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ABSTRACT 

3D FACIAL SHAPE ESTIMATION FROM A SINGLE IMAGE UNDER 

ARBITRARY POSE AND ILLUMINATION 

Ham Moso Rara 

June 27, 2011 

Humans have the uncanny ability to perceive the world in three dimen­

sions (3D), otherwise known as depth perception. The amazing thing about this 

ability to determine distances is that it depends only on a simple two-dimensional 

(2D) image in the retina. It is an interesting problem to explain and mimic this 

phenomenon of getting a three-dimensional perception of a scene from a flat 2D 

image of the retina. The main objective of this dissertation is the computational 

aspect of this human ability to reconstruct the world in 3D using only 2D images 

from the retina. 

Specifically, the goal of this work is to recover 3D facial shape information 

from a single image of unknown pose and illumination. Prior shape and texture 

models from real data, which are metric in nature, are incorporated into the 3D 

shape recovery framework. The output recovered shape, likewise, is metric, unlike 

previous shape-from-shading (SFS) approaches that only provide relative shape. 

This work starts first with the simpler case of general illumination and fixed 

frontal pose. Three optimization approaches were developed to solve this 3D 

shape recovery problem, starting from a brute-force iterative approach to a compu­

tationally efficient regression method (Method II-peR), where the classical shape­

from-shading equation is cast as a regression framework. Results show that the 
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output of the regression-like approach is faster in timing and similar in error met­

rics when compared to its iterative counterpart. 

The best of the three algorithms above, Method II-PCR, is compared to its 

two predecessors, namely: (a) Castelan et al. [1] and (b) Ahmed et al. [2]. Experi­

mental results show that the proposed method (Method II-PCR) is superior in all 

aspects compared to the previous state-of-the-art. Robust statistics was also incor­

porated into the shape recovery framework to deal with noise and occlusion. 

Using multiple-view geometry concepts [3], the fixed frontal pose was re­

laxed to arbitrary pose. The best of the three algorithms above, Method II-PCR, 

once again is used as the primary 3D shape recovery method. Results show that 

the pose-invariant 3D shape recovery version (for input with pose) has similar er­

ror values compared to the frontal-pose version (for input with frontal pose), for 

input images of lhe same subject. Sensitivity experiments indicate that the pro­

posed method is .. indeed, invariant to pose, at least for the pan angle range of 

(-50° to 50°). 

The next major part of this work is the development of 3D facial shape 

recovery methods, given only the input 2D shape information, instead of both 

texture and 2D shape. The simpler case of output 3D sparse shapes was dealt 

with, initially. The proposed method, which also use a regression-based opti­

mization approach, was compared with state-of-the art algorithms, showing de­

cent performance. There were five conclusions that drawn from the sparse exper­

iments, namely, the proposed approach: (a) is competitive due to its linear and 

non-iterative nature, (b) does not need explicit training, as opposed to [4], (c) has 

comparable results to [4], at a shorter computational time, (d) better in all aspects 

than Zhang and Samaras [5], and (e) has the limitation, together with [4] and [5], 

in terms of the need to manually annotate the input 2D feature points. 

The proposed method was then extended to output 3D dense shapes simply 

by replacing the sparse model with its dense equivalent, in the regression frame­

work inside the 3D face recovery approach. The numerical values of the mean 
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height and surface orientation error indicate that even if shading information is 

unavailable, a decent 3D dense reconstruction is still possible. 
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CHAPTER I 

INTRODUCTION 

Humans have the exceptional ability to perceive the world in three dimen­

sions (3D), othenvise known as depth perception [16]. The amazing thing about 

this ability to determine distances is that it depends only on a simple two-dimensional 

(2D) image in the retina. It is an interesting problem to explain and mimic this phe­

nomenon of getting a three-dimensional perception of a scene from a flat 2D image 

of the retina. 

The main objective of this dissertation is the computational aspect of this 

human ability to reconstruct the world in 3D using only 2D images from the retina. 

Specifically, the goal of this work is to solve the problem of recovering 3D facial 

shape information from a single image of unknown pose and illumination. Figure 

1 sums up this whole document into a single illustration. The input, which can be 

images of arbitrary pose and illumination, is fed into a 3D facial shape estimation 

algorithm that outputs the desired 3D facial shape. 

This chapter starts with a discussion on how psychologists approach the 

problem of depth perception. The next topic talks about the computer vision ap­

proach to depth perception, which is known as shape recovery. It then describes 

the prior art of recovering 3D facial shape information from a single image of un­

known pose and illumination. A section is allotted to defend why this work is 

needed and relevant. The rest of this chapter includes a list of dissertation contri­

butions and the layout of the whole dissertation document. 
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Unknown light 
condition 1 

Unknown light 
condition 2 

Unknown light 
condition 3 

Unknown light and 
pose condition 

Input 

FIGURE 1- 3D facial shape estimation problem under general illumination and 
pose. The goal is to recover 3D facial shape from images of unknown lighting and 
pose conditions, using a 3D estimation black box. 

A. Pyschology of Depth Perception 

Psychologists approach this problem by asking what information is avail­

able from the 2D image that enables humans to perceive depth. This is referred to 

as the cue approach to depth perception. According to the cue theory [17], humans 

learn the connection between this cue and depth through previous experiences. 

The link between a particular cue and its corresponding depth becomes automatic 

after these learning experiences that when presented with depth cues in the future, 

the world is experienced as three-dimensional. 

These cues can be divided into three major classes: (a) oculomotor - cues 

based on the ability to the sense eye positions and the tension in the eye muscles, 

(b) monocular - cues that work with one eye, and (c) binocular - cues that depend 

on two eyes. Subsequent discussions will focus on both binocular and monocular 

cues for depth perception. 

The difference in the viewpoint of the two eyes, which are about six cen­

timeters apart in adults, creates the cue of binocular disparity. The impression of 
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depth that results from the information provided by binocular disparity is called 

stereopsis. 

In contrast to binocular cues, monocular cues work with a single eye. Pic­

torial cues, which are depth information stored in a two-dimensional image, and 

motion-based cues, which refer to depth information created by movement, are 

examples of monocular cues. The next section covers several examples of pictorial 

and motion-based cues. 

1. Motion-based Cues 

A common example of a motion-based cue is the concept of motion parallax. 

It occurs when, as the observer moves, near objects appear to rapidly pass by while 

farther objects seem to move slowly. Motion parallax is one of the most important 

sources of depth information for many animals [16], not just humans. 

2. Pictorial Cues 

Occlusion is a type of pictorial cue. It happens when one object partially 

hides another object from the viewer. The partially hidden object is considered to 

be farther away, as illustrated in Figure 2, where the mountains are perceived to be 

farther away than the bam. Occlusion only provides relative distance, as opposed 

to absolute distance, i.e., no information can be further extracted except that the 

occluded object is farther from the item in front. 

The cue of familiar size refers to the ability of humans to determine dis­

tance using prior knowledge of the sizes of objects. An experiment conducted by 

William Epstein [18] showed that under certain conditions, prior knowledge of an 

object's size can influence perception of that object's distance. The stimuli in Ep­

stein's experiment were same-size images of a dime, a quarter, and a half dollar, 

which were placed in the same distance from an observer. Epstein made an illusion 

that the images were real coins by putting the images in a darkened room, illumi-
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FIGURE 2- The mountains in the background [6], partially hidden by the bam, 
are perceived to be farther away than the latter due to a type of pictorial cue called 
occlusion. 

nating them with a spot light, and having the observers view the images with only 

one eye. 

The subjects estimated that the dime was closest, the half-dollar being the 

farthest, and the quarter in the middle. These answers were influenced by their 

knowledge of actual dimes, quarters, and half-dollars. Interestingly, this result did 

not happen when the observers' two eyes were open, since the use of both eyes 

provided additional information indicating that the coins were at the same dis­

tance from the viewer. The conclusion of Epstein's study is that the cue of familiar 

size is most effective when other information about depth is absent. 

Another important source of depth information is the texture gradient. El­

ements that are equally spaced in a closer scene appear to be more closely packed 

as distance increases. This cue is closely related to another one, which is the cue 

of relative size that states that more distant objects take up less of the observer's 

field of view. This is the reason behind the tightly-packed nature of the faraway 

elements of the texture. This cue is illustrated in Figure 3. 
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FIGURE 3 - The painting (Paris Street, Rainy Day) by Gustave Caillebotte [7] il­
lustrates the cue of texture gradient, where elements that are equally spaced in a 
closer scene appear to be more closely packed as distance increases. 

Atmospheric perspective refers to the case when more distant objects ap­

pear less sharp and usually have a slight blue tint. The more distant an object 

is, the more air and particles (e.g., dust, water droplets, and pollution) interfere 

with the view, making distant objects look less sharp and bluer than closer objects. 

Figure 4 shows an example of atmospheric perspective. 

The cues of lighting, shading and shadows represent the way light falls on 

an object and how it is reflected by its surface. In perceiving depth using these 

cues, it is commonly assumed [19] that there is only one light source and light 

comes from above, retinally (Le., light comes from the same direction as the top of 

the head). Since the closest surface of an object to the light is brightest, humans 

can easily infer about the depth and shape of an object from the pattern of shading 

and lighting alone [20] . Artists have long used this technique to illustrate depth in 

two-dimensional images, as illustrated in Fig. 5. 

The majority of depth cues discussed earlier provide highly correlated quan­

titative information, e.g., texture gradients and the dynamic cues of motion paral-
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FIGURE 4 - A fogged roadway [8] illustrating the cue of atmospheric perspective. 
With fog interfering with the view, the more distant car appears less sharp. 

FIGURE 5- A painting (The Lacemaker) by Johannes Vermeer [9], where the cues 
of lighting and shading are used to illustrate depth. 
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lax vary systematically with distance according to a power function determined by 

the observer's height [21]. Hence, different depth cues can be combined together 

to come up with a better depth estimate. 

The methods in this dissertation fall under the monocular class, pictorial­

based cues, specifically, the cues of lighting and shading, as well as the cue of 

familiar size. 

B. Shape-from-X 

The previous sections discussed the psychology of depth perception, where 

numerous concepts such as monocular and binocular cues for depth perception 

were mentioned. Of special importance are the monocular pictorial cues that will 

be used throughout this thesis. 

In computer vision, there is an analogous term to depth perception, which 

is shape recovery. Shape recovery is, basically, the computational equivalent of the 

depth perception concepts from psychology. 

Shape recovery is a classic problem in the computer vision field, where the 

goal is to derive a three-dimensional scene description from one or more two­

dimensional images [22]. The recovered shape can be expressed in several ways: 

(a) depth Z(x, y), (b) surface normal (nx, ny, nz), (c) surface gradient (p, q), and (d) 

surface slant (¢) and tilt (0). 

The depth, Z(x, y), can be considered either as a relative distance from the 

camera to surface points, or the relative height above the x-y plane. The surface 

gradient, (p, q) =: (g~, g~), is the rate of change of depth in the x and y direc­

tions. The surface slant, (¢), and tilt, (0), are related to the surface normals using a 

Cartesian-to-spherical coordinate system relationship [23]. 

The class of algorithms that deals with different types of shape recovery is 

conveniently named as shape-from-X techniques, where X can be stereo, motion, 

shading, texture, etc. Notice that X has corresponding analogues to the different 
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cues of depth perception from the previous section. 

1. Image Formation 

The next sections would be incomplete without a discussion on image for­

mation, an integral concept in computer vision. Image formation refers to the re­

sponse of an image sensor (in a camera system) to incoming light. There are two 

parts to consider in the image formation process: (a) the geometry of image forma­

tion and (b) physics of light. 

The geometry of image formation determines where in the image plane the 

projection of a scene point is located. Two common projection models are the per­

spective and orthographic projection models [3]. This work uses the orthographic 

projection model, which is discussed thoroughly in Chapter 3, to describe the 

transformation from a 3D point in a scene to a 2D point in the image. 

The physics of light determines the brightness of a point in the image plane 

as a function of illumination and surface properties. For this work, distant light 

sources are used, together with a Lambertian surface reflectance model. Chapter 2 

discusses in detail the Lambertian model, which assumes that each surface point 

appears equally bright from all directions. Figure 6 illustrates a simple image for­

mation model where the scene is illuminated by a single distant light source and 

the surface follows that of a Lambertian reflectance model. 

2. Shape-from-Stereo 

This section illustrates how binocular cues translate into actual depth through 

shape-from-stereo. The diagram in Figure 7 shows a simple stereo system com­

posed of two pinhole [24] cameras. The left and right image planes are coplanar 

and represented by the segments II and I r • 0 1 and Or are the centers of projection 

and the optical axes are parallel. Assuming that the correspondence problem [25] 

has now been solved, the next step is to perform reconstruction, i.e., expressing 
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I(p) = lAmax(n ·1,0) = lAmax(co::lIi, O) 

Image Camera 
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FIGURE 6 - Distant light source and Lambertian surface illustration. The intensity 
of a surface point (with albedo A) depends on the angle between the surface normal 
n and light source direction 1, no matter what the viewing angle is. 

Lx I 

I 

, , , 

I , 

, 
J , 

I 
I 

P 

,~ 
, I, 

I I, 
, I \ , \ 

J \ 

z: 
I 
I 

b 

, 

, 
\ 

\ , 
\ , 

\ 

\ 

.., f , 
\ 

FIGURE 7 - A simple stereo system illustrating how depth can be extracted given 
the binocular disparity. The resulting relationship shows that depth is inversely 
proportional to disparity. 
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point P in 3D. 

Let Xl and Xr be the image projections of point P to the left and right cam­

eras. The distance b between the cameras' centers of projection is called the base­

line. j is the common focal length of the two cameras. The depth, Z, is the perpen­

dicular distance between the baseline and point P, which the shape-from-stereo 

problem is trying to solve. From the similar rectangles, (XI,P,Xr ) and (OI,P, Or), 

b-(Xl-Xr) b 
Z-j Z 

Solving for Z in (1) leads to a simple relationship 

Z=j~ 
d 

(1) 

(2) 

where d = Xl - Xr is the disparity, the difference in retinal position between the cor­

responding two points in the left and right images. Notice that depth is inversely 

proportional to disparity. This relationship can be used to explain motion parallax, 

the phenomenon where distant objects seem to move slower than closer ones [24]. 

3. Shape-from-Shading (SFS) 

The shape-from-shading problem is an interesting field in computer vision 

that involves recovering the 3D shape of an object using the cues of lighting and 

shading discussed previously. SFS was formally introduced to the computer vision 

literature by the seminal work of Hom [26], over three decades ago. 

Figure 8 illustrates the shape-from-shading problem. The image formation 

process in Figure 8 takes a 3D shape as input and outputs the 2D image. The SFS 

problem, basically, takes the opposite direction such that the input is the 2D image 

and the output is the recovered 3D shape. 

Two tasks need to be accomplished to solve the SFS problem [27], namely: 

(a) formulate an imaging model that describes the relationship between the sur­

face and image brightness and (b) after creating the imaging model, a numerical 
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FIGURE 8 - Shape-from-shading problem 

algorithm needs to be developed to reconstruct the 3D shape from the image. 

The Lambertian model is the simplest and most widely used among the 

imaging models. It assumes that each surface point appears equally bright from 

all viewing directions. Various materials with rough and nonspecular surfaces, 

such as matte paint and paper, exhibit this type of behavior. Formally, with the 

Lambertian model, the intensity J at point p, J (p) is determined by taking the dot 

product between the surface normal n and the lighting direction I, and scaled by 

the albedo A 

J (p) = lA(n · 1) = lA cos(B) (3) 

where B is the angle between the surface normal and light direction and l is the 

intensity of the light ray. 

Hom obtained a nonlinear first-order partial differential equation, called the 

image irradiance equation, to describe the SFS problem. This image irradiance equa­

tion models the relationship between the object shape and its corresponding image 

brightness under known illumination conditions. The image irradiance equation 

can be written as 

E(x) = R(n (x)) (4) 
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Input image Recovered Shape" 

FIGURE 9- Shape-from-shading results of Ahmed and Farag [10] [11] on an illu­
minated image of a human face. 

where E (x) is the image irradiance at point x and R(.) is the radiance of the surface 

patch with unit normal n(x). For convenience, most approaches in the SFS liter­

ature, assume that the surface reflect light with the simplistic Lambertian model 

discussed above. 

Minimization approaches [28] to SFS solve for the solution that minimizes 

an energy function over the whole image. This energy function involves the bright­

ness constraint, which is derived directly from the image irradiance equation, 

/ /(1 -R?dxdy (5) 

where I is the measured intensity and is a scaled version of E (x), and R is the esti­

mated reflectance. Several constraints that regularize the solution, such as smooth­

ness, integrability, and intensity gradient constraints, can be added to help in the 

minimization procedure. 

However, real images, especially that of human faces, do not always follow 

the Lambertian assumption. It is with this motivation that Ahmed and Farag [10] 

[11] incorporated several existing physics-based models into the SFS framework to 

deal with non-Lambertian conditions. Their results are successful with images of 

several objects but does not work with human faces, as illustrated in Figure 9. 

There are several serious limitations of current SFS algorithms, namely: (a) 

the light source direction should be known in advance and (b) there should be a 

single light source. However, real-life images usually are formed not only with 

multiple light sources but the sources themselves are unknown, in nature. This 

dissertation has the advantage over previous SFS algorithms by not having these 
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limitations. 

C. Related Methods 

As discussed previously, shape-from-shading methods (SFS) provide an al­

ternative means of recovering 3D shape from images; the other approaches being 

shape-from-X techniques (X can be stereo, motion, etc.) [22]. 

Previous works have shown that constraining the shape-from-shading al­

gorithm to a specific class of objects can improve the accuracy of the recovered 3D 

shape [29]. There is particularly a huge interest in the 3D shape recovery of hu­

man faces from intensity images. Zhao and Chellapa [30] used the known bilateral 

symmetry of frontal faces as a geometric constraint in their approach. 

1. Statistical Model-based Approaches 

The next set of methods use statistical prior models to perform better in 

shape recovery. Furthermore, the use of prior models is rooted in the cue theory of 

depth perception,. which states that humans learn the connection between cue and 

depth through previous experiences. The work of Knill [31] studied prior models 

of monocular cues for depth perception, from a psychology point of view. 

Atick et a1. [32] proposed the first statistical SFS method by parameterizing 

the set of all possible facial surfaces using principal component analysis (PCA). 

Dovgard and Basri [33] introduced a statistical symmetric SFS method by taking 

into account both the statistical constraint of [32] and the geometric constraint of 

symmetry in [30]. Recently, Smith and Hancock [34] embedded a statistical model 

of surface normals within a shape-from-shading framework. 

There has been a substantial amount of work regarding statistical face pro­

cessing in the computer vision literature. The morphable model framework of [35] 

estimates the shape and texture coefficients from an input 2D image, together with 

other scene parameters, using an optimization method based on stochastic gra-
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FIGURE 10 - Recovered 3D shape using Castelan et al. [1] on an input with frontal 
pose and unknown illumination. 

dient descent. It is a 3D extension of the seminal work of Cootes et al. [36] on 

Active Appearance Models (AAM), where a coupled statistical model is generated 

to describe the 2D shape and appearance (albedo) information of faces. Appendix 

I provides a full description of both AAM and morphable model algorithms. 

Castelan et al. [1] developed a coupled statistical model, which is a variant 

of the combined AAM [36], that can recover 3D shape from intensity images with 

a frontal pose. The shape and intensity models in Castelan's work is similar to that 

of the AAM model discussed in the appendix. Note that in the shape recovery lit­

erature, albedo can be used, interchangeably, with the term intensity. The primary 

difference in Castelan's approach is that the 2D shape model in AAM is replaced 

with a 3D shape (height map) model [37]. 

The main advantage of the Castelan approach over the 3D morphable model 

framework is in the straightforward recovery of the 3D face shape, which does not 

go through a costly iterative optimization process, i.e., shape recovery can be per­

formed using a series of matrix operations. Figure 10 shows the recovered shape 

on a sample input with unknown illumination. The results are not acceptable since 

no illumination is included in the Castelan approach. 

To alleviate this problem, Ahmed and Farag [2] incorporated an illumina­

tion model to the original coupled model of Castelan, to deal with frontal images 

of arbitrary lighting. This is made possible through the use of the concept of spher­

ical harmonics. Basri et al. [38] and Ramamoorthi [39] independently proved that 
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the set of images of a convex Lambertian object can be approximated accurately 

by low-dimensional linear subspace based on spherical harmonics (SH). The pro­

posed methods in this thesis rely on this conclusion to perform shape recovery 

from 2D images of general and unknown lighting. 

The coupled model of Ahmed and Farag [2] can be considered as the foun­

dation of this work and will be used for comparison purposes in later chapters. 

This dissertation extends [2] in several aspects. 

Basically, the shape recovery algorithms, based on coupled models men­

tioned above, are examples of statistical shape-from-shading. However, it is not 

evident how they are related to the classical SFS formulation due its coupled model 

nature. This dissertation is successful in connecting the coupled model approaches 

to the classical SFS equations [40] [41]. Along the way, two related algorithms of 

statistical SFS were formulated to perform shape recovery in this work, which are 

discussed thoroughly in the next chapters. 

The alignment procedure in [2] only uses three points (two eyes and mouth 

positions). As mentioned in the morphable model framework of [35], dense corre­

spondence is crucial for successful reconstruction. This dissertation uses 76 points 

as control points to find more accurate dense correspondence between the recon­

struction database samples. Chapter 3 provides a comprehensive discussion about 

this process. 

Robust statistics are incorporated into this work to deal with non-ideal con­

ditions during the reconstruction process. Specifically, if outliers are present in 

the input images, the computation of spherical harmonic coefficients are affected. 

This dissertation [42] solves this problem with the use of Geman-McClure and 

Lorentzian functions [43]. 

There is no pose invariance in both Castelan [1] and Ahmed et al. [2] ap­

proaches, i.e., only frontal poses are considered. This dissertation can handle un­

known pose with the help of multiple-view geometry [3] concepts. Therefore, the 

methods under this dissertation can be considered to be both pose and illumina-
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tion invariant. 

Figure 11 shows sample reconstruction results of the proposed method in 

later chapters on several inputs under unknown pose and illumination. Recon­

struction is performed in terms of both albedo (defined as the scale that connects 

the image irradiance (E) and intensity (I), i.e., I = )"E) and shape. From a vi­

sual comparative perspective, the reconstructions are close to its ground truth (GT) 

counterparts. 

D. Why This Work Is Needed 

3D shape recovery methods from single 2D images of any generic object 

have various real-world applications. Recently, Bustard et a1. [44] developed an 

algorithm to extract 3D information of ears from a 2D image. 81anz et a1. [45] used 

this class of methods to infer 3D shape from dental images. 

The proposed methods here are developed specifically for faces, with the 

intended application to be face recognition at-a-distance problems [46]. The ratio­

nale behind this is that at long distances, it is difficult to use 3D sensors to infer 3D 

data and help improve recognition. These algorithms will help solve this problem. 

Further, even though the methods here are for a specific type of problem, it can be 

applied to other objects as well, such as ears and teeth, as mentioned before. 

E. Dissertation Contributions 

The main goal of this work is to recover 3D facial shape information from 

a single image of arbitrary pose and illumination. The main contributions of this 

dissertation can be categorized into two classes: 

- 3D Facial Shape Estimation using Texture and Shape Information: 

1. The classical shape-from-shading iterative equation is cast as a regression 

framework, which can be solved efficiently using Principal Component Re­

gression (PCR). 

16 



Input GT Recons. GT Recons. 
Shape Shape Albedo Albedo 

FIGURE 11- Recovered shapes, together with the input image and ground-truth 
(GT) shape, using the proposed method in the next chapters. Reconstruction is 
performed in terms of both albedo (defined as the scale that connects the image 
irradiance (E) and intensity (I), i.e., I = )"E) and shape. From a visual comparative 
perspective, the reconstructions are close to its groundtruth (GT) counterparts. 
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2. Robust statistics is incorporated into the computation of Spherical Harmon­

ics Projection (SHP) images, to deal with non-ideal situations, e.g., noise and 

occlusion. 

3. Pose-invariance is added to the model-based shape recovery framework to 

handle both unknown illumination and pose. 

- 3D Facial Shape Estimation using Shape Information Alone: 

1. Estimation 3D facial shape given only the 2D input feature points. 

2. The problem is cast as a regression framework, similar to model-based SFS 

framework above, allowing it be computationally efficient. 

3. Estimate both 3D sparse and dense shapes given only 2D input sparse points. 

F. Document Layout 

This document is presented in four chapters. The following remarks sum­

marize the scope of each chapter. 

Chapter II discusses the basics of spherical harmonics and how it can be 

applied to image formation with a Lambertian surface reflectance modeL The con­

cept of Spherical Harmonics Projection (SHP) images is introduced. Robust statis­

tics is incorporated to deal with non-ideal conditions when computing for the SHP 

image. 

Chapter III starts first with the model-based 3D shape recovery framework 

for arbitrary illumination and fixed pose. The classical shape-from-shading equa­

tion is cast into a regression framework, which can then be solved using Princi­

pal Component Regression (PCR). The fixed frontal pose limitation is relaxed to 

include general pose, making it a 3D estimation algorithm for general pose and 

illumination. 
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Chapter IV deals with the interesting question if 3D shape can be recovered 

using shape information alone, unlike in the previous chapter where both shape 

and texture are needed. Results show acceptable 3D shape recovery compared to 

the ground truth and previous methods. 
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CHAPTER II 

MODELING IMAGES OF OBJECTS UNDER VARIABLE ILLUMINATION 
USING SPHERICAL HARMONICS 

This chapter discusses the use of spherical harmonics to model images of 

objects under arbitrary illumination. For this work, it is assumed that the object 

surface exhibits Lambertian reflectance. The SH concepts discussed here are then 

used to model the Lambertian surface and any unknown lighting function. The 

end result is a simplifying conclusion that the set of images of objects under vary­

ing illumination can be efficiently represented as a linear combination of harmonic 

images [38]. 

This chapter will review the basic concepts of spherical harmonics and Lam­

bertian surfaces, and how to find the low-dimensional subspace that describes the 

images of the convex Lambertian object. The concept of Spherical Harmonics Pro­

jection (SHP) images, which is integral to later algorithms in this dissertation, will 

be discussed. In addition, a robust way to compute SHP images in non-ideal situ­

ations (e.g., noise and occlusion) will be described. 

A. Lambertian Model 

A surface reflectance model describes the way in which a surface reflects in­

cident light [24]. A well-known example is the Lambertian model, which assumes 

that each surface point appears equally bright from all viewing directions. Various 

materials with rough and nonspecular surfaces, such as matte paint and paper, ex­

hibit this type of behavior. Formally, the intensity I at point p, I (p) is determined 

by taking the dot product between the surface normal n and the lighting direction 

1, and scaled by the albedo A 
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J(p) = l )" max(n .1. 0) = lA max(cos 0, 0) 

" 1 / 

FIGURE 12- Lambertian surface illustration. The intensity of a surface point (with 
albedo A) depends on the angle between the surface normal n and light source 
direction I, no matter what the viewing angle is. 

J(p) = ZA (n · 1) = ZA COS(O) (6) 

where 0 is the angle between the surface normal and light direction and Z is the 

intensity of the light ray. Figure 12 illustrates the Lambertian model. 

By definition, attached shadows (also known as self-shadows) occur when a 

surface faces away from the light source direction. The effect of attached shadows 

on (6) is a negative intensity value. To solve this problem, the modified equation 

for Lambertian reflectance is 

J (p) = ZA max(n . 1,0) = ZA max( cos 0, 0) (7) 

where the function maxO ensures that intensity values are greater than or equal to 

zero. 

B. Spherical Hannonic (SH) Analysis 

The surface spherical harmonics are a set of functions that form an orthonor­

mal basis for any spherical function described on the surface of a sphere [47] . It is 

analogous to the common Fourier basis functions of linear functions. Any piece­

wise continuous spherical function, f : §2 -7 R can be expressed as a linear com­

bination of an infinite series of harmonics 
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FIGURE 13 - Illustration of the first four spherical harmonic bands, l = 0,· . . , 3. 
Green and red parts indicate positive and negative values, respectively. 

00 l 

J(e, ¢) = L L JlmYtm(e , ¢) (8) 
l=O m=- l 

where §2 refers to points on the surface of a unit sphere, Jlm are scalar values (com­

monly known as spherical harmonic coefficients) and Ytm : §2 --+ 1R. are the spheri­

cal harmonics functions. The spherical harmonic Ytm can be written as 

2l+1 (L - m)! 
471" (i+m)! 

NlmP,.m( COS e)e1m</J 
(9) 

where Nlm is a normalization factor, p"m are Associated Legendre Polynomials 

(ALP). The indices land m break the family of ALP into bands of functions. The 

argument l is referred to as the band index and takes the values, l ~ O. The argu­

ment m is related to l with the following relation, -l ::; m ::; l . It is interesting 

to visualize how the basis functions look like when plotted as spherical functions. 

Figure 13 illustrates the first four spherical harmonic bands, l = 0, · ·· ,3. Green 

and red parts indicate positive and negative values, respectively. 
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1. Spherical Harmonics Projection 

Basis func1ions can be informally considered as small pieces of signals that 

can be scaled and combined to produce an approximation to an original function. 

The process of working out how much of each basis function to sum is called pro­

jection [12]. 

An arbitrary function can be approximated using basis functions by com­

ing up with a scalar value that that represents how much the original function is 

similar to each basis function, e.g., Y'lm ((), ¢) in the spherical harmonics case. This 

is done by integrating the product of the original function and the basis function 

over the full domain of the original function. This projection process over all basis 

functions returns a vector of coefficients. 

The process of projecting a spherical function into spherical harmonics (SH) 

coefficients is straightforward. The harmonic coefficients can be computed as 

where u = ((), ¢). 

Jim = ( J(u)Y'lm(u) du i§2 

2. Spherical Harmonics Reconstruction 

(10) 

To reconstruct the approximated function, /(u), one just take the reverse 

process and sum the scaled (using the computed SH coefficients, Jim) SH basis 

functions. Suppose the first four bands are used, i.e., l = 0" .. ,3, the reconstructed 

signal is computed as 

3 I 

j(u) = I: I: JlmY'lm(U) (11) 
1=0 m=-I 

Figure 14 is a visualization of the spherical function taken from an exam­

ple in [12]. This function will be reconstructed using the first n SH coefficients 

described in (10). The integration is performed numerically using Monte Carlo In-
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FIGURE 14- Sample spherical function taken from [12], displayed as a spher­
ical plot. The actual function definition is f(B ,¢) max(0,5cos(B) - 4) + 
max(O, -4sin(B - 7r) * cos(¢ - 2.5) - 3). 

11 = 10 n = 15 n = 25 

FIGURE 15- Reconstruction of the spherical function at Fig. 14 using the first 10, 
15, and 25 SH coefficients. Notice that the reconstruction using 25 coefficients is 
visually close enough to the original function. 

tegration. Figure 15 shows the reconstruction using the first 10, 15, and 25 SH coef­

ficients. Notice that the reconstructed function approaches the original one (Figure 

14) as more coefficients are used. 

3. SH Analysis of Lambertian Reflectance and Light Source Function 

With a change in variables, equation (7) can be written as a product of two 

functions, namely, the Lambertian kernel, kO, and light source function, lO 

J(p) = Ak(B)l(l) (12) 

where the albedo A is usually set to I, k(B) = max( cos B, 0) and l(l) takes into con­

sideration both light source intensity and direction. If there are multiple light 
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sources, the light reflected by the point would be an integral over the contribu­

tion of each light direction. Let dl be a differential light direction, n be the specific 

normal at a certain surface point p, the intensity J(p) is 

J(p) =.\ ( k(O)l(l) dl JS2 (13) 

Equation (13) can be regarded as a convolution on the sphere, i.e., J(p) = '\k(O) * 
l (1). 

Both the Lambertian kernel and light source function can be written as a 

linear combination of spherical harmonics basis functions, i.e., 

00 I 00 

l(l) = z= z= llmYim k(O) = z= klYio (14) 
1=0 m=-I 1=0 

where the harmonic expansion of k( 0) considers only the instances of Yim at m = 

o since k( 0) is circular symmetric about the north pole and kim = 0 at m i- o. 
According to the Funk-Hecke theorem [38], the harmonic expansion of (13) can be 

written as 

00 I 

J(p) = '\k(O) * l(l) = z= z= (alllm)Yim (15) 
1=0 m=-I 

whereal = ~~kl' 
The first few harmonic coefficients of the Lambertian kernel are 

ko~0.8862 kl~1.0233 

k4~ - 0.1108 (16) 

k8~ - 0.0285 

where the rest of the terms (k3, k5, k7) are all equal to zero. 

The energy captured by every harmonic term is defined as the square of the 

corresponding coefficient divided by the total squared energy of the transformed 
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FIGURE 16- Input image corruped with (a) salt & pepper noise and~) occlusion. 

function. The total squared energy of the Lambertian kernel (a half-cosine func­

tion) is 27r /3. Figure 16 shows graphically the plot of the first nine harmonic coef­

ficients together with the cumulative energy of the Lambertian kerneL 

Looking at Figure 16(a), it is clear that the Lambertian kernel k acts as a 

low-pass filter, with high-frequency light components having little effect on J(p). 

Therefore, it is possible to get a low-dimensional approximation of J (p) by neglect­

ing the higher-order terms in (15), i.e., 

00 1 N 1 N 1 

J(p) = ALL (al1lm)llm ~ ALL llm(aillm) = ALL llm(rlm) (17) 
1=0 m=-I 1=0 m=-l 1=0 m=-l 

where rim = aillm. 

From (17), any image under varying illumination can be represented by a 

finite set of rim. Going further by combining the albedo A and rim, 

N I N 1 N 1 

J(p) ~ ALL llm(rzm) = L L Ilm(Arlm) = L L llm(blm(p)) (18) 
1=0 m=-I 1=0 m=-I 1=0 m=-I 

where b1m(p) = Arlm is the harmonic image. Therefore, any image of an object un­

der varying illumination can be efficiently approximated as a linear combination 

of harmonic images. 

As a consequence of Figure 16, the first nine harmonic images are enough 

to reconstruct any image under arbitrary lighting, i.e., J (p) = L:~=o aiMp). The 
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FIGURE 17 - Visualization of first nine harmonic images. Given the albedo, A, and 
surface normals (derived from the 3D shape), n = (nx, ny , n z ) , of a certain subject, 
the nine harmonic images can be computed easily using (19). The harmonic images 
are arranged in a pyramidal form similar to Figure 13. 

actual equations for the nine harmonic images, independently derived by both 

Basri and Jacobs [38] and Ramamoorthi [39], are 

bo = CO A 

(19) 

where the surface normal is n = (nx , ny , n z ), (.) is a component-wise operator, 

n x2 = nx . n x, n xy = n x . ny , and c/s are constants [38] . Figure 17 shows how these 

nine harmonic images look like. 

The rest of the chapters in this document contain predominantly model­

based algorithms. The models are built using the USF HumanID 3D Face Database 

[13], which contains 100 subjects of various nationalities and gender. The next 

chapter contains a comprehensive summary about the description and usage of 

this database. For now, it is sufficient to know that each subject in the database con­

tains albedo (texture) and shape information. For each subject in the USF database, 
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FIGURE 18 - Visualization of first nine harmonic images of various subjects from 
the USF Database [13]. Given the albedo, A, and surface normals (derived from 
the 3D shape), n = (nX ) ny ) n z ) , of a certain subject, the nine harmonic images can 
be computed easily using (19). The harmonic images are arranged in a pyramidal 
form similar to Figure 13. 

we can generate nine harmonic images, using the process described in Figure 17. 

Figure 18 visualizes the hamonic images of several USF database subjects. 

4. Spherical Harmonic Projection (SHP) Images 

In Figure 15, several reconstructions of the original function (Figure 14) are 

shown, using the first n SH basis functions visualized in Fig. 13. One can extend 

this process to images of unknown illumination. The goal is to reconstruct the 

input image by projecting it first to the nine harmonic basis images (i.e., solve for 
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the harmonic coefficients) and then taking the reverse process by summing the 

scaled basis images (using the computed harmonic coefficients). 

In matrix notation, let the input image, I, be a (d x 1) image vector with d 

pixels and B = [bo,··· ,bs] be a (d x 9) matrix of basis images (at its columns). To 

project the input image to the harmonic basis images, one needs to solve for the 

(9 x 1) coefficient vector a from the linear system of equations, I = Ba. This is 

an overdetermined system since the number of equations (d) is much greater than 

the number of unknowns (9). The minimal solution is obtained using Singular 

Value Decomposition (SVD), i.e., a = V5-1UT I, where B = U5VT
, the first nine 

columns of U are used, and 5 is (9 x 9). After computing the coefficient vector a, 

the reconstructed image (otherwise known as SHP image), h, is solved using the 

following equation, h = Ba. These steps are enumerated in Algorithm 1. 

Algorithm 1 Compute Spherical Harmonics Projection (SHP) Image 
INPUT: (a) Input image, I (b) Matrix of basis images, B 

OUTPUT: SHP image, h 

1: Get SVD decomposition of B: [U, 5, V] = svd(B) 

2: Get the number of columns (n) of B: n = size(B, 2) 

3: Retain the first n columns of U: U = U(:, 1 : n) 

4: Retain the first n rows and columns of 5: 5 = 5(1 : n, 1 : n) 

5: Solve for the SH coefficient vector a: a = (V5-1UT )I 

6: Compute the SHP image, h: h = Ba 

Figure 19 illustrates this procedure. Notice that the reconstructed image is 

visually similar to the input image. Hereupon, the reconstructed image will be 

known as the Spherical Harmonics Projection (SHP) image. 

One can extend the pipeline in Figure 19 to all subjects of the USF database 

(Figure 20). The SHP images, here and onwards, will be denoted as, hI, ... ,hn­

Notice that the SHP images encode the illumination of the input but retains the 

identity of the subject involved. This property will be exploited in the next chap-
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SH basis images 

Albedo (l J Surface normals 
(n. ",. n,) 

.. .. 
Input image Reconstructed image using 1" 

(to be reconstructed) 9 harmonic images 

FIGURE 19 - Spherical Harmonics Projection (SHP) Images Illustration I: Input 
image is reconstructed by projecting it first to the nine harmonic basis images (i.e., 
solve for the coefficients) and then taking the reverse process by summing the 
scaled basis images (using the computed coefficients). The reconstructed image 
(now called SHP image) is visually similar to the input image. 

ters. 

C. Robust Spherical Harmonics Projection (SHP) Images 

The previous section discussed how to generate Spherical Harmonics Pro­

jection (SHP) images, given an input image I and a matrix of basis images B. There 

are instances, however, when input images are corrupted by some form of non­

ideal situations, e.g., noise and occlusion (Figure 21). These non-ideal situations 

can be viewed, in a statistical context, as outliers. 

The author proposes to use the field of robust statistics to solve this prob­

lem of estimating the coefficients when outliers exist in the input image. The main 

objective of robust statistics [48] is to recover the structure that best fits the major­

ity of the data and, at the same time, identifying and rejecting outliers or deviating 

substructures. There is a growing interest in the use of robust statistics in the lit­

erature [49] [50] to cope with instances wherein computer vision models were not 

designed. Robust statistical methods have been applied before to the optical flow 

estimation problem with multiple image motions [43]. 
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Basis images 

Input image j' j j j 
(to be reconstructed) I I I I 

' / 1] "3 14 

Spherical harmonic --7 

projection (SHP) images 

h" 1 
... 

Reconstructed images (11" ,11,, ) usi ng the 1st 9 harmonic images of distinct USF subjects 

FIGURE 20 - Spherical Harmonics Projection (SHP) Images Illustration II: The 
pipeline in Figure 19 is extended to all subjects of the USF database. Notice that 
the SHP images encode the illumination of the input but retains the identity of the 
subject involved. 

(a) (b) 

FIGURE 21- Input image corruped with (a) salt & pepper noise and (b) occlusion. 
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FIGURE 22- Quadratic p and 'lj; functions: (a) p(x) = x 2 and (b) 'lj;(x) = 2x. 
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(a) (b) 

FIGURE 23- Visualization of the truncated quadratic (a) p and (b) 'lj; functions. 

1. Robust Estimation 

Robust estimation [48] addresses the problem of solving for the parameters 

a = (ao,··· ,an) that best fits the model, u(s; a), to a set of data measurements, 

d = {do,· .. ,ds }, in conditions where the data differs statistically from the model 

assumptions. To fit a model, the goal is to compute the parameters a that minimize 

the residual errors, i.e., 

mln L p(ds - u(s; a), as) (20) 
s(8 

where as is a scale parameter and p is the error norm. The minima of (20) is an 

M-estimate since this corresponds to a maximum likelihood estimation [51]. Different 

p-functions result into various robust estimators; the robustness of an estimator is 

related to its insensitivity to outliers [43]. 

When the measurement errors are normally distributed, the optimal p-function 
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FIGURE 24- Geman-McClure p and 'Ij; functions: (a) p(x) = (a~:2) and (b) 'Ij;(x) = 
2xa 

(a+x2)2· 

is the quadratic 

(d _ (.) ) _ (ds - u(s; a))2 
p s us,a,o-s - 2 

2o-s 
(21) 

which leads to the standard least-squares estimation problem. Least-squares (LS) 

estimation is not appropriate when outliers such as the ones visualized in Figure 

21 exist. The problem with LS estimation results is that outlying measurements 

are assigned a large weight by the quadratic p-function, as illustrated in Figure 

22(a). This is much clearer by looking at the influence function, 'Ij;, associated with 

a particular p-function. The influence function describes the bias that a particular 

measurement has on the solution and is proportional to the derivative of the p­

function [51] [43]. In the quadratic case (least-square sense), the influence of data 

points increases linearly and without bound (Figure 22(b». 

To enhance robustness, a p-function must lessen the effect of outlying mea­

surements. One of the most common robust p-function in computer vision is 

the truncated quadratic (Figure 23(a», where up to a fixed threshold, errors are 

weighted quadratically, but after that, errors are assigned a constant value. A 

closer look at the influence function (Figure 23(b» reveals that the effect of out­

liers goes to zero beyond the threshold. 

There are several other p-functions in the literature, each with different mo­

tivations and strengths [52]. Their common property, however, is their ability to 
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(a) (b) 

FIGURE 25- Lorentzian p and ~ functions: (a) p(x) = log(l + ~ (~)2) and (b) ~(x) = 
2x 

2a2 +x2 • 

reduce the effect of outliers. Two examples that will be used in this work are the 

Geman-McClure (Figure 24) and Lorentzian p-functions (Figure 25). The advan­

tage of these functions over the truncated quadratic (Figure 23) is in their differen­

tiability that provides a more gradual transition between inliers and outliers than 

does the truncated quadratic. 

2. Robust Estimation Framework for Spherical Harmonic Projection (SHP) Im-

ages 

An earlier section showed how to compute SHP images (Algorithm 1), given 

an input image, I, and a matrix of basis images, B. In matrix notation, let the input 

image, I, be a (d x 1) image vector with d pixels and B = [bo,··· , bs] be a (d x 9) 

matrix of basis images (at its columns). To project the input image to the harmonic 

basis images, one needs to solve for the (9 xl) coefficient vector 0 from the linear 

system of equations, I = Bo. This system of equations can be translated into the 

robust estimation framework of (20) with the following minimization 

minED(o) = min""' p(I - Bo,(}s) 
o 0 ~ 

(22) 
sES 

where (}s is a scale parameter and p is the robust p-function. After computing the 

coefficient vector 0., the reconstructed image (now known as the SHP image), i, is 

solved using the following equation, j = Bo.. 
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There are various optimization methods that can be used to recover the coef­

ficient vector a from the robust formulation in (22). In general, robust formulations 

do not have closed-form solutions and have objective functions that are nonconvex 

in nature. The deterministic continuation methods used in [43] will be utilized in 

this work to solve the robust framework in (22). 

The two robust p-functions chosen for this work (Le., Geman-McClureand 

Lorentzian) are both twice differentiable and any gradient descent approach such 

as simultaneous over-relaxation can be used to find the local minima. These p-functions 

also have scale parameters as, which makes it attractive to use continuation meth-

ods. 

3. Simultaneous Over-Relaxation 

Simultaneous over-relaxation (SOR) belongs to a family of relaxation algo­

rithms that include both Jacobi's method and Gauss-Seidel method [53] [54]. The 

iterative update equations for minimizing (22) with respect to the nth coefficient, 

i+1 i 1 aE 
an = an - w T(an) aan 

(23) 

where 0 < w < 2 is an overrelaxation parameter that is used to overcorrect the 

estimate of a~+1. The term T( an) is an upper bound on the second partial derivative 

of ED,i.e., T(an ) 2: a;:;p. 
n 

4. Graduated Non-Convexity 

Continuation methods can be used to find a globally optimal solution of a 

nonconvex objective function such as the robust p-functions mentioned above. The 

main idea is to construct a convex approximation out of the nonconvex objective 

function and minimize it with the SOR technique (or any descent approach). Suc-
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cessively better convex approximations of the original objective function are then 

constructed and minimized starting from the solution of the previous approxima­

tion. The challenge in these type of approaches is in the construction of the se­

quence of approximations. 

Blake and Zisserman [55] developed the Graduated Non-Convexity algo­

rithm, a type of continuation method that constructs a parameterized piecewise 

polynomial approximation to the truncated quadratic (Figure 23). For this work, 

instead of using the truncated quadratic, the author utilizes both Geman-McClure 

and Lorentzian p-functions and create convex approximations out of them. 

Formally, the objective function E is convex when the Hessian matrix, H, 

of E is positive definite. Furthermore, ED is locally convex when p(x)" ~ 0, i.e., 

as is chosen such that there are no outliers [43]. Measurements greater than a 

set threshold, T, can be considered outliers, i.e., p-functions begin to reduce the 

influence of measurements. 

To construct a convex approximation of ED (a), all measurements are to be 

treated as inliers. The point at which the influence of outliers first begins to de­

crease as the magnitude of the residuals increases from zero occurs when the sec­

ond derivative of the p-function is zero. For the Lorentzian (Figure 25), the second 

derivative is 

82 P 8'ljJ 2(2a2 
- x 2

) 

8x2 8x (2a2 + X 2 )2 
(24) 

and is equal to zero when T = ±V2a. If the maximum expected residual is T, then 

choosing a = ~ will result into a convex optimization problem. Similarly, for the 

Geman-McClure p-function (Figure 24), a = TV3 will lead to a convex optimiza­

tion problem [43]. Notice that these T'S can be used as a simple test whether to 

consider a residual to be an outlier. In the case of the Lorentzian, a residual x is an 

outlier if Ixl ~ V2a. 
The minimization commences with the convex optimization and the result-
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FIGURE 26- Graduated Non-Convexity. Geman-McClure p(x, a) and 'lj; (x, a) plot­
ted for thresholds TE {16, 8, 4, 2, I} . (a) Error measure, p(x, a). (b) Influence, 'lj;(x , a). 
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FIGURE 27 - Graduated Non-Convexity. Lorentzian p(x, a) and 'lj; (x , a) plotted for 
thresholds TE{16, 8, 4, 2, I} . (a) Error measure, p(x , a). (b) Influence, 'lj; (x , a) . 

ing estimate will contain no outliers. This is similar to getting the least-squares 

estimate. Outliers can be gradually introduced when the value of a is lowered 

and the minirnzation is repeated. Figure 26 shows the Geman-McClure error func­

tion and its 'lj;-function for different values of T = ./3 . Figure 27 illustrates the 

Lorentzian error function and its corresponding 'lj;-function for various values of 

T = V2a. 

D. Robust SHP Image Experiments 

The next step is to solve for the coefficient vector a in (22) using the robust 

estimation framework from the previous section. The term ED(a ) in (22) can be 

expanded in terms of the elements of a , i.e., 
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ED(O:) = L p(I(p) - aobo(p) - ... - asbs(p), 0"8) (25) 
pEP 

where p refers to pixel positions. The iterative update equations (23) for the mini­

mization of (25) are repeated here for convenience, i.e., a~+1 = a~ - W T(~n) ~!~. The 

term ~!~ is actually 

(26) 

The term T(an ) in the iterative update equation is an upper bound on the second 

. I d . t· f E . T( ) > 8
2 
ED Th t 8

2 
ED • Parha enva Ive 0 D, I.e., an _ 8 2· e erm 8 2 IS 

On an 

(27) 

Therefore, T(an ) = max1P'(x) Lp b~(p). For the Geman-McClure estimator,1P(x, 0") = 

(<7~~ )2 and max~" (x, 0") = ;2' which leads to T (an) = ;2 Lp b~ (p). Likewise, for 

the Lorentzian estimator, 1P{x) = 2<7;~X2 and max1P'(x, 0") = ;21 which takes us to 

T(an ) = ;2 Lp b;,(p). The complete algorithm to compute robust SHP images is 

shown in Algorithm 2. 

1. Results from Least-Squares Estimation 

Using Algorithm 1, a form of least-squares estimation, one can reconstruct 

Figure 21(b) using the basis images found in Figure 19. Figure 28 shows the least­

squares estimation results. There is no problem in using the LS approach when 

reconstructing an input image without any outlier (Figure 28(c)), i.e., 111g - 19l1 = 

7.15 x 10-013
, where Ig is the input image and 19 is the reconstructed image. How­

ever, when the occluded version of the input image is reconstructed, the result (igJ 

appears to be brighter than the original input image (Figure 28(d)), i.e., 111g - 19c1l = 

22.64. The robust estimation framework discussed in this chapter is supposed to 
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Algorithm 2 Compute Robust Spherical Harmonics Projection (SHP) Image 
INPUT: (a) Input image, I (b) Matrix of basis images, B 

()UTPUT:SfUPimage,h 

1: Initial 5H coefficients: Solve for a O using the least-squares estimate of I = 

Bao, i.e., Algorithm 1 

2: Compute partial derivatives: Compute {~!~ }n=O,. .. ,8 

3: 5H coefficient vector update: Update using a~+l = a~ - wT(~n) ~!~, where w is 

the overrelaxation parameter, T(an ) is the upper bound of a;~;D 

4: Robust function parameter update (Graduated Non-Convexity): a!+1 = ka!, 

with k E (0,1) 

5: Repeat steps 2-4 until termination criterion is satisfied. 

6: Test for outliers: Determine outlying measurements using, II(p) - aobo(p) -

... - a8b8(p) I ~ 7, where 7 is determined by the error norm and the control 

parameter, a 

7: Compute 5H coefficients for non-outlier pixels: Solve for 0: in I = Bo: using 

Algorithm 1 for non-outlier pixels 

8: Compute the 5HP image: h = Bo: 
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(a) (b) (c) (d) 

FIGURE 28 - Least-square (LS) estimation results for the reconstruction of Fig. 
21(b) using groundtruth SH basis images. (a) Input image.! 19. (b) Occluded ver­
sion of input image, 1ge . (c) LS reconstruction of the input, 19 (d) LS reconstruction 
of the occluded input, 1ge. 

overcome this problem; even in the presence of outliers, the resulting reconstruc­

tion 1ge should be as close to the input image, 19, i.e., Il lg -lgell ~ o. 

2. Results from Robust Estimation 

The robust estimation framework for computing SHP images, even with the 

presence of outliers, is compactly described in Algorithm 2. The parameters are set 

as follows: w = 1.995, k = 0.95, (Js = 1. Figure 29 shows the robust estimation re­

sults for the Geman-McClure norm. In contrast to Figure 28(d), the reconstruction 

in Figure 29(d) is very close to the input image, i.e., Illg - 1ge 1l = 5.71 X 10- 014 • 

The occlusion estimate in Algorithm 2 (Step 6) is given in Figure 30, which is vi­

sually close enough to the input occlusion in Figure 29(b). These Geman-McClure 

estimation results are done within 30 iterations. 

Figure 29 shows the robust estimation results for the Lorentzian norm at 50 

iterations. Similar to Fig. 29(d), the reconstruction in Figure 31(d) is very close to 

the input with Illg -lge ll ~ O. However, as opposed to the Geman-McClure error 

norm, the occlusion estimate in Figure 32 is not that visually accurate. The reason 

may lie in the smooth and undefined transition between inliers and outliers for 

the Lorentzian error norm (Figure 27), compared to the defined transition of the 

Geman-McClure norm (Figure 26). For this reason, robust algorithms for the rest 

of this work will refer to the Geman-McClure p-function. 
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(a) (b) (c) (d) 

FIGURE 29 - Robust estimation (Geman-McClure) results for the reconstruction 
of Figure 21(b) using groundtruth SH basis images. (a) Input image, 19 • (b) Oc­
cluded version of input image, 19c. (c) LS reconstruction of the input, ig (d) Robust 
reconstruction (Geman-McClure) of the occluded input, igc • 

FIGURE 30 - Occlusion estimate of Algorithm 2 (Step 6) using the Geman-McClure 
p-function, expressed as a binary image. White pixels indicate outliers. 

(a) (b) (c) (d) 

FIGURE 31- Robust estimation (Lorentzian) results for the reconstruction of Fig. 
21(b) using groundtruth SHbasis images. (a) Input ima.,ge, 19 • (b) Occluded version 
of input image, 19c- (c) LS reconstruction of the input, 19 (d) Robust reconstruction 
(Lorentzian) of the occluded input, i gc • 

FIGURE 32 - Occlusion estimate of Algorithm 2 (Step 6) using the Lorentzian p­
function, expressed as a binary image. White pixels indicate outliers. 
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The reconstructions in Figures 28, 29, and 31 use the basis images of Figure 

19, which are essentially derived from the ground-truth shape and albedo of the 

input image. It is interesting to see the robust estimation results for reconstruc­

tions using a different subject's shape and albedo, similar to the one performed 

in Figure 20. Figure 33 shows the reconstruction results when the basis images 

are computed from other subjects' shape and albedo. The first and second rows 

contain the original input and its occluded version, respectively. The albedo and 

shape of various subjects (from where the basis images are derived (19» are found 

in the third and fourth rows. The fifth and sixth rows show the reconstruction of 

the original input image (without occlusion) and its occluded version using the 

least-squares estimate. Notice that the sixth row appears brighter than the fifth, 

similar to Figure 28. The seventh row shows the reconstruction of the occluded in­

put using robust estimation (Geman-McClure). The last row shows the occlusion 

estimate expressed as a binary image, with white pixels indicating outliers. 

TABLE 1 
NUMERICAL VALUES FOR RECONSTRUCTION ERRORS WITH 

NON-GROUNDTRUTH SH BASIS IMAGES 

Case Subject 1 Subject 2 Subject 3 Subject 4 

I (LS, IIIg - 19l1 ) 12.39 11.95 13.01 14.91 

IT (LS, IIIg - 1ge1!) 17.52 16.74 18.38 18.49 

III (Robust, IIIg - 1ge1!) 13.90 12.68 14.75 15.60 

Subject n 

12.65 

17.80 

13.45 

Table 1 shows numerical values for several cases of reconstruction errors 

in Figure 33. Normally, when the ground-truth basis images are used to recon­

struct an input image without occlusion, the reconstruction error is close to zero, 

i.e., IIIg - 19l1 ~ 0, where 19 is the input image and 19 is the reconstructed image. 

However, when a different subject's shape and albedo are used to create the basis 

images, the reconstruction error, with respect to an input image without occlusion, 

is still minimum (Algorithm 1) but much greater than zero, i.e., IIIg - 19l1 » o. 
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FIGURE 33 - Reconstruction results when basis images are computed from other 
subjects' shape and albedo. First and second rows contain the original input and 
its occluded version, respectively. Albedo and shape of various subjects are found 
in the third and fourth rows. Fifth and sixth rows show the reconstruction of the 
input image and its occluded version using the least-squares estimate. Seventh 
row shows the reconstruction of the occluded input using robust estimation. Last 
row shows the occlusion estimate, with white pixels indicating outliers. 
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The reconstruction error of the fifth row (LS estimate) of Figure 33 with respect to 

the first row (input image, without occlusion) is shown as the first row (Case I) in 

Table 1. Notice the numerical values being much greater than zero. 

The second row (Case II) in Table 1 lists the reconstruction error of the sixth 

row in Figure 33 (reconstruction using LS of the occluded input) with respect to 

the first row (original input image). The numerical values are greater than the 

first row, as expected, since the outliers are not taken into account. The third row 

(Case III) of Table 1 shows the reconstruction error of the seventh row in Figure 

33 (reconstruction using robust estimation of the occluded input) with respect to 

the first row (original input image). The numerical values are now lower than the 

second row and is closer to the first row since outliers in occluded input (seventh 

row) are taken into consideration. 

E. Summary 

This chapter started with basic definitions and equations related to spherical 

harmonics. Spherical harmonics (SH) are basically the extension of the Fourier ba­

sis of linear functions to the sphere. Any piecewise continuous spherical function 

can be approximated as a linear combination of a finite set of spherical harmonics. 

A sample spherical function was reconstructed using the first n SH basis functions 

to illustrate the utility of spherical harmonics. 

Derivations were shown along the way to show that any image of a Lamber­

tian object under unknown illumination can be compactly represented by a linear 

combination of a finite number of harmonic images. A sample input image was re­

constructed using harmonic basis images of several individuals. There is a unique 

reconstruction from the input image for each individual. One important property 

of the reconstructed images is that it captures the illumination of the input image 

but retains the identity of the individual (Figure 20). 

This chapter also discussed how to compute SHP images when the input 
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image has outliers present. The algorithm involved should be robust enough to re­

cover the SHP image as if there were no outliers present. To solve this problem, this 

chapter proposed to use the field of robust statistics to reformulate the equations 

(22) needed to get the SHP images. Specifically, the original objective function is 

incorporated into a robust p-function, which reduces the effect of outliers. 

Several experiments were performed involving reconstructions of occluded 

input images using both groundtruth (Figures 28,29, and 31) and non-groundtruth 

(Fig. 33) SH basis images. The robust estimation framework, in all cases, gives 

more accurate reconstructions compared to its least-squares variant (Algorithm 

1). 
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CHAPTER III 

MODEL-BASED SHAPE RECOVERY FROM SINGLE IMAGES OF GENERAL 
AND UNKNOWN LIGHTING AND POSE 

This chapter proposes a new statistical shape-from-shading framework for 

images of unknown illumination and pose. The object (e.g., face) to be recon­

structed is described by a parametric model. To deal with arbitrary illumination, 

the framework makes use of recent results that general lighting can be expressed 

using low-order spherical harmonics for convex Lambertian objects. The classical 

shape-from-shading (SFS) equation is modified according to this framework. 

Before going to a complete SFS framework for general illumination and 

pose, this chapter starts first with the simpler case of unknown illumination and 

frontal pose. Three algorithms are described to solve this SFS problem, starting 

from a brute-force iterative approach to the efficient regression method. The find­

ings of these three methods will be used to generalize the SFS framework to gen­

eral illumination and pose. In addition, the robust version of SHP images from the 

previous chapter will be incorporated to the SFS framework to deal with non-ideal 

situations. 

A. Model Construction 

The starting point of any model-based approach is the construction of the 

model itself. The SFS framework in this chapter involves two models, namely, 

the shape and texture models. The process of constructing the shape and texture 

models for this model-based framework involves two major steps: (a) establishing 

a dense correspondence between database samples and (b) statistical modeling. 

The database samples are assumed to be globally aligned to each other, similar 
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to [35], which negates the need to perform 3D shape alignment. The shape and 

texture model construction in this dissertation is similar to the morphable model 

construction in [35] [56]. 

1. USF Database of 3D Scans 

The shape and texture models in this paper will be derived from 3D scans 

of the USF database. Originally, there are 100 3D scans in that database of var­

ious gender and race. Out of these 100 samples, 80 subjects were deemed to be 

acceptable and were subsequently chosen to build the shape and texture models. 

The original data from the 3D laser scans, which is metric in nature, rep­

resent the face shape in terms of cylindrical coordinates relative to a vertical axis 

centered with respect to the head [35]. Figure 34 shows an illustration of a sample 

3D scan. In 512 angular steps, ¢ covers 0 - 3600 and there are 512 vertical steps 

h at a spacing of 0.615 mm. At each grid position (h,¢), the laser scans provide 

four measurements related to the radius r as well as the red, green and blue (RGB) 

components for texture information. Therefore, a sample scan I can be represented 

as 

1= (r(h,¢),R(h,¢),G(h,¢),B(h,¢)f h,¢E{O,···,511} (28) 

If Cartesian coordinates are desired, it is straightforward to compute the 

equivalent (X, Y, Z) coordinates from the original cylindrical (r, h, ¢) data. In ad­

dition to the raw 3D scans, the USF database contains the 3D morphable faces [35] 

derived from the raw scans. Specifically, it contains the mean shape and texture, 

shape and texture eigenvectors, and a triangle list for rendering purposes, The 

starting point for building the shape and texture models in this thesis is not the 

raw original data from the USF database. Instead, the original 3D scans are con­

verted into a Monge patch format. A Monge patch [37] represents the surface as 
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FIGURE 34 - Sample 3D laser scan parameterized by cylindrical coordinates, 
(h, ¢) . 

(x , y, f (x, y)) . This representation is convenient because a unique point on the sur­

face can be determined by specifying only the image coordinates. 

Castelan et al. [1] uses the term, height map, for a similar concept as the 

Monge patch. The height map can be formally defined as the function Z (x, y), 

where the (x, y) coordinates represent a position in the image plane. The texture 

map can be similarly expressed as T (x, y), where each function value can be in the 

grayscale or RGB format. 

To get the height map and the corresponding image data, the front (for 

image information) and depth buffers (for height information) within the frame 

buffer in a computer graphics system are simulated [57] . If the 3D face data is ren­

dered using OpenGL, built-in functions in OpenGL can readily extract the front 

and depth buffers [58]. 

This work will use the object-oriented approach [57], which has an outer 

loop of the form: for(each object), render(object) . The objects in question here are the 

triangles in the triangle list of the 3D morphable model. The triangles undergo 

a geometric transformation and affect any pixels in the frame buffer during the 

rasterization process. 
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Geometric Transfonnation Denote as v the (X, Y, Z) coordinates of a vertex 

of 3D shape S3D. The first rigid transformation is a translation by t3D and a rotation 

about the X, Y, and Z axes with angles <p, ,,{, and e, respectively. The translation 

t3D sets the origin at the center of the 3D shape, i.e., t3D = L:j S3D,j. The result of 

both rotation and translation is 

(29) 

The 2D image coordinates of the vertex, denoted by S2D, are solved using 

orthographic projection, which is acceptable when the distance from the camera to 

the rendered 3D shape is much larger than its dimension. After the projection, a 

2D translation t2D and scaling of f are applied 

( 
1 0 0) S2D = f w+t2D 
010 

(30) 

The previous equations can be expressed into one overall equation for all 

vertices, expressing the relationship between the 2D and 3D vertices 

S2D = f PR(v + t3D ) + t2D (31) 

where t3D and t2D are concatenated translation vectors of length 3N and 2N, re­

spectively. R is a 3N x 3N block diagonal matrix which performs the combined 

rotation R",R1Ro for all N vertices. P is a 2N x 3N orthographic projection matrix 

for the set of vertices. Note that only a subset of the original set of vertices will be 

visible. The z-buffer algorithm [59] is used for hidden-surface removal. 

Image Synthesis The previous geometric transformation mapped the ver­

tices (described in the triangle list) from the 3D space to the image frame. To 

synthesize an image, an inverse mapping is done, i.e., in order to know what 

color value must be assigned to a pixel, it is necessary to know where this pixel 

is mapped into the 3D space (or reference frame using the terminology of mor­

phable models). Figure 35 illustrates this inverse mapping. The inverse mapping 
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FIGURE 35 - Inverse mapping to infer pixel values in the image frame using 
barycentric coordinates. 

FIGURE 36 - Sample texture (top row) and height maps (bottom row) from the 
original USF data. 

is realized using barycentric coordinates [60]. To get the corresponding position in 

the reference frame (P) of pixel position q, the barycentric coordinates of q are first 

computed. These coordinates are then used to infer the position of p in the refer­

ence frame. The interpolated color value of p in the reference frame is assigned to 

pixel position q. 

The height map can be generated using the same process as the image data. 

Instead of using color values, the actual z values (depth information) is inferred 

from the reference frame and assigned to position q in the image frame. Figure 

36 shows several height maps and corresponding image data generated from the 

original USF data. 
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FIGURE 37 - Sample annotations of the USF database. There is a total of 76 
manually annotated landmark points, including both anatomical and pseudo­
landmarks. 

2. Dense Correspondence 

To get the dense correspondence between database samples in the original 

morphable model framework of Blanz and Vetter [35], a modified optical flow al­

gorithm is used. The correspondences are established by matching regions of simi­

lar texture and topography between each sample 3D scan and a reference face. The 

main advantage of this approach is that dense correspondence can be determined 

with little manual intervention. 

The approach for finding dense correspondence in this dissertation follows 

that of Patel et al. [56] . A set of sparse landmark points, ( x~ , yD, are manually anno­

tated on the resulting image data, T (x, y) from the previous section (image synthe­

sis) for all database samples. The landmark points are chosen such that they can be 

easily located on all database samples, e.g., anatomical landmarks [61] . In addition 

to the anatomical landmarks, additional pseudo-landmark.points [61] are added to 

ensure smoothness of the facial contours. There is a total of 76 manually annotated 

landmark points, including both anatomical and pseudo-landmarks. Figure 37 il­

lustrates several sample annotations of the USF database. To get the mean shape of 

this ensemble of 76 landmark points, Generalized Procrustes Analysis (GPA) [62] 

is first performed to align the set of shapes to a common reference frame. The mean 

shape is simply computed as 

1 m 

XO = - I:Xi 
m 

i= l 

(32) 

where Xi = ( Xl , Yl , Zl , · .. ,Xn, Yn, znf is the ith shape after alignment and m is the 
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total number of shapes. Since we are dealing with height maps, Xi can be repre­

sented as Xi = (Xl, YI, Z(XI' YI),'" ,Xn, Yn, Z(Xn, Yn))T. 

The mean shape is crucial in establishing dense correspondence between 

USF samples. Figure 38(upper left) shows the mean shape together with its con­

vex hull. A mask is created such that its pixels are within the convex hull of the 

mean shape. Each pixel within the mask is supposed to correspond to a certain 

point on each USF sample scan. Therefore, the mean shape mask exists as some 

form of reference frame which holds the correspondence among all USF 3D shapes. 

Fig. 38 illustrates this process of finding the dense correspondence. Note that Ii = 

(Xl, YI, Zl, R I, G I , B I,'" ,Xk, Yk, Zk, Rk, Gk, B k,'" ,XN, YN, ZN, RN, GN, BN f and there 

are a maximum of 100 such I;'s for the USF database. 

To get the map from the mean shape mask to a USF sample scan, a warping 

function, f : ~2 ---+ ~2, based on physically motivated thin-plate splines [63] [62] 

is constructed using the landmark points (e.g., (Xi, Yi) from the mean shape and 

another set (x;, y;) for each sample scan) as control points, i.e., f(x) = Xl, where 

x = [Xi, YijT and Xl = [x;, y~jT. Once the warping function is solved, this warp is 

applied to all pixels from the mean shape mask, determining their corresponding 

locations on each USF sample scan. Note that the warping operation is performed 

in 2D space. 

A similar procedure is done between the mean shape mask and the frontal 

input image, as shown in Figure 38, forming a dense correspondence between the 

USF database samples and the input image, through the mean shape mask that 

serves a reference frame. 

3. Statistical Modeling 

The shape and texture information for each Ii can be separated into two 

separate vectors, Si and Ti, i.e., 
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Reference 
Input (Frontal) 

Database 

FIGURE 38 - (Upper Left) Mean shape together with its convex hull. The convex 
hull forms the boundary of the mask. (Lower) Each pixel position within the mask 
corresponds to a certain point on a sample scan in the USF database. The vector 
I i,k = (Xk ' Yk , Zk, Rk, Gk, Bkf refers to the shape and texture information at the kth 
vertex of the ith sample scan. (Upper Right)Similarly, each pixel position within 
the mask corresponds to a certain point on the input image. Hence, there is cor­
respondence between the USF database samples and the input image, through the 
mean shape mask. 
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FIGURE 39- (Top row) t, t - 0.5,81 tl, t - 0.5,82t2, t - 0.5,81 tl - 0.5,82t2, t + 0.5,81 S1 + 
0.5,82S2' (Bottom row) 5, 5 - 0.5alsl, 5 - 0.5a2s2, 5 - 0.5alsl - 0.5a2s2, 5 + 0.5alsl + 
0.5a2s2' 

(33) 

(34) 

Principal Component Analysis (PCA) [64] [65] is performed on the set of shape and 

texture vectors, Si and Ti. For the shape information, the average (5 = ~ 2::::1 Si) 

is first subtracted from each shape vector, di = Si - 5, and form the data matrix 

The main step of PCA is to compute the eigenvectors (SI , S2,' .. ) of the co­

variance matrix (C = ~AAT), which can be achieved using Singular Value De­

composition (SVD) [66] of A. The eigenvalues (a;,i ) of C are related to the variance 

of the data across each eigenvector direction. Exactly the same procedure is done 

to obtain the texture eigenvectors (ti) and variances (a;,J Figure 39 visualizes the 

PCA results. Note that the pixel positions of the texture visualization (Figure 39 

(Top row)) are in the reference frame. The resulting shape and texture models are 

m - l 

S = 5 + L ai . Si, 

i=1 

m - l 

t = t + L ,8i . ti 
i=l 

B. Spherical Harmonics Illumination 
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Under the assumption that the viewer and light source are far from the ob­

ject, the image irradiance equation can be written as follows 

E(p) = R(n(p)) (36) 

where E (p ) is the image irradiance at point p and R(.) is the radiance of the surface 

patch with unit normal n(p). After scaling E with the surface albedo A, the image 

intensity I at pixel x is I(x) = AE(p). Under the framework of [38], this becomes 

I(x) = B(x)a (37) 

which states that the that the pixel intensity at x is the weighted combination of the 

basis images B(x), where a is the vector of illumination coefficients. The equations 

for the nine spherical harmonics basis images are 

bo = coA 

(38) 

where the surface normal is n = (nx, ny, n z ), (-) is a component-wise operator, 

n x2 = nx . nx, n xy = nx . ny, and c/s are constants [38]. 

C. Shape-from-shading 

The classic brightness constraint in shape-from-shading indicates the total 

brightness error of the reconstructed image compared to the input image, I [22]. 

The brightness constraint equation is defined as follows 

E = 11 (I (x) - AR (n (X)))2 dx (39) 

The brightness constraint in the discrete case, following (37), becomes 

E = 2:(I(x) - B(x)a)2 (40) 
x 
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if SH basis images are used. In matrix notation, let I be the (d xI) image vector 

with d pixels, B = [bo(x), ... , b1 (x)] be the (d x n) matrix of basis images (at its 

columns), where n is the number of basis images (n = 4,9), and 0 the (n x 1) 

vector of coefficients, c can be expressed as 

c = III - Bol1 2 (41) 

1. Brightness Constraint with Spherical Harmonics 

For this work, assuming the albedo is known, the brightness constraint ver­

sion for spherical harmonics illumination has two unknowns, namely: (a) the co­

efficients 0 and (b) the exact surface normals n = (nx, ny, nJ. Typically, in face 

recognition applications using spherical harmonics [38], the surface normals of 

each subject is available. The author investigates the performance of c given an 

input image I (synthesized from a known surface), but the surface normals used 

to solve the basis images are inaccurate, although close to the ground truth values. 

The input image is synthesized from an ellipsoid with equation :~ + ~ + 

P I, where a and b are fixed dimensions related to the image size, and ht is 
t 

the variable surface height. The surface is Z(x,y,ht) = htV1- (:~ + ~). The 

surface normals n = (-p,-q,l) where p = az and q = az can be easily determined 
'Vp2+q2+1' ax By' 

with a closed-form solution. It is straightforward to solve for the basis images bi 

(38), given the surface normals. Figure 40 shows the synthesized input image with 

a = b = 32, ht = 64, and light source direction I = (0,0, I), together with the nine 

basis images for this surface. 

The author examines the values of c in (41), using the synthesized input 

image I, as ht is varied about the ground-truth value of ht = 64. To solve for c, 

one still needs to determine the suitable 0, given I and B. The equation, I = Bo, 

is an overdetermined linear system of equations, since the number of equations 

(pixel positions) is greater than the unknowns (0). The minimal solution is 0 = 
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(a) (b) 

FIGURE 40- (a) Image synthesized from Z (x, y, ht ) = hq!l- (~~ +~) with a = 

b = 32, ht = 64, and light source direction l = (0,0, 1). (b) Nine basis images of 
Z(x , y) with A = 1. 

VS- 1UTI, where B = USVT, the first n columns of U are used, and S is (n x n) . For 

each ht, a B matrix is computed, resulting to a new a, and eventually c. 

Figure 41 shows a plot of c(ht ) with respect to some values of ht . Note that 

c{ht ) approaches the minimum as ht approaches ht = 64. It is interesting to know 

the values of - d£,i,~,) , which is needed in gradient descent algorithms. Deriving 

_ d£(h,) 
dh, ' 

(42) 

where I (x) and bo(x) are not functions of ht . The basis images b1 (x), ... , bn(x) are 

functions of ht since they are derived from the surface normals. Before ~f.~) can be 

solved, the value of a needs to be determined using the method outlined above. 

The plot of ~)~,) is shown in Figure 41 for some values of ht . Notice that its direc­

tion points toward the minimum. Using a simple gradient descent algorithm, the 

value of ht such that c(ht ) is minimum can be found in a few iterations. 

One can reach two conclusions: (1) The functions c(ht ) and - ~(~,) are unique 

because both B and a change for each value of ht . The matrix B is expected to 

change with ht since most of its elements are functions of ht . But a is not directly 

a function of ht ; instead, it is determined by first solving the overdetermined lin­

ear system, I = Ba. Using this a, c(ht ) and - ~(~:,) behave expectedly, i.e., c(ht ) 
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FIGURE 41- Plot of c(ht ) and d~~tt) for some values of ht . Note that c(ht ) ap­

proaches the minimum as ht = 64 and the direction of - ~(:'t) points toward the 
minimum. Using a simple gradient descent algorithm, the value of ht such that 
c(h t ) is minimum can be found in a few iterations. 

approaches the minimum as ht gets closer to ht = 64 and - ~(::) points to the min­

imum ht . (2) If there is prior knowledge (e.g., the surface Z as a function of model 

parameters like ht ) about the object to be reconstructed from the input image, min­

imizing the brightness constraint c with respect to the model parameters, results 

to the best surface such that the image generated using this surface is as close to 

the input image. Therefore, shape recovery is performed in the process. 

D. Model-based 3D Face Shape Recovery: An Iterative Approach (Frontal 
Pose) 

The approach for the ellipsoid (parameterized by ht ) can be extended to 3D 

faces, which are parameterized by both shape (bs ) and albedo (ba ) coefficients from 

the shape and albedo models. In particular, minimizing the brightness constraint c 

with respect to both shape (bs ) and albedo (ba ) coefficients, yields the best surface 

that generated the input image. 

The 3D shape model (height map) is constructed by performing Principal 

Component Analysis (PCA) on aligned samples from the USF 3D Database [67]. 
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The resulting shape model is 

(43) 

where s is the shape mean, Ps are the shape eigenvectors, and bs is the set of 

shape coefficients. It is the matrix form of the shape model in (35), where Ps = 

[SI,'" ,Sm-l] and bs = [al,'" ,am _l]T. 

Preprocessing and Postprocessing Steps: Note that only the z-component 

of the USF shape samples are involved in the shape model above, following the 

work of [1], i.e., the aligned samples that form the model are Zi = (ZI' Z2,' .. ,ZN V, 
i = 1" .. ,m, where m is the number of samples and N is the number of vertices. 

Since only the z-component is involved, the xy information is missing. There are 

inherent preprocessing and postprocessing steps that deal with this missing xy 

information. 

Denote the set of control points in the mean shape and input image as 

(Xi,e, Yi,e) and (x~,e' Y~,J, respectively. The preprocessing step involves solving for 

the vector-valued warping function, f(Xi,e, Yi,e) = (x;,e, Y~,J. Then the input image 

I is sampled, i.e., Is = I(f(Xi' Yi)), where (Xi, Yi) are pixels inside the mean shape 

mask (reference frame). All subsequent computations are then performed in the 

reference frame. 

After all computations are done, the postprocessing step involves solving 

the inverse warping function, f'(x;,e' Y:) = (Xi,e, Yi,c)' The pixel values (shape or 

texture) within the mean shape mask are then sampled, i.e., in the case of the shape 

output, Sout = Sref(f'(x~, yD), where (x;, yD are pixels inside the predefined output 

image. The output shape Sout can then be visualized as the recovered shape. 

Each height map comes with a corresponding albedo. The albedo (texture) 

model can also be reconstructed using the same approach, resulting to 

(44) 

59 



where it is the mean albedo, P a are the albedo eigenvectors, and b a is the set of 

albedo coefficients. It is the matrix form of the albedo model in (35), where P a = 

[t1,· .. ,tm -1] and ba = [.B1,··· ,.Bm-1jT. There is a change of notation from t to a. 

Recall the brightness constraint in (41). The matrix of basis image, B, can 

actually be expressed as a function of both shape s and albedo a, i.e., B = £(s, a). 

This is clear in Figure 17 and equation (38), where the basis images are derived 

from the surface normals (calculated from shape) and albedo. From the shape (43) 

and albedo (44) peA models, B can also be expressed as a function of shape (bs ) 

and albedo coefficients (ba ), i.e., B = £(bs , ba ). Therefore, the brightness constraint 

equation for human faces can be expressed as 

(45) 

and minimizing this with respect to b s and ba yields the best shape (s) and albedo 

(a) that generated the input image I, i.e., (bs, ba ) = min(bs,ba ) c(bs, b a ), S = S + Psbs, 

Given a 3D face surface Z(x, y), the normals can be approximated using 

the surface slopes in the x and y directions. Finite difference approximations for 

P = az and q = az are ax ay 

p = Z(x + 1, y) - Z(x, y) 

q = Z(x, y + 1) - Z(x, y) 
(46) 

The basis images Mx) can then be computed from p and q using the equa-

tions in (46), assuming the albedo is known. Given an input image, and suppose 

the real albedo is available, we can find the shape parameters bs such that the 

brightness constraint c(bs ) 39 is minimum by performing gradient descent with 

(47) 

To solve ddb1b(x), recall that b1 = )43 ,\ 0 n x , nx = - vi P and p = Z(x + 
, 8t 7r p2+q2+1 
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1, y) - Z(x, y). Z(x, y) and Z(x + 1, y) correspond to certain positions (e.g., jth 

element in the vector s) in the shape model (s = Ii + Psbs ) vector. Then, ~ = Psi,j. 

Taking all these into account, d:~::) can be determined. The other d!;,~:) terms can 

be solved using the same approach. 

Alternatively, suppose the real shape is known, the albedo parameters that 

correspond to the minimum c(ba ) can be determined by performing the following 

gradient descent equations 

(48) 

U sing a similar approach as above, but this time with the albedo model, 

a = a + Paba, it is straightforward to get d!;,::). However, the brightness constraint 

c 39 is a function of both parameters, b s and b a, for real faces, e.g., c(bs , b a). To 

solve this problem, the author follows the project-out approach in [60] by dividing 

the optimization into two steps: (a) minimizing c(bs , 0) with respect to the shape 

parameters b s and (b) using this result as the optimal b s to minimize c(bs , ba ) with 

respect to the albedo parameters ba • Steps (a) and (b) corresponds to (47) and (48), 

respectively. Algorithm 3 best describes this model-based iterative approach. The 

minimization process in steps 2 and 3 of Algorithm 3 can be done using the built-in 

fminunc function in Matlab, which performs unconstrained optimization. 

E. Model-based 3D Face Recovery: A Coupled Statistical Model Approach 
(Frontal Pose) 

Castelan et al. [1] [14] developed a coupled statistical model based on the 

AAM [36] concept, which can recover the 3D shape from intensity images with 

frontal light source. The 2D shape model in [36] is replaced with a 3D shape model 

composed of height maps. The goal of this work is to formulate a 3D shape re­

covery method, by modifying the framework of [14] to handle images of general 

lighting. 
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Algorithm 3 Iterative Approach to Model-based 3D Face Shape Recovery 
INPUT: (a) Input image, I (b) Shape model, s = s + Psbs (c) Albedo model, a = 

OUTPUT: (a) Recovered shape, s (b) Recovered albedo, a 

1: Set initial albedo coefficients to zero: Set ba = 0 

2: Minimize brightness constraint with respect to shape parameters: Solve for 

bs = minbs s(bs , ba ) = minbs III - f(bs, ba )al1 2 

3: Use the solved shape coefficient and minimize brightness constraint with 

respect to albedo parameters: Solve for ba = minba E(b s , b a ) = minba III -

f(bs , ba )al1 2 

4: Repeat steps 2-3 until termination criterion is satisfied. 

5: Solve for the recovered shape and albedo: Solve for s = s + Psbs and a = 

Consider Figure 42, which is basically a modified version of Figure 20 that 

follows the discussion in Section II.B.4. A coupled statistical model can be con­

structed from this figure, which links coefficients of the intensity, shape and spher­

ical harmonics projection (SHP) images of faces of various subjects. By fitting the 

SHP model to the input image, the coupled model can be used to recover the cor­

responding shape and albedo parameters of the input face. The next sections will 

discuss two ways how this fitting and recovery process can be performed. 

1. Coupled Statistical Models 

The coupled statistical model in Figure 42 is composed of three distinct but 

related models. The first two were previously mentioned in Section m.D, namely, 

the 3D shape (height map) and texture (albedo) models constructed using Principal 

Component Analysis (PCA) on aligned samples of the USF Database [67]. 

The third model corresponds to the spherical harmonics projection (SHP) 

images, hI, . . . ,hn' in Fig.42. One can build an SHP model 
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Input image 
(to be reconstructed) 

SHP Images 

Reconstructed images (h J • ••• • h,,) using the 1" 9 harmonic images of distinct USF subjects 

FIGURE 42 - Coupled statistical model illustration. A coupled statistical model 
can be constructed from this figure, which links coefficients of the intensity, shape 
and spherical harmonics projection (SHP) images of faces of various subjects. 

(49) 

similar to the shape and texture models in Sec. IILD, where it is the SHP mean, Ph 

are the SHP eigenvectors, and b h is the set of SHP coefficients. 

2. 3D Face/ Albedo Recovery 

a. Method I The face 3D shape (height map) and appearance of an in­

put image can be described by the coefficients, bs, ba, and bh, from the shape 

(s = s + Psbs), albedo (a = a + Paba) and SHP (h = it + Phbh) models, respec-

tively. This section will describe how to combine the vector coefficients into a sin­

gle model that can be used to recover the height map and albedo of the input image 

under arbitrary illumination. For the kth training sample, a combined vector can 

be formed as follows 

b s 

T -
WhPh (h - h) 

WaP~(a - a) 

P;(s - s) 

(50) 

where W h and W a are diagonal matrices of weights for the SHP and albedo mod-
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els. The weights compensate for the difference in units between the shape, inten­

sityand SHP vectors. The concatenated vectors, be, for all training samples are 

combined into a matrix, and PCA is performed, resulting to a single model that 

links the variations between three models 

Fh 

b = Fc = Fa C (51) 

where F are the eigenvectors and c is a vector of model parameters controlling the 

SHp, albedo, and shape (height map) of the model, simultaneously. The matrices, 

Fh , Fa, and Fs, represent the eigenvectors corresponding to the SHP, albedo, and 

shape (height map) subspaces, respectively. The three models can be expressed 

independently as functions of c, 

(52) 

(53) 

(54) 

Given a 20 input image I inp, the 3D shape and albedo can be recovered by 

first solving the SHP model coefficients b h , using the equation 

T -
b h = Ph (Iinp - h) (55) 

The term b h corresponds to the term (W;;-lFhC) in (52) of the combined model. The 

parameter C can be estimated by performing the optimization 

(56) 

The 3D shape can be recovered from (52), using the solved parameter c. Similarly, 

the albedo can be solved using (53). This method is summarized in the algorithm 

listing below. 
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Algorithm 4 Coupled Model Approach to Model-based 3D Face Shape Recovery 
INPUT: (a) Input image, /;:np (b) Shape and albedo samples: (Sl' al) to (sn' an) 

OUTPUT: (a) Recovered shape, s (b) Recovered albedo, a 

1: Build the shape and albedo models from the samples using PCA: Construct 

s = s + Psbs and a = a + Paba. 

2: Construct the basis images for each pair: Bi = [b l ,· .. ,bg] for each pair (Si' ai) 

3: Build the SHP model: Given an input Iinp, solve for the SHP images, 

(hi, h2 ,··· ,hl1)' for all samples using Algorithm 1 and then construct, h 

h + Phbh 

4: Replace the shape samples with its coefficients: Solve for bsi = P;(Si - s) 

5: Replace the texture samples with its coefficients: Solve for bai = P!(ai - a) 

6: Replace the SHP images with its coefficients: Solve for bhi = Pi: (hi - h) 

7: Form the combined vector for the each training sample: Construct bck 

(Whbh, Waba, bs)Y 

8: Perform PCA on the combined vectors according to (51). 

9: Solve for the SHP coefficients of the input image: Get bh,inp = Pi:(Iinp - h). 

10: Estimate the parametercusing (56): C = argminc(bh-WhlFhC)y(bh-WhlFhC) 

11: Solve for the recovered shape and albedo using (54) and (53): a = a + 

PaW;;lFac and s = s + PsFsc 
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Input image 
(to be reconstructed) 

Shape 

SHP 

FIGURE 43- The coupled model illustration in Fig. 42 can be decomposed into 
two parts, which can then be cast as a regression framework. There are two regres­
sion models at work here, namely: (a) SHP-to-shape and (b) SHP-to-texture. 

b. Method II The coupled model illustration in Figure 42 can actually 

be decomposed into two diagrams, as shown in Figure 43. From Figure 43, the 

iterative framework of Section IILD can be cast as a regression framework. There 

are two regression models at work here, namely: (a) SHP-to-shape and (b) SHP-to­

texture. The SHP coefficients in both models are considered the independent data 

(X). The shape and texture coefficients are the dependent data (Y). Note that the 

SHP model is computed (and can be done in a short amount of time) each time a 

new input image I illP comes in. 

Multivariate multiple linear regression (MLR) cannot be applied directly to 

fit a model between the original data matrices X and Y due to their high-dimensional 

nature. Specifically, let X and Y be of size (n x p), where p is the number of pixels, 

n is the number of samples, and n « p. For MLR to be successful [68], the number 

of samples must be greater than the number of variables, i.e., n > p. 

In this paper, instead of using MLR, a related method called Principal Com­

ponent Regression (PCR) is utilized to get the relationship between X and Y. The 

basic idea of PCR is to decompose X and Y into a low-dimensional subspace, i.e., 
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replacing the high-dimensional vectors Si, ai, and hi by their respective PCA co­

efficients (bsi/ bail and bhJ. Then, standard MLR is performed between the low­

dimensional representations of X and Y. Figure 44 explains the difference between 

MLRandPCR. 

For the SHP-to-shape regression model, let T = [bh1 ,···, bhnl and U = 

[bS1 ' ... ,bsnl be the low-dimensional representations of X and Y. No preprocessing 

steps such as centering are needed for the PCA coefficients (see (51)). Performing 

MLRleads to 

U=TC+F (57) 

where C is the matrix of regression coefficients and F is the matrix of random noise 

errors. The least squares method then gives 

(58) 

Given a 2D input image I inp, the SHP model coefficients bh can be solved 

using (55). The shape coefficient bs can be predicted with 

(59) 

The recovered shape can be determined by substituting the solved shape 

coefficient, bs, into the shape model in (52),i.e., s = s + Psbs. The recovered albedo 

can be solved by following the same steps as above, replacing bs with ba in U. This 

method is summarized in the algorithm listing below. 

F. Comparison of Model-based SFS Methods 

This section compares the three previously discussed model-based 3D face 

recovery methods, starting from a mathematical and algorithmic standpoint to 

side-by-side comparisons of experimental results. The goal of these approaches 
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Algorithm 5 Principal Component Regression (PCR) Framework for 3D Shape Re-

covery 
INPUT: (a) Input image, I inp (b) Shape and albedo samples: (SI' al) to (sn, an) 

OUTPUT: (a) Recovered shape, s (b) Recovered albedo, a 

1: Build the shape and albedo models from the samples using PCA: Construct 

2: Construct the basis images for each pair: Bi = [b l ,· .. ,bg] for each pair (Si' ai) 

3: Build the SHP model: Given an input Iinp, solve for the SHP images, 

(hI, h2 ,'" ,hn ), for all samples using Algorithm 1 and then construct, h = 

it + Phbh 

4: Replace the shape samples with its coefficients: Solve for bsi = P;(Si - s) 

5: Replace the texture samples with its coefficients: Solve for bai = Pnai - it) 

6: Replace the SHP images with its coefficients: Solve for bhi = Pl(hi - it) 

7: Setup matrices for PCR: T = [bh
l
,'" ,bhnl, U sh = [b~, ... ,b;J and Ual = 

[b~l"" ,b~J 

8: Build two PCR models: Construct Csh 

(TTT)-ITTUal 

9: Solve for the SHP coefficients of the input image: Get bh,inp = P'[(Iinp - it) 
-T -T - -T -T-

10: Solve for the shape and texture coefficients: Get bs = bh Csh and ba = bh Cal 

11: Solve for the recovered shape and albedo: s = s + PsI;s and a = it + Pa1;a 
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(SHP) X 

(Shape/Albedo) Y 

(a) 

X=TP'l+Eo T 
(SHP) X, 

C:c-llC-t-F 

(Shape/Albedo) 

y" U 
y= UQT +Fo 

(b) 

FIGURE 44- (a) Multivariate multiple linear regression: A model (Y = X{3 + e) 
is directly fitted between the independent data (X) and dependent data (Y). (b) 
Principal component regression: Instead of directly fitting between X and Y, they 
are first transformed to a low-dimensional subspace, forming T and V, e.g. X = 
TpT + Eo, Y = VQT + Fo, where P and Q are eigenvectors. Actual multiple linear 
regression (V = TC + F) is done between T and U. 

is to recover 3D shape (and albedo as byproduct) from single images of general 

and unknown illumination. 

1. Algorithmic Comparison 

Each method has its own way of minimizing the brightness constraint equa­

tion, with respect to shape (bs ) and albedo (ba ) coefficients, i.e., 

(60) 

The iterative approach uses gradient descent to minimize (60), getting first 

the gradients t:s and t:a, and tries to find the solution with the help of the gradient 

directions. Due to its iterative nature, this method is expected to take a lot of 

computational effort and time to arrive at the solution. 

The coupled statical model approaches (Methods I and II) differ from the 

iterative approach by incorporating regression-like algorithms in the minimization 

process. Moreover, there is an intermediary step before the actual minimization 

with respect to bs and ba is performed. This intermediary step is done by intro­

ducing the concept of an SHP image and minimizing first with respect to the SHP 
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coefficients, i.e., 

(61) 

The solution is closed-form, as expressed in (55). The reconstructed SHP image 
- - -

closest to the input image I in (61) is h = h + Phbh. 

A SHP image is directly related to a certain shape (s) and albedo (a), as 

illustrated in Figure 42 and Algorithm 1. From Figure 42, it is possible to form 

n data pairs, (hi, (Si' ai)), i = 1"" ,n, where hi is the independent variable and 

(Si' ai) is the dependent variable. Both coupled model approaches replace the high-

dimensional vectors, hi, Si, and ai, with their respective PCA coefficients, b hi , b si , 

and bai . The two methods differ, however, in the way they predict the correspond­

ing (bsi , bai ) for the solved bhi in (55). 

The first method combines all three PCA coefficients (SHP, shape and albedo) 

into a single vector (50) and performs PCA on them (51). The result after PCA is a 

single model that links the three models in terms of a single vector c. Recovering c 

independently from the SHP model (55) can lead to closed-form solutions for the 

recovered shape (54) and albedo (53). 

The second method uses multiple linear regression (MLR) concepts (specifi­

cally, principal component regression (PCR)) to arrive at the corresponding (b si , bai ), 

given a hi' Starting from the n data pairs, (hi, (Si' ai)), two n data pairs, (hi, Si) and 

(hi, ai), i = 1" .. ,n, can be formed. PCR requires the original data pairs to be re­

placed with their respective PCA coefficients, (b hi , bsi ) and (b hi , bai ). Two regres­

sion models can be trained from these data pairs using (58). It is straightforward 

to solve the shape and albedo coefficients by employing the common prediction 

equation for regression problems (59). 

In contrast to the iterative nature of the first algorithm, the coupled statisti­

cal model approaches use mostly a sequence of matrix operations (except for the 

quasi-Newton optimization step (56) for Method I), making them computationally 
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efficient. The table below compares the execution time of the three model-based 

SFS methods, under the same machine. Since Method II consists of purely matrix 

operations, it is the fastest among the three methods. 

TABLE 2 
AVERAGE COMPUTATIONAL TIMES OF MODEL-BASED 3D FACE 

RECOVERY APPROACHES 

Iterative Method I Method II 

Time (seconds) 123.83 0.73 0.45 

2. Experimental Results Comparison 

This section shows experiments to evaluate the performance of the pro­

posed methods (Iterative, Method I, Method II) in recovering the 3D face shape. 

The face models are built using the USF 3D Face Database [67], which contains 

100 subjects of diverse gender and ethnicity. Out of these 100 samples, 80 subjects 

were deemed to be acceptable and were subsequently chosen to build the shape 

and texture models. 

To quantify the reconstruction accuracy, we recover the 3D shape for 80 

out-of-training USF samples illuminated with combined light source directions of 

(0,0,1) and (0,0.5,0.9). For each, we compute the following measures: (a) Height 

Error - the recovered height map is compared with the ground truth height and 

the mean absolute error is computed as 

Np I 
_ 1 "'" Si - SGT,i I 
Serr =-~ 

Np i=l SGT,i 
(62) 

where Np is the number of pixels, Si and SGT,i are height values at the ith pixel 

position for the recovered shape and the ground-truth shape, respectively, and (b) 

Surface Orientation Error - the directions of the recovered normal vectors are com-

pared with the ground truth data. The average of the difference angle is computed 
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as 

Np 
~ 1" 1 n·· nCT' 

(jerr = Np '8 COS- (1Ini'llllnc;~dl) (63) 

where Np is the number of pixels, ni and nCT,i are normal vectors at the ith pixel 

position for the recovered shape and the ground-truth shape, respectively. 

The comparison of experimental results starts with a side-by-side visualiza­

tion of the mean height (Figure 45) and surface orientation (Figure 46) error stem 

plots. For the mean height error, most samples fall under the (2 - 8%) range for 

the three methods. It is worth noting that coupled statistical approaches (Method 

I and II) have similar height error values. Most samples are within the (0.04 -

0.14 Tad) range for the mean surface orientation error stem plots and Methods I 

and II have similar surface orientation error values, as well. 

The actual mean and standard deviation of the mean height error and mean 

surface orientation error for the 80 out-of-training USF samples are shown in Ta­

bles 3 and 4. Notice the similarity of the numerical values, which means that the 

output of the three proposed methods are similar, as well. 

TABLE 3 
MEAN AND STANDARD DEVIATION OF THE MEAN HEIGHT ERROR FOR 

80 OUT-OF-TRAINING USF SAMPLES 

{lSerr (%) 

a- (%) Serr 

Iterative Method I Method II 

2.69 

0.82 

2.28 

0.72 

2.28 

0.73 

The next step is to place alongside each other the recovered shapes and 

albedo for the three model-based algorithms. Figure 47 shows the recovered shapes 

together with the input and ground-truth shape. The results are very close visu­

ally. Likewise, Figure 48 displays the recovered albedo. Notice that the results are 

very difficult to differentiate from each other. 
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TABLE 4 
MEAN AND STANDARD DEVIATION OF THE MEAN SURFACE 

ORIENTATION ERROR FOR 80 OUT-OF-TRAINING USF SAMPLES 

Iterative Method I Method II 

/-iOerr (rad) 

aOerr (rad) 

0.05 

0.01 

3. Related Algorithms Comparison 

0.04 

0.01 

0.04 

0.01 

The three methods proposed in this chapter will be compared to their two 

predecessors, namely: (a) Castelan et al. [1] [14] and (b) Ahmed et al. [2]. Since the 

three proposed methods have similar results, Method II (PCR) is chosen to repre­

sent the proposed methods and will be compared alongside the earlier approaches. 

The first difference between the proposed methods and their predecessors 

is in the determination of correspondence between the USF database samples and 

the input image. Instead of 76 control points, only three control points are used 

to determine the map between the database samples and the input, through the 

mean shape, as shown in Figure 49. In addition, the warping function used in the 

predecessors' algorithms is rigid (Euclidean) compared to the nonrigid (thin-plate 

splines) approach for the proposed methods. 

Castelan's methods [1] [14] have an additional major difference in that they 

make use only of shape and texture models. There is no spherical harmonics pro­

jection (SHP) model that can deal with illumination in the input image. Ahmed et 

al. [2] has all three models (shape, texture, and SHP) and uses Method I to recover 

3D facial shapes. 

Similar to the previous section, the comparison starts with a side-by-side 

visualization of the mean height (Figure 50) and surface orientation (Figure 51) 

error stem plots. The actual mean and standard deviation of the mean height error 

and mean surface orientation error of the 80 out-of-training USF samples, for this 

related algorithms comparison, are shown in Tables 5 and 6. It is clear that the 
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proposed algorithm (PCR-Method II) is superior compared to the previous state­

of-the-art. 

The next step is to place alongside each other the recovered shapes and 

albedo for the proposed method (Method II-PCR), Castelan's (Method III) and 

Ahmed's (Method IV). Figure 52 shows the recovered shapes together with the 

input and ground-truth shape. Likewise, Figure 53 displays the recovered albedo. 

The results between Methods II and IV are close visually. However, it is obvious 

that Castelan's version (Method III) suffers with input images that have illumina-

tion. 

TABLE 5 
RELATED ALGORITHMS COMPARISON: MEAN AND STANDARD 

DEVIATION OF THE MEAN HEIGHT ERROR FOR 80 OUT-OF-TRAINING USF 
SAMPLES 

PCR Castelan Ahmed 

f1Serr (%) 2.28 

aSerr (%) 1.00 

8.32 

3.40 

TABLE 6 

3.40 

1.11 

RELATED ALGORITHMS COMPARISON: MEAN AND STANDARD 
DEVIATION OF THE MEAN SURFACE ORIENTATION ERROR FOR 80 

OUT-OF-TRAINING USF SAMPLES 

PCR Castelan Ahmed 

f10err (rad) 0.04 

aOerr (rad) 0.01 
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0.11 

0.02 
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Input GT Iterative II 

FIGURE 47 - Recovered shapes, together with the input image and ground-truth 
(GT) shape, for the three model-based methods (Iterative, Method I, and Method 
II). The results are very close, visually. 
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Input GT Iterative II 

FIGURE 48- Recovered albedo, together with the input image and ground-truth 
(GT) albedo, for the three model-based methods (Iterative, Method I, and Method 
II). The results are very close, visually. 
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Reference 
Input 

Database 

••• 

FIGURE 49 - (Upper Left) Mean shape together with its convex hull. The convex 
hull forms the boundary of the mask. (Lower) Each pixel position within the mask 
corresponds to a certain point on a sample scan in the USF database. The vector 
I i, k = (Xk , Yk, Zk, Rk, Gk, Bkf refers to the shape and texture information at the 
kth vertex of the ith sample scan. (Upper Right) Similarly, each pixel position 
within the mask corresponds to a certain point on the input image. Hence, there is 
correspondence between the USF database samples and the input image, through 
the mean shape mask. 
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G. Robust Model-based Shape-from-shading Framework 

The next sections will discuss several ways on how to extend the basic 

framework of model-based shape-from-shading under fixed pose and general light­

ing. Since the experimental results of the three algorithms from the previous chap­

ter yield similar results, the fastest one (Method II), which is based on Principal 

Component Regression (PCR), is chosen as the primary 3D face recovery method. 

The first extension deals with how to incorporate the concept of robust spheri­

cal harmonics projection (SHP) images from the previous chapter into the model­

based shape recovery framework. The second extension will incorporate variable 

pose into the framework, transforming it into an algorithm that can deal with both 

general pose and lighting. 

The previous chapter on robust SHP images dealt with instances when the 

input images are corrupted by some form of non-ideal conditions, be it noise or 

occlusion. Recall that Algorithm 1 solves for the SHP image, h = Ba, where 

a = min III - Ball (64) 
a 

a is the solved SHP coefficient, I is the input image, and B is the matrix of basis 

images. This formulation is problematic in the presence of outliers. Algorithm 2 

tries to remedy this problem by modifying (64) with 

min ED(a) = min'" p(I - Ba, as) 
a a ~ 

(65) 
sES 

where as is a scale parameter and p is the robust p-function. The robust function 

decreases the effect of outliers, giving a solution as if the outliers did not exist. 

The third step of the PCR framework for 3D shape recovery involves build­

ing the SHP model; Algorithm 2 will be used to solve for the SHP images, instead 

of Algorithm 1. In addition, the occlusion estimate mi (Figure 33) for each com­

puted hi is stored for later use. The final occlusion estimate mf is determined by 

binary and-ing all occlusion estimates for each hi, i.e., 
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Input GT II III IV 

FIGURE 52 - Recovered shapes, together with the input image and ground-truth 
(GT) shape, for the three model-based methods. Methods III and IV refer to Caste­
Ian et a1. [1] [14] and Ahmed et a1. [2], respectively. The results between Methods II 
and IV are close visually. Castelan's version (Method III) suffers with input images 
that have illumination. 
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Input GT II III IV 

FIGURE 53 - Recovered albedo, together with the input image and ground-truth 
(GT) albedo, for the three model-based methods. Methods III and IV refer to Caste­
Ian et al. [1] [14] and Ahmed et al. [2], respectively. The results between Methods II 
and IV are close visually. Castelan's version (Method III) suffers with input images 
that have illumination. 

- ---... -­ILl ILILI LL1 1&iaI ... 
(a) (b) (c) 

FIGURE 54- (a) True occlusion mask. (b) Occlusion mask estimates mi, for each 
hi' (c) Occlusion mask estimate using (66). 
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(66) 

Figure 54 illustrates the final occlusion estimate mj, together with the true oc­

clusion mask. In the computation of SHP coefficients for the input image at the 

ninth step of Algorithm 5, the occluded pixels (from the occlusion estimate) are 

neglected, i.e., 

(67) 

where noc refers to rows corresponding to non-occluded pixels. The algorithm 

listing below shows the robust model-based framework, a modified version of Al­

gorithm 5. 

1. Experimental Results 

This section shows experimental results of the robust model-based shape­

from-shading framework in Algorithm 6. Just like in the previous sections, the 

face model is built using the USF 3D Face Database [67]. To quantify reconstruc­

tion accuracy, the recovered shapes of 80 out-of-training USF samples, illuminated 

with combined light sources of (0, 0,1) and (0,0.5,0.9) are studied. For each shape 

recovery, two measures related to height (62) and surface orientation (63) error are 

used. 

The two types of occlusion used in these experiments are illustrated in Fig­

ure 55. Figure 55(a) is a circular occlusion region with all-black color (i.e., gray­

level value is 0) and Figure 55(b) is a contiguous type of occlusion [69] that is, in 

this case, a baboon image. The radius of the circular occlusion is 25 pixels and 

one side of the square contiguous occlusion is 40 pixels. Both occlusion types are 

placed randomly inside the input image region of the 80 out-of-training USF sam­

ples. 

There are three sets of experiments that will be compared in this section, 
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Algorithm 6 Robust Model-based 3D Shape Recovery Framework 
INPUT: (a) Input image, I inp (b) Shape and albedo samples: (SI , al) to (sn, an) 

OUTPUT: (a) Recovered shape, s (b) Recovered albedo, a 

1: Build the shape and albedo models from the samples using PCA: Construct 

2: Construct the basis images for each pair: Bi = [b l , ' .. , bg] for each pair (Si, ai) 

3: Build the SHP model: Given an input I inp1 solve for the SHP images, 

(hI, h2 , ' • • , hn ), for all samples using Algorithm 2, save occlusion estimate, mi 

for each sample, and then construct, h = b + Phb h 

4: Get final occlusion estimate: m f = ml • m2 •...• mn 

5: Replace the shape samples with its coefficients: Solve for bsi = P'[(Si - s) 

6: Replace the texture samples with its coefficients: Solve for bai = P;[(ai - a) 

7: Replace the SHP images with its coefficients: Solve for bhi = pnhi - b) 

8: Setup matrices for PCR: T = [bI
l
,··· , bIn] , Ush = [b~, .. . , b;J and Ual 

[b~l''' ' , b~J 
9: Build two PCR models: Construct Csh = (TTT )- ITTUsh and Cal 

(TTT )- ITTUal 

10: Solve for the SHP coefficients of the input image using only non-occluded 

pixels from Step 4: Get b h,inp = P l,noc (Iinp,noc - bnoe ) 

-T -T - -T -T-
11: Solve for the shape and texture coefficients: Get bs = b h Csh and ba = b h Cal 

12: Solve for the recovered shape and albedo: s = s + Psbs and a = a + Paba 

~. , 
l-~' -

(a) (b) 

FIGURE 55- Two types of occlusion: (a) circular occlusion with uniform color, (b) 
contiguous occlusion with non-uniform texture. 
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namely: (a) Case I - using the original PCR framework in Algorithm 5 on input 

images with no occlusion, (b) Case II - using the modified robust framework in 

Algorithm 6 on input images with occlusion, and (c) Case III - using the original 

PCR framework (without robust formulation) in Algorithm 5 on input images with 

occlusion. 

Similar to the previous sections, the comparison starts with a side-by-side 

visualization of the mean height (Figure 56) and surface orientation (Figure 57) 

error stem plots, for the three sets of experiments. The occlusion type is a circular 

region (Figure 55a). Cases I, II, and III refer to PCR-none-none, PCR-circle-Geman­

McClure, and PCR-circle-none, respectively, in the plot legends. 

The actual mean and standard deviation of the mean height error and mean 

surface orientation error of the 80 out-of-training USF samples, for the above exper­

iments, are shown in Tables 7 and 8. It is clear that the modified robust framework 

for shape recovery (Algorithm 6) can handle this type of occlusion, i.e., Case II re­

sults are closer to Case I. Without the robust framework (Case III), shape recovery 

results have larger errors, as seen in Tables 7 and 8. 

TABLE 7 
CIRCULAR OCCLUSION EXPERIMENTS: MEAN AND STANDARD 

DEVIATION OF THE MEAN HEIGHT ERROR FOR 80 OUT-OF-TRAINING USF 
SAMPLES 

Case I Case II Case III 

/-LSerr (%) 2.28 

a Serr (%) 0.74 

2.62 

0.89 

3.45 

0.87 

Figure 58 shows the reconstruction results, visually, of five out-out-training 

USF samples for the three cases above, using the circular occlusion in Figure 55(a). 

The input images are in the first row. Note the random position of the circular 

occlusion in the images. The second row contains the estimated occlusion in the 

input image. The third row displays the ground-truth albedo of the input. Fourth 
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TABLE 8 
CIRCULAR OCCLUSION EXPERIMENTS: MEAN AND STANDARD 

DEVIATION OF THE MEAN SURFACE ORIENTATION ERROR FOR 80 
OUT-OF-TRAINING USF SAMPLES 

Case I Case II Case III 

JLOerr (rad) 0.04 

aOerr (rad) 0.01 

0.04 

0.01 

0.06 

0.01 

to sixth rows contain the recovered albedos for Cases I, II, and III, respectively. 

The seventh row contains the ground-truth shape. Eighth to tenth row illustrate 

the recovered shapes for Cases I, II, and III, respectively. Notice that the recovered 

albedo and shapes for Cases I and II are similar visually, reflecting the similar 

errors in Tables 7 and 8. The recovered shapes and albedo, however, for Case III 

appear to be degraded, reflecting the large error values in Tables 7 and 8. 

For the contiguous occlusion type (Figure 55b), the comparison commences 

with a side-by-side visualization of the mean height (Figure 59) and surface ori­

entation (Figure 60) error stem plots, for the three sets of experiments. Cases I, II, 

and III refer to PCR-none-none, PCR-circle-Geman-McClure, and PCR-circle-none, 

respectively, in the plot legends. 

The actual mean and standard deviation of the mean height error and mean 

surface orientation error of the 80 out-of-training USF samples, for the above ex­

periments, are shown in Tables 9 and 10. Similar to the circular type of occlusion, it 

is clear that the modified robust framework for shape recovery (Algorithm 6) can 

handle this type of occlusion, i.e., Case II results are closer to Case I. Without the 

robust framework (Case III), shape recovery results have larger errors, as seen in 

Tables 9 and 10. 

Figure 61 shows the reconstruction results, visually, of five out-out-training 

USF samples for the three cases above, using the contiguous occlusion in Figure 

55(b). The input images are in the first row. Note the random position of the rect-
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TABLE 9 
CONTIGUOUS OCCLUSION EXPERIMENTS: MEAN AND STANDARD 

DEVIATION OF THE MEAN HEIGHT ERROR FOR 80 OUT-OF-TRAINING USF 
SAMPLES 

Case I Case II Case III 

J-LSerr (%) 2.28 

a Serr (%) 0.74 

2.47 

0.80 

TABLE 10 

2.80 

0.89 

CONTIGUOUS OCCLUSION EXPERIMENTS: MEAN AND STANDARD 
DEVIATION OF THE MEAN SURFACE ORIENTATION ERROR FOR 80 

OUT-OF-TRAINING USF SAMPLES 

Case I Case II Case III 

J-Liierr (rad) 0.04 

aiierr (rad) 0.01 

0.04 

0.01 

0.05 

0.01 

angular contiguous occlusion in the input. The second row contains the estimated 

occlusion in the input image. The third row displays the ground-truth albedo of 

the input. Fourth to sixth rows contain the recovered albedos for Cases I, II, and 

III, respectively. The seventh row contains the ground-truth shape. Eighth to tenth 

row illustrate the recovered shapes for Cases I, II, and III, respectively. Notice that 

the recovered albedo and shapes for Cases I and II are similar visually. 
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FIGURE 58 - Reconstruction results of five out-out-training USF samples for the 
three cases above, using the circular occlusion. Input images are in the first row. 
Second row contains the estimated occlusion in the input image. Third row dis­
plays the ground-truth albedo of . the input. Fourth to sixth rows contain the re­
covered albedos for Cases I, II, and III, respectively. Seventh row contains the 
ground-truth shape. Eighth to tenth row illustrate the recovered shapes for Cases 
I, II, and III, respectively. 
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H. Model-based 3D Face Recovery: A Coupled Statistical Model Approach 
(General Illumination and Unknown Pose) 

The goal of this section is to extend the proposed 3D shape recovery ap­

proaches from the previous sections to handle variable pose, as opposed to the 

limiting case of fixed frontal pose. Just like in the robust version of the model­

based SFS approach, the best one (Method II) is chosen as the primary 3D face 

recovery method. 

For the general pose extension, Figure 38 of the fixed frontal pose approach 

can be updated to Figure 62. Note that the main difference is in the upper right 

comer of the figure, i.e., there is a presence of pose in the input. However, the 

dense correspondence between the USF database samples and the input image, 

through the mean shape mask (acting as the reference frame) still exists. Recall 

that in the fixed frontal pose, this dense correspondence is achieved through the 

use of the thin-plate spines (TPS) warping function. 

1. Preprocessing and Postprocessing Steps 

Recall in the frontal pose case previously that the set of control points in the 

mean shape and input image are denoted as (Xi,c, Yi,c) and (x:,c' Y:,c)' respectively. 

The preprocessing step involves solving for the vector-valued warping function, 

For this general pose case, the 2D locations of the input image feature points 

are represented as Xi E jR3, and the corresponding 3D locations of the feature points 

of the mean shape as Xi E jR4, using homogeneous coordinates. The goal is to find 

the (3 x 4) camera projection matrix C, i.e., Xi = CXi. 

To estimate this projechon matrix, the normalized versions of the feature 

points are needed, i.e., Xi = TXi and Xi = UXi, where T E jR3x4 and U E jR4x4 are 

similarity transforms that translate the centroid of the 2D and 3D feature points to 

the origin and scale them such that the RMS distance from the origin is .J(2) for 
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FIGURE 61- Reconstruction results of five out-out-training USF samples for the 
three cases above, using contiguous occlusion. Input images are in the first row. 
Second row contains the estimated occlusion in the input image. Third row dis­
plays the ground-truth albedo of the input. Fourth to sixth rows contain the re­
covered albedos for Cases I, II, and III, respectively. Seventh row contains the 
ground-truth shape. Eighth to tenth row illustrate the recovered shapes for Cases 
I, II, and III, respectively. 
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Input 
Reference 

Database 

FIGURE 62 - (Upper Left) Mean shape together with its convex hull. The convex 
hull forms the boundary of the mask. (Lower) Each pixel position within the mask 
corresponds to a certain point on a sample scan in the USF database. The vector 
I i,k = (Xk, Yk, Zk, Rk, Gk, Bkf refers to the shape and texture information at the 
kth vertex of the ith sample scan. (Upper Right) Similarly, each pixel position 
within the mask corresponds to a certain point on the input image. Hence, there is 
correspondence between the USF database samples and the input image, through 
the mean shape mask. 
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the 2D case and V(3) for the 3D case. 

This work will assume an affine camera; the Gold Standard Algorithm (Al­

gorithm 7.1) [3] can compute the normalized projection matrix C. The desired 

camera projection matrix can be solved from C following a denormalization step, 

C = T-1CU. 

The solved camera projection matrix C, in conjunction with the z-buffer test, 

is used to determine hidden triangle faces. Only vertices belonging to the visible 

triangle faces are considered. Figure 77 illustrates the computation of camera pro­

jection matrix. Notice that the projected 3D feature points do not coincide with the 

input image feature points. A warping function (f) using thin-plate splines (TPS) is 

established between the projected 3D and input image feature points. Therefore, a 

3D point in the mean face is first projected to 2D space using the camera projection 

matrix C, after which it is warped using f. The input image I is then sampled, i.e., 

Is = I(g(xi' Yi)), where (Xi, Yi) are pixels inside the mean shape mask (reference 

frame) and g represents the combined camera projection matrix and TPS warp. 

For the fixed frontal case, the postprocessing step involves solving the in­

verse warping function, f/(X~,c, Y~,c) = (Xi,e, Yi,c)' This is not possible for the general 

pose case because input image feature points are with pose; it is desirable to get 

the equivalent frontal pose of the image feature points, first, before performing the 

inverse warping function. This work makes use of the recent results of [4] to get 

the equivalent frontal pose of the image feature points with pose. Related methods 

of [4] will be pursued in the next chapter. 

2. Experimental Results 

This section shows experiments to evaluate the performance of the pro­

posed method in recovering the 3D face shape. The face models are built using 

the USF 3D Face Database [67], which contains 100 subjects of diverse gender and 

ethnicity. Out of these 100 samples, 80 subjects were deemed to be acceptable and 
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FIGURE 63 - Pan angle illustration. The face moves left-to-right or right-to-Ieft 
sideways. 

were subsequently chosen to build the shape and texture models. 

Experiment A To quantify the reconstruction accuracy, the author recovers 

the 3D shape for 80 out-of-training USF samples illuminated with combined light 

source directions of (0 ,0, 1) and (0, 0.5, 0.9). Two types of input images are gener­

ated: (a) Case I - an input image is generated with a random pan angle within the 

range of (-20° to 20°) and (b) Case II - another input image from the same subject 

is generated with a frontal pose, i.e., pan angle is 0°. For each input image, the two 

error measures, mean height error (62) and mean surface orientation error (63), are 

measured. 

Figures 65 and 66 show stem plots of the height and surface orientation 

errors for two cases: (a) Case I - input image contains pose and is recovered by the 

model-based approach for general pose and illumination and (b) Case II - input 

image from the same subject but without pose and reconstructed by Method II. 

Notice that the results are similar, i.e., the newer framework can recover the 3D 

shape even if there is pose involved. 

The actual mean and standard deviation of the mean height error and mean 

surface orientation error of the 80 out-of-training USF samples, for these exper­

iments, are shown in Tables 11 and 12. The numerical values indicate that the 

pose-invariant 3D shape recovery version (for input images with pose) has similar 

error values compared to the frontal-pose version (for input images with frontal 
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pose), for input images of the same subject. 

The next step is to place alongside each other the recovered shapes and 

albedo, together with the input, ground-truth shape and albedo, as illustrated in 

Figure 64. The results are very close visually, indicating the the variable pose do 

not affect the 3D shape recovery framework. 

Experiment B To investigate the sensitivity of the proposed approach with 

respect to pose, a similar experiment is performed as described, except that for a 

specific pose, the recovered 3D shapes of all 80 out-of-training input images are 

analyzed. Specifically, at pan angle of xO, generate 80 out-of-sample input images 

and compute the average mean height error and surface orientation error across 

all 80 input images, where x E {-20°,-15°,··· , 15°, 20°}. 

Figures 67 and 69 plot the average mean height error and average mean 

surface orientation error, respectively, with respect to a pan angle range of (-20° 

to 20°). The bar graphs indicate that the proposed method is not sensitive to pose 

changes, at least for the pan angle range of { -20°, -15°, ... ,15°, 20°}. 

Experiment C The previous experiment does not show at what point pose 

begins to have an effect. The next obvious step is to increase the pan angle range, 

i.e., x E {-90°, -85°,· .. ,85°, 90°}, and perform Experiment B. However, this ex­

periment will take a considerable amount of time to perform. 

A quick solution is to choose only one subject (sample index #1 in this ex­

periment), instead of all 80 subjects, from the USF database and then perform Ex­

periment B but with a pan angle range of x E { -90°, -85°, ... ,85°, 90°}. 

Figures 71 and 72 show both mean height error and surface orientation er­

ror across various pan angles. To highlight the change in error per pan angle in­

cremental change (5°), Figures 73 and 74 show the forward-difference numerical 

differentiations of the mean height error and surface orientation error plots. From 

a visual perspective, it appears that the breaking point of pose invariance is ap­

proximately at ±50°. Hence, there is only pose invariance inside the pan angle 

range of (-50° to 50°); outside of this range, the recovered 3D shape is not accurate 

100 



due to the effect of pose. 

I. Summary 

This chapter proposed a 3D facial shape recovery method for images under 

general pose and illumination. The first part of the chapter deals with fixed frontal 

pose only. Several ideas in this chapter are published in [40] [41] [42]. 

Three algorithms were developed to solve this 3D shape recovery problem, 

starting from a brute-force iterative approach to a computationally efficient regres­

sion method, where the classical shape-from-shading equation is cast as a regres­

sion framework. Results show that the output of the regression-like approach is 

faster in timing and similar in error metrics when compared to its iterative coun­

terpart. 

The best of the three algorithms above, Method II-PCR, is compared to its 

two predecessors, namely: (a) Castelan et a1. [1] and (b) Ahmed et a1. [2]. It is 

clear from the experimental results that the proposed method (Method II-PCR) is 

superior in all aspects compared to the previous state-of-the-art. Robust statistics 

was also incorporated into the shape recovery framework to deal with noise and 

occlusion. 

Using multiple-view geometry concepts [3], the fixed frontal pose was re­

laxed to arbitrary pose. The best of the three algorithms above, Method II-PCR, 

once again is used as the primary 3D shape recovery method. Results show that 

the pose-invariant 3D shape recovery version (for input with pose) has similar er­

ror values compared to the frontal-pose version (for input with frontal pose), for 

input images of the same subject. Sensitivity experiments indicate that the pro­

posed method is, indeed, invariant to pose, at least for the pan angle range of 

(-50° to 50°). 
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Input GT Recons. GT Recons. 
Shape Shape Albedo Albedo 

FIGURE 64- Recovered shapes and albedo, together with the input image and 
ground-truth (GT) shapes and albedo. 
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TABLE 11 
UNKNOWN POSE EXPERIMENTS: MEAN AND STANDARD DEVIATION OF 

THE MEAN HEIGHT ERROR FOR 80 OUT-OF-TRAINING USF SAMPLES 

Case I Case II 

MSerr (%) 2.34 2.28 

(lSerr (%) 0.73 0.74 

TABLE 12 
UNKNOWN POSE EXPERIMENTS: MEAN AND STANDARD DEVIATION OF 

THE MEAN SURFACE ORIENTATION ERROR FOR 80 OUT-OF-TRAINING 
USFSAMPLES 

Case I Case II 

MOerr (rad) 0.039 0.040 

(lOerr (rad) 0.010 0.010 
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Pan Angle (9) 

FIGURE 67 - Bar graph of the average mean height error with respect to pose 
changes, i.e_, pan angle range of (-20° to 20°). The graph indicates that the pro­
posed approach is insensitive to pose changes. 
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Pan Angle (9) 

FIGURE 68 - Zoomed version of Figure 67. The plot shows that there is a slight 
increase in error as the pose angle is increased. 
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FIGURE 69 - Bar graph of the average mean surface orientation error with respect 
to pose changes, i.e., pan angle range of ( - 20° to 20°). The graph indicates that the 
proposed approach is insensitive to pose changes. 
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FIGURE 70- Zoomed version of Figure 69. The plot shows that there is a slight 
increase in error as the pose angle is increased. 
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Pan Angle (9) 

FIGURE 71- Stem plot of the average mean height error of recovered shapes of 
input images coming from a single subject, with respect to pose changes, i.e., pan 
angle range of (-90° to 90°). The plot indicates that the proposed approach is 
insensitive to pose changes only up to ±50°. 
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FIGURE 72 - Stem plot of the average mean surface orientation error of recovered 
shapes of input images coming from a single subject, with respect to pose changes, 
i.e., pan angle range of (-90° to 90°); The graph indicates that the proposed ap­
proach is insensitive to pose changes only up to ±50°. 
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FIGURE 73 - Plot of the average mean height error of recovered shapes of input 
images coming from a single subject, with respect to pose changes, i.e., pan angle 
range of (- 900 to 900

). Superimposed in this plot is the forward-difference nu­
merical differentiation of the former to highlight the change in error per pan angle 
incremental change (50). At pan angle -550 and 550, there is a change of about 
-1.5% and 1.5% error, respectively. The plot indicates that the proposed approach 
is insensitive to pose changes only up to about ± 50°. 
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FIGURE 74- Plot of the average mean surface orientation error of recovered 
shapes of input images coming from a single subject, with respect to pose changes, 
i.e., pan angle range of (- 900 to 900

). Superimposed in this plot is the forward­
difference numerical differentiation of the former to highlight the change in error 
per pan angle incremental change (50). At pan angle -600 and 550, there is a change 
of about - O.Ol rad and O.Olrad error, respectively. The plot indicates that the pro­
posed approach is insensitive to pose changes only up to about ± 50°. 
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CHAPTER IV 

MODEL·BASED SHAPE RECOVERY FROM SINGLE IMAGES OF 
UNKNOWN POSE USING A SMALL NUMBER OF FEATURE POINTS 

This chapter proposes a model-based approach for face reconstruction using 

a small set of feature points from an input image of unknown pose. The model­

based approaches proposed in the previous chapter require both texture (shading) 

and 2D shape information from the input image in order to perform 3D facial shape 

recovery. However, the methods discussed here need only the 2D feature points in 

an image to reconstruct the 3D shape. 

Figure 75 illustrates this problem succinctly. The input is a 2D image with 

annotated feature points. Only the information from the feature points is given 

to a 3D estimation black box. The output can be one of the the two cases: (a) 3D 

sparse shape and (b) 3D dense shape. 

A. Basic Definitions and Notations 

The geometry of a face is represented as a shape vector that contains the 

XY Z coordinates of its vertices, i,e., S = (Xl, Y1 , Zl, ... ,Yn, Zn f, where n is the 

number of vertices. Similar to the previous chapter, the shape model can be con­

structed using a data set of m samples; a sample shape i is represented by the 

shape vector Si. Novel shapes s can be generated from convex combinations of the 

m sample shapes, i.e., s = 2::7:1 aiSi, 2::7:1 ai = 1. 

It is computationally convenient to reduce the dimensionality of the shape 

space, especially when dealing with high-dimensional shape vectors. Using Prin­

cipal Component Analysis (PCA) on the data matrix provides us with m - 1 eigen­

vectors Si, their corresponding eigenvalues (variances) o"f, and the mean shape s. 
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FIGURE 75 - The problem of estimating 3D shape given only the 2D feature points 
of an input image under unknown pose. The output 3D shape of the estima­
tion method can be sparse or dense. Since prior shape and texture models from 
real data, which are metric in nature, are incorporated into the 3D shape recovery 
framework, the output 3D shape are metric, as well. 

New shapes s can be derived from an equivalent model, i.e., 

m - l 

S = S + 2...: aiSi 
i= l 

(68) 

where a = (al )'" ) am_d T is the shape parameter vector. In matrix notation, the 

above equation can be expressed as s = s + Sa. 

A realistic 2D face, S2D, can be generated from the 3D shape produced by 

the PCA model [70], i.e., 

(69) 

where t 3D and t 2D are concatenated translation vectors of length 3N and 2N, re­

spectively. R is a 3N x 3N block diagonal matrix which performs the combined 

rotation R¢RyR() for all N vertices. P is a 2N x 3N orthographic projection matrix 

for the set of vertices. Note that only a subset of the original set of vertices will be 
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visible. The z-buffer algorithm [59] is used for hidden-surface removaL 

The same concepts above are expressed in a different terminology in [3]. 2D 

shape is represented as Xi E 1R3, and the corresponding 3D shape as Xi E JR.4, using 

homogeneous coordinates. The goal is to find the (3 x 4) camera projection matrix 

C E JR.3X4, i.e., Xi = CXi . Assuming an affine camera, the camera projection matrix 

C can be solved using the Gold Standard Algorithm (Algorithm 7.2) in [3]. 

1. Experimental Results 

The goal here is to visualize concepts related to the previous section. Through­

out the experiments, there is always a set of point correspondences, X; +-t Xi be­

tween 3D points Xi and 2D points Xi' Two cases will be considered here, namely: 

(a) Xi was synthetically generated from Xi through an unknown projection matrix 

C (Case I) and (b) Xi does not come from Xi (Case II), i.e., a different X~ was pro­

jected using an unknown C to get Xi' In both cases, the camera projection matrix is 

computed and is used to project Xi to the 2D space. 

Figures 76 and 77 illustrate the first and second case, respectively. Notice 

that after projection of the 3D shape Xi using the projection matrix C, the resulting 

2D shape Xi = CXi fits perfectly to Xi. This is not the scenario with the second case 

since Xi and Xi do not come from the same subject. The second scenario will be 

exploited in later algorithms in this chapter. 

B. Related Methods 

Previous methods that perform face reconstruction from a small number 

of feature points can be classified into two groups, namely: (a) iterative and (b) 

linear approaches (non-iterative). The latest iterative method is found in the work 

of [5] and [71]. The linear approach of [4] calculates 3D shape using only a series 

of matrix operations. This section will briefly summarize both iterative and non­

iterative methods to gain insight at how 3D face recovery is done. 
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respondences, Xi B X i ' Note that Xi was synthetically generated from X i . (Lower) 
After projecting X i to the 2D space using the computed projection matrix C, the 
resulting shape fits perfectly to the input 2D feature points . 
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1. Iterative Methods 

The algorithms in [5] and [71] use the 3D-to-2D projection equation of (69). 

They replace the 3D shape s with the shape model from PCA (s = s + Sa) to allow 

minimization with respect to the shape parameter a, i.e., 

S2D = I P R(s + Sa + t3D) + t2D (70) 

where I is a scale parameter, P is an orthographic projection matrix, R is the rota­

tion matrix, t2D and t3D are translation vectors in 2D and 3D, respectively. 

Notice that if the rendering process is inverted, the shape parameters a can 

be recovered from the shape error. As long as I, P, and R are kept constant, the 

relation between the shape S2D and a is linear, i.e., 

8S2D = IPRS 
8a 

(71) 

The above equation comes from differentiating S2D with respect to a in (70). 

Transferring 8a to the other side of the equation, we have a linear system, 8S2D = 

I P RS(8a). Therefore, given the shape error 8s2D, estimated by the displacement of 

a set of feature points, the update of a can be determined. The shape reconstruction 

goes through the following steps iteratively: 

Model Initialization: Initialize the shape parameter to a = o. The pose param­

eters, I, R, and t2D, are also manually set. 

Feature Correspondence: Manually pick a set of feature points in the input 

image, denoted as S~D. There should be a corresponding set of these feature points 

in the shape model, denoted as S3Vd• Projecting S3~ to the 2D space will result into 

2D points denoted as S2D. 

Rotation, Translation, and Scale Parameters Update: Solve for parameters I, R, 

and t2D by minimizing the following objective function using Levenberg-Marquadt 

optimization [3] [66]. 
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arg min Ils~7> - (J PR(s + Sa + t3D) + t2D )11 2 
= (1, R, t2D ) (72) 

I,P,R 

Shape Parameter Update: The shape error can be defined as the difference 

between S~D and S2D = 1 P R(s + Sa + t3D ) + t2D . The vector of shape parameters 

can be updated with Sa by solving the linear system of equations 

OS2D = jPRS(oa) (73) 

2. Linear Methods 

Recently, Aldrian et al. [4] proposed a shape recovery method that can ex­

tract 3D facial shape using only a sequence of matrix operations. This work will 

represent the class of linear approaches for this problem of 3D face reconstruction 

from a small set of feature points. 

Before going to the actual algorithm, a brief summary of some changes in 

notation will be discussed. The 2D projection of the 3D feature points (srmd) in the 

shape model is now referred to as Ymod2D,i, instead of S2D' The 2D feature points in 

the input image is now denoted as Yi, instead of S~D' 

Another set of important notations in [4] is related to the eigenvector matrix 

S after applying PCA on shape data and the camera projection matrix solved using 

the Gold Standard Algorithm in [3]. Let S E lR.3Nxm-l be the matrix formed after 

subselecting the rows of the eigenvector matrix S associated with the N feature 

points. Since we are dealing with homogeneous coordinates, a row of zeros will 

be inserted every after third row of Sh, giving it a dimension of (4N x m - 1). For 

the camera projection matrix, a new block diagonal matrix P E lR.3NX4N, where the 

camera projection matrix C is placed on the diagonal. 

Instead of minimizing with respect to the shape parameter a in (68), the 

method in [4] minimizes with respect to a related variable, namely, the variance 

normalized shape parameter Cs = (~,,,. , ;:=~), where aT are the eigenvalues 
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after peA is performed on the shape data matrix. 

Using the new set of notations, the 20 points (Ymod2D,i) obtained by project­

ing the 30 model points (S3Dd
), given by the shape parameter a, to the 20 space 

is 

Ymod2D,i = Pi . (Sha + s) (74) 

where Pi is the ith row of P. 

The next step is to discuss the error functional to be minimized in only a 

single step. This can be done by differentiating the functional, setting it to 0, and 

solving for cs . The error functional is 

(75) 

where a~D,i is the 20 point error variance that explains the difference between the 

observed and modeled feature point positions in the input image. The value of 

a~D,i is determined after performing some offline training. 

Substituting the expanded form of Ymod2D,i in (74) to (75) and applying the 

second binomial theorem [72] and expanding yields 

For notational convenience, let Ri = PiSh and ki = 2Pi . S. Expanding according to 

the first binomial theorem leads to 

E = f (Ria)2 + kn(Ria) + (Pi ~ S)2 - 2YiRia + kiYi + yl + IIc
s

l1 2 (77) 
i=l a2D,i 

The next procedure is to minimize the error E by differentiating it with re­

spect to a and setting the result to 0, i.e., 

3N T k T T T 

O - "E - '" 2Ri Ria + iRi - 2YiRi - 2YiRi 2 
-v -~ 2 + ~ 

i=l a2D,i 

(78) 
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However, as stated earlier, the functional is to be minimized with respect to cs , 

not a. Hence, the matrix Ri will be multiplied with the shape eigenvalues, i.e., 

Qi = Ridiag(a}), which leads to 

(79) 

For clarity, let 

(80) 

and get the simplified version of (79), Tl + 2cs = T2 • This equation can be solved 

by applying a Cholesky Decomposition [73] to Tl and further decomposing the result 

with Singular Value Decomposition, i.e., 

MTMcs + 2cs T2, where Tl = MTM 

VW2VT
C +2c s s T2, where M = UWVT 

diag(wi + 2)VT CS = V TT 2 

CS = [diag(wi + 2)VTt 1V TT 2 (81) 

Therefore, using only a sequence of matrix operations, the normalized shape pa­

rameters (cs ) can be computed given the location of the 2D feature points from the 

input image, as well as the camera projection matrix C. It is straightforward to 

compute the actual shape parameter a, i.e., ai = Cs,iOi. 

C. Proposed Approach 

This section presents the proposed method to solve the problem of extract­

ing 3D information from single images of unknown pose using only a small num­

ber of feature points (Figure 75). Figure 75 shows two output cases, namely: (a) 

3D sparse shape and (b) 3D dense shape. The discussion in this section will focus 
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first on the simpler case of 3D sparse shape and move on to 3D dense shape, as an 

extension. 

1. Preliminaries 

As previously discussed that the USF database used in this work contains 

both albedo and dense shape (Figure 78 (Upper Left». Both albedo and dense 

shape are expressed as Monge patches, i.e., (x, y, Z(x, y), T(x, y)). Also, the image 

data of the USF database samples are manually annotated with 76 points, related 

to the important features of the face, as shown in Figure 37. Since both image 

and dense shape data are in correspondence with each other, the annotation points 

can also be applied to the height maps, which results into 3D sparse shapes, as 

illustrated in (Figure 78 (Upper Right». Since there are multiple USF subjects, 

there is a series of dense shapes together with corresponding sparse shapes, as 

illustrated in (Figure 78 (Lower». This series of dense and sparse shapes is integral 

to the proposed method in this chapter. 

2. Model-based Framework (Case I: Output 3D Sparse Shape) 

Suppose we have an input 2D sparse shape and the goal is to find the cam­

era projection matrix C from its unknown (and yet to be solved) actual 3D sparse 

shape. A good substitute for this unknown 3D shape is the mean shape. A cam­

era projection matrix can be computed between the mean 3D sparse shape and 

the input 20 sparse shape (Figure 79(Left». Further, this projection matrix can 

be used to project a sample USF 3D sparse shape to the 20 space. This is illus­

trated in Figure 79(Right), where the projections of the mean shape, sample USF 

3D sparse shape, and the input image feature points are plotted together. The pro­

jection matrix C can be used to project all USF database samples to the 20 space, 

as illustrated in Figure 80. Notice that they are rigidly registered together about 

the input 20 shape. 
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Sparse 3D Shape 
Albedo Dense 3D Shape 

Series of dense 3D shapes and its corresponding 3D sparse shape 
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••• L2"": 'IH.' ·'on, •• 
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<II ••• • • ••• ' 

. '" -.. .. . . .,. ... 

FIGURE 78 - (Upper Left) Albedo (texture) and 3D dense shape of a USF database 
sample, expressed as Monge patches, i.e., (x, y, Z( x, y), T (x, y)) . (Upper Right) 
3D sparse shape corresponding to the annotated positions of the albedo image. 
(Lower) A series of 3D dense shape with its corresponding 3D sparse shapes. 

The next step is to build two models related to the 3D USF sparse shapes 

and the corresponding projected 2D shapes, i.e., S3D = S3D + P S3D b s3D and S2D = 

Notice that Figure 80 is an example of a coupled model, similar to that of [1] 

and Fig. 43. The diagram in Figure 80 can be cast as a regression framework, 

where the independent data are the 2D shapes (Xi) and the dependent data are the 

3D shapes (Xi)' 

Similar to the combined models in the previous chapter, Principal Compo­

nent Regression (PCR) is used to model the relationship between the dependent 

and independent data. The basic idea is to decompose both 2D and 3D shapes 

into a low-dimensional subspace, i.e., replace Xi and Xi by their respective PCA 

coefficients b s2D ,i and b s3 D ,i' Standard multivariate linear regression (MLR) is then 

performed between the low-dimensional representations of Xi and Xi' For refer­

ence, Figure 44 explains the difference between MLR and PCR. 
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FIGURE 79 - (Left) Compute the camera projection matrix C between the 3D 
sparse mean shape and the input 2D shape (Xinp)' The mean shape substitutes 
for the unknown 3D sparse shape where Xinp comes from. (Right) Using the com­
puted matrix C, the 3D mean shape and a sample USF subject are projected to the 
20 space. The results are plotted together with the input 2D feature points. 
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FIGURE 80 - Given the input 2D feature points (Xinp ), a camera projection matrix 
P can be estimated using the 3D mean sparse shape. This camera projection matrix 
can be used to project all USF database samples to the 2D space. 
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Let T = [bs2D,l,"', bs2D ,m-l] and U = [bs3D,l,"', bs3D ,m-l] be the low­

dimensional representations of Xi and Xi, respectively. Performing MLR yields 

(82) 

where CR is the matrix of regression coefficients and F is the matrix of random 

noise errors. The least squares method then provides 

(83) 

There are two remaining steps before the 3D sparse shape can be recovered. 

The shape coefficient of the 2D input feature points need to be solved, i.e., b s2D ,inp = 

PS~D (Xinp - S2D). Using the PCR model above, the 3D sparse shape coefficient can 

be inferred with the following equation, bS3D = (bs2D,inpCRf. The solved shape 

coefficient bS3D can be substituted to the 3D shape model, i.e., Xr = S3D + PS3D bS3D ' 

to get the desired output. The algorithm listing below summarizes these steps. 

3. Experimental Results 

This section will compare the proposed approach above to recent methods 

that deal with the same problem mentioned in Figure 75, namely, the iterative 

approach of [5] and the linear (non-iterative) contribution of [4]. 

The face models are built using the USF 3D Face Database [67], which con­

tains 100 subjects of diverse gender and ethnicity. Out of these 100 samples, 80 

subjects were deemed to be acceptable and were subsequently chosen to build the 

shape and texture models. To perform comparisons, the 3D sparse shape for 80 

out-of-training USF samples are recovered. The input images are generated with a 

random pose, with pan angle range of (-200 to 200
), as illustrated in Figure 8l. 

The 2D feature points in both training and test images are derived from the 

control points mentioned in Figure 37, which are annotated by a single person, 

with over five years of experience in annotating faces at the time of writing of this 
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Algorithm 7 Principal Component Regression (PCR) Framework for 3D Sparse 

Shape Recovery 
INPUT: (a) Input image feature points, Xinp (b) USF sparse shape samples: 

(Xl,'" ,Xn ) (c) Sparse mean shape, Xm 

OUTPUT: (a) Recovered 3D sparse shape, Xr 

1: Solve for the camera projection matrix: Determine C such that Xinp = CXm-

2: Project all 3D sparse shapes to the 2D space using the computed projection 

matrix: Solve for (Xl,'" ,xn ), such that Xi = CXi 

3: Build the 3D sparse shape model from the USF samples using PCA: Con-

4: Build the 2D sparse shape model from the projected 2D USF samples 

5: Replace the 3D shape samples (Xl," . ,Xn ) with its coefficients: Solve for 

b s3D ,i = P~D (Xi - S3D) 

6: Replace the projected 2D shape samples (Xl,'" ,xn ) with its coefficients: 

Solve for b s2D ,i = P~D(Xi - S2D) 

7: Setup matrices for Principal Component Regression (PCR): Let T 

8: Build the PCR model: Construct CR = (TTT)-ITTU 

9: Solve for the shape coefficients of the 2D input feature points (Xinp): Solve 

for b S2D ,inp = PS~D (Xinp - S2D) 

10: Solve for the shape coefficients: Get bS3D = bS2D,inpCR 

11: Solve for the recovered 3D sparse shape: Xr = S3D + PS3Dbs3D 
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FIGURE 81- Pan angle illustration. The face moves left-to-right or right-to-Ieft 
sideways. 

document. These control points correspond to 3D feature points in a USF subject. 

Given a random pose angle, the 2D feature points are the projection to the image 

plane of the 3D feature points. 

Figure 82 shows the recovered 3D sparse shape of the same input using the 

three algorithms, together with the ground truth. Figure 82 (View 2) represents 

the projection of the recovered 3D shapes to the x-y plane. Notice that the results 

of the proposed method and that of Aldrian et al. [4] are similar. 

The next point of comparison will be the timing results of the three algo­

rithms under the same computational conditions. Fig. 83 presents the side-by-side 

stem plot of the time (in seconds) needed to recover the 3D sparse shape for inputs 

generated from 80 samples of the USF database. Notice that the proposed method 

is computationally faster than the others, due to its simplistic regression frame­

work. It is worth mentioning also that the method of [4] requires significant time 

in offline training for the 2D error variance a~D,i in (75). This offline training time 

is not included in Fig. 83. 

The 2D shape projection error is another way to compare the proposed 

method with respect to the state-of-the-art. Let S~D be the feature points anno­

tated on the input image, S;D be the recovered 3D shape, and S2D be the projected 

2D shape after applying the computed camera matrix C. The 2D shape projection 

error is defined as 
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FIGURE 82 - Recovered 3D sparse shape of the same input using the three algo­
rithms (proposed, [4], and [5]), together with the ground truth 3D sparse shape. 
(View 2) represents the projection of the recovered 3D shapes to the x-y plane. No­
tice that the results of the proposed method and that of Aldrian et al. [4] are similar. 
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err II im r II S2D = S2D - S2D (84) 

Figure 84 presents the side-by-side stem plot of the 2D shape projection er­

ror (84) for inputs generated from 80 samples of the USF database. Notice that 

both the proposed method and that of Aldrian et aL [4] perform better than Zhang 

et aL [5]. 

The ultimate goal in the previously discussed methods is to recover 3D 

shape given only 2D input points. The last point of comparison for this section 

is the 3D shape error. Let S;D be the recovered 3D shape and S~~d be the ground 

truth shape. The 3D shape error is simply the norm of the difference between the 

recovered and true shapes, i.e., 

err Iisr Sgndll S2D = 3D - 3D (85) 

Fig. 85 presents the side-by-side stem plot of the 3D shape error (85) for 

inputs generated from 80 samples of the USF database. Similar to the timing results 

and 2D shape projection error, both the proposed method and that of Aldrian et 

aL [4] outperform than Zhang et aL [5]. 

There are five conclusions that can be drawn from these experiments, the 

proposed: (a) is competitive due to its linear and non-iterative nature, (b) does 

not need explicit training, as opposed to [4], (c) has comparable results to [4], at 

a shorter computational time, (d) better in all aspects than Zhang and Samaras 

[5], and (e) has the limitation, together with [4] and [5], in terms of the need to 

manually annotate the input 2D feature points. 

4. Model-based Framework (Case II: Output 3D Dense Shape) 

To extend the proposed 3D face recovery framework here, from sparse shapes 

to dense shapes as output, the 3D sparse shape model is simply replaced with its 

dense model equivalent. Note that the 3D shape samples are a subset of the 3D 
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dense samples, i.e., the USF dense sample represent the global shape of the face, 

while the sparse shape indicates the locations of the important feature points in 

3D. The 3D sparse shapes are still retained in the framework because they will 

be projected to 2D space using the computed camera projection matrix C. Figure 

86 illustrates these ideas. The modified algorithm pseudocode for dense shapes 

is listed below. Notice the similarity to its sparse predecessor, i.e., there are lines 

where sparse variables are simply replaced with dense versions. 

5. Experimental Results 

This section shows experiments to evaluate the performance of the pro­

posed method in recovering 3D dense facial shapes. The face models are built 

using the USF 3D Face Database [67], which contains 100 subjects of diverse gender 

and ethnicity. Out of these 100 samples, 80 subjects were deemed to be acceptable 

and were subsequently chosen to build the shape and texture models. 

The 2D feature points in both training and test images are derived from the 

control points mentioned in Figure 37, which are annotated by a single person, 

with over five years of experience in annotating faces at the time of writing of this 

document. These control points correspond to 3D feature points in a USF subject. 

Given a random pose angle, the 2D feature points are the projection to the image 

plane of the 3D feature points. 

Experiment A To quantify the reconstruction accuracy, the author recovers 

the 3D shape for 80 out-of-training USF samples. The input images are generated 

with a random pan angle within the range of ( - 200 to 200
), as illustrated in Fig. 8l. 

Two approaches to recover 3D shape from the input images will be used: (a) Case 

I - refers to 3D dense shape recovery approach using 2D feature points only and 

(b) Case II - refers to the 3D shape recovery method from the previous chapter that 

requires both shading and 2D shape in formation. For each input image, the two 

error measures, mean height error (62) and mean surface orientation error (63), are 
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measured. 

Figure 87 shows the recovered shapes together with the input and ground­

truth shape. The results are very close visually. The next step is to show a side-by­

side visualization of the mean height (Figure 88) and surface orientation (Figure 

89) error stem plots, to compare against the proposed 3D shape recovery method 

using both texture and shape data from the last chapter. The actual mean and 

standard deviation of the mean height error and mean surface orientation error 

of the 80 out-of-training USF samples, for the above experiments, are shown in 

Tables 13 and 14. The numerical values indicate that even if texture information is 

not available, a decent reconstructed 3D shape is still possible. 

Experiment B To investigate the sensitivity of the proposed approach with 

respect to pose, a similar experiment is performed as described, except that for a 

specific pose, the recovered 3D shapes of all 80 out-of-training input images are 

analyzed. Specifically, at pan angle of x O
, generate 80 out-of-sample input images 

and compute the average mean height error and surface orientation error across 

all 80 input images, where x E {-20°, -15°"" ,15°, 20°}. 

Figures 90 and 91 plot the average mean height error and average mean 

surface orientation error, respectively, with respect to a pan angle range of (-20° 

to 20°). The bar graphs indicate that the proposed method is not sensitive to pose 

changes. 

TABLE 13 
SPARSE-TO-DENSE EXPERIMENTS: MEAN AND STANDARD DEVIATION OF 

THE MEAN HEIGHT ERROR FOR 80 OUT-OF-TRAINING USF SAMPLES 

Case I Case II 

Il'Serr (%) 2.51 2.34 

a Serr (%) 0.77 0.73 

It is interesting to note that in Figures 90 and 91, input images with close­

to-frontal pose angles have slightly larger errors than inputs with non-frontal pose 
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TABLE 14 
SPARSE-TO-DENSE EXPERIMENTS: MEAN AND STANDARD DEVIATION OF 

THE MEAN SURFACE ORIENTATION ERROR FOR 80 OUT-OF-TRAINING 
USFSAMPLES 

Case I Case II 

/LOerr (rad) 0.044 0.040 

(JOerr (rad) 0.010 0.010 

angles. This phenomenon is not present in the proposed approach from the pre­

vious chapter (Figures 67 and 69), which requires both shading and 2D feature 

points information. The reason behind this is that at frontal pose (Figure 81), the 

x-y axis information playes a larger role in the location of the projected 2D feature 

points; z-axis information is virtually non-existent in close-to-frontal pose angles. 

Similarly, when there is significant pose (non-frontal) in the input image, all three 

axes (x, y, z) information contribute to the projected 2D feature points. Since the 

proposed approach is trying to reconstruct depth (z) from the 2D input image, it 

helps when the input is non-frontaL 

Experiment C Similar to the previous chapter, the last experiment does not 

show at what point pose begins to have an effect. The next obvious step is to 

increase the pan angle range, i.e., x E {-90°, -85°, ... ,85°,900}, and perform Ex­

periment B. However, this experiment will take a considerable amount of time to 

perform. 

A quick solution is to choose only one subject (sample index #1 in this ex­

periment), instead of all 80 subjects, from the USF database and then perform Ex­

periment B but with a pan angle range of x E { -90°, -85°, ... ,85°, 90°}. 

Figures 92 and 93 show both mean height error and surface orientation error 

across various pan angles. Figures 94 and 95 show the forward-difference numer­

ical differentiations of the mean height error and surface orientation error plots to 

highlight the change in error per pan angle incremental change (5°). It appears 
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that there is no breaking point of pose invariance, unlike Figures 71 and 72 from 

the previous chapter. 

D. Conclusion 

This chapter addressed the situation in which only 20 shape information 

is available from the input image. Recall that both texture (shading) and shape 

information were needed for the previous 3D face recovery methods (from the last 

chapter) to work. This chapter showed that both sparse and dense 3D shapes can 

be estimated from 20 shape information alone at an acceptable quality. The ideas 

in this chapter are published in [74]. 

The chapter started with the simpler case of output 3D sparse shapes. The 

proposed method was compared with state-of-the art algorithms, showing decent 

performance. There were five conclusions that drawn from the sparse experi­

ments, namely, the proposed approach: (a) is competitive due to its linear and 

non-iterative nature, (b) does not need explicit training, as opposed to [4], (c) has 

comparable results to [4], at a shorter computational time, (d) better in all aspects 

than Zhang and Samaras [5], and (e) has the limitation, together with [4] and [5], 

in terms of the need to manually annotate the input 20 feature points. 

The proposed method was then extended to output 3D dense shapes simply 

by replacing the sparse model with its dense equivalent, in the regression frame­

work inside the 3D face recovery approach. The numerical values of the mean 

height and surface orientation error indicate that even if shading information is 

unavailable, a decent 3D dense reconstruction is still possible. 

Interestingly, input images with close-to-frontal pose angles have slightly 

larger errors than inputs with non-frontal pose angles. The reason behind this ob­

servation is that at frontal pose (Figure 81), the x-y axis information contributes 

more to location of the projected 20 feature points. When there is significant pose 

(non-frontal) in the input image, all three axes (x, y, z) information influence the 
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projected 2D feature points. Since the goal of the proposed approach is to recon­

struct depth (z) from the 2D input image, it is beneficial if the input is non-frontal. 
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FIGURE 86 - Given the input 2D feature points (Xinp), a camera projection matrix 
P can be estimated using the 3D mean sparse shape. This camera projection matrix 
can be used to project all USF database samples to the 2D space. 
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Algorithm 8 Principal Component Regression (PCR) Framework for 3D Dense 

Shape Recovery 

INPUT: (a) Input image feature points, Xinp (b) USF dense (xt,··· ,X~) and sparse 

shape samples (Xl,'" ,Xn ) (c) Sparse mean shape, Xm 

OUTPUT: (a) Recovered 3D dense shape, x~ 

1: Solve for the camera projection matrix: Determine C such that Xinp = CXm. 

2: Project all 30 sparse shapes to the 20 space using the computed projection 

matrix: Solve for (Xl, ... ,xn ), such that Xi = CXi 

3: Build the 30 dense shape model from the USF samples using PCA: Construct 

4: Build the 20 sparse shape model from the projected 20 USF samples 

5: Replace the 30 dense shape samples (Xl, ... ,Xn ) with its coefficients: Solve 

6: Replace the projected 20 shape samples (Xl,'" ,xn ) with its coefficients: 

Solve for b S2D ,i = P'!;,D (Xi - S2D) 

7: Setup matrices for Principal Component Regression (PCR): Let T = 

8: Build the PCR model: Construct CR = (TTT)-lTTU 

9: Solve for the shape coefficients of the 20 input feature points (Xinp): Solve 

for b S2D ,inp = P..~D (Xinp - S2D) 

10: Solve for the shape coefficients: Get bS3D = bS2D,inpCR 

11: Solve for the recovered 30 dense shape: x~ = S3D + PS3Dbs3D 
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FIGURE 87 - Recovered shapes, together with the input image and ground-truth 
(GT) shape, for the model-based 3D shape recovery framework in Algorithm 8. 
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FIGURE 90- 2D-Sparse to 3D-Dense Experiments. Bar graph of the average mean 
height error with respect to pose changes, i.e., pan angle range of (-20° to 20°). 
The graph indicates that the proposed approach is insensitive to pose changes. 
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( - 20° to 20°). The graph indicates that the proposed approach is insensitive to 
pose changes. 
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with respect to pose changes, i.e., pan angle range of (-900 to 900

). The plot indi­
cates that the proposed approach is insensitive to pose changes, with frontal-pose 
images having slightly higher errors than non-frontal ones. 

0.05,------,--------,----,------, 

'S 0.04 
g 
g 0,03 
w 

~ 0.02 
c: 
Sl 
:E 0.01 

_ ~ o'-:-o-'-'-..L..L.L...L.-'L..<-'O!:so:-'-'-.L..L.-~-'-L~o .L...L.-'L..L...L-'-'--'-'-::s'='o L...L...L:-'-'-.LL..'--:-:'1 00 

Sample Index 

FIGURE 93 - 2D-Sparse to 3D-Dense Experiments. Stem plot of the average mean 
surface orientation error of recovered shapes of input images coming from a single 
subject, with respect to pose changes, i.e., pan angle range of ( -900 to 900

). The plot 
indicates that the proposed approach is insensitive to pose changes, with frontal­
pose images having slightly higher errors than non-frontal ones. 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

The main purpose of this work is to extract 3D facial shape information 

from a single image of arbitrary and unknown pose and illumination. This dis­

sertation starts first with the simple case of general illumination and fixed frontal 

pose. The classical shape-from-shading iterative equation is cast as a regression 

framework, which can then be solved efficiently using Principal Component Re­

gression (PCR). Before coming up with the PCR-based method, there were two 

approaches considered, namely, an iterative approach and one based on combined 

models. The PCR-based algorithm was deemed to be the best after numerous tests 

and simulations. 

General pose is added into the framework by incorporating multiple-view 

geometry concepts, specifically the computation of the camera projection matrix. 

The end result is a framework that can deal with both unknown pose and illumi­

nation. 

The next major part of this work is the development of 3D facial shape re­

covery methods given only input 2D shape information, instead of both texture 

and shape. The proposed method can extract both 3D sparse and dense shapes, 

with acceptable results. The development of this approach was due to the gained 

insights from the previous proposed methods that deal with both shape and tex­

ture. Results show very acceptable performance, i.e., there is no huge difference 

between the recovered 3D shape from 2D shape information alone, compared to 

that, which was extracted using both shape and texture information. 
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A. Future Directions 

There are several future directions identified for this dissertation: 

• Use the recovered 3D shape (sparse or dense) from single 2D images to per­

form face recognition at-a-distance. Initial recognition results using sparse 

shape are already promising in [46] [75]. The USF database can be used to 

create the shape model. The stereo pairs at the 3-meter range can also be 

utilized for the shape model. 

• Incorporate the framework in Chapter IV.D to act as a local update constraint 

for the Constrained Local Model (CLM) face alignment approach [76]. The 

current local update of the CLM approach works only with close-to-frontal 

face. Adding the proposed framework in this chapter will hopefully help it 

deal with non-frontal faces. 

• The 2D input feature points are considered to, be manually annotated in this 

dissertation. The next step is to make it automatic, using methods such as 

Active Shape Models (ASM) and Active Appearance Models (AAM). The 

automatic annotation algorithms should be modified to handle pose; current 

algorithms are sensitive to pose in input images. The work in Chapter IV.D 

may help in dealing with pose. 

• Apply the proposed methods in this paper to objects (e.g., ears and teeth) 

other than its intended purpose, which are facial images. 
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APPENDIX I 

20/30 Deformable Models 

Deformable face models are integral to computer vision applications such 

as face recognition, expression recognition, lip-reading, head-pose estimation, and 

gaze estimation. The face model is usually constructed from a training data of 

either 2D images or 3D range scans. The model is fitted to an input image and the 

fitting process results to model parameters. These parameters can be used with 

a variety of applications including face recognition. Deformable face models can 

be classified into two classes: (a) 2D models such as Active Appearance Models 

(AAM) and (b) 3D models like Morphable Models (MM). AAMs and MMs are 

similar such that both consist of a linear shape and texture model. The primary 

difference comes in the nature of the shape component of the model, with AAMs 

being 2D while MMs are 3D. The next sections will discuss AAMs and MMs in 

greater detail. 

A. Statistical Shape/Appearance Models: AAM 

An Active Appearance Model is an integrated statistical model composed of 

a shape variation model and an appearance model. The model is said to generalize 

to almost any valid example image. Fitting the model to an input image involves 

finding the model parameters that minimize the difference between the input and 

the synthesized model example. 
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FIGURE 96 - Sample annotations of the USF database. There is a total of 76 
manually annotated landmark points, including both anatomical and pseudo­
landmarks. 

1. Model Construction 

The AAM is constructed from a training set of labeled images, where key 

landmark points are marked on each example object. For a face, the landmark 

points outline the main features as shown in Figure 96. 

The shape of the object is described by a vector with the 2D position of the 

landmarks as elements, e.g. S2D = (Xl , Yl , X2, Y2 ,' . . ,Xn, Yn)T, where (Xi, Yi) refers 

to the image coordinates of the ith landmark point. For consistency, all shape vec-

tors are normalized to a common coordinate system using Generalized Procrustes 

Analysis [62]. Principal component analysis (PCA) is applied to the shape data 

and the resulting shape model is of the following form: S2D = S2D + Psb s, where 

S2D is a shape vector, S2D is the mean vector, Ps is the set of orthogonal modes of 

shape variation and b s is the set of shape parameters. 

The construction of the appearance model requires that each example image 

such that its control points match that of the mean shape. The appearance instance 

for each training sample is the warped image region inside the mean shape. Warp­

ing can be performed using the piecewise-affine warp (PAW) or thin-plate splines 

(TPS) [62]. Similar to the construction of the shape model, the appearance vector 

is represented as g = (II , 12 , . . . , Inf , where Ii denotes the intensity of the sam­

pled pixel in the warped image. PCA is applied to construct the linear appearance 

model g = g + Pgb g, where g is a shape vector, g is the mean vector, Pg is the 

set of orthogonal modes of appearance variation and b g is the set of appearance 

parameters. 
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2. Combined Shape/ Appearance Models (Combined AAM) 

One of the assumptions with the AAM proposed by Cootes et al. [36] is that 

there may be correlations between the shape and appearance variations. Therefore, 

a combined model is constructed by concatenating the bs and bg vectors for each 

training sample 

(86) 

where Ws is a diagonal matrix of weights for each shape parameter that takes into 

account the difference in units between the shape and appearance models. PCA is 

applied on the concatenated vectors, resulting to a combined model 

b=Qc (87) 

where Q are the eigenvectors and c is a vector of appearance parameters control­

ling both shape and texture. Because of the linear nature of the combined model, 

the shape and appearance can be expressed directly as functions of c 

(88) 

where Q = (QSl Qgf· Therefore, a new image can be synthesized for any given 

c by generating the shape-free image from the vector g and warping it using the 

control points describe by x. 

3. Independent Shape and Appearance Models (Independent AAM) 

The original AAM formulation (combined AAMs) by [36] parameterized 

shape and appearance with a single set of parameters (88). Matthews and Baker 

[60] considered the independence of shape and appearance (independent AAMs) 

in their AAM algorithm. The model construction for both combined and indepen­

dent AAMs are similar in nature. Independent AAMs do not go the extra step of 

concatenating the shape (bs ) and appearance (bg ) parameters to get a combined 
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model controlled by the parameter c (87). Faces in the independent AAM model 

are instead described by both bg and bs . 

To generate a model instance of the independent AAM, the approximated 

shape described by b s is solved by using the linear shape model, s = s + Psbs. Sim­

ilarly, the approximated appearance described by b g is determined from the linear 

appearance model, g = g + Pgbg. Just as in the combined model approach, the ap­

proximated appearance is warped according to the 2D points of the approximated 

shape. 

4. AAM Model Search (Fitting) 

Given an input 2D image, a fully constructed AAM model, and a sufficient 

starting condition, the goal of the AAM search (fitting) process is to adjust the 

model parameters efficiently, such that when a synthetic example is constructed, it 

matches the input image as closely as possible according to a distance measure. 

5. Combined Model 

The AAM model fitting process can be considered as an optimization prob­

lem, in which the difference the input and synthetic image generated by the AAM 

model is minimized. The image difference vector 01 is defined as 

(89) 

where 1inp is the vector of grey-level values in the input image and 1m is the vector 

of grey-level values for the current model parameters. 

To locate the best match between the synthetic image from the model and 

the input image, the magnitude of the image difference vector, ~ = 10I12, is mini­

mized by varying the model parameters c in (87). 

The simplest model for the relationship between OI and the model parame-
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ter error 8c is linear 

8c = A81 (90) 

According to [36], this linear relationship is enough to achieve acceptable re­

sults. To find A, multivariate linear regression is performed on a sample of known 

model displacements, 8c, and the corresponding difference images, 81. The sets of 

random displacements can be generated by perturbing the true model parameters 

for images in which they are known. The images can be original or synthetic, with 

the latter having the advantage of knowing the exact parameters. 

The next step is the actual iterative method for the optimization problem. 

It starts with the initial estimate of the model parameters, Co, and that of the nor­

malized image sample, go. The procedure can be found in [36]. This iterative 

algorithm is repeated until no improvement is made to the error, 18g1 2
, and conver­

gence is declared. The authors in [36] used a multiresolution approach to speed up 

the process and help ensure convergence. 

6. Independent AAM Model: 

The fitting process for the independent AAM model is similar to that of 

the combined model. Following the notation in [60], let the image A(x) be the 

appearance of an AAM defined over the pixels xESo, where So is the mean shape 

(base mesh). Let p = (PI,P2, ... ,Pnf be the shape parameters that generate the 

AAM shape s. Let oX = (AI, A2, ... , Anfbe the appearance parameters that generate 

the AAM appearance A(x). The AAM model (M) instance with parameters p and 

oX is created by warping the appearance A from the base mesh So (e.g., the mean 

shape) to the model shape s. The warping process is denoted by W(x, p). Formally, 

this process can be expressed in equation form as 

M(W(x, p)) = A(x) (91) 
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The goal of the fitting process is to minimize the error between input I(x) and 

M(W(x, p)) = A(x). The error can be computed from two choices of coordinate 

frames, the image I coordinate frame and the AAM coordinate frame. The algo­

rithm in [60] used the AAM coordinate frame, which is the base mesh so. 

Suppose x is a pixel in So and the corresponding pixel in the input image I 

is W(x, p). At the pixel x, the AAM has the appearance A(x) = Ao(x) + L:~1 AiA;(x), 

where Ai(X) is similar to Pg in the combined model formulation. At the corre­

sponding pixel W(x, p) in the I coordinate frame, the input image has the intensity 

I(W(x, p)). Therefore, the error to be minimized is 

I::[Ao(x) + L::1AiAi(X) - I(W(x, p))f (92) 
xESo 

where the sum is performed over all pixels in So. The goal of the fitting process 

is to minimize (92), with respect to the shape parameters p and the appearance 

parameters A. The authors in [60] used the efficient Inverse Compositional Image 

Alignment (ICIA) algorithm, which is fully explained in their paper. 

B. 3D Morphable Models (3DMM) 

The morphable face model is based on a vector space representation of faces 

that is constructed such that any convex combination of shape and texture vectors 

Si and ~ of a set of examples describe a realistic human face [77] [35]. Formally, 

m m 

(93) 
i=1 i=1 

Dense point-to-point correspondence between each face in the database and a ref­

erence face is a crucial step in building the morphable face model. The laser scans 

are parameterized in cylindrical coordinates. The facial surface is expressed in 2D 

using the hand ¢ variables of the cylindrical coordinate system. Correspondence is 

achieved when each point in a sample scan, II (h, ¢), corresponds to the point at the 

same location I2 (h, ¢) in another scan. Figure 97 illustrates the dense correspon-
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FIGURE 97 - Dense correspondence between two 3D scans in the cyclograph (pa­
rameterized by h and <p) domain. 

dence between two sample scans. [77] uses a modified optical flow to determine 

this correspondence. Moreover, since scans of different individuals may differ in 

overall brightness and size, Laplacian pyramids are utilized, instead of the raw 

data. This work uses the USF HumanID 3D database [67] to build the morphable 

face model, as well as similar models for other face processing tasks. The database 

samples are already in dense correspondence with each other, using the algorithm 

in [77] . Figure 98 shows the mean face of the USF database, with shape and texture 

information parameterized by h and <p variables, in 2D. 

1. Face Vectors 

The shape and texture vectors are based on a certain reference face, which 

is commonly the average (mean) face . The reference face has m faces composed of 

n vertices. The vertices k E 1, .. . , n are located at (hk' <Pk, r(hk' <Pk)) and (Xk ' Yk , Zk) 

in cylindrical and Cartesian coordinate systems, respectively. Each vertex has a 
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(a) (b) 

(c) 

FIGURE 98 - The mean face of the USF database. (a) mean face in RGB format 
parameterized by hand <p, (b) radius data of the mean face parameterized by h and 
<p, (c) mean face expressed in Cartesian coordinates, visualized as an OBJ file [15]. 

corresponding color of (Rk , Gk , B k ). The reference shape and texture vectors, con­

catenated versions of all shape and texture vertices, are defined as 

(94) 

The database samples, represented by Si and Ti, take the same form as the ref­

erence face with each vertex k corresponding to that of the same vertex k in the 

reference face. 

Principal Component Analysis (PCA) is applied to both shape and texture 

values. The analysis is done separately since it is assumed that there is no corre­

lation between shape and texture. The preliminary step of PCA is to compute the 

mean of the sample vectors and subtract it to each sample, resulting to a mean­

centered data. The next step is to compute the eigenvectors of the covariance ma­

trix, e.g. C = AAT
, where A = (aI , a2, . .. , an) and ai is a mean-centered column 

vector. After PCA, (94) becomes 
m-I m-I 

S = S + L 0:iSi T = T + L tJiti (95) 
i= I i= l 

where Si and ti are shape and texture eigenvectors, respectively. 0:i and tJi are the 

shape and texture coefficients, respectively. 
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2. Image Synthesis 

The three-dimensional positions and color values of the vertices are con­

trolled by the coefficients ai and fJi in (95). The synthesis of 2D images from the 

model consists of two steps: (a) solving for the image positions of vertices and (b) 

determining the color and illumination of each 3D face in the mesh. 

(96) 

The angles <p, 8, and 'Y refer to the rotations around the vertical axis, horizontal axis, 

and the camera axis, respectively. tw is a spatial shift. The next step is to perform a 

perspective projection that maps the vertices to image coordinates (Px,Py) 

P f
Wx,k 

Px,k = x+ -
Wz,k 

_ P fYx,k Py,k - y - -
Wz,k 

(97) 

The variable f refers to the focal length of the camera and (Px , Py) defines the 

image-plane position of the optical axis. A similar formulation is used in [5], but 

with orthographic projection. 

S2D = fPR(s + Sa + t 3D ) + t2D (98) 

where f is a scale parameter (focus), P is the orthographic projection matrix, R is 

the rotation matrix, t3D and t2D are translation vectors in 3D and 2D, respectively. 

It has the advantage of being expressed in matrix formulation, in its current form 

as well as its derivative with respect to the shape coefficients. 

The illumination of surfaces depends on the direction of the surface normal 

n. Since the triangles in a 3D face mesh are minute in size (e.g., 0.2 mm2 in area), it 

is satisfactory to consider only the triangle centers. The 3D coordinate and color of 

the center is determined by solving for the mean of the comer's values. The face 

can be illuminated using a simple Lambertian model or by more elaborate lighting 

models (e.g., the Phong model [57]). 
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3. Fitting the 3D Morphable Model to an Image 

The fitting method optimizes the shape parameters Cl:i and texture parame­

ters f3i, together with the rendering parameters (e.g. parameter i, angles cP, (), and 

,,(, etc.), such that when the 3D model is rendered, it is close to the input image 

using a certain cost function. Given an input image 

(99) 

the goal is to minimize the sum of square differences over all pixels and color 

channels between the input and synthetic image, with the following equation for 

the error 

EI = L IIIinp(x, Y) - Imod(x, Y)112 
(x,y) 

(100) 

The first iterations need to roughly align the synthetic reconstruction to the input 

image, using manually defined feature points (qx,j' qy,j) and the positions (Px,j, Py,j) 

of the corresponding vertices, in an additional cost function 

(101) 

The overall cost function is a weighted sum of Ep and EI , together with additional 

terms related to the PCA coefficients [35]. At the start of the optimization, Ep is 

weighted high. The term EI dominates the final iterations and the optimization 

process no longer depends on Ep . The original morphable model implementation 

uses a stochastic version of Newton's method to minimize the overall cost function 

[35]. The authors in [5] developed a semi-automatic method for fitting the input 

2D image to the morphable model, where the shape and texture coefficients are 

optimized separately. 
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