181 research outputs found

    Submodular Function Maximization for Group Elevator Scheduling

    Full text link
    We propose a novel approach for group elevator scheduling by formulating it as the maximization of submodular function under a matroid constraint. In particular, we propose to model the total waiting time of passengers using a quadratic Boolean function. The unary and pairwise terms in the function denote the waiting time for single and pairwise allocation of passengers to elevators, respectively. We show that this objective function is submodular. The matroid constraints ensure that every passenger is allocated to exactly one elevator. We use a greedy algorithm to maximize the submodular objective function, and derive provable guarantees on the optimality of the solution. We tested our algorithm using Elevate 8, a commercial-grade elevator simulator that allows simulation with a wide range of elevator settings. We achieve significant improvement over the existing algorithms.Comment: 10 pages; 2017 International Conference on Automated Planning and Scheduling (ICAPS

    Vertical transportation in buildings

    Get PDF
    Nowadays, the building industry and its associated technologies are experiencing a period of rapid growth, which requires an equivalent growth regarding technologies in the field of vertical transportation. Therefore, the installation of synchronised elevator groups in modern buildings is a common practice in order to govern the dispatching, allocation and movement of the cars shaping the group. So, elevator control and management has become a major field of application for Artificial Intelligence approaches. Methodologies such as fuzzy logic, artificial neural networks, genetic algorithms, ant colonies, or multiagent systems are being successfully proposed in the scientific literature, and are being adopted by the leading elevator companies as elements that differentiate them from their competitors. In this sense, the most relevant companies are adopting strategies based on the protection of their discoveries and inventions as registered patents in different countries throughout the world. This paper presents a comprehensive state of the art of the most relevant recent patents on computer science applied to vertical transportationConsejería de Innovación, Ciencia y Empresa, Junta de Andalucía P07-TEP-02832, Spain

    Comparing Elevator Strategies for a Parking Lot

    Get PDF
    In this paper, we compare elevator strategies for a parking garage. It is assumed that the parking garage has several floors and there is an elevator which can stop on each floor. We begin by considering 4 strategies detailed in page 23. For each strategy, we loop the program 100 times, and get 100 mean values for wait times. Welch\u27s test confirms highly significant differences among the 4 strategies. Repeating the analysis multiple times we see that the best of the 4 strategies is strategy 2, which places the elevator on floor 2 (the median floor) after use

    Performance-Driven Metamorphic Testing of Cyber-Physical Systems

    Get PDF
    Cyber-physical systems (CPSs) are a new generation of systems, which integrate software with physical processes. The increasing complexity of these systems, combined with the un certainty in their interactions with the physical world, makes the definition of effective test oracles especially challenging, facing the well-known test oracle problem. Metamorphic testing has shown great potential to alleviate the test oracle problem by exploiting the relations among the inputs and outputs of different executions of the system, so-called metamorphic relations (MRs). In this article, we propose an MR pattern called PV for the identification of performance-driven MRs, and we show its applicability in two CPSs from different domains, which are automated navigation systems and elevator control systems. For the evaluation, we as sessed the effectiveness of this approach for detecting failures in an open-source simulation-based autonomous navigation system, as well as in an industrial case study from the elevation domain. We derive concrete MRs based on the PV pattern for both case studies, and we evaluate their effectiveness with seeded faults. Results show that the approach is effective at detecting over 88% of the seeded faults, while keeping the ratio of FPs at 4% or lower.European Union's Horizon 2020 Research and Innovation Programme (Grant Number: 871319)Junta de Andalucía US-1264651 (APOLO)Junta de Andalucía P18-FR-2895 (EKIPMENT-PLUS)Ministerio de Ciencia e Innovación RTI2018-101204-B-C21 (HORATIO)Mondragon Unibertsitatea IT1519-2

    Modelling of a rope-free passenger transportation system for active cabin vibration damping

    Get PDF
    Conventional vertical passenger transportation is performed by lifts. Conventional traction-drive electrical lifts use ropes to transfer the rotational motion of an electrical motor into a vertical motion of the cabin. The vertical passenger transportation system discussed in this paper does not use any ropes, the motor directly provides a driving force, which moves the cabin. This new propulsion is realized through an electrical linear motor. The use of the linear motor requires a new design of the passenger transportation system (PTS), which includes reducing the weight of the car through lightweight construction. The reduced stiffness of the lightweight design renders the construction more vulnerable to vibrations. In order to improve ride quality of the transportation system it is necessary to develop new concepts to damp the vibrations. One way to increase stiffness characteristics of the system is to introduce active damping components to be used alongside passive damping components. It is essential to derive a dynamic model of the system in order to design and also later control these damping components in the best possible way. This paper describes the fundamental steps undertaken to derive a dynamic model for designing and controlling active damping components for the new type of vertical PTS. The model is derived as a Multi-Body System (MBS), where the connections between the bodies are modelled as spring damper elements. The derivation of the MBS is demonstrated on a transportation system, consisting of three main components: a sledge, holding the rotor of the linear motor; a mounting frame, which is used to provide support for the cabin; and the actual cabin. The modelling of the propulsion system, thus the electrical part of the PTS, will not be the focus of this work

    Evaluating a holistic energy benchmarking parameter of lift systems by using computer simulation

    Get PDF
    At present, there are benchmarking parameters to assess the energy performance of lifts, e.g. one in Germany adopted by VDI (4707-1/2), one internationally published by ISO (BS EN ISO 25745-2:2015), and the other in Hong Kong adopted by The Hong Kong Special Administrative Region (HKSAR) Government. These parameters are mainly checking the energy consumed by a lift drive without considering real time passenger demands and traffic conditions; the one in Hong Kong pinpointing a fully loaded up-journey under rated speed and the two in Europe pinpointing a round trip, bottom floor to top floor and return with an empty car, though including energy consumed by lighting, displays, ventilation etc. A holistic normalization method by Lam et al [1] was developed a number of years ago by one of the co-authors of this article, which can assess both drive efficiency and traffic control, termed J/kg-m, which is now adopted by the HKSAR Government as a good practice, but not specified in the mandatory code. In Europe, the energy unit of Wh has been used but here, Joule (J), i.e. Ws, is adopted to discriminate the difference between the two concepts. In this article, this parameter is evaluated under different lift traffic scenarios using computer simulation techniques, with an aim of arriving at a reasonable figure for benchmarking an energy efficient lift system with both an efficient drive as well as an efficient supervisory traffic control

    A study into the influence of the car geometry on the aerodynamic transient effects arising in a high rise lift installation

    Get PDF
    One of the main goals in designing a high-speed lift system is developing a more aerodynamically efficient car geometry that guarantees a good ride comfort and reduces the energy consumption. In this study, a three-dimensional computational fluid dynamics (CFD) model has been developed to analyse an unsteady turbulent air flow around two cars moving in a lift shaft. The paper is focused on transient aerodynamic effects arising when two cars pass each other in the same shaft at the same speed. The scenarios considered in the paper involve cars having three different geometries. Aerodynamic forces such as the drag force that occur due to the vertical opposite motions of the cars have been investigated. Attention is paid to the airflow velocity and pressure distribution around the car structures. The flow pattern in the boundary layer around each car has been calculated explicitly to examine the flow separation in the wake region. The results presented in the paper would be useful to guide the lift designers to understand and mitigate the aerodynamic effects arising in the lift shaft

    Operational Planning of Fixed-Route and Demand-Responsive Bus Systems in Greater Lafayette Area

    Get PDF
    Abstract not availabl

    Environmental Technology Applications in the Retrofitting of Residential Buildings

    Get PDF
    The impact of buildings on the environment is nothing short of devastating. In recent years, much attention has been given to creating an environmentally friendly built environment. Nonetheless, it has been levied on new buildings. Residential buildings make up at least 80% of the built environment, most of which were built before any energy efficiency guidelines or regulations were introduced. Retrofitting existing residential buildings is a key yet neglected priority in effecting the transition to an environmentally friendly, sustainable built environment. It is pivotal to reducing a building’s energy consumption while simultaneously improving indoor environmental quality and minimizing harmful emissions. This Special Issue showcases studies investigating applications of environmental technology that is tailored to enhance the sustainable performance of existing residential buildings. It helps to better understand the innovations that have been taking place in retrofitting residential buildings, as well as highlighting many opportunities for future research in this field

    Computer Controlled Urban Transportation: A Survey of Concepts, Methods, and International Experiences

    Get PDF
    This book is concerned with the present and future traffic problems in the developing and developed world. It examines possible solutions to those problems based on technological innovations and implementing large-scale computerized traffic and transportation control systems. It discusses the basic concepts and methods for control and automation that have been proposed, developed, and implemented, and experience from real applications of these in different cities and nations
    corecore