric evaluation330

A volumetric modulated arc therapy (VMAT) treat-
ment plan was created for each patient and optimized
according to our clinical protocol on the pCT. The pa-
tients were prescribed a dose of either 78 Gy (six patients)
or 70 Gy (four patients) depending on their staging. For335

both groups, the dose was prescribed in 2 Gy fractions to
the prostate. All treatment planning was carried out in
Eclipse v11.0 (Varian Medical Systems Inc., Palo Alto,
CA) using the analytical anisotropic algorithm (AAA)
to calculate the dose distribution. After the plan on the340

pCT was finished, it was transferred to the CT and re-
calculated using the same plan parameters and monitor
units. Due to the retrospective study design, for some
patients the MRI scan did not cover the entire femoral
heads or the entire PTV in the inferior/superior direc-345

tion. In these cases, we cropped the structures to the
body outline and extended the pCT by 40 mm in the
longitudinal direction by repeating the last slice. The
same was done on the CT scan. Note that this extension
was only applied in the dosimetric evaluation and not in350

the geometric and radiologic evaluation.

1. DVH analysis

The dose volume histogram (DVH) was used to evalu-
ate the dosimetric difference between the CT and pCT.
The relative change in percent was calculated for the355
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DVH points relevant to the PTV coverage and the organ
at risk (OAR) dose constraints. For the PTV, these were
the near-minimum (D98%), near-maximum (D2%) and
median (Dmedian) absorbed dose [40]. For the femoral
heads they were the mean (Dmean) and maximum (Dmax)360

absorbed dose. For the rectum, the constraints varied de-
pending on the prescribed dose, but since we were only
interested in evaluating the deviations and not the abso-
lute values, we chose to pool the deviations calculated for
the different DVH points in the two prescription groups.365

These were the volumes receiving 65/75 Gy (V65/75),
54/60 Gy (V54/60) and 36/40 Gy (V36/40), where the
subscripted values were the constraints for the 70 Gy
and the 78 Gy prescription, respectively.

2. γ-index analysis370

To further evaluate the general accuracy in the pCT
dose distribution, we performed an analysis based on the
γ-index [41]. This metric evaluates dose differences (DD)
and distance-to-agreement (DTA) criteria for each voxel
between a test and a reference dose matrix. The result is375

a pass rate between 0 and 1, where 1 is better. We used
the CT-based dose matrix as reference and performed
a slice-wise 2D γ-analysis [42] with global normalization
and DD/DTA=2%/2mm and 1%/1mm pass criteria, re-
spectively. All voxels with a dose greater than 10% of the380

prescribed dose were included, as this excludes all voxels
outside the patient body [21, 23].

G. Statistical tests

Paired t-tests were performed to test for differences be-
tween the pCT strategies in all relevant quality measures.385

p ≤ 0.05 was considered significant. Prior to performing
the hypothesis testing, the data were tested and found
to be approximately normally distributed with constant
variances, thereby fulfilling the assumptions of the sta-
tistical method.390

III. RESULTS

In Figure 1, examples of the generated pCTs are shown
along with the corresponding CT and T1-weighted MRI.
In most regions, the patch-based method predicts the
correct HU value as illustrated by the difference maps395

in Figure 1. Some exceptions are the regions near the
body outline which are both over- and underestimated
and some of the cortical parts of the pelvic bone and
femoral heads, which are underestimated. The MRIw
pCT shown in Figure 1 (m), (o) and (q), obviously has400

errors in the bone region. Furthermore, the method for
extracting the MRI body and generating the MRIw has
a consistent error at the body outline causing an over-
estimation of the HU value. This is probably caused by

noise observed in the MRI scan in the surrounding air405

close to the patient outline.
In Table II, the average MAEvox and MEvox are shown

for both pCT approaches. These measures give an in-
dication of the overall geometric quality of the pCTs.
The patch-based approach shows a significantly better410

performance than MRIw. It is worth noting that even
though all cortical bone by default is underestimated by
the MRIw approach, there is an average overestimation
of the HU value as indicated by the negative MEvox. This
effect is related to the relative amounts of voxels within415

each tissue. In Table II, the average MAEWEPL and
MEWEPL also show a significantly better performance
of the patch-based approach compared to the MRIw ap-
proach. The average correlation coefficient between the
patch-based pCT and CT was 0.79 (σ = 0.06). The420

correlation coefficient is undefined for MRIw because the
standard deviation is zero within the body contour.

Metric Patch-based MRIw p-value

MAEvox [HU] 54 (8) 105 (12) < 10−7

MEvox [HU] −1 (7) −16 (11) 0.003

MAEWEPL [mm] 1.2 (0.3) 2.5 (0.3) < 10−10

MEWEPL [mm] −0.3 (0.7) 0.5 (0.5) < 10−4

Pass rate γ2%/2mm 0.99 (0.01) 0.98 (0.01) 0.014

Pass rate γ1%/1mm 0.97 (0.02) 0.94 (0.03) 0.019

Table II. The average mean absolute voxel-wise error
(MAEvox) in HU, the average mean absolute WEPL error
(MAEWEPL) of the water-equivalent path lengths (in mm).
The bottom rows show the mean 2D γ-index pass rates for
dose points greater than 10% of the prescribed dose. Aver-
age value and standard deviation (σ) for the ten patients are
shown. In the rightmost column are the results of a paired
t-test on the difference between the patch-based and MRIw
methods

In terms of the γ-index evaluation, Table II shows av-
erage pass rates close to 1 for both methods with slightly
higher rates for the 2%/2mm criterion than the more425

strict 1%/1mm criterion. The patch-based approach has
a higher pass rate than MRIw which is also visualized by
the γ-index maps in Figure 2. Differences between the
patch-based pCT and MRIw can be observed mainly at
the body outline, in the pelvic bone, and the prostate.430

The DVH analysis shown in Figure 3 reveals a median
deviation on the PTV within ±0.04% and ±0.4% for the
patch-based and MRIw methods, respectively, and stan-
dard deviations in the range 0.6-0.7. No significant differ-
ence was found between the two methods using a paired435

t-test (p > 0.05). On the femoral heads, the patch-based
approach had median deviations within ±0.2% with stan-
dard deviations of 0.6-0.7. The MRIw approach had me-
dian deviations within 0.9% with standard deviations of
0.7-0.9. A significant difference was found between the440

two approaches using a paired t-test (p < 0.01).
For the rectum, the patch-based and MRIw approaches
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(a)

(c)

(d)

(e)

(f)

(g)

(i)

(j)

(k)

(l)

(m)

(o)

(p)

(q)

(r)

Figure 1. Qualitative comparison of CT and pCTs. (a)-(f) show alternately the CT and the MRI (registered to the CT) that
the pCTs are based on, for different views. (g)-(l) show alternately the patch-based pCT and the difference maps between the
patch-based pCT and CT. (m)-(r) show alternately the MRIw pCT and the difference maps between the MRIw pCT and CT.
The top colorbar relates to the pCTs and the bottom colorbar to the difference maps. A negative HU difference indicates an
overestimation of the true HU value.

had median deviations within ±0.4% and ±1.3%, respec-
tively. There was a significant difference between the two
approaches in V36/40 and V54/60. Though the median de-445

viations were close to 0% for the patch-based approach,
in V65/75 we observed a peak deviation of approximately

10% for one patient and a general larger variation in the
deviations than the other DVH points. This variation
is related to the varying position of air pockets in the450

rectum between the CT and pCTs.
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(a)

(b)

Figure 2. Example of a 1%/1mm criterion γ-index map for
one transverse slice of a dose matrix for (a) the patch-based
method and (b) the MRIw method. Pass rates for the shown
slice are 0.98 and 0.89 for the patch-based and the MRIw
method, respectively. For the patient shown, the average pass
rates are 0.99 and 0.92 for the patch-based and the MRIw
method, respectively.

IV. DISCUSSION

In this paper, we evaluated the robustness of a patch-
based method for predicting pCTs based on conventional
T1-weighted MRI images of the male pelvic region. The455

patch-based approach has previously compared favorably
to other multi-atlas and voxel-based approaches in the
brain, but for a method based on registration and lo-
cal patient similarities, the pelvis is more challenging
due to a greater anatomical variation between patients.460

In particular, for a patch-based approach based only on
affine registrations, this could affect the search for similar
patches since the correct anatomy may not be contained
within the local search volume.

In Figure 1, it seems as though the patch-based ap-465

proach is able to capture most of the correct HU values
and geometries of both the bone, muscle and fat regions
of the CT. However, some parts of the cortical bone are
still underestimated, illustrating the challenging nature
of these voxels. Also, since each pCT voxel is the result470

of an averaging of K × m = 8 × 245 voxels, there is a
general blurring effect at tissue borders.

A. Geometric and radiologic agreement

From the results of the geometric and radiologic eval-
uation shown in Table II, the patch-based approach475

performed significantly better than the baseline MRIw
method. With the simplicity of that method, this might

come as no surprise. Nevertheless, we believe that includ-
ing this benchmark is important since it can provide some
intuition about the magnitudes of the different error mea-480

sures, which can otherwise seem quite arbitrary. Many
authors have published MAEvox results for brain pCT
methods, which were approximately in the range 85−140
HU [1, 11–20]. An MAEvox of 54 HU would therefore
seem impressive for the pelvis, but as the MRIw illus-485

trates, the MAEvox is not comparable across treatment
sites. This is mainly caused by differing relative amounts
of soft tissue vs. bone and air in different sites.

In Table II, the MEvox revealed a pattern of consis-
tent overestimation of the HU value for MRIw. This can490

be explained by the relatively large amount of fat vox-
els, which become overestimated by assigning a value of
0 HU. The magnitude of the error made in voxels with
an HU greater than 0 might be larger than in the fat
voxels, e.g., greater than 500 HU for the cortical bone,495

but the amount of voxels with such an HU value is lower
than the amount of fat voxels. This illustrates one of
the weaknesses of using a purely voxel-wise and global
error metric such as the MEvox or MAEvox. Correct pre-
dictions in the bone region might be dosimetrically more500

important than in soft tissue [2, 26, 27], but since the pro-
portion of these voxels is low, errors do not really show
in a voxel-based evaluation. The correlation coefficient
might be comparable between different treatment sites,
since the standard deviation of the HU values is included.505

Our result of 0.79 is close to the values reported by Uh
et al. for the brain when using different atlas-based ap-
proaches [18].

As previously mentioned, there was a consistent over-
estimation of the spatial extent of the MRI body con-510

tour by our simple body contour extraction procedure. It
should be noted that this caused an overestimation of the
spatial extent of the MRI and thus also the MRIw pCT.
The MAEvox, MEvox and correlation coefficient were also
calculated within this contour, which always covered the515

entire CT. For the patch-based pCT, the larger estimated
contour could positively affect the relevant quality mea-
sures if the air close to the patient is easy to predict.
This is not necessarily the case and compared to the size
of the patient body, we expect the effect of this to be520

negligible.

The WEPL-based error metrics give a more informa-
tive measure of quality than the voxel-wise metrics, since
they evaluate a radiologically and dosimetrically rele-
vant path length independently of the order by which525

tissues appear along each spoke. We observed an aver-
age MAEWEPL of 1.2 and 2.5 mm for the patch-based and
MRIw pCTs, respectively. This gives an indication that
the patch-based pCTs are radiologically more accurate
than the MRIw. This is consistent with the larger devia-530

tion in DVH points (Figure 3) for the MRIw as compared
to the patch-based pCT. A unique correlation between
dose and WEPL would require an equal amount of dosi-
metric absorption along each radial spoke for the VMAT
plans. The dose delivery, however, depends on the opti-535
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Figure 3. Tukey-style boxplots showing the relative deviation in percent for the different methods in relevant DVH points for
the PTV and OARs. ∗∗ indicates a significant difference at the α = 0.01 level and ∗ indicates a significant difference at the
α = 0.05 level. The dashed horizontal line indicates zero deviation. rect: rectum, fem.s: femur sinister, fem.d: femur dexter.

mization objectives which distribute the dose unequally
on each spoke depending on the position of organs at risk
and PTV.

B. Dosimetric agreement

In the DVH analysis shown in Figure 3, the patch-540

based approach mostly had median deviations close to
0% and maximum deviations less than ±1.5%. The ex-
ception to this was the rectum, where a peak deviation
of 10% was observed for one patient in V65/75. Look-
ing at the pCT and CT of this patient, the deviation545

can be explained by rectal air pockets present in the CT
but not in the pCT. In general, most patients were af-
fected by air pockets, and these varied in size and position
between the CT and MRI scans. This results in a dis-
crepancy between the pCT and CT, which could cause550

dosimetric differences. Often, an air pocket present in
the test patient MRI could not be matched anywhere in
the atlas, causing a conversion to soft tissue in the pCT.
Other times, air pockets were correctly predicted based
on the MRI data, but they were not present in the cor-555

responding CT. In general, air pocket positions will vary
between treatment planning and the actual treatment,
causing either an under- or over-dosage when present in
the treatment field of view (FOV). This issue is not con-
fined to MRI-only RT, and the current mitigation in the560

CT-based work-flow is often to assign a water-equivalent
HU value to those regions. This strategy could also be
employed on pCTs and performed automatically by do-
ing the assignment in the CT atlases.

Looking at the femoral head DVH deviations, account-565

ing for bone results in a significantly lower deviation for
the patch-based approach than the MRIw approach. In
general, our DVH analysis shows the importance of eval-
uating not just the high dose PTV region, but also the
OARs. It is mostly in the gradient and low-dose re-570

gions that a pCT strategy demonstrates its advantages,
as shown in Figure 3.

The γ-index analysis showed relatively high average
pass rates for both the patch-based approach and MRIw,
indicating high dosimetric agreement. There was a sig-575

nificant difference between the two methods for both the
2%/2mm and 1%/1mm criteria with an average higher
pass rate for the patch-based approach than the MRIw
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approach. There is currently no consensus on the re-
quired criterion and pass rates for a pCT to be considered580

of acceptable quality. However, the pass rates for pCT
vs. CT planned dose should be higher than those usually
considered acceptable when evaluating planned vs. deliv-
ered dose. With the rather strict acceptance criteria used
here, an average pass rate of 0.97 is probably acceptable,585

whereas a pass rate of 0.94 could be questioned.
A source of uncertainty in our dosimetric results was

the limited FOV for some patients. This could have
been avoided by a prospective study design. To account
for the scattering component in the dose simulation, we590

chose to extend the pCTs by repeating the last slice in
the inferior/superior direction. The corresponding slices
were also repeated in the CT scan. The average MAEvox

across the patients in only the repeated slices was 91
HU for the patch-based pCTs. Compared to the overall595

MAEvox of 54 HU, this indicates that these slices were not
that well predicted. For this reason, the repeated slices
may have introduced a bias that negatively impacted the
dosimetric results. However, we found this compromise
better than not being able to account for the scattering600

component in the dose simulation.
The dosimetric deviations in the current study indi-

cate that the patch-based approach could be used clin-
ically. However, a dosimetric study including more pa-
tients would establish a dosimetric deviation confidence605

interval with more certainty.

C. Comparison with other pCT methods

Overall, our results seem to fall in line with other
recently published pCT approaches for the pelvis. Us-
ing VMAT treatment on twenty patients and a dual re-610

gression model with manual bone delineation, Korho-
nen et al. reported average γ-index pass rates of 0.99
and 0.93 for 2%/2mm and 1%/1mm criteria, respectively
[23]. This was for a 2D evaluation of the body region of
one transverse slice per patient and was achieved with615

a correction for body contour differences between CT
and pCT. For their multi-atlas-based method with thirty-
eight atlas patients, Dowling et al. reported median pass
rates for thirty-nine patients in the 0.91-0.95 range for a
3D evaluation of the body region and using a 1%/1mm620

criterion [21]. This was for a seven field IMRT plan.
They further reported an average MEvox and MAEvox

of 0.6 (σ = 14.7) and 40.5 (σ = 8.2), respectively for
the body region. For a commercial multi-atlas method
with fifteen atlas patients, Siversson et al. reported av-625

erage γ-index pass rates for ten patients between 0.97
and 1.0 using a 2%/1mm criterion and excluding points
in the vicinity of the body outline [25]. This was for a
VMAT plan. They further reported average deviations
in PTV, rectum and femoral heads DVH points close to630

0% and an average MEvox and MAEvox of 1.9 (σ = 6.6)
and 36.5 (σ = 4.1), respectively within the body re-
gion. It should be noted that slight differences in the

evaluation of the pCTs between the different methods
makes it difficult to compare them directly. These dif-635

ferences include whether a rigid or a non-linear regis-
tration was used to align the MRI and CT scans prior
to the evaluation; whether the dose plan was optimized
on the CT or the pCT, and how the γ-index was calcu-
lated. Furthermore, the evaluation of an IMRT plan will640

be affected by the specific field angles chosen, whereas a
VMAT plan reflects an average of multiple angles similar
to the way the WEPL measure is calculated. Although
the proposed approach and the methods mentioned above
seem to speak in favor of an atlas-based approach in the645

pelvis, the choice of an optimal pCT strategy is ongoing
research and effort is still being put into making more ac-
curate voxel-based strategies [44]. The main advantage
of these approaches is a fast, registration-free prediction,
which could make them more robust against inter-patient650

anatomical variation.

D. Algorithm speed-up

In a previous publication, we showed promising results
with the patch-based approach in the brain region. One
of the drawbacks was the prediction time, which was655

around 15 hours for one pCT. To address this issue in this
paper, we incorporated an approximate nearest-neighbor
algorithm in the pCT approach. To test the consequences
of this, we ran the algorithm on the same brain data and
hardware set-up (64 bit Linux cluster with 8 quad-core660

AMD Opteron 8356 2.3 GHz CPUs and a total of 256
GB RAM) as we used previously [20], and achieved on
average a 70x speed-up compared to the brute-force ap-
proach. This meant that the average prediction time of a
brain pCT was approximately 14 minutes. The time re-665

quired for the affine registrations is not included in this,
so roughly 1.5 minutes should be added per patient in
the atlas database. Otherwise, the algorithm run-time is
independent of the number of patients in the atlas. Using
the approximate algorithm, we saw an average increase in670

the MAEvox of 12 HU (σ = 9 HU) compared to the brute-
force approach, which we find is a worthwhile trade-off.
The average prediction time for the pelvic scans used in
this study was 20.8 minutes excluding registrations (re-
quiring 1.5-2 minutes per atlas patient). We find this ac-675

ceptable for a clinical work-flow, as it enables same-day
planning and treatment of patients. For a clinical imple-
mentation, a possible alternative to a powerful computer
cluster could be a single 8-core machine or a cloud-based
solution, both of which allow parallel patch-matching.680

With the introduction of the MRI LINAC, faster predic-
tion times would still be preferred to generate plans of the
day. This could potentially be achieved by a GPU-based
implementation.

The prediction time of the algorithm is dependent on685

the number of voxels in the test patient MRI. We tested
the algorithm on a patient where we artificially added
34 slices to simulate a 6.8 cm larger FOV in the infe-
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rior/superior direction. This resulted in a prediction time
of 28 minutes.690

There is a random component in the approximate algo-
rithm, meaning that the predictions could vary between
different runs on the same patient. To test the severity
of this, we predicted 15 pCTs for the same patient with
a resulting standard deviation of 0.3 HU in the MAEvox.695

This is negligible compared to the variation in MAEvox

between patients.

E. MRI to CT registration

Aligning the intra-patient MRI and CT scans is an
important step, both for evaluating the pCT accuracy700

and for generating high-quality atlases. This influences
the ground truth, which both the evaluation and pre-
diction are based on. Accordingly, if the patient MRI
and CT are not well aligned, then neither are the pCT
and CT, resulting in evaluation differences not related to705

the prediction itself. Likewise, misalignments in the at-
lases will result in less than optimal predictions because
database patches will have wrong CT values attached
to them. We most commonly observed pre-registration
differences in the body outline, bladder filling and posi-710

tions of air pockets. In the current work, a normalized
mutual information-based multi-resolution B-spline ap-
proach was used to register each patient’s MRI to the
CT. From manual inspections, the general outcome was
acceptable but for some patients with large deformations715

between the scans, the registration could still be im-
proved. In most cases, there was a residual difference be-
tween the MRI and CT at the body contour. Figures 1(a)
and (b) show a severe example of this, where the lower
left and right corners of the body in the MRI scan differ720

from the CT scan. This affected both the patch-based
and MRIw pCTs, causing an over-estimation of the true
HU value. In the γ-map in Figure 2, this is also where
the fail rate is highest. It might be worthwhile using
a structure guided registration [21, 25], which could al-725

low for a less regularized deformation while still ensuring
that important structures are kept in alignment. The ob-
served differences in body outline between the MRI and
CT also call for a separate investigation of the geomet-
rical integrity of the MRI scans at the regions far from730

the isocenter. It is hard to say whether these differences
were due to geometrical distortions or simply variation
in patient position between the scans. Nonetheless, a
consequence of a successful intra-patient non-linear reg-
istration may have been that any geometric distortions735

were removed from the MRI and thus not taken into
account in the evaluations. In our routine quality as-
surance of the MRI scanner, we typically observe devi-
ations of less than 2 mm for a region of approximately
300 × 300 × 300 mm around the isocenter. This region740

is sufficient for delineation purposes but should perhaps
be larger for pelvic MRI-only RT to ensure geometrically
accurate pCTs. Several groups seem to agree that the

amount of distortion in modern scanners is not an issue
for MRI-only RT, even for the far-from-isocenter regions745

covered in pelvic scans [23].

F. Affine registrations

Another important step in the patch-based approach is
the affine atlas-to-patient registration, which for the most
part worked without issues. However, there were cases750

where one or more atlas patients were poorly aligned with
the test patient MRI after the registration. Misalignment
happened frequently for two patients, where the FOV
covered a slightly different part of the pelvis than the
rest of the patients, i.e., those where parts of the femoral755

heads were missing. We tested registrations with fewer
degrees of freedom (rigid and similarity transforms), but
achieved worse results in terms of the MAEvox of the re-
sulting pCT.
The consequence of the misalignment was that similar760

patches were found in wrong regions of the atlas patient,
causing prediction errors. Our solution was to introduce
the atlas pre-selection, which left out the most dissimi-
lar patients before the patch search. This step improved
the average prediction quality, and serves to illustrate765

that, for the patch-based approach, the global similarity
between the atlas patients and the test patient is still im-
portant. This speaks in favor of having a large number
of atlases to select from in order to increase the chance of
finding a number of highly similar patients for the patch770

search steps. In the current work, we chose to select only
the five most similar atlas patients as the basis for the
pCT prediction. This number was empirically chosen, as
it resulted in an average lower MAEvox than when all
nine atlases were used. In reality, the optimal number of775

atlas patients to select probably varies depending on how
similar the test patient is to the atlases. Finding this op-
timal number or adding a more flexible atlas pre-selection
strategy remains part of our future work. Another future
direction could be to improve the robustness of the affine780

alignment to better handle the alignment of dissimilar
patients. In this way, more patients could be included
after the atlas pre-selection step.

Using non-linear registration is another way of en-
forcing similarity between the atlases and the patient.785

This could potentially eliminate the need for atlas pre-
selection and enable a larger number of atlases to be used
for prediction. There is a risk, however, that if an affine
registration fails, then so will a non-linear one, which
typically assumes a fairly accurate affine pre-alignment.790

Atlas pre-selection would then still be required, and the
time needed for registration would increase substantially
compared to using affine registration only. Dowling et al.
showed that, using a combination of a large number of at-
lases (38), non-linear registration and a weighted fusion795

of the atlases based on their individual local similarity
could produce accurate pCTs [21]. Our results with the
patch-based approach using nine patients in the atlas and
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affine registrations are close to theirs. In our previous
publication, we benchmarked the patch-based approach800

against a similar multi-atlas approach and showed an
equal or slightly better performance of the patch-based
approach, using the same atlases with both approaches.

V. CONCLUSION

In this study, we showed that a patch-based multi-805

atlas approach could generate accurate pCTs of the male
pelvic region based on conventional T1-weighted MRI
scans and affine registrations. The main cause of dif-
ferences between the patch-based pCT and the CT were
positional changes of air pockets and body outline which810

were not directly related to the prediction algorithm it-
self. The patch-based pCTs achieved a dosimetric accu-
racy similar to previously published results with a γ pass

rate of 0.97 for a 1%/1mm criterion and median DVH
point deviations of less than 0.4% from a CT-based dose815

calculation. The presented approach is a promising can-
didate for pCT prediction in MRI-only RT of the pelvis.
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ABSTRACT

In radiotherapy treatment planning that is only based on magnetic resonance imaging (MRI), the electron density
information usually obtained from computed tomography (CT) must be derived from the MRI by synthesizing
a so-called pseudo CT (pCT). This is a non-trivial task since MRI intensities are neither uniquely nor quantita-
tively related to electron density. Typical approaches involve either a classification or regression model requiring
specialized MRI sequences to solve intensity ambiguities, or an atlas-based model necessitating multiple regis-
trations between atlases and subject scans. In this work, we explore a machine learning approach for creating
a pCT of the pelvic region from conventional MRI sequences without using atlases. We use a random forest
provided with information about local texture, edges and spatial features derived from the MRI. This helps to
solve intensity ambiguities. Furthermore, we use the concept of auto-context by sequentially training a number
of classification forests to create and improve context features, which are finally used to train a regression forest
for pCT prediction. We evaluate the pCT quality in terms of the voxel-wise error and the radiologic accuracy as
measured by water-equivalent path lengths. We compare the performance of our method against two baseline
pCT strategies, which either set all MRI voxels in the subject equal to the CT value of water, or in addition
transfer the bone volume from the real CT. We show an improved performance compared to both baseline pCTs
suggesting that our method may be useful for MRI-only radiotherapy.

Keywords: radiotherapy, magnetic resonance imaging, pseudo CT, CT synthesis, random forest, auto-context

1. INTRODUCTION

In recent years, the interest in eliminating the planning computed tomography (CT) from the workflow in
external beam radiotherapy (RT) has increased.1–4 Instead, the entire workflow would be based on magnetic
resonance imaging (MRI), thus eliminating systematic registration uncertainties between the MRI and CT5,6

and simplifying the treatment chain. It is a difficult task to exclude the CT, since MRI does not contain
information on electron density which is needed for dose calculations. Furthermore, the signal from compact
bone in conventional MRI is weak or missing due to the majority of short T2 components.7 This prohibits
2D-based patient setup using bone anatomy. By synthesizing a so-called pseudo CT (pCT) from the MRI scan,
the above issues would be solved, making an MRI-only workflow feasible.

Several approaches for CT synthesis have been proposed and in general, the methods can be split into two
categories: 1) voxel-based and 2) atlas-based. With the former, a classification or regression model is trained
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based on individual voxel intensities of pre-acquired MRI/CT pairs from a number of patients.2,8–10 Other
variants in this category include unsupervised methods based on MRI physics knowledge.11,12 The voxel-based
methods generally require specialized ultra short echo time MRI sequences for acquiring the bone signal, or
manual delineations to overcome the bone/air intensity-ambiguity. This either prolongs the patient scan time or
puts additional workload on the personnel. In recent publications, many variants of methods from the atlas-based
category have been proposed.13–19 Here, pre-acquired and co-registered MRI/CT pairs are used as atlases that
describe the relation between MRI and CT. To predict a pCT, the atlas MRIs are first deformably registered with
the patient MRI. The estimated deformations are then applied to the atlas CTs and finally the deformed CTs
are fused to provide the pCT estimate. These methods rely on conventional MRI sequences and the accuracy
is generally high. One difficulty, however, is that the use of deformable registrations can be slow, especially
with multiple atlases, and may fail if the subjects are very dissimilar. Using pattern recognition based on patch
similarities can remove some of the dependency on an accurate deformable registration13 and a faster affine
registration can even be used instead.20 Still, the registration is a computationally demanding step, which must
be performed for each atlas every time a pCT is predicted. Especially since the trend seems to go towards adding
more atlases to the database, i.e., 15-38 patients16,17,19 this can become a time-consuming task.

Methods using a random forest21 (RF) have previously been proposed for predicting one MRI contrast from
another.22,23 This task differs somewhat from CT synthesis because the bone/air ambiguity does not need to
be solved; the prediction model only needs to identify and predict the lack of signal in these regions, but is
not required to distinguish whether it is caused by bone or air. In this work, we use RF models to predict
pCTs based on conventional T1-weighted MRI scans without registrations during pCT synthesis. We overcome
intensity-ambiguities by using local texture descriptors, spatial features and edge information. Furthermore,
inspired by recent works in tumor and organ segmentation,24,25 we use the concept of auto-context (AC)26 to
iteratively learn and improve context features. We use a combination of classification RFs for learning context
features and a regression RF to ultimately predict a pCT.

By far most work in CT synthesis has been on generating pCTs of the brain, although a few publications
have focused on the pelvis.8,14,16,17 This region is theoretically more challenging due to the greater inter-patient
anatomical variability and because of between-scan non-rigid organ movement. We apply our method in this
challenging region, and evaluate and compare the resulting pCTs to baseline pCT approaches both in terms of
the voxel-wise prediction accuracy and the radiologic error.

2. METHODS

2.1 Data Collection and Pre-processing

MRI and CT scans of 10 prostate RT patients were retrospectively obtained from a Philips 1 T open MR
scanner using a body coil and from a Philips Brilliance Big Bore CT scanner. T1-weighted scans were acquired
with a gradient echo sequence (TE/TR = 10/623 ms) and a voxel resolution of 0.8 × 0.8 × 4.4 mm for an in-
plane matrix between 528 × 528 and 640 × 640 voxels and 16 − 24 slices. The CT scans were acquired using a
standard protocol for pelvic scans (120 kVp, 232-503 mAs) with a voxel resolution between 0.78× 0.78× 2 mm
and 1.4× 1.4× 2 mm, for an in-plane matrix of 512× 512 voxels and 129-199 slices. The patients were fixed in
treatment position during both the MRI and CT scanning. The T1-weighted scans were bias field corrected using
the N4 algorithm27 after which the intensities were normalized to a common range using a histogram matching
approach.28 To generate a ground truth relationship between the MRI and CT scans, which accounts for body
outline and organ deformations between the scans, the MRI scans were deformably registered and resampled to
their corresponding CT using Elastix.29 For this purpose, a multi-resolution B-spline transformation model and
normalized mutual information was used. Note that this registration is carried out before training the RFs and
is not a part of the pCT prediction step. Finally, in order to remove noise without severely blurring edges, a
simple 2D median filter was applied slice-wise to the MRI scans.

2.2 Initial Feature Extraction

Using the MRI intensity information directly to train a prediction model may limit its general applicability
because the absolute MRI intensities are irreproducible and varies between patients, scans and scanners. For
this reason, we use features that to some degree are independent of linear gray-scale changes. We use Local



Binary Pattern (LBP) features30 to capture textural information. For each voxel, we do a relational comparison
of the mean value of a cuboidal region centered on that voxel with mean values of 26 cuboidal regions positioned
on a sphere around that voxel. This results in a 26 digit binary number which is converted to a decimal texture
feature (dubbed LBPµ). We also incorporate a variant of the LBP where the standard deviation of the regions
is compared instead (dubbed LBPσ). We use three LBPµ and two LBPσ features with differing region size (RS),
33 - 53 voxels, and sphere radius (SR), 5 - 13 voxels, to capture information at different scales. As a simple edge
detector, we use the standard deviation of a 3× 3× 3 neighborhood around each voxel. As spatial features, we
use the (x, y) position of each voxel relative to the center of mass of the patient and the body outline. Figure 1
shows examples of the initial features.

(1, 1)

(a)

(b) (c)

(d) (e)

Figure 1. Features are extracted from the T1-weighted MRI shown in (a). (b) and (c) shows examples of the LBPµ

(SR/RS = 11/53 voxels) and LBPσ (SR/RS = 7/53 voxels), respectively. (d) shows the standard deviation feature. (e)
shows the coordinate system used to derive the spatial features; the origin is positioned in the center of mass of the patient
and the axes are scaled relative to the outer contour of the patient.

2.3 Initial Classification RF Training

In the initial step of our approach, we train a classification RF to segment an MRI scan into air, fat, soft tissue and
bone classes based on the features described above. We carry out all model training in a leave-one-out manner
using nine patients as training data and applying the model on the tenth. The training target segmentations
are generated by thresholding the CT scans using the following criteria: air = [−1000,−200] HU, fat = ]−200, 0[
HU, soft tissue = [0, 150], bone = ]150,∞[ HU. For each training patient, we then sample our features at 6× 105

and 105 random positions within the body outline and within the bone volume, respectively. This defines our
training set for the classification RF. We use an RF with 500 trees and a minimum terminal leaf size of 50
voxels. Because the bone class is relatively small compared to the others, we use a stratified sampling scheme,
meaning that an equal amount of cases from each class were chosen at random during training of each tree. This
is achieved by sub-sampling the bigger classes. The parameter settings were chosen as they resulted in a good
compromise between the out-of-bag error rate and training time.

2.4 Auto-context Features

In the next step of our approach, we use the initial RF to create a variant of auto-context (AC) features26 for all
training patients, which are then used in combination with the initial features to train an improved classification
RF. This process is repeated three times, each time using the most recently trained RF to improve the AC
features. The AC features are calculated based on the three probability maps of a voxel belonging to the fat,
soft tissue or bone classes. For each voxel, the feature extracts the mean probability of belonging to each class
in a small region centered on that voxel, along with the same mean probabilities of six regions chosen at a fixed



distance from it in the posterior/anterior, superior/inferior and lateral directions. The AC feature extraction is
illustrated in Figure 2. In this way, we encode the approximate locations and relations of the tissue classes. The
AC RFs consist of 150 trees and otherwise the same parameter settings as the initial forest. For each RF at this
stage, we sample the training data randomly in the same fashion as the first RF. This means that each forest
is not trained on exactly the same training data as in the iteration before. Note however, that we sample with
replacement so overlap can occur.

Classification with level 1 AC features Classification with level 2 AC features Classification with level 3 AC features

(a) (b) (c) (d)

Figure 2. Examples of the output probability maps of the bone class for a test patient after sending the data through
(a) the first classification RF and (b)-(d) the subsequent classification RFs with improving AC features. The AC feature
for a voxel consists of the mean probability of a small region (shown in black) around the voxel along with the mean
probability of 6 small regions at a fixed distance in the posterior/anterior, superior/inferior and lateral directions (shown
in white for the posterior/anterior and lateral directions).

2.5 Regression Forest Training

As a final step, we train a regression RF based on the initial features and the last level of AC features. We use
the non-thresholded CT scans as target values and sample our features from each training patient at 1.3 × 106

and 105 random positions within the body outline and bone volume, respectively. The regression forest consists
of 30 trees and a minimum terminal leaf size of 70 voxels.

2.6 Benchmark Methods

As simple benchmark methods, we generate pCTs by assigning all voxels within the body outline of the MRI a
bulk density value of 0 Hounsfield units (HU) corresponding to water (MRIw). Furthermore, we generate a pCT
which in addition contains the bone volume transferred from the real CT and assigned a bulk density of the
mean HU in that volume (MRIwb). This mimics a method where the bone has been manually (and perfectly)
delineated on the MRI.

2.7 Evaluation

Similar to our previous work,20 we calculate the voxel-wise mean absolute error (MAEvox) defined as:

MAEvox =
1

N

N∑

i=1

|CTi − pCTi|, (1)

where N is the number of voxels inside the body outline, CT(i) and pCT(i) are the HU value at voxel i inside
the body outline of the real CT or pCT, respectively. Similarly, we calculate the mean error, MEvox. To provide
a radiologic error measure that takes into account the attenuation properties of the tissue,31 we also calculate
the mean absolute error in water-equivalent path lengths (MAEWEPL). This is calculated along radial spokes
from the center of mass of the patient to the body surface. The WEPL, l′, of a spoke is calculated as:

l′ =
∑

i

∆li × ρi, (2)



with ∆li being the physical path length traveled by a photon in voxel i and ρi its electron density relative to
water. The value of ρi is found from the voxel HU value using a verified standard lookup table in the treatment
planning system (Eclipse v11.0, Varian Medical Systems Inc., Palo Alto, CA). We calculate l′ in 800 radial spokes
towards the body outline in both the real CT and pCT. The MAEWEPL is then defined as:

MAEWEPL =
1

L

L∑

j=1

|l′CTj − l′pCTj |, (3)

where L is the number of spokes and l′j is the WEPL of the jth spoke in either the CT or the pCT. Similarly
we calculate the mean error in WEPL, MEWEPL. We perform paired t-tests to test for significant differences in
the error metrics between the proposed and the baseline methods. p < 0.05 is considered significant.

3. RESULTS

In Figure 3, a visual comparison of the different pCTs and the real CT is shown for a representative transverse
slice of one patient. The proposed method is able to capture the challenging bone region but parts of the dense
bone is still underestimated as seen in the difference map (Figure 3(f)).

Figure 3. Transverse slices of the real CT and pCTs for one patient. (a) and (e) show the real CT and corresponding
T1-weighted MRI. (b)-(d) show the pCT generated with our method, the MRIwb and the MRIw, respectively. (f)-(g)
show the difference in HU between the real CT and the pCTs in (b), (c) and (d), respectively. No colorbar is shown for
the MRI image.

Table 1 shows the results of the voxel-wise and radiologic evaluation. The proposed method performs well
in comparison to the baseline methods with significantly lower voxel-wise and radiologic absolute errors. The
MEvox reveals an overall tendency of the proposed method to overestimate the HU value. There is also an
average overestimation of the WEPL, revealed by the negative MEWEPL.

Proposed MRIwb p-value MRIw p-value

MAEvox [HU] 58 (σ = 9) 90 (σ = 11) < 10−6 105 (σ = 12) < 10−7

MEvox [HU] −10 (σ = 10) −41 (σ = 12) < 10−5 −16 (σ = 11) 0.06

MAEWEPL [mm] 1.3 (σ = 0.4) 2.0 (σ = 0.3) < 10−3 2.5 (σ = 0.3) < 10−6

MEWEPL [mm] −0.7 (σ = 0.6) −0.4 (σ = 0.5) 0.05 0.6 (σ = 0.6) < 10−4

Table 1. The voxel-wise MAEvox and MEvox in HU and the MAEWEPL and MEWEPL of the water equivalent path lengths
(in mm). Average value and standard deviation (σ) for the 10 patients are shown for the different methods along with
the p-value from a paired t-test on the difference between the proposed method and each baseline method.



4. DISCUSSION

In this work, we explored a machine learning approach for creating a pCT of the pelvic region based on T1-
weighted MRI. The method required no specialized MRI sequences or atlases to overcome intensity ambiguities
in bone/air regions of the MRI. Instead, we extracted simple textural, edge and spatial features from the MRI
and trained an RF for tissue classification. As shown in Figure 2(a), the initial classification provides a rough
estimate of the positions of each tissue class but some uncertainty and wrong predictions remain. The iterative
refinement provided by the AC features in the next levels of RFs converges the classification towards a more
correct solution. In Figure 3(b), the visual quality of the pCT comes close to the real CT. There seems to be
a blurring effect in the pCT, which might be caused by the LBP and AC features only capturing information
at scales larger than the voxels, i.e., from small regions. The blurring causes the bone region to smear into the
soft tissue region, which might explain the average overestimation of the HU. Incorporating more features at the
voxel scale could potentially remove some of the blurring effect.

The MRIwb method should have a high accuracy in the bone region due to its exact geometry. However,
assigning the mean HU value to the whole region means that parts of it are overestimated. On average, 65%
of the voxels within the bone region are below the mean bone HU value, which illustrates the difficulties in
assigning a single bulk density to segmented regions. Since, in addition, the fat voxels are not accounted for, the
MEvox shows an overall tendency for overestimating the HU value.

The proposed method had an average MAEvox of 58 HU, which was significantly lower than the baseline
methods. Other recently published methods in the multi-atlas category16,17 reported average MAEvox and
MEvox in the pelvic region of 36.5−40.5 and 0.6−1.9 HU, respectively. They further showed a high dosimetric
accuracy of their pCTs. These methods use MRI/CT atlases from up to 38 patients and deformable registration
to create pCTs. In contrast, our approach requires no atlases and no registrations at run-time, yielding a less
computationally demanding method that is easier to distribute.

We have previously seen that comparing pCT methods based only on simple voxel-wise and radiologic error
metrics may not be sufficient.20 Instead an additional dosimetric evaluation should be carried out, which can
highlight if the prediction fails in dosimetrically important regions or in less relevant regions. A dosimetric
evaluation remains part of our future work.

Parallel to our work, another group has published a method for CT synthesis with many similarities to
ours.32 Our method differs slightly in the features used and the way auto-context is implemented. Furthermore,
their method is still dependent on rigid registrations during pCT prediction to bring their training subjects in
alignment with the test patient. They use a so-called structured RF to predict full CT patches instead of just
voxels and report an average MAEvox of 48.1 HU for the pelvis of 22 subjects. This is better than our method,
but whether it is due to a more advanced RF model or simply because of more training data is hard to say.

There are still multiple potential ways of improving the proposed method. A range of different features could
be tested for improving the classification. Furthermore, the LBP and AC features used here were pre-defined
in terms of the region sizes and distances between the regions. An often used strategy would be to let the RF
randomly pick and learn these parameters. For efficiency, a supervoxel-based strategy could also be employed.25

In the current work, we used features that could make the method broadly applicable on data from different
scanners. Still, the features that depend on e.g., the standard deviation may describe a specific noise level in the
training scans, which may be different in other scanners. Furthermore, with the rather limited amount of data
available to train our models, there is a risk of overfitting to the data from our scanner, especially as more levels
of auto-context are used. Testing the method’s robustness using data from various scanners as well as training
models based on more data remains part of our future work.

5. CONCLUSION

We presented a method for creating synthetic CT scans from MRI using random forests and textural, spatial
and edge information. Furthermore, we iteratively learned auto-context features to improve the predictive
performance of our models. The method worked on conventional T1-weighted MRI scans and required no
registrations at run-time. Our results indicate an improved performance compared to simple bulk density assigned
pCTs but further evaluations and comparisons with more advanced methods are still needed.
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