13 research outputs found

    Incentive Compatible Active Learning

    Get PDF
    We consider active learning under incentive compatibility constraints. The main application of our results is to economic experiments, in which a learner seeks to infer the parameters of a subject's preferences: for example their attitudes towards risk, or their beliefs over uncertain events. By cleverly adapting the experimental design, one can save on the time spent by subjects in the laboratory, or maximize the information obtained from each subject in a given laboratory session; but the resulting adaptive design raises complications due to incentive compatibility. A subject in the lab may answer questions strategically, and not truthfully, so as to steer subsequent questions in a profitable direction. We analyze two standard economic problems: inference of preferences over risk from multiple price lists, and belief elicitation in experiments on choice over uncertainty. In the first setting, we tune a simple and fast learning algorithm to retain certain incentive compatibility properties. In the second setting, we provide an incentive compatible learning algorithm based on scoring rules with query complexity that differs from obvious methods of achieving fast learning rates only by subpolynomial factors. Thus, for these areas of application, incentive compatibility may be achieved without paying a large sample complexity price.Comment: 22 page

    A Mechanism Design Approach to Measure Awareness

    Get PDF
    In this paper, we study protocols that allow to discern conscious and unconscious decisions of human beings; i.e., protocols that measure awareness. Consciousness is a central research theme in Neuroscience and AI, which remains, to date, an obscure phenomenon of human brains. Our starting point is a recent experiment, called Post Decision Wagering (PDW) (Persaud, McLeod, and Cowey 2007), that attempts to align experimenters' and subjects' objectives by leveraging financial incentives. We note a similarity with mechanism design, a research area which aims at the design of protocols that reconcile often divergent objectives through incentive-compatibility. We look at the issue of measuring awareness from this perspective. We abstract the setting underlying the PDW experiment and identify three factors that could make it ineffective: rationality, risk attitude and bias of subjects. Using mechanism design tools, we study the barrier between possibility and impossibility of incentive compatibility with respect to the aforementioned characteristics of subjects. We complete this study by showing how to use our mechanisms to potentially get a better understanding of consciousness

    PREDICTIVE MODEL MARKETS: DESIGN PRINCIPLES FOR MANAGING ENTERPRISE-LEVEL ADVANCED ANALYTICS

    Get PDF
    As advanced analytics penetrate a wide range of business applications, companies face the challenge of managing analytics-based assets, such as predictive models. Tasks ahead include model selection, scoring and deployment planning. One way to optimize model selection is to tap the combined knowledge of company staff through a “prediction market,” a virtual market designed to reveal participants’ aggregate wisdom by seeing where people “invest” their money. In the context of predictive-model selection, this paper refers to such devices as predictive-model markets. This paper examines design possibilities for building experimental markets that can ultimately be used to test whether predictive-model markets will improve model selection and deployment. The researchers test two types of incentives for participation: economic and social. Study results indicate that such markets can effectively work using either; a surprising finding is that social incentives did not improve effectiveness when added to economic incentives

    Rating mechanisms for sustainability of crowdsourcing platforms

    Get PDF
    Crowdsourcing leverages the diverse skill sets of large collections of individual contributors to solve problems and execute projects, where contributors may vary significantly in experience, expertise, and interest in completing tasks. Hence, to ensure the satisfaction of its task requesters, most existing crowdsourcing platforms focus primarily on supervising contributors\u27 behavior. This lopsided approach to supervision negatively impacts contributor engagement and platform sustainability

    FORETELL: Aggregating Distributed, Heterogeneous Information from Diverse Sources Using Market-based Techniques

    Get PDF
    Predicting the outcome of uncertain events that will happen in the future is a frequently indulged task by humans while making critical decisions. The process underlying this prediction and decision making is called information aggregation, which deals with collating the opinions of different people, over time, about the future event’s possible outcome. The information aggregation problem is non-trivial as the information related to future events is distributed spatially and temporally, the information gets changed dynamically as related events happen, and, finally, people’s opinions about events’ outcomes depends on the information they have access to and the mechanism they use to form opinions from that information. This thesis addresses the problem of distributed information aggregation by building computational models and algorithms for different aspects of information aggregation so that the most likely outcome of future events can be predicted with utmost accuracy. We have employed a commonly used market-based framework called a prediction market to formally analyze the process of information aggregation. The behavior of humans performing information aggregation within a prediction market is implemented using software agents which employ sophisticated algorithms to perform complex calculations on behalf of the humans, to aggregate information efficiently. We have considered five different yet crucial problems related to information aggregation, which include: (i) the effect of variations in the parameters of the information being aggregated, such as its reliability, availability, accessibility, etc., on the predicted outcome of the event, (ii) improving the prediction accuracy by having each human (software-agent) build a more accurate model of other humans’ behavior in the prediction market, (iii) identifying how various market parameters effect its dynamics and accuracy, (iv) applying information aggregation to the domain of distributed sensor information fusion, and, (v) aggregating information on an event while considering dissimilar, but closely-related events in different prediction markets. We have verified all of our proposed techniques through analytical results and experiments while using commercially available data from real prediction markets within a simulated, multi-agent based prediction market. Our results show that our proposed techniques for information aggregation perform more efficiently or comparably with existing techniques for information aggregation using prediction markets
    corecore