54,473 research outputs found

    Realising context-sensitive mobile messaging

    Get PDF
    Mobile technologies aim to assist people as they move from place to place going about their daily work and social routines. Established and very popular mobile technologies include short-text messages and multimedia messages with newer growing technologies including Bluetooth mobile data transfer protocols and mobile web access.Here we present new work which combines all of the above technologies to fulfil some of the predictions for future context aware messaging. We present a context sensitive mobile messaging system which derives context in the form of physical locations through location sensing and the co-location of people through Bluetooth familiarity

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    On the Accuracy of Hyper-local Geotagging of Social Media Content

    Full text link
    Social media users share billions of items per year, only a small fraction of which is geotagged. We present a data- driven approach for identifying non-geotagged content items that can be associated with a hyper-local geographic area by modeling the location distributions of hyper-local n-grams that appear in the text. We explore the trade-off between accuracy, precision and coverage of this method. Further, we explore differences across content received from multiple platforms and devices, and show, for example, that content shared via different sources and applications produces significantly different geographic distributions, and that it is best to model and predict location for items according to their source. Our findings show the potential and the bounds of a data-driven approach to geotag short social media texts, and offer implications for all applications that use data-driven approaches to locate content.Comment: 10 page

    Privacy-Friendly Mobility Analytics using Aggregate Location Data

    Get PDF
    Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates -- i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.Comment: Published at ACM SIGSPATIAL 201

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    DeepCity: A Feature Learning Framework for Mining Location Check-ins

    Get PDF
    Online social networks being extended to geographical space has resulted in large amount of user check-in data. Understanding check-ins can help to build appealing applications, such as location recommendation. In this paper, we propose DeepCity, a feature learning framework based on deep learning, to profile users and locations, with respect to user demographic and location category prediction. Both of the predictions are essential for social network companies to increase user engagement. The key contribution of DeepCity is the proposal of task-specific random walk which uses the location and user properties to guide the feature learning to be specific to each prediction task. Experiments conducted on 42M check-ins in three cities collected from Instagram have shown that DeepCity achieves a superior performance and outperforms other baseline models significantly
    • ā€¦
    corecore