
1

Performance-Driven Metamorphic Testing
of Cyber-Physical Systems

Jon Ayerdi , Pablo Valle, Sergio Segura , Member, IEEE, Aitor Arrieta , Goiuria Sagardui, and Maite Arratibel

Abstract—Cyber-physical systems (CPSs) are a new generation
of systems, which integrate software with physical processes. The
increasing complexity of these systems, combined with the un-
certainty in their interactions with the physical world, makes the
definition of effective test oracles especially challenging, facing the
well-known test oracle problem. Metamorphic testing has shown
great potential to alleviate the test oracle problem by exploiting the
relations among the inputs and outputs of different executions of
the system, so-called metamorphic relations (MRs). In this article,
we propose an MR pattern called PV for the identification of
performance-driven MRs, and we show its applicability in two
CPSs from different domains, which are automated navigation
systems and elevator control systems. For the evaluation, we as-
sessed the effectiveness of this approach for detecting failures in an
open-source simulation-based autonomous navigation system, as
well as in an industrial case study from the elevation domain. We
derive concrete MRs based on the PV pattern for both case studies,
and we evaluate their effectiveness with seeded faults. Results show
that the approach is effective at detecting over 88% of the seeded
faults, while keeping the ratio of FPs at 4% or lower.

Index Terms—Autonomous systems, cyber-physical systems
(CPSs), metamorphic relation (MR), MR pattern (MRP),
metamorphic testing (MT), oracle problem.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPSs) are complex systems,
which integrate computational and physical processes, and

are often composed by multiple interconnected components [8],
[31]. The applications of these systems extend to many domains,

. This work was supported in part by European Union’s Hori-zon 2020
Research and Innovation Programme under Grant 871319, in part by
European Commission (FEDER) and Junta de Andalucia through project
APOLO under Grant US-1264651 and through project EKIPMENT-PLUS under
Grant P18-FR-2895, and in part by Spanish Government (FEDER/Ministerio
de Ciencia e Innovación Agencia Estatal de Investigación) through project
HORATIO under Grant RTI2018-101204-B-C21. The work of J. Ayerdi, A.
Arrieta, and G. Sagardui was supported by the Department of Education,
Universities and Research of the Basque Country, and they were part of the
Software and Systems Engineering research group of Mondragon Unibertsitatea
(IT1519-22). Associate Editor: T. H. Tse. (Corresponding author: Jon Ayerdi.)

Jon Ayerdi, Pablo Valle, Aitor Arrieta, and Goiuria Sagardui are with
Mondragon Unibertsitatea, 20500 Arrasate, Mondragon, Spain (e-mail: jay-
erdi@mondragon.edu; hazibek02@mondragon.edu; aarrieta@mondragon.edu;
gsagardui@mondragon.edu).

Sergio Segura is with Universidad de Sevilla, 41012 Sevilla, Spain (e-mail:
sergiosegura@us.es).

Maite Arratibel is with Orona, 20120 Hernani, Spain (e-mail: marrati-
bel@orona-group.com).

such as aerospace, automotive, healthcare, manufacturing, and
consumer appliances [29]. Most of these applications require
the system to be resilient to failures while operating in uncertain
environments [63] (e.g., unmanned vehicles) and many of them
also have strict safety requirements [8] (e.g., medical implants).

Considering the safety and robustness requirements for many
of these systems, verification is one of the major concerns when it
comes to their development [8]. However, given their high com-
plexity and the inherent uncertainty of their interactions with the
physical environment, automatically determining the expected
output of these systems is not feasible in many cases [28]. For in-
stance, self-driving cars suffer from this problem due to the sheer
complexity of determining whether their behavior—typically
driven by artificial intelligent (AI) algorithms—is correct or not.
Also, these types of systems are extremely hard to test due to
the uncertainty of the possible situations that can occur, such
as extreme weather conditions or unexpected obstacles. This
difficulty in predicting the correct output for a given input and
then comparing it with the observed output is known as the test
oracle problem, and it is recognized as one of the fundamental
problems of software testing [10], [59].

There are some alternatives to specifying test oracles for
an automated verification process. For instance, pseudo-oracles
consist in independently developing multiple versions of the
SUT and comparing the outputs in order to find discrepan-
cies [20]. This approach, however, has a very high cost for
complex systems, which might make it impractical in many
cases. On the other hand, regression testing consists in com-
paring different versions of the SUT in order to detect breaking
changes [62]. While this approach is applicable to most systems,
there are many types of failures that cannot be detected with it,
for instance, failures that are revealed under new conditions in
which the SUT had never been deployed before. A common
solution to compensate for the shortcomings of automated test
oracles is to employ human oracles (i.e., manual testing), which
is costly and error-prone.

Metamorphic testing (MT) adopts an alternative approach
to traditional testing in order to alleviate the oracle problem;
instead of verifying the correctness of each individual execution
of the program under test, MT exploits known input and output
relations that should hold among multiple executions, so-called
metamorphic relations (MRs) [15]. For example, the following
is an MR for the domain of self-driving cars [55]; “the car should
behave similarly when traversing the same route under different
(nonextreme) weather conditions”. MT has been used in many
domains, such as machine learning applications, web services,

https://orcid.org/0000-0003-0491-9711
https://orcid.org/0000-0001-8816-6213
https://orcid.org/0000-0001-7507-5080
mailto:jayerdi@mondragon.edu
mailto:jayerdi@mondragon.edu
mailto:hazibek02@mondragon.edu
mailto:aarrieta@mondragon.edu
mailto:gsagardui@mondragon.edu
mailto:sergiosegura@us.es
mailto:marratibel@orona-group.com
mailto:marratibel@orona-group.com
https://doi.org/10.1109/TR.2022.3193070

2

computer graphics, and compilers [17], [46]. This technique has
also been successfully applied in the domain of CPSs, such as for
testing wireless sensor networks [14], autonomous drones [33],
self-driving cars [55], [66], or elevator installations [5].

MRs can often be defined at an abstract level, representing
not a single relation, but a set of MRs. Inspired by this idea,
the concept of MR patterns has been exploited by different
authors [45], [47], [65]. Zhou et al. [65] defined an MR pattern
(MRP) as an abstraction that characterizes a set of (possibly
infinitely many) MRs. MRPs have proved to be very helpful on
guiding testers on the search for MRs with a certain structure,
making the identification of the relations significantly easier
than when starting from scratch. For instance, the following is
an MRP for self-driven cars: “the car should behave similarly
when performing harmless alterations to the driving scenario”.
Instances of these pattern could include MRs as the one pre-
sented above, where the same route is traversed under different
weather conditions, but also others as traversing the same route
with different obstacles outside of the driving area [66]. Wu
et al. [60] generalized this idea further proposing the noise MRP,
which states that a reliable system should be able to perform its
functions when a low level of interference (noise) is present.

Since its introduction in 1998, most research on MT has
focused on functional testing [17], [46]. However, in recent
years, some authors have outlined the potential of defining MRs
not in terms of the expected impact in functionality, but in
terms of the expected impact in nonfunctional properties, such
as execution time, memory consumption, or energy usage [13],
[49], [51].

In this article, we present an MRP called performance varia-
tion (PV) for the identification of failures in CPSs. Specifically,
the pattern encourages testers to identify changes in the input of
the CPSs that should have a predictable impact in its observed
performance. For example, adding obstacles in the route of a
self-driving car will typically result in more battery consump-
tion. Violations of these MRs can uncover both functional (e.g.,
nonoptimal route calculation) and nonfunctional bugs (e.g.,
defective hardware component). To show the applicability of
the pattern, we used it to identify MRs in two different types of
CPSs: 1) autonomous navigation systems; and 2) elevator con-
trol systems. For the evaluation, we assessed the fault detection
capability of the identified MRs in an open-source autonomous
navigation system and industrial elevation system. Results show
that the MRs—derived from the PV pattern—are effective in
identifying over 88% of the faults, while keeping the ratio of
false positives (FPs) at 4% or lower.

This article extends a previous paper by Ayerdi et al. [5] on the
use of quality of service attributes and MT for detecting bugs in
an industrial elevation system. Specifically, this work is based
on the observation that the proposed MRs can be generalized
as a pattern, being applicable to identify failures in potentially
any software system and CPSs in particular. Hence, the main
contributions of our work with respect to our previous paper lies
in the introduction of a novel MRP (i.e., PV) and extensive em-
pirical results, including a new case study, showing the potential
of the MRs derived from the PV pattern for uncovering failures
in CPSs.

In summary, after presenting the background on CPS (see
Section II-A) and MT (see Section II-B), this article presents
the following contributions.

1) A novel MRP—PV—exploiting the predictable impact in
performance of input changes for the detection of failures
in CPSs and an overview of potential applications (see
Section III).

2) An empirical evaluation studying the effectiveness of MRs
derived from the PV pattern to uncover faults in an indus-
trial elevation case study, extending our previous work [5]
(see Section IV-B).

3) An empirical evaluation studying the effectiveness of
MRs derived from the PV pattern to uncover faults in
an open-source autonomous vehicle modeled in MAT-
LAB/Simulink [37] (see Section IV-C).

4) A publicly available replication package containing the
source code for the autonomous driving system experi-
ment was discussed in [7]. The results from the industrial
elevation system cannot be published due to confidential-
ity concerns.

We discuss threats to validity and related work in Sections V
and VI, respectively. Finally, Section VII concludes this article.

II. BACKGROUND

In this section, we introduce the basics on CPSs and MT.

A. Cyber-Physical Systems

CPSs are a combination of computation and physical pro-
cesses that interact with each other in complex ways. These
systems are heterogeneous and contain different abstractions for
physical and computational elements and their interactions [29].
An example of a CPS is a brake control system for a car, which
requires the tight integration of physical calculations (to model
the state of the vehicle and predict the effects of the actions from
the controller) and computations (the control logic). The car as
a whole can also be considered a CPS, which comprises many
interconnected subsystems, such as the brake controller, and the
obstacle detection systems.

Compared to software applications, testing CPSs presents
additional challenges. On the one hand, CPSs tend to be highly
complex heterogeneous systems, which contain both contin-
uous and discrete components [8]. A model-based design is
the most common paradigm for CPS development, and it is
typically performed in modeling and simulation environments,
such as MATLAB/Simulink [36] or OpenModelica [42], since
they allow the tight integration of physical elements (e.g., motor
mechanics simulation) with discrete logic that might be trans-
lated to software (e.g., controller design via state machines) [25],
[53]. Testing of a CPS is usually performed on these modeling
environments first (so-called model-in-the-loop testing), and
later when the actual software is generated; tests can also be
run with the real software and simulated hardware (software-in-
the-loop testing). On the other hand, CPSs operate in uncertain
environments where unexpected scenarios may happen [63].
Although model and simulation-based testing can be used to
verify some of the behaviors of the system, it is not possible

to verify the behavior of the system under real conditions until
testing is performed on the real hardware (hardware-in-the-loop
testing). This kind of testing is even more costly than using
simulations, but recent research suggests that the majority of the
bugs can be reproduced and identified in simulation, reducing
the total cost of the verification process [56].

B. Metamorphic Testing

MT [15], [48] aims to detect bugs by looking at the relations
among the inputs and outputs of two or more executions of the
program under test, so called MRs. For example, consider the
program spellcheck(T) that searches for spelling errors in an
English text file T . Checking if the output of the program is
correct for nontrivial input text file would be difficult; this is an
instance of the oracle problem. Suppose that we create a new
text file T ′ by adding an independent text fragment S at the end
of T : T ′ = T + {S}. Intuitively, the spelling errors found in T ′

should include those errors found in T . This can be expressed
as the following MR: spellcheck(T) ⊆ spellcheck(T ′), where
T ′ = T + {S}. In this relation, (T) is the source test case and
(T ′)—created by extending the input text file, which is the
follow-up test case. This MR can be instantiated into one or more
metamorphic tests by using specific input values and checking
whether the relation holds. If the relation is violated, the meta-
morphic test is said to have failed, indicating that the program
under test contains a bug. Successful applications of MT have
been reported in multiple domains, including web services and
applications, machine learning, compilers, cybersecurity, and
bioinformatics, among others [17], [46]. Industrial applications
of MT have been reported at Google [21] and Facebook [2].

MRs can often be defined at a very abstract level, representing
not a single relation, but a set of relations. When this happens,
relations are referred to as MRPs [45], [47], [65]. Zhou et al. [65]
defined an MRP as an abstraction that characterizes a set of
(possibly infinitely many) MRs. MRPs have proved to be very
helpful on guiding testers on the identification of MRs. As an
example, Zhou et al. [65] proposed a symmetry MRP, based
on the observation that most systems can be observed from
different viewpoints from which the system appear the same.
For example, an AI-enabled object recognition system should
recognize the same objects in a video, regardless of whether it
is played forwards or backwards. Segura et al. [50] proposed
several MRPs for query-based systems, such as adding new
conjunctive conditions (i.e., filters) for a search and expecting
the results to be a subset of the original search.

Patterns are often defined as incomplete MRs where only the
relation among the inputs or the outputs is specified. These
are referred to as MR input patterns (MRIPs) [65] and MR
output patterns (MROPs) [47], respectively. For example, Zhou
et al. [65] proposed the “change direction” MRIP, represent-
ing those MRs where the follow-up test cases are created by
changing the direction of the inputs, either physical or logical,
or explicit or implicit. For example, the abovementioned MR,
where an AI-enabled object recognition systems are executed
twice running the input video forward and backward, is an
instance of this pattern. Analogously, Segura et al. [47] proposed,

among others, the “subset” MROP, which represents those MRs
where the follow-up output should be a subset of the source
output. Patterns can be defined hierarchically with some patterns
being instances of more general ones. In this article, we propose
an MRP and several MRIPs derived from it.

Most of the works on MT have focused on the detection of
functional faults [17], [46]. Recently, Segura et al. [49], [51]
proposed the concept of performance MT, where MRs are de-
fined in terms of how the performance of the program under test
(e.g., execution time) is expected to change when making certain
changes in the programs’ inputs. For example, intuitively, the ex-
ecution time observed when searching for spelling errors in a text
should increase, or at least remain the same, if the size of the text
increases. This can be expressed as the following (performance)
MR: T (spellcheck(T) ≤ T (spellcheck(T + {S}), where S is
a random nonempty text string. Research on performance MT
is thriving with new applications emerging in domains, such as
code generators [13] and data analytic platforms [26].

III. PV PATTERN

In this section, we propose a novel MRP, defined as follows.

A. Performance Variation

This pattern represents those MRs that involve a change in
the source input that has a predictable effect on the performance
of the test case execution.

The intuitive idea behind this pattern is that it is typically
straightforward to think in a change in the system’s inputs such
that it should have an expected impact in its performance. For
example, if one or more obstacles are placed in the way of an
autonomous vehicle, the time and the energy required to reach
its destination should be higher than when performing the same
route without obstacles, assuming similar external conditions
(e.g., weather, traffic, etc.). If they are not, we could be certain
that the system is faulty. Note that PVs could reveal not only
nonfunctional bugs, but also functional ones. For instance, in
the previous example, a violation of the MR could be caused by
an energy leak (nonfunctional) or a bug in the navigation system
(functional).

A key characteristic of the performance variation (PV) pattern
is that it is extremely generic, being potentially applicable to the
identification of MRs in most systems. However, there are cer-
tain characteristics of CPSs that make them especially suitable
as a target domain. First, many performance metrics are directly
related to requirements on CPSs, such as execution time on
real-time systems, which makes monitoring this type of property
during testing crucial. Second, even if the performance metrics
are not directly part of the requirements, these types of systems
are often resource-constrained in many aspects, such as tight
processing capabilities, low memory, and limited power sources
(e.g., batteries), which makes performance bugs much more
likely to escalate into severe failures. Finally, the interactions that
CPSs have with the physical environment make some aspects of
the state of these systems uncertain, and performance metrics
may be one of the few ways to detect and diagnose invalid or
undesirable physical states (e.g., ground vehicle traction loss).

4

Performance measurements are inherently nondeterministic;
they can vary among executions due to numerous factors, such
as the system workload or the hardware settings. This means that
it is usually not possible to perform a direct comparison between
the performance metrics (e.g., execution time) observed in two or
more executions of the SUTs. This is also the case with heuristic
programs, where the system may return different responses for
the same inputs, leading to PVs among executions. To address
this issue, several approaches have been proposed, such as using
tolerance thresholds [40] or comparing statistical distributions
obtained from running the program multiple times [23]. In
what follows, when we refer to a performance measurement
being lower (�), higher (�), or similar (�) than another, we
assume that some of the previous methods might be used. In the
following section, we explain how the PV pattern can be used to
identify MRs in two different types of CPSs. It is common that
a certain change in the inputs can have an expected impact in
different performance metrics, such as execution time, memory
consumption, and energy usage. To reflect this, we present
several MRIPs derived from the more general pattern PV. Each
MRIP represents groups of MRs sharing the same input relation.
Then, for each MRIP, we mention at least one MR that can be
instantiated using a specific performance metric.

It is worth noting that the MRs presented in the following
sections are intentionally simple for illustrative purposes. Later,
in the evaluation section, we show that how MRs can get more
complex in practice.

B. Elevator Control System

Passenger elevator control systems must respond to vertical
transportation requests by coordinating one or more elevators
so that all the requests are fulfilled as efficiently as possible.
The efficiency of these systems can be measured by one or
more objectives, including total execution time for a set of
requests, average waiting time (AWT) for the passengers, or
energy consumption, among others.

In order to describe MRs, we define the operation
serve(E,P,C) for elevator installations, where E is a list of
integers indicating the floors where the elevators are positioned
initially,P are the various elevator parameters (motor start delay,
acceleration, maximum speed, etc.), and C is a set of passenger
calls c ∈ C, each of which will be encoded as (ct, cs, cd),
representing an arrival time (ct), a source floor (cs), and a
destination floor (cd). Fig. 1(a) shows an example scenario of
a six-story building with two elevators in floors 4 and 5, which
we encode as E = {4, 5}. For simplicity, we assume that the
elevator parameters P apply to all the elevators equally, i.e., all
the elevators are identical. We will also omit the parameters in
P that are not relevant, so the syntax {speed = 1, . . .} indicates
that the value of the speed parameter is 1, whereas the rest of
the parameters are irrelevant/unchanged.

In what follows, we describe some MRIPs derived from the
PV pattern and some sample MRs derived from them.

1) MRIP1: Additional Calls: This pattern represents MRs
where the follow-up test cases are constructed by adding one or
more passenger calls to the source input. When this happens, the

Fig. 1. Elevator control system scenarios. (a) Original elevators state. (b)
MRIP2: Additional elevators.

performance of the system is expected to be worse or at least the
same, since the elevator(s) must perform extra tasks. For exam-
ple, if we add an extra call to the test case, the total distance (TD)
traversed by the elevators should increase or remain the same,
since the elevators need to attend to one additional passenger.
This can be expressed as the following MR:

TD(serve(E,P,Cs)) � TD(serve(E,P,Cf)) (1)

where Cf = Cs ∪ c.
For instance, suppose a source test case consisting of the initial

elevator positions from Fig. 1(a), E = {4, 5}, and the set of
passenger calls Cs = {(1, 2, 3)}, representing a single call at
t = 1 from floors 2 to 3. Suppose that a follow-up test case is
created by adding a new call at t = 2 from floors 5 to 3: Cf =
{(1, 2, 3), (2, 5, 3)}. Then, the TD should increase or remain the
same as

TD (serve({4, 5}, {· · ·}, {(1, 2, 3)}))
� TD (serve({4, 5}, {· · ·}, {(1, 2, 3), (2, 5, 3)})) . (2)

Analogous MRs can be derived using other performance
metrics, such as the passenger waiting time or the number of
elevators’ movements (see Section IV-B).

2) MRIP2: Additional Elevators: This pattern groups the
relations where the follow-up test case is generated by adding
new elevators to the source input scenario. When this happens,
the overall performance of the system from the user perspective
should be better, since the elevator control system has more
resources available to attend the passenger calls. For example,
the following MR is an instance of this pattern, where adding one
or more elevator is expected to decrease the AWTs of passengers

AWT(serve(Es, P, C)) � AWT(serve(Ef , P, C)) (3)

where Ef ⊃ Es.

5

Fig. 1(b) shows a sample instance of this MR. An additional el-
evator e3 is enabled at floor 4 in the follow-up test case, resulting
in E = {4, 5, 4}. Consider the passenger calls C = {(1, 2, 3)}.
In this case, the AWT should decrease, or in a worst case remain
the same, when adding the new elevator

AWT(serve({4, 5}, {· · ·}, {(1, 2, 3)}))
� AWT(serve({4, 5, 4}, {· · ·}, {(1, 2, 3)})). (4)

3) MRIP3: Faster Elevators: This pattern represents MRs
where the configuration of the elevators Pf is changed so that
the elevators from the follow-up test case are faster than those
from the source test case. This can be implemented in various
ways, such as increasing the nominal speed and acceleration, or
reducing the motor start-up delay. As an example, the AWT of
the follow-up test case is expected to improve due to the elevators
being able to attend calls faster, resulting in the following MR:

AWT(serve(E,Ps, C)) � AWT(serve(E,Pf , C)) (5)

where the parameters in Pf allow the elevators to attend calls
faster than those in Ps. Similar MRs could be defined consid-
ering other performance metrics. For instance, increasing the
speed of elevators may result in a higher energy consumption.

For example, suppose the initial elevator positions from
Fig. 1(a), the set of passenger calls Cs = {(1, 2, 3)}, and the
parameters Ps = {speed = 1, . . .}. Consider a follow-up test
case is created by doubling the nominal speed of the elevators
(Pf = {speed = 2, . . .}). In this scenario, we should expect the
AWT of the follow-up test case to be lower, or at worst, similar
to the one observed in the source test case

AWT(serve({4, 5}, {speed = 1, . . .}, {(1, 2, 3)}))
� AWT(serve({4, 5}, {speed = 2, . . .}, {(1, 2, 3)})). (6)

C. Autonomous Navigation System

Autonomous navigation systems can automatically plan and
execute the route of a vehicle without human intervention.
These vehicles (henceforth, referred to as autonomous vehicles)
may include, for example, driverless cars, drones, submarines,
and robotic vacuum cleaners. In practice, autonomous vehicles
should be able to determine their own position in its frame of
reference, identify and avoid obstacles, and calculate the optimal
path to traverse a set of target points, among other tasks.

In what follows, we present some MRIPs and MRs
for autonomous vehicles derived from the PV pattern. For
the definition of the relations, we define the operation
move(P, pA, pB , S,O), where P is a set of guidance points to
follow, pA is the origin point (the vehicle’s initial position), pB is
the destination point, S is the vehicle’s nominal speed, and O is
the set of obstacles in the environment (which the vehicle should
avoid). We will assume that the vehicle’s path can be modeled
as a sequence of guidance points corresponding to locations in
the world where the vehicle is moving, and that the vehicle is
capable of following these guidance points while avoiding the
obstacles that may be encountered. Fig. 2(a) shows an example
scenario where the vehicle (in green) must traverse several
guidance points (in blue and purple) to reach its destination (in

Fig. 2. Autonomous navigation system scenarios. (a) Original guidance
points. (b) MRIP4: Fewer guidance points.

red). Throughout this work, we will use an autonomous car to
illustrate scenarios for the proposed MRs, since this is the type
of autonomous vehicle, we use for the empirical evaluation, but
most of the MRs described in this section should be applicable to
other types of vehicles (e.g., drones, boats, etc.) as long as their
functionality can be mapped to the move operation we described.

1) MRIP1: Faster Vehicles: This pattern represents MRs
where the vehicle’s nominal speed is increased in the follow-up
test case. The expected performance should be the same or better
in terms of travel time, since the vehicle can traverse its route
faster as long as it can accelerate to its nominal speed. Thus,
the time to destination (TTD) for a given route is expected to
decrease or remain the same, resulting in the following MR:

TTD(move(P, pA, pB , Ss, O))

� TTD(move(P, pA, pB , Sf , O)) (7)

where the nominal speed from the follow-up test case Sf must
be greater than the source nominal speed Ss.

For example, consider a scenario for a self-driving car where
the nominal speed measured in km/h. The route contains the
waypoints P = {w1, w2, w3}, where the starting point is
pA = w1, the goal is pB = w3, and there are no obstacles
(O = {}). If the nominal speed from the source test case is
Ss = 60, and then the execute a follow-up test case with a higher
nominal speed Sf = 80, the TTD should decrease as

TTD(move({w1, w2, w3}, w1, w3, 60, {}))
� TTD(move({w1, w2, w3}, w1, w3, 80, {})). (8)

An analogous MRIP could be defined by decreasing the
nominal speed rather than increasing it.

2) MRIP2: Additional Obstacles: This pattern represents the
MRs where follow-up test cases are created by adding obstacles
to the environment where the vehicle operates. In this case, the
expected performance in terms of time or energy consumption
should be worse, since the vehicle must overcome this new
obstruction in its path by taking otherwise unnecessary actions.
Obstacles may include static or dynamic objects (e.g., other

6

vehicles) as well as adverse environmental conditions (e.g.,
storms). The following is a specific MR derived from this pattern
using TTD as the evaluated performance metric:

TTD(move(P, pA, pB , S,Os))

� TTD(move(P, pA, pB , S,Of))) (9)

whereOf ⊃ Os, i.e., one or more additional obstacles have been
placed in the vehicle’s route.

Depending on the type of SUT and the obstacle types, the
applications of this MR may vary. For solid obstacles where
taking a longer route is necessary, we can expect an increase in
both TTD and energy usage, whereas, for example, a condition,
such as headwind, may only cause an increase in the energy
usage if the navigation system is configured to compensate for it
by increasing its throttle, e.g., ArduPlane1, with airspeed throttle
adjustment.

For the autonomous car example, consider a scenario where a
static object (e.g., a cone in the middle of the road) is introduced
as an obstacle, resulting in the car having to steer to avoid
it. Since the cone is an additional restriction for the car, the
alternative trajectory should always be less optimal than the
original one performance-wise. As in the previous example, we
have P = {w1, w2, w3}, pA = w1, pB = w3, and S = 60, and
no obstacles in the source test case (O = {}). The follow-up
test case is then generated by adding a cone to the obstacles,
resulting in the following MR:

TTD(move({w1, w2, w3}, w1, w3, 60, {}))
� TTD(move({w1, w2, w3}, w1, w3, 60, {cone})). (10)

3) MRIP3: Reversed Path: This pattern groups the MRs
where the path P is reversed in the follow-up test case.
Intuitively, this should result in source and follow-up test
executions having similar performance measures. For exam-
ple, the following is an MR derived from this pattern ex-
pressing that the energy consumption ϕ should be similar
when traversing the path forward and backward as

ϕ(move(P, pA, pB , S,Os)) � ϕ(move(P,′ pB , pA, S,Of)))
(11)

where P ′ is obtained by reversing the waypoints in P .
This is a very intuitive relation often used to illustrate MT [16],

[46], although here we provide a novel perspective by using per-
formance metrics as a proxy to reveal failures. This relation can
also be considered an instance of the symmetry MRP proposed
by Zhou et al. [65].

As an example, the energy consumed in the same scenario
used to demonstrate the previous MRIPs should remain approx-
imately the same if the path is reversed as

ϕ(move({w1, w2, w3}, w1, w3, 60, {}))
� ϕ(move({w3, w2, w1}, w3, w1, 60, {})). (12)

4) MRIP4: Fewer Guidance Points: This pattern represents
MRs where some of the guidance waypoints from the path of
the vehicle are removed in the follow-up test case. In this case,

1Online available at http://ardupilot.org/plane/docs/airspeed.html

the car should be able to traverse the path faster, since there are
fewer guidance points to traverse and so the traversed distance
will be shorter.

TTD(move(Ps, pA, pB , S,O))

� TTD(move(Pf , pA, pB , S,O))) (13)

where Pf ⊂ Ps, i.e., some of the waypoints have been removed
from the vehicle’s path.

For our autonomous car example, if our path is Ps =
{w1, w2, w3}, the following relation should hold:

TTD(move({w1, w2, w3}, w1, w3, 60, {}))
� TTD(move({w1, w3}, w1, w3, 60, {})). (14)

IV. EVALUATION

In this section, we report two experiments on the effectiveness
of performance-driven MT of CPSs. Specifically, we aim to
answer the following research questions (RQs).

1) RQ1: Do the Generated MRs Trigger FPs? What Causes
Them? Due to the nondeterministic nature of performance
measurements, FPs are likely to emerge. We aim to inves-
tigate to what extent FPs appear in practice.

2) RQ2: Is Performance-Driven MT Effective in Reveal-
ing Failures in CPSs? We aim to study the ability of
performance-driven MT, and in particular, MRs derived
from the PV pattern, to detect bugs in different types of
CPSs. Automated regression test oracles will be used as
baselines.

3) RQ3: Do Particular MRIPs or Performance Metrics Per-
form Significantly Better Than Others? We plan to com-
pare the performance of different MRIPs and performance
metrics. Also, we want to study whether the results from
some of the input relations and metrics subsume, or rather
complement, those obtained by other relations and met-
rics.

To answer these RQs, we employed two different case studies,
whose main features are given in Table I.

A. Evaluation Metrics

In this section, we describe the key definitions and metrics
used for the presentation of the experimental results with both
case studies.

An MR can be instantiated into one or more metamorphic tests
by running the source and follow-up test cases with specific input
values and checking whether the relation holds. If the relation is
violated, the metamorphic test is said to have failed, indicating
a test failure. However, in nondeterministic programs—as the
ones used in our case studies—the MR may be exceptionally
violated by mere chance generating a FP [23], [49].

We use the following three different metrics to determine the
effectiveness of our approach.

1) In first place, we use the FPs, which refers to the percent-
age of test failures on the original system executions. FPs
may result in unnecessary debugging efforts, so the lower
the number of FPs, the better.

http://ardupilot.org/plane/docs/airspeed.html

7

TABLE I
MAIN CHARACTERISTICS OF THE EXPERIMENTAL CASE STUDIES

2) Second, we report the mutation score (MS), which refers to
the percentage of mutants killed by the MRs. Specifically,
we consider a mutant as “detected” or “killed” when one
or more of the metamorphic tests failed on the mutant,
but not with the original system. The higher the MS, the
better, since more seeded faults are detected.

3) Finally, we measured the failure detection ratio (FDR),
which is the percentage of metamorphic tests on mutants
that resulted in a test failure. A higher percentage is better,
since more potentially faulty behaviors are identified.

B. Experiment 1: Elevator Control System

In this experiment, we tested an industrial elevator dispatcher
system developed by Orona [41], which inspired the example
presented in Section III-B. A previous version of this experiment
was presented in [5]. In what follows, we describe the SUT,
performance metrics, MRs, experimental setup, and the results
of the experiment.

1) System Under Test: An elevator is a complex CPS, where
software and hardware interact with the goal of transporting
passengers safely and by considering certain quality of ser-
vice (QoS) measures. Among the components of the elevator
installation, the traffic master is in charge of managing the
passenger flow. This element is composed of different software
modules, including the dispatching algorithm that decides which
elevator should attend each call. The dispatching algorithm has
a high impact on the QoS measures of the elevator installation.
Different elevator dispatchers can be used to optimize different
objectives depending on the installation requirements and traffic
profiles. For this experiment, we used the most commonly used
elevator dispatching algorithm from Orona [41], a leading ele-
vator company in Europe, as the SUT. This dispatcher employs a
deterministic rule-based algorithm, which optimizes for the best
AWT for the passengers. The dispatcher’s source code is written
in C, so that it can be easily compiled into different targets.

Note that unlike other types of optimizers, such as source code
compilers, a deterministic elevator dispatcher cannot output
the optimal solution for any given scenario. This is because
performing the optimal elevation dispatches requires the al-
gorithm to know about the passengers that will arrive in the
(near) future, since their effect on the QoS metrics will be
affected by the actions of the dispatcher before they actually
arrive. Since this information will not be available under real
circumstances, the dispatcher algorithm will need to predict
the expected passenger behavior and act accordingly, which
may or may not be the best decision for a given scenario. In
practice, the dispatcher algorithm will mostly optimize for the
best QoS under the expected most common passenger behaviors,
with some reasonable tradeoffs to avoid worst-case scenarios in
less-expected cases.

Orona has a large suite of elevators dispatching algorithms,
which need constant maintenance to address new functional
requirements, new QoS measures, legislative changes, bug fix-
ing, hardware obsolescence or system degradation, adaptation
to building requirements, etc. When changes are made, Orona
has a well-established verification and validation process of
the dispatching algorithm before deploying the new release in
real installations. In a first stage, tests are executed within a
software-in-the-loop level. The software of the dispatching algo-
rithm is an executable that communicates with a domain-specific
simulator named Elevate [32]. Elevate simulates all the physical
components of the elevator and provides a set of QoS measure
results when the simulation has finished. The following stage is
the hardware-in-the-loop phase. Here, the software of the dis-
patching algorithm is integrated with the rest of the software and
hardware infrastructure, encompassing, among others, real-time
operating systems, communication protocols, and the real target,
in which the software is executed. In this stage, the tests are
executed in real-time, and their goal is to validate the functional
correctness of the release within the real infrastructure. Last,
the software is deployed into the real system at operation. The
elevator maintainer performs a set of manual tests to ensure
that the software has been successfully deployed and that it
works correctly. As the test level becomes more realistic, the
test execution cost increases significantly, so it is important
to detect bugs as early as possible during the verification and
validation process. Unfortunately, the testing process largely
relies on human oracles (i.e., the test engineer’s judgement) to
decide the final verdict for each test, which hinders full testing
automation.

In Orona, a test for the dispatching algorithm is constituted
by the passengers list and the building installation information.
The passengers list represents a list of passengers that arrive to
a landing floor, call an elevator, and request a destination. For
each passenger, the following input values must be provided.

a) The arrival time.
b) The arrival floor.
c) The destination floor.
d) The weight of the passenger.
e) Capacity factor, i.e., the mass threshold at which the

passengers will consider the elevator to be full.
f) The loading time.
g) The unloading time.
h) The expected passenger behavior when not all elevators

serve all floors, e.g., waiting for the right elevator versus
switching elevators until reaching the destination.

For our experiment, we set different values for the inputs a)–d)
and use the default values for the remaining ones. Regarding the
building installation information, it refers to an XML file with
all the information of the building and elevators installation at
which the SUT is being executed. For instance, it encompasses

8

the number of floors of a building, number of elevators, floors
served by each of the elevators, maximum weight each elevator
can lift, etc.

Note that this information is passed to the simulation environ-
ment, and the dispatcher algorithm only receives the information
that it would get in a real installation. For example, the dispatcher
does not receive the passengers list beforehand, it will only be
notified of the passengers as they arrive, and their destination is
only known after they get into an elevator and press a button.

2) Performance Metrics: For this experiment, we used the
following performance metrics.

a) Average Waiting Time: The average time from the moment
a landing call is issued until an elevator stops to attend
the call measured in seconds. This is among the most
important metrics for providing a good user experience [9],
and it is the metric that the dispatcher we use for the
experiments is designed to optimize.

b) Total Distance: The sum of the distances traversed by all
the elevators of the building, measured in floors. We con-
sider this metric because an unexpected value may reveal
behaviors, such as consistently not assigning elevators that
are close to the landing calls or unnecessarily dispatching
multiple elevators to a single call.

c) Total Movements (TM): The count of all the movements
(i.e., engine start-ups) of all the elevators of the building.
We considered that this metric may reveal inefficient or
bugged behaviors in a similar way to TD.

3) Metamorphic Relations: In the following, we describe
the MRs used in the experiment. These relations were derived
from the MRIPs presented in Section III-B, which in turn
are instances of the more general PV pattern proposed in our
work. These MRs were defined based on our knowledge of
the dispatcher—acquired during our long-term collaboration in
technology transfer with Orona—and specific inquiries made to
the engineers involved in the development and maintenance of
the dispatcher.

The following MRs are defined assuming the dispatcher al-
ways provides an optimal assignment. However, as previously
explained, the dispatcher under test provides approximate solu-
tions. In practice, this means that FPs could arise. To mitigate
this, as explained in Section III, we define approximate relations
(i.e., �,�, and �) instead of strict ones (i.e., =,≥, and ≤).
In practice, these are implemented using tolerance thresholds,
meaning that only violations exceeding a certain value will be
consider as failures. The threshold values used in our experi-
ments are detailed later in the experimental setup.

In what follows, we revisit the MRIPs defined in Section III-B,
describing the MRs derived from them in the context of our
case study. For the sake of simplicity, we use the same notation
introduced in Section III-B, where serve(E,P,C) denotes an
execution of the dispatcher, E is a set of floors indicating the
positions of the elevators, P are the elevator parameters, and C
is the list of passenger calls.

a) MRIP1: Additional Calls: We propose several MRs where
the follow-up test input is created by appending an ad-
ditional passenger call to the source test case. Formally,
the input relation can be defined as Cf = Cs ∪ c′, where

c′ is the additional passenger call. In this scenario, the
TD traversed by the elevator should increase [see Sec-
tion III-B and (1)]. In practice, however, we found that it
is possible to define a tighter—and therefore more likely
to reveal failures [46]—relation by making a rough es-
timation of the worst case TD required to be traversed,
measured as the sum of the largest possible distance to
the source floor and the distance between the source
and the destination floors. This can be expressed as the
following MR:

TD(serve(E,P,Cf))

� TD(serve(E,P,Cs)) + TDw(c
′) MR1TD (15)

where TDw(c
′) is the worst case TD that an ele-

vator will have to traverse for serving c′ and cal-
culated as TDw(c) = max(cs − 1,FLOORS − cs) + |cs
− cd|, where max(cs − 1,FLOORS − cs) is the longest
possible distance that may need to be traversed to reach
the source floor cs and |cs − cd| is the distance from the
source floor to the destination floor of the passenger.
A similar relation is defined based on the expected impact
on the AWT, namely

AWT(serve(E,P,Cf))

� AWT(serve(E,P,Cs)) + WTw(c
′) MR1AWT

(16)

where WTw(c
′) is the estimated worst case waiting time

for c′, calculated as T (max(cs − 1,FLOORS − cs)), with
max(cs − 1,FLOORS − cs)) is the longest possible wait-
ing distance described previously, and T (distance) is a
formula that calculates the time in seconds that it takes
an elevator to traverse the given distance considering its
speed, acceleration, and jerk (which are the parameters
that can be obtained from the building installation XML).
Finally, when adding a call to the passenger list, the num-
ber of total movements of the elevators should increase
or remain the same. This is expressed as the following
MR:

TM(serve(E,P,Cf)) � TM(serve(E,P,Cs)) MR1TM.
(17)

b) MRIP2: Additional Elevators: We define MRs where the
follow-up test input is created by enabling one or more
additional elevators to the source test. Formally, we can
define this as Ef = Es ∪ E ′, where E ′ is a set of one or
more new elevators. For elevator dispatching algorithms
that aim at obtaining the best passenger waiting times,
this should improve the AWT, or at least remain the same,
yielding the following MR:

AWT(serve(Ef , P, C))

� AWT(serve(Es, P, C)) MR2AWT. (18)

9

Conversely, the TD traversed is likely to increase if more
elevators are moving in parallel. This is reflected in the
following MR:

TD(serve(Ef , P, C))

� TD(serve(Es, P, C))× (1 + |Ef | − |Es|) MR2TD

(19)

where |Ef | − |Es| is the upper bound of the traversed
distance based on the number of additional elevators. For
instance, if we add two more elevators, the TD could be
increased by up to 200% in the worst case.
Similarly, the total number of movements (TM) is expected
to increase if new elevators are added, namely

TM(serve(Ef , P, C))

� TM(serve(Es, P, C))×
(
1 +

|Ef | − |Es|
2

)
MR2TM

(20)

where |Ef |−|Es|
2 is the upper bound of the traversed dis-

tance based on the number of additional elevators. Here,
TM is only expected to increase by up to 50% more for
each additional elevator, because out of the two move-
ments that the elevators might have to perform for each
call (one for attending to the calling floor, and another one
for travelling to the destination floor), only the first one
may increase due to attending calls in parallel.

c) MRIP3: Faster Elevators: We define several MRs where
the follow-up test case is created by increasing the speed
of the elevators in the source test case. Speed is increased
in all the elevators of the scenario equally. For the elevators
dispatching algorithm under test, this should generally
improve the AWT, since faster elevators should be able
to attend the calls more rapidly. This can be expressed as
the following MR:

AWT(serve(E,Pf , C))

� AWT(serve(E,Ps, C)) MR3AWT. (21)

On the other hand, TD and TM are expected to increase.
This is because when the elevators move slower, the pas-
senger calls on the same floor will accumulate, and the
elevators will end up carrying more passengers, and there-
fore traversing less distance and making fewer movements.
Based on this, we define the following MR using the TD
traversed:

TD(serve(E,Pf , C)) � TD(serve(E,Ps, C)) MR3TD.
(22)

And, an analogous one using the total number of move-
ments

TM(serve(E,Pf , C)) � TM(serve(E,Ps, C)) MR3TM.
(23)

4) Experimental Setup: The test cases are based on a tem-
plate project from a real building with ten floors and up to six
elevators. For the MRs, our inputs are as follows.

a) The set of available elevators (at least two, and up to six),
including their positions (floors 1–10).

b) The set of relevant elevator parameters to change their
speed (explained later on).

c) The passengers list, where the arrival time, source floor,
destination floor, and passenger weights are variable and
the rest of the parameters are set to default values.

The rest of the building parameters, elevator specs, etc., are
taken from the building template and will be identical for all
tests.

Source test cases were randomly generated based on the
template project of the building. Each test case has a duration of
roughly 3 min (simulation time) on average. For each generated
test case, we selected a random number of elevators (between 2
and 6), a random initial floor for each elevator, and a random pas-
senger list generated by uniformly distributing the calls across a
fixed time period. The source and destination floors for each call
were also uniformly selected from the ten landing positions of
the building. In total, we generated 140 random source test cases
and 1200 follow-up test cases. In total, there are 1200 pairs of
source and follow-up test cases, which are 420 for MRIP1, 360
for MRIP2, and 420 for MRIP3.

The follow-up test cases for the MRs derived from MRIP1
(additional calls) were generated by appending a single addi-
tional call to the end of the passengers list, i.e., the new call
is always the last one. This is to ensure that the additional
call has no unexpected effects on the execution of the rest of
the test case. On the other hand, the follow-ups for MRIP2
(additional elevators) was implemented by randomly selecting
a number of elevators |Ef | for the follow-up test case, given the
constraint |Es| < |Ef | ≤ 6 (the limit of six elevators is specific
to the elevator installation template we use in our experiments).
The additional elevators are given random initial positions.
As for the implementation of MRIP3 (faster elevators), Cf

is generated by modifying the elevator parameters from
Cs, i.e., speed, acceleration, jerk, door open time, door
close time, motor start delay, and leveling delay. Specifi-
cally, we select a multiplier m, which is a constant inte-
ger number ranging between 2 and 4, and we multiply the
speed, acceleration, and jerk parameters by that constant,
while the rest of the mentioned parameters are divided
by it.

To measure the effectiveness of the MRs at detecting bugs,
we seeded artificial faults into the SUT using mutation testing.
This approach has been found to be a valid substitute for testing
with real faults [27]. Specifically, we created 89 faulty variants
(mutants) of the elevator dispatcher by seeding faults using
traditional mutation operators, including arithmetic, logical, and
relational operator mutations [1]. Faults were manually seeded
in a uniform manner throughout the sections of the source code
that are relevant in the simulation environment. This process was
performed by one of the authors, who is a domain expert and has
extensive experience with this system. The behavior of the gener-
ated mutants was also checked in order to assert that none of them
were semantically equivalent. Both the 140 source test cases and
the 1200 metamorphic tests (pairs of source and follow-up test
cases) were executed against the original dispatcher and the 89

10

TABLE II
MAIN CHARACTERISTICS OF THE USED TEST CASES FOR THE CONSIDERED

BASELINE, WHICH IS THE CURRENT APPROACH USED IN ORONA

mutants resulting in a total of (140 + 1200)× 90 = 120600 test
executions.

As previously mentioned, to implement approximate relations
in practice, we defined tolerance thresholds for some of the
MRs. After some preliminary tests, we defined a threshold of
30% for the relations MR3TD and MR3TM. In MR3TD, for
example, the exact assertion we used is TD(serve(E,Pf , C)) ≥
TD(serve(E,Ps, C))× 0.7. The rest of the MRs were imple-
mented by evaluating them strictly, without any threshold or
other tolerance mechanisms, since they did not yield any FPs
during preliminary testing. For instance, MR3AWT was evalu-
ated as AWT(serve(E,Pf , C)) ≤ AWT(serve(E,Ps, C)).

5) Baseline: We considered the current practice for testing
elevator dispatching algorithm versions at Orona, as explained
in [3]. Current approaches use a regression test oracle. Such
oracles use a previous version of the SUT and compare the
AWT performance metric over time between both the SUT
and its previous version. Specifically, the regression oracle has
different thresholds for each of the following three possible
failing conditions.

1) Major AWT degradation over a single 5 min period.
2) Accumulated AWT degradation over multiple 5 min peri-

ods.
3) Degradation of the total AWT.
In addition, the current automated process at Orona for execut-

ing such tests is by means of employing 14 full-day test cases,
which are both theoretical (i.e., synthetic test cases) and real
(i.e., test cases obtained from the building installation). We used
the very same test suite used at Orona for testing the dispatcher
under test, composed of ten theoretical test cases and four real
test cases. Table II gives the key characteristics of the test cases
in the baseline.

Out of the 89 mutants created, eight of them ended in an
infinite simulation due to one or more call left unattended. This
could easily be detected by an implicit timeout, and therefore
were marked as killed. The total simulation time of these test
cases was 10 330 min (approximately seven days), but notice
that each test case should be executed twice (one with the SUT
and the other with the reference implementation). Therefore, the
total execution time is 20 660 min (approximately 14 days).

TABLE III
EVALUATION RESULTS ON THE ELEVATOR DISPATCHER

6) Experimental Results: The evaluation of the proposed
MRs resulted in a single FP for each of these three MRs:
MR1TD, MR1TM, and MR3AWT. The analysis from the cor-
responding test cases revealed some suspicious behaviors from
the elevator dispatcher for both of the cases from MR1. After
consulting with domain experts, one of those cases was due to a
mismatch between the way Orona’s controllers and Elevate send
information to the dispatcher, which can cause abnormal results
in some simulation scenarios. This discrepancy has not been
fixed because it requires to either maintain two separate versions
of the dispatcher or modifying Orona’s controllers, and both
options were deemed too expensive compared with tolerating
some infrequent deviations in the simulations. Another FP re-
vealed a case where an elevator skipped a passenger call in a
scenario where stopping for the passenger would have been the
obvious choice. This was a corner case already known by Orona
developers, who preferred to leave the system as is to provide a
better performance on average. Reporting a failing condition can
be considered acceptable in both of these cases, since there are
abnormal conditions involved. As for the FP for MR3AWT, the
change in speed just happened to cause the scenarios to diverge
in a way that happened to favor the slower elevators, which
is statistically unlikely but possible, and no obvious abnormal
behavior from the dispatcher was observed in either of the test
executions.

As for their effectiveness, all the MRs combined killed 79
out of 89 mutants, which results in an MS of 88.76%. On the
other hand, there were 1593 out of 320 400 metamorphic test
failures, which corresponds with an FDR of 0.5%. Recall that
there are 420 test pairs for each MR derived from MRIP1 and
MRIP3, and 360 test pairs for each MR derived from MRIP2, so
considering there are 89 mutants, the number of metamorphic
tests on mutants is calculated as: 89× (420× 3 + 360× 3 +
420× 3) = 320400. The original dispatcher was also verified
with the proposed MRs and the same test cases, and three of the
MRs yielded FPs in a single case each.

Table III details the evaluation results. For each MR, the table
gives the MS, FDR, and the percentage of FPs. In addition,
the table gives the aggregated MS for each MRIP and in total.
Furthermore, Fig. 3 shows the exact number of mutants killed
by all the MRs for each MRIP, and the intersection of mutants
killed for all the MRIP combinations. On the other hand, Fig. 4
shows the same, but with the MRs grouped by the QoS metric
they use. The MS of each MR ranged from 5.62% to 75.28%,

11

Fig. 3. Mutants killed per MRIP (out of 89).

Fig. 4. Mutants killed per QoS metric (out of 89).

whereas the FDR ranged from 0.03% to 2.27%. This suggests a
great diversity in the results of the different MRs.

When comparing our approach with the baseline (i.e., regres-
sion test oracle, see Section IV-B5), our approach killed 32 more
mutants. That is, the current approaches used in Orona are killed
47 out of 89 mutants, resulting in an MS of 52.8% (our MRs
killed 79 out of 89 mutants, achieving an MS of 88.76%). In
terms of execution time, the sum of the costs from all the source
and follow-up test cases used in our experiments is 3678.62 min
(approximately two days and a half), whereas the test cases used
by the baseline have a total cost of 10 330 min (approximately
seven days), and the actual cost is twice as much if the reference
implementation needs to be run as well. Overall, the results show
that MT is significantly more cost-effective than the baseline. It
is worth noting, however, that our MRs did yield three FPs,
which may lead to some unnecessary efforts from the domain
experts, whereas the regression oracles do not have this issue on
a pseudo-deterministic simulation environment.

MR1TM obtained the highest MS (i.e., 75.28%), which in-
dicates that this MR is capable of detecting more (types of)
failures than the rest, at least for the seeded faults used in our
evaluation. Furthermore, it also achieved a relatively high FDR
(i.e., 0.98%), the second highest for all the proposed MRs.
MR1TD obtained very similar but slightly worse results. On the
other hand, MR2AWT obtained the highest FDR (i.e., 2.27%).
For MRIP2 (additional elevators), MR2AWT also appears to
subsume the other two metrics, as they do not contribute to
the aggregate MS, and their results are overall much worse. As
shown in Fig. 3, MRIP1 (additional calls) is overall the most
effective pattern in terms of MS by a large margin, since all of the
derived MRs have a fairly high score and aggregated, they only

miss three of the mutants that can be killed by the other MRIPs.
As for Fig. 4, surprisingly, AWT appears to be the least effective
metric, even though this is supposed to be the most relevant one
to the dispatcher algorithm under test. Nevertheless, AWT still
detects six mutants missed by TD and seven mutants missed by
TM.

Overall, it seems that the best results can be obtained by
using MR1TD and MR1TM due to their apparent ability to detect
many different types of failures (as indicated by their high MS),
combined with MR2AWT due to its significantly higher FDR
(more than three times higher than any other MR). These three
MRs combined can detect 78 of the mutants (MS of 87.64%),
only one less than when using all nine MRs combined.

C. Experiment 2: Autonomous Driving System

For this experiment, we tested an autonomous vehicle in a sim-
ulation environment. This is a particular case of the autonomous
navigation system presented in Section III-C. A very preliminary
version of this experiment was presented in [58]. In what follows,
we describe the SUT, performance metrics, MRs, experimental
setup, and the results of the experiment.

1) System Under Test: For this experiment, we tested an
autonomous car simulated using MATLAB and Simulink, based
on the model published by MathWorks [37]. Both, MATLAB
and Simulink are popular environments for the development
of CPSs [19], and they are also widely used by the scientific
community for research on CPS testing [64], [66].

Within the autonomous car, one of the most important com-
ponents is the navigation controller, which drives the vehicle
through the optimal path from an origin location to the destina-
tion by traversing a set of guidance points. This controller is the
SUT for this experiment. The navigation controller used in our
evaluation uses a reference speed value and a set of guidance
points, including the current and destination positions, as its
inputs, and adjusts the vehicle throttle and steering in order to
move it to the destination. The vehicle will try to move through
the guidance points in order until the destination point is reached,
where the vehicle will stop. The test execution will end when
the vehicle has stopped completely at the destination point.

This Simulink model allows the simulation of different driv-
ing scenarios, which can be used as test cases for our SUT, the
underlying vehicle controller. Each test case for this system is
composed of five different inputs: a) the origin point; b) the
destination point; c) a set of guidance points to go through; d)
the vehicle’s nominal speed; and e) a set of obstacles on the
way. In this case, the obstacles are other vehicles that move in a
straight line and may cross the path of the car. Whenever another
vehicle blocks the route, the implemented obstacle avoidance
system makes the car slow down to a stop and waits until the
path is clear. Since the scenarios may involve multiple cars, we
refer to the car controlled by the SUT as the ego car in order to
distinguish it from other cars that are used as obstacles.

2) Performance Metrics: For this experiment, we used the
following performance metrics, which were selected among
those typically used in the domain of autonomous vehicles [24].

12

a) Time to Destination: This is the time required for the
vehicle to reach its destination from its initial position,
measured in seconds. The vehicle controller is expected
to traverse its assigned route as fast as possible, as long as
the nominal speed is respected and there is no significant
risk of collision against obstacles or deviating from the
trajectory (e.g., the vehicle should reduce its speed to a
reasonable value before steering with a sharp angle).

b) Total Trajectory Offset (TTO): This is the integral of the
offset between the vehicle’s angle and the reference angle.
When the vehicle is not facing the next reference point,
the larger the difference between the current and expected
angles, and the longer it takes to correct its angle, the
higher this metric will be. A high trajectory offset may be
caused, for instance, because its speed was too high when
taking a turn, which makes it difficult for the vehicle to
correct its direction. The vehicle controller is expected to
keep the value of this metric reasonably low.

3) Metamorphic Relations: For the definition of the MRs,
we used the same notation introduced in Section III-C, where an
execution of the autonomous navigation system is denoted by
the operation move(P, pA, pB , S,O). To reiterate, the inputs of
the system are a set of guidance points to follow P , the origin
point pA, the destination point pB , the nominal speed S, and a
set of obstaclesO. As in the previous experiment, we present the
MRs derived from the MRIPs presented in Section III-C, which
in turn are instances of the proposed PV pattern, as follows.

Just as in the previous case study, the MRs described here
may be violated by a small margin in practice, due to factors,
such as nondeterminism, limited precision of the simulation,
or MRs assuming unrealistically ideal behavior from the SUT.
Therefore, just as before, we define approximate relations (i.e.,
�,�, and �), and we specify the threshold values used in our
experiments later, in the experimental setup.

a) MRIP1: Faster Vehicles: We propose several MRs where
the follow-up test input is created by increasing the orig-
inal nominal speed. Formally, Sf > Ss. When this hap-
pens, the TTD of the follow-up test case should be lower
than the source test case or in the worst case similar. This
can be expressed as the following MR:

TTD(move(P, pA, pB , Sf , O))

� TTD(move(P, pA, pB , Ss, O)) MR1TTD. (24)

On the contrary, the TTO should increase, or in the best
case, it should be similar, because the car is more difficult
to control as the speed increases. This can be expressed as
the following MR:

TTO(move(P, pA, pB , Sf , O))

� TTO(move(P, pA, pB , Ss, O)) MR1TTO. (25)

b) MRIP2: Additional Obstacles: We define several MRs
where the follow-up test input is constructed with an extra
obstacle in the vehicle’s path. This can be expressed as
Of ⊃ Os. The TTD should increase due to the vehicle
having to dodge an extra obstacle. This can be expressed

as the following MR:

TTD(move(P, pA, pB , S,Of))

� TTD(move(P, pA, pB , S,Os)) MR2TTD. (26)

Conversely, the TTO metric should not change, since the
SUT we use in this case should just stop and wait without
altering its trajectory. Thus, the following MR expresses
this relation:

TTO(move(P, pA, pB , S,Of))

� TTO(move(P, pA, pB , S,Os)) MR2TTO. (27)

c) MRIP3: Reversed Path: We define several MRs by swap-
ping the origin and destination points. This should not
make any difference for the metrics we use, since all the
roads are bidirectional in our test scenarios, and therefore
the vehicle’s trajectory in the follow-up test should be
exactly the reverse of the one in the source test case. This
can be expressed as the following MRs considering both
TTD and TTO:

TTD(move(P, pA, pB , S,O))

� TTD(move(P,′pB , pA, S,O)) MR3TTD

TTO(move(P, pA, pB , S,O))

� TTO(move(P,′ pB , pA, S,O)). MR3TTO

d) MRIP4: Fewer Guidance Points: We have defined some
MRs where some points of the guidance path are removed,
i.e.,Pf ⊂ Ps. For our SUT specifically, we define a tighter
version of the MRIP where only nonessential guidance
points are removed from the path. We assume that the
path contains nonessential guidance waypoints that only
help the vehicle navigate to the next goal more accurately,
but have no significant effect on the trajectory of the car,
such as the blue waypoints shown in Fig. 2. Note that
pA and pB should never be removed, and just as in the
example shown in Fig. 2(b), the purple waypoints should
also not be removed in order to avoid severe alterations
in the trajectory. Intuitively, this transformation should
now result in similar performance measurements. We can
therefore define the following output relations for TTD
and TTO:

TTD(move(P,′ pA, pB , S,O))

� TTD(move(P, pA, pB , S,O)) MR4TTD

TTO(move(P,′ pA, pB , S,O))

� TTO(move(P, pA, pB , S,O)) MR4TTO.

4) Experimental Setup: This empirical evaluation is based
on short-scenario test cases, which have a duration of 2 min
(simulation time) on average. Source test cases were randomly
generated from a template project of a city modeled in Simulink,
which includes the ego car and two additional cars, which can act
as obstacles. This city’s map contains 51 guidance points for the
navigation system, each of which is a joint between roads. For
each generated test case, we selected two random points: a) pA;

13

and b)pB , and a random trajectory and speed for each of the other
two simulated cars (obstacles). The rest of the environmental
conditions (weather, road friction, etc.) were identical for all the
test cases. The navigation controller from the ego car calculates
the shortest path between the selected points and follows it. In
total, we generated 100 random source test cases and 600 follow-
up test cases, resulting in 100 + 600 = 700 individual test cases.
In total, there are 600 pairs of source and follow-up test cases,
300 for MRIP1, 100 for MRIP2, 100 for MRIP3, and 100 for
MRIP4.

The follow-ups for MRIP1 (faster vehicles) were gen-
erated multiplying the nominal speed value in the source
test case by a constant. In this case, we generated three
different MRs for each metric, as we used three different
constant multipliers for the speed: a) 1.1 for MR1.1; b) 1.2
for MR1.2; and c) 1.3 for MR1.3. On the other hand, the
follow-ups for MRIP2 (additional obstacles) were implemented
by adding an obstacle within the ego vehicle’s path, making
sure that it will interfere with its operation, forcing it to stop
and wait. For the implementation of MRIP3 (reversed path), the
follow-ups were generated by reversing the path to be traversed
by the vehicle. Since the pathfinding algorithm is not a part
of the system that we are testing and there is a risk that the
route calculated by swapping the initial and destination points
is different, the path for the original initial and destination
points is calculated first, and then the whole path is reversed
for the follow-up test case. Finally, the follow-ups for MRIP4
(fewer guidance points) were generated by removing 20% of the
guidance points in the path. Given the source path, 20% of the
guidance points are selected with a uniform random function and
discarded from the follow-up path, but the initial and destination
points are never selected for removal, so that the path is always
similar in both test cases. This process works for our system
because the waypoints are relatively close to each other, so the
trajectory remains very similar even if some arbitrary points are
removed.

Similarly to our previous case study, mutation testing was
used in order to assess the effectiveness of the proposed MRs.
Specifically, we created 20 faulty models (mutants) of the au-
tonomous vehicle. Most of the mutants contain a seeded fault on
the vehicle control block, as this is the main component. Some
other mutants simulate failures in sensors and other components
(e.g., bad reference speed input) instead. The faults were seeded
manually using traditional mutation operators [11], and equiv-
alent or broken models were checked for and discarded. All
the test cases were executed against the original system and the
20 mutants resulting in a total of (100 + 600)× 21 = 14700
test executions. Some of the test executions on the original
system did not terminate correctly after a timeout (i.e., the
vehicle did not stop at its destination), either due to the vehicle
not having enough time to reach its destination, or due to the
vehicle stopping too far away from the destination to trigger
the stopping condition. The corresponding test cases have been
ignored in our evaluation (including the mutant executions of
these test cases). In total, four out of 100 source test cases and
one of the follow-ups for MRIP2 did not terminate correctly, so
there are 100− 4 = 96 test pairs for every MR and mutant form

MRIP1, MRIP3, and MRIP4, and 100− 4− 1 = 95 test pairs
for MRIP2.

After some tests, we defined a threshold of 50% for MR3TTO

and MR4TTO, and a threshold of 15% for every other MR, in
order to implement approximate operators (i.e., �, �, and �).
Both of the 50% thresholds were used because the MRs can
cause unexpected changes to the performance metrics in some
cases, particularly in very short test cases (some of our test
executions were shorter than 10 s). In the case of MR3TTO,
the vehicle always drives through the right lane, which means
that if the vehicle drives through the inner lane in the source test
case, it will drive through outer lane on the follow-up, so the
sharpness of the turns will differ. As for MR4TTO, removing
some key waypoints might allow the vehicle to take a shorter
path and make smoother turns.

5) Baseline: Since there is no previously existing test oracle
for this system, we have implemented a simple threshold-based
oracle, which will raise an alarm if any of the performance
metrics drop below a certain threshold value. This oracle is a
simple version of the one proposed in [24], with the following
differences.

a) The oracle operates on global performance metrics rather
than per road sector.

b) We compute thresholds for TTD
distance and TTO

distance .
c) We do not allow any FPs when we compute the optimal

thresholds.
These characteristics ensure that the baseline is comparable

to our MRs. The thresholds cannot be calculated directly for
TTD or TTO, since both of these metrics increase as the test
execution progresses, making the thresholds dependent on how
long the test case is. This is why the thresholds are calculated
for these performance metrics over distance, where distance is
the sum of the distances between the waypoints that the vehicle
must traverse. Note that we chose to not allow any FPs in the
thresholds calculation, because our MRs are also expected to
have zero or very few FPs.

In order to compute the thresholds, we simply take the maxi-
mum values of the metrics obtained for a given test suite, which
are the minimum values that ensure no FPs, as

maxt∈T

(
TTDt

distancet

)
ThresholdTTD

maxt∈T

(
TTOt

distancet

)
ThresholdTTO

whereT are the test executions of the original system on the 1300
test cases used for our MRs (100 + 12× 100, source test-cases
plus follow-ups for all MRs), but just as for our MRs, the test
executions that did not terminate are ignored. Analogously to the
approach followed for the definition of MRs, we increased the
thresholds by 10% to allow small variations in the performance
measurements.

Table IV gives the results obtained by the baseline. The
“Tolerance” rows show the results obtained with the calculated
thresholds increased by 10%, whereas the “Perfect” rows show
the results for the exact thresholds. Note that the “Perfect” results
are the best results that can be obtained with this approach

14

TABLE IV
BASELINE RESULTS ON THE AV

TABLE V
EVALUATION RESULTS ON THE AUTONOMOUS VEHICLE

and test suite without FPs, since we use the same test suite for
calculating the thresholds and for evaluating them.

As a sanity check, we validated our test oracles by generating
and running an additional test suite of 100 random test cases
and confirming that all the performance measurements where
under the thresholds with 10% tolerance. The thresholds without
tolerance, on the other hand, resulted in FPs, indicating that they
may be too tight to be used in practice.

6) Experimental Results: This evaluation resulted in four
FPs from MR3TTO. The analysis from the corresponding test
cases revealed that all the FPs were caused by the curves having
a different sharpness when traversing them in either direction,
as explained at the end of Section IV-C4 where we discuss
the selected tolerance thresholds. Usually, such cases would be
compensated by having balanced right- and left-hand side turns,
and for short test cases, the effect would not be too significant.
The test cases resulting in FPs had a duration of around 30 s
and unbalanced right- and left-hand side curves, resulting in
an accumulated difference in the TTO, which exceeded the
tolerance threshold for the MRs. These FPs could be avoided by
increasing the tolerance threshold for this MR, or alternatively,
using only longer test cases (e.g., longer than 1 min), such that
having significantly unbalanced curves becomes very unlikely.

Regarding their effectiveness, all the proposed MRs combined
killed the 20 mutants, which means that the MS is 100%. On the
other hand, there were 964 out of 23 000 metamorphic test fail-
ures on mutants. This corresponds to an FDR of 4.19%. Recall
that, there are 20 mutants, 12 different MRs, and 100 test pairs
per MR, but the simulation did not finish in four of the source
test cases and in one of the follow-up test cases from MRIP2.
Considering this, the number of metamorphic tests on all mutants
is calculated as: 20× 12× 96− 20× 2× 1 = 23000.

Table V gives the MS, FDR, and FPs obtained by each MR,
as well as the total results for each MRIP and the total aggregate
results. Furthermore, Fig. 5 shows the number of mutants killed
by all the MRs derived from each MRIP and the intersection

Fig. 5. Mutants killed per MRIP (out of 20).

Fig. 6. Mutants killed per QoS metric (out of 20)

of mutants killed if the MRIPs are combined, and Fig. 6 shows
the mutants killed by the MRs grouped by the QoS metric they
use. The MS for each individual MR ranged from 15% to 90%,
whereas the FDR ranged from 0.31% to 14.58%.

Comparing our approach with the baseline (i.e., thresholds-
based oracle, see Section IV-C5), our MRs killed one more
mutant than even the best possible thresholds. In this case,
both approaches have the same cost, so our MRs can be con-
sidered more efficient in terms of MS. The mutant that could
not be killed with the baseline approach and our evaluation
test suite were detected by MR2TTO, MR3TTD, and MR4TTD.
On the other hand, one of the MRs did yield four FPs, while the
baseline resulted in none. Furthermore, the baseline approach
appears to obtain a better FDR than most MRs, although the
top three MRs with the best MS do obtain comparable or better
FDRs.

The analysis of the individual MRs shows that there is a great
gap between their performances regarding the evaluation metrics
we use. MR3TTD obtained both the highest MS (i.e., 90%)
and the highest FDR (i.e., 14.58%), which makes it the most
effective individual MR. On the other hand, MRIP2 seems to
be the most effective MRIP when using the TTO metric, since
the MS obtained by MR4TTO (i.e., 80%) is significantly higher
than the best MS obtained by any of the other MRs, which uses
TTO (i.e., 65%).

As for the MRs derived from MRIP1, their results are clearly
inferior to the ones obtained by MRIP2, MRIP3, and MRIP4.
They only accomplished an MS of up to 55%, and their FDRs are

15

also much lower on average. Taking a look at MRIP1 (faster vehi-
cles), we generated three different variations, where the nominal
speed increase was different (10%, 20%, and 30% faster), and we
can appreciate small differences in the result. For the MRs based
on TTO, a larger speed increase appears to slightly boost the MS
and FDR obtained by the MR without resulting in any FPs. This
makes sense, since a larger speed increase makes it harder for
the navigation controller to maneuver the vehicle if the throttle
is not properly adjusted, so excessive throttle and similar issues
are easier to detect with higher nominal speeds. On the other
hand, the effect of a larger speed increase is not so obvious for
TTD. This may be because even if the controller makes some
errors in handling the vehicle, the TTD may still improve or
remain similar because the car is moving faster, so at higher
speed increases, all but the most severe failures can be masked by
the naturally smaller TTD when using this metric. Nevertheless,
the effect on the results that different speed increases have is not
very significant compared with the differences with the results
from other MRIPs.

Ultimately, MRIP1, MRIP2, and MRIP4 seem to be redundant
based on the results from this experiment, since MRIP3 alone
can kill every mutant, and both of the MRs derived from this
pattern also have the highest (i.e., 14.58%) and second highest
(i.e., 11.98%) FDRs by a significant margin. MR2TTO is the
only other MR with comparable results. There could be failure
modes, which can only be detected with TTO, and for this metric,
MR2TTO is the most effective MR in terms of MS.

D. Discussion

In what follows, we further explore the results from both case
studies and what they tell us about the RQs.

1) RQ1: FPs: One of the main limitations of performance
testing lies in the presence of FPs. The inherent nonde-
terminism of performance measurements, the inaccuracies
of the simulators and the sensor readings and the approx-
imate nature of some CPSs algorithms may lead to some
violations of the MRs when there is no real observable failure,
resulting in false alarms. To mitigate this, we used tolerance
thresholds, under which MR violations were dismissed. Ad-
justing such thresholds required some preliminary work with
the SUTs and the MRs. We observed, for example, that some
MRs require more restrictive thresholds than others in order to
avoid FPs, while others did not seem to require any tolerance
threshold whatsoever. Finding the right balance is difficult;
higher thresholds will result in fewer FPs, but it will also
limit the failure-detection capability. In our work, we adopted
a conservative approach, mostly prioritizing the removal of FPs
over failure-detection to avoid engineers spending too much
time on manual triage. Despite this, the MSs obtained, ranging
between 88% and 100% make us confident in the feasibility of
the approach. It is worth remarking that although adjusting the
threshold requires some extra work, it is an upfront investment
that should not need to be repeated once appropriate thresholds
have been defined.

During our evaluation, we found three instances where the
proposed MRs yielded FPs in the elevation case study and

four of such instances in the autonomous driving system case
study.

For the ones related to the elevator dispatcher, two out of three
FPs actually revealed some abnormal behavior in the system.
While reporting, both of these cases would have been desirable
at some point of the development of the dispatching algorithm,
they are currently scenarios that are recognized and dismissed by
the domain experts during manual testing. Although the number
of FPs appears to be manageable, aggregating the MR violations
into specific issues, so that those already marked as “invalid”
or “wontfix” can be automatically ignored, would be desirable
in order to minimize manual checking. In order to achieve full
automation in this case, the test failures could be classified based
on the features of the test cases, similar to the approach for
detecting flaky test failures proposed by Lampel et al. [30].

As for the remaining FP from the elevation case study and the
four FPs from the autonomous driving system, they were a con-
sequence of the MRs not being fully accurate. Such properties
would ideally be implemented based on a statistical distribution
from multiple test executions, i.e., statistical MT [23], rather
than being checked over individual executions. However, this
approach may not be feasible if the cost of test executions is very
high, since collecting enough results for a meaningful statistical
analysis might not be affordable.

In view of these results, we can answer RQ1 as follows.

RQ1: Some of the MRs triggered FPs, but the number is
manageable. Some of them could be avoided by classifying
the MR violations and ignoring duplicates, while others
may require more advanced statistical techniques in order
to mitigate them.

2) RQ2: Effectiveness of Performance-Driven MT of CPSs:
Our results show that performance of MT, and in particular
MRs derived from the proposed PV pattern, are effective at
detecting failures in CPSs (with MSs of 88.76% and 95% in
our case studies), alleviating the oracle problem and enabling
a high degree of automation. Although this approach can be
relatively expensive, since MT requires multiple test executions
for the oracle, the cost is still affordable, especially when the only
alternative is manual testing. Furthermore, while the definition
of the MRs usually requires domain knowledge, we show that
very simple relations can still yield useful results. It is also
noteworthy that once defined, MRs can be reused as long as the
system specification does not change. Besides providing a fully
automated oracle for cases where a regular oracle is not feasible,
these MRs will be more resilient to hardware or configuration
changes (e.g., increasing the nominal speed of the elevators),
since the outputs of follow-up test cases are evaluated against
those observed in the source test cases [49]. This last point
is particularly important in the Elevator case study, where the
SUT will be deployed into many installations with significantly
different configurations.

It is also worth noting that the experiments presented in this
article use random testing, which is the simplest and most naive
approach. The use of more sophisticated technique for the source

16

test case generation could surely improve the cost-effectiveness
of the presented approach (better FDR and MS).

As for the comparison with the baselines, the proposed ap-
proach beat them in both cases in terms of MS, showing that
MT can identify failure modes that are difficult to detect with
regular oracles. Nevertheless, some of the MRs did result in
some FPs, whereas the baseline approaches had none. These FPs
would result in some unnecessary efforts from the test engineers.
Furthermore, comparing the FDRs from the autonomous driving
system case study shows that the baseline oracles detect more
failures than most MRs on the same test suite. Nevertheless, the
MRs with the highest MS have similar or better FDRs than the
baseline. Overall, the MRs appear to be more effective as long
as the cost of tolerating some FPs is acceptable. Beyond the
evaluation metrics, it is worth noting that the MRs are much more
flexible regarding changes to the systems. For instance, if the
nominal speed of the elevators or the autonomous vehicle were
to change, the proposed MRs would still be valid as they are,
whereas the baseline approaches would require new reference
executions.

In view of these results, we can answer RQ2 as follows.

RQ2: Performance MT, and in particular MRs derived
from the proposed PV pattern, are effective at detecting nine
out of every ten faults in CPSs, alleviating the oracle problem
and achieving a high degree of automation. This approach
shows clear benefits over automated regression test oracles.

3) RQ3: Differences in the Performance of the MRIPs and
Performance Metrics: We observed significantly different per-
formance among the proposed MRs in terms of failure-detection
capability. In fact, we observed that some of the relations are
largely subsumed by others. A similar observation was made
when comparing the results of MRs grouped by MRIP or per-
formance metric.

In the elevation case study, we found that one of the MRIPs
obtained the best overall results by a great margin, whereas
the rest could only make relatively modest contributions to
failure detection. However, some of the other MRs also obtained
outstanding results for specific evaluation metrics and are still
able to complement the results from the best MRIP.

As for the autonomous navigation system, we found that one
of the MRIPs completely dominated the others in our evaluation.
Nevertheless, some of the MRs derived from the other MRIPs
still achieved good results and might not be redundant for
detecting some failure modes not considered in our evaluation,
so keeping them would still be reasonable.

Generally, the best results seem to be obtained when com-
bining specific MRIPs and performance metrics, and all of the
performance metrics seemed to be able to achieve good results
when combined with the right MRIP in both case studies, so
none of them can be said to be useless. Finding the effectiveness
of each MR and identifying redundant ones require an extensive
evaluation of all of them, ideally performed with real test cases
from the SUT, or otherwise by using techniques, such as mu-
tation testing. Before such an evaluation is performed, in-line

with the results in the field of MT [35], we advocate for defining
diverse relations in terms of input changes and performance
metrics.

In view of these results, we can answer RQ3 as follows.

RQ3: Some MRIPs and QoS metrics perform significantly
better than others. In-line with previous results in MT, MRs
should be as diverse as possible.

V. THREATS TO VALIDITY

In this section, we describe the sources of internal and external
validity threats, which may have influenced our work, and how
they have been mitigated.

A. Internal Validity

Internal validity threats are related to issues that might have
affected the results of our evaluation. A potential threat for our
experiments is that amount of mutants employed might have
been too small. For the autonomous driving system, the amount
of mutants we employ is similar to other studies where Simulink
models are used [4], [34], [38]. As for the elevation case study,
we have employed an even larger set of mutants, at the cost of
approximately a month of execution time. Furthermore, we also
checked for equivalent mutants, as recommended by Papadakis
et al. [43], [44].

It is also worth noting that we employed manual fault seeding
in order to generate the mutants. Unfortunately, the dispatcher
needs to be compiled with a specific toolchain in order to make
it compatible with the simulator, which prevented us from using
existing mutation testing tools.

B. External Validity

The external validity threats are related to the generalizability
of the results obtained from the experiments. In this work, we
evaluate the application of the PV pattern in two case studies,
which may not be enough to conclude its effectiveness for CPSs
in general. Nevertheless, both of our case studies are highly
complex systems, and they both have significantly different
characteristics. Furthermore, the elevation case study employs
a real-world industrial CPS, which is used in most of the multi-
elevator installations deployed by Orona.

On the other hand, the manual step of defining effective MRs
may be too complex for some types of systems, which might
make this approach unfeasible in practice. In this work, we
deliberately present and evaluate minimal MRs, which only
consider a limited set of inputs and a single output metric in
order to demonstrate that this approach can yield useful results
in complex systems with relatively simple MRs.

VI. RELATED WORK

A. Metamorphic Testing

In our previous work, we proposed the use of MRs based
on domain-specific performance metrics to test multielevator
systems [5], and we present experimental results with new

17

MRs for this case study in Section IV-B. Furthermore, we also
presented a work in progress version of the the autonomous
driving system experiment from Section IV-C [58].

Regarding autonomous vehicle systems, various MRs have
already been applied to several types of vehicles. Lindvall
et al. [33] proposed several MRs for model-based testing of
the autonomous drone controller. In their approach, they em-
ployed input transformations similar to the ones we use for our
autonomous driving system case study, such as altering the path
of the vehicle in a way which should not affect the outcome or
modifying the obstacles in the vehicle’s path. As for self-driving
cars, many approaches have employed input transformations,
which simulate different driving conditions (e.g., clear day
versus rain) in order to detect erroneous behavior [55], [66].
However, our work presents the novel approach of using output
relations based on the performance metrics of the system, as
opposed to checking the internal state or the outputs of the
system.

An early precedent of performance-based MR can be found
in [14], where the testing of a wireless sensor network appli-
cation was performed by comparing the power consumption
of multiple nodes for an equivalent computation. This MR
is designed to detect bugs in the software, which may cause
excessive power consumption, i.e., nonfunctional failures.

More recently, the concept of performance MT was pre-
sented in [49], where several MRs, which follow a similar
pattern, were proposed to search for and identify nonfunctional
failures on a system. In that work, they proposed MRs for
general applications and web browsers based on the execu-
tion time, memory usage, and energy consumption of the test
cases. In contrast, we propose the use of MRs following this
pattern not only as a means to detect nonfunctional failures,
but also in order to identify potential functional failures from
the violation of these properties, and we apply this approach
in the domain of autonomous driving and elevator control
systems.

Performance MT has already been applied in the context
of software testing. In [26], an MR based on the statistical
distribution of page load times was used in order to discover
a race condition in the Adobe Launch Tag Manager. However,
our work is one of the first to apply such MRs in the domain of
CPSs.

B. Testing CPSs

Testing is the main technique used by developers to verify that
CPSs achieve an acceptable level of conformance and reliability.
As a result, in the last few years, the scientific community has
focused on devising novel techniques for automated and scalable
CPSs testing, some of which aim to alleviate the test oracle
problem.

Menghi et al. [39] proposed a method to generate online
test oracles for Simulink models based on a set of proper-
ties expressed in signal temporal logic. Boufaied et al. [12]
defined signal-based properties of CPSs, which can be used
for the definition of test oracles. We have previously proposed
the application of MT in the context of an industrial CPS in

order to automatically test elevator dispatching algorithms [5].
This technique has also been used to test other CPSs, such as
autonomous vehicles [66], but its application in this domain
remains largely unexplored. In this work, we propose an MR
pattern to facilitate the adoption of performance-based MT for
CPSs.

Besides MT, an alternative approach to alleviate the test oracle
problem is to employ machine learning techniques in order to
predict the outputs or learn invariants of the CPS under test [10].
Chen et al. [18] employed traces from normal and abnormal
(with seeded software faults) system executions in order to learn
a support vector machine classifier able to detect anomalous be-
haviors in a water purification plant testbed. Shahamiri et al. [52]
presented an approach to derive test oracles by using artificial
neural networks (ANNs). This approach consists in training an
ANN for every output of the system and using the predicted
outputs as a reference to evaluate the real system outputs.
The verdict from the ANN oracle is calculated as the mean
squared error between the real and predicted outputs, which
means that the oracle can calculate quantitative verdicts [52].
We also proposed the application of machine learning algorithms
to alleviate the test oracle problem in the domain of elevation,
both for functional [3] as well as nonfunctional faults [22].
Other domain-specific approaches based on machine learning
have also been proposed, such as an unsupervised approach
for autonomous vehicles testing [54]. Another approach for
the autonomous vehicle domain is performing a human study
to find the correlation between the quality metrics used in the
domain and the human perception of driving quality, which can
then be used to generate test oracles that approximate human
oracles [24].

VII. CONCLUSION

In this article, we presented a performance-driven MT ap-
proach for CPSs. Specifically, we proposed a novel MR pattern,
PV, which encourages testers to exploit input changes with
a predictable impact in the system performance. In practice,
the PV pattern eases the identification of performance MRs in
CPSs, alleviating the test oracle problem. For the evaluation, we
assessed the effectiveness of MRs derived from the PV pattern
in detecting failures in an industrial elevator dispatcher and an
open-source autonomous car by using seeded faults. Results
showed that MRs derived from the PV pattern are effective in
detecting 88.76% and 100% of the seeded faults, respectively,
keeping the number of FPs at no more than 4%. The definition
of the MRs and their implementation is a costly endeavour,
but it pays off because the oracles are highly reusable. Poten-
tial lines of future work include, on the one hand, evaluating
the cost-effectiveness of this approach when combined with
more efficient test case generation, selection, or prioritization
techniques, which would be more representative of its full poten-
tial. On the other hand, there are several aspects of this approach
that could be further automated. One of them is the identification
of the MRs themselves, which could be automated by defining
generic templates for PV, similarly to how the approach in [57]
identifies MRs for model transformations, or even generated by

18

an evolutionary algorithm based on a dataset of test executions
labeled as correct or incorrect [6]. Another potentially automat-
able process is the fault localization for failures detected by the
MRs, for which approaches based on metamorphic slices already
exist [61].

REFERENCES

[1] H. Agrawal et al., Des. of mutant operators for the C program. lang., Softw.
Eng. Res. Center, Dept. Comput. Sci., Purdue Univ., West Lafayette, IN,
USA, Tech. Rep., 1989.

[2] J. Ahlgren et al., “Testing web enabled simulation at scale using metamor-
phic testing,” in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng.: Softw. Eng.
Pract., 2021, pp. 140–149.

[3] A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui, and M.
Arratibel, “Using machine learning to build test oracles: An industrial
case study on elevators dispatching algorithms,” in Proc. IEEE/ACM Int.
Conf. Automat. Softw. Test, 2021, pp. 30–39.

[4] A. Arrieta, S. Wang, G. Sagardui, and L. Etxeberria, “Search-based test
case prioritization for simulation-based testing of cyber-physical system
product lines,” J. Syst. Softw., vol. 149, pp. 1–34, 2019.

[5] J. Ayerdi, S. Segura, A. Arrieta, G. Sagardui, and M. Arratibel, “Qos-aware
metamorphic testing: An elevation case study,” in Proc. IEEE 31st Int.
Symp. Softw. Rel. Eng., 2020, pp. 104–114.

[6] J. Ayerdi, V. Terragni, A. Arrieta, P. Tonella, G. Sagardui, and M.
Arratibel, “Generating metamorphic relations for cyber-physical systems
with genetic programming: An industrial case study,” in Proc. 29th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2021,
pp. 1264–1274.

[7] J. Ayerdi, P. Valle, S. Segura, A. Arrieta, G. Sagardui, and M.
Arratibel, “Replication package for the autonomous driving system,” Ac-
cessed: Jul. 2022. [Online]. Available: https://github.com/pablovalle/MT-
AutonomousVehicle

[8] R. Baheti and H. Gill, “Cyber-physical systems,” Impact Control Technol.,
vol. 12, no. 1, pp. 161–166, 2011.

[9] G. Barney and L. Al-Sharif, Elevator Traffic Handbook: Theory and
Practice. Evanston, IL, USA: Routledge, 2015.

[10] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE Trans. Softw. Eng., vol. 41,
no. 5, pp. 507–525, May 2015.

[11] T. Nguyen et al., “Mutation operators for simulink models,” in Proc. 4th
Int. Conf. Knowl. Syst. Eng., 2012, pp. 54–59.

[12] C. Boufaied, M. Jukss, D. Bianculli, L. C. Briand, and Y. I. Parache,
“Signal-based properties of cyber-physical systems: Taxonomy and logic-
based characterization,” J. Syst. Softw., vol. 174, 2021, Art. no. 110881.

[13] M. Boussaa, O. Barais, G. Sunyé, and B. Baudry, “Leveraging meta-
morphic testing to automatically detect inconsistencies in code generator
families,” Soft. Testing, Verification. Rel., vol. 30, no. 1, 2020, Art. no.
e1721.

[14] W. K. Chan et al., “Towards the testing of power-aware software appli-
cations for wireless sensor networks,” in Proc. Int. Conf. Reliable Softw.
Technol., 2007, pp. 84–99.

[15] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A new
approach for generating next test cases,” Dept. Comput. Sci., Hong Kong
Univ. Sci. Technol., Hong Kong, Tech. Rep. HKUST-CS98-01, 1998.

[16] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou, “Case studies
on the selection of useful relations in metamorphic testing,” in Proc. 4th
Ibero-Amer. Symp. Softw. Eng. Knowl. Eng., 2004, pp. 569–583.

[17] T. Y. Chen et al., “Metamorphic testing: A review of challenges and
opportunities,” ACM Comput. Surv., vol. 51, no. 1, pp. 1–27, Jan. 2018.

[18] Y. Chen, C. M. Poskitt, and J. Sun, “Learning from mutants: Using code
mutation to learn and monitor invariants of a cyber-physical system,” in
Proc. IEEE Symp. Secur. Privacy, 2018, pp. 648–660.

[19] Y. Dajsuren, M. G. J. van den Brand, A. Serebrenik, and S. Roubtsov,
“Simulink models are also software: Modularity assessment,” in Proc. 9th
Int. ACM Sigsoft Conf. Qual. Softw. Architectures, 2013, pp. 99–106.

[20] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-testable pro-
grams,” in Proc. ACM’81 Conf., 1981, pp. 254–257.

[21] A. F. Donaldson, “Metamorphic testing of android graphics drivers,”
in Proc. IEEE/ACM 4th Int. Workshop Metamorphic Testing, 2019,
doi: 10.1109/MET.2019.00008.

[22] A. Gartziandia, A. Arrieta, A. Agirre, G. Sagardui, and M. Arratibel,
“Using regression learners to predict performance problems on software
updates: A case study on elevators dispatching algorithms,” in Proc. 36th
Annu. ACM Symp. Appl. Comput., 2021, pp. 135–144.

[23] R. Guderlei and J. Mayer, “Statistical metamorphic testing testing pro-
grams with random output by means of statistical hypothesis tests and
metamorphic testing,” in Proc. IEEE 7th Int. Conf. Qual. Softw., 2007,
pp. 404–409.

[24] G. Jahangirova, A. Stocco, and P. Tonella, “Quality metrics and oracles for
autonomous vehicles testing,” in Proc. IEEE 14th Int. Conf. Softw. Testing,
Validation Verification, 2021, pp. 194–204.

[25] J. C. Jensen, D. H. Chang, and E. A. Lee, “A model-based design method-
ology for cyber-physical systems,” in Proc. IEEE 7th Int. Wirel. Commun.
Mobile Comput. Conf., 2011, pp. 1666–1671.

[26] O. Johnston, D. Jarman, J. Berry, Z. Q. Zhou, and T. Y. Chen, “Meta-
morphic relations for detection of performance anomalies,” in Proc.
IEEE/ACM 4th Int. Workshop Metamorphic Testing, 2019, pp. 63–69.

[27] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G.
Fraser, “Are mutants a valid substitute for real faults in software test-
ing,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014,
pp. 654–665.

[28] A. Kane, T. Fuhrman, and P. Koopman, “Monitor based oracles for cyber-
physical system testing: Practical experience report,” in Proc. 44th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2014, pp. 148–155.

[29] S. K. Khaitan and J. D. McCalley, “Design techniques and applications of
cyberphysical systems: A survey,” IEEE Syst. J., vol. 9, no. 2, pp 350–365,
Jun. 2015.

[30] J. Lampel, S. Just, S. Apel, and A. Zeller, “When life gives you oranges:
Detecting and diagnosing intermittent job failures at Mozilla,” in Proc.
29th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
2021, pp. 1381–1392.

[31] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-
Physical Systems Approach. Cambridge, MA, USA: MIT Press, 2016.

[32] Peters Research Limited, “Elevate,” Accessed: Jun. 2021. [Online]. Avail-
able: https://peters-research.com

[33] M. Lindvall, A. Porter, G. Magnusson, and C. Schulze, “Metamorphic
model-based testing of autonomous systems,” in Proc. IEEE/ACM 2nd
Int. Workshop Metamorphic Testing, 2017, pp. 35–41.

[34] B. Liu, S. Nejati, and L. C. Briand, “Improving fault localization for
Simulink models using search-based testing and prediction models,” in
Proc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reengineering, 2017,
pp. 359–370.

[35] H. Liu, F-C. Kuo, D. Towey, and T. Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem,” IEEE Trans. Softw.
Eng., vol. 40, no. 1, pp. 4–22, Jan. 2014.

[36] MathWorks, “MATLAB/Simulink,” Accessed: Jun. 2021. [Online]. Avail-
able: https://www.mathworks.com/products/simulink.html

[37] MathWorks Student Competitions Team, “Mathworks/vehicle-pure-
pursuit,” 2022, Accessed: Jul. 2022. [Online]. Available: https://github.
com/mathworks/vehicle-pure-pursuit

[38] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Test generation
and test prioritization for Simulink models with dynamic behavior,” IEEE
Trans. Softw. Eng., vol. 45, no. 9, pp. 919–944, Sep. 2019.

[39] C. Menghi, S. Nejati, K. Gaaloul, and L. C. Briand, “Generating automated
and online test oracles for Simulink models with continuous and uncertain
behaviors,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2019, pp. 27–38 .

[40] C. Murphy, K. Shen, and G. Kaiser, “Automatic system testing of programs
without test oracles,” in Proc. 8th Int. Symp. Softw. Testing Anal., 2009,
pp. 189–200 .

[41] Orona, “Orona group,” Accessed: Jul. 2022. [Online]. Available: https:
//www.orona-group.com/

[42] Open Source Modelica Consortium (OSMC), “Openmodelica,” Accessed:
Jul. 2022. [Online]. Available: https://www.openmodelica.org/

[43] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats to
the validity of mutation-based test assessment,” in Proc. 25th Int. Symp.
Softw. Testing Anal., 2016, pp. 354–365 .

[44] M. Papadakis, Y. Jia, M. Harman, and Y. L. Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in Proc. IEEE/ACM 37th IEEE
Int. Conf. Softw. Eng., 2015, pp. 936–946.

[45] S. Segura, “Metamorphic testing: Challenges ahead (keynote speech),” in
Proc. 3 rd Int. Workshop Metamorphic Testing, 2018, pp. 1–4.

[46] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey on
metamorphic testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp 805–824,
Sep. 2016.

[47] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
testing of RESTful web APIs,” IEEE Trans. Softw. Eng., vol. 44, no. 11,
pp. 1083–1099, Nov. 2018.

https://github.com/pablovalle/MT-AutonomousVehicle
https://github.com/pablovalle/MT-AutonomousVehicle
https://dx.doi.org/10.1109/MET.2019.00008
https://peters-research.com
https://www.mathworks.com/products/simulink.html
https://github.com/mathworks/vehicle-pure-pursuit
https://github.com/mathworks/vehicle-pure-pursuit
https://www.orona-group.com/
https://www.orona-group.com/
https://www.openmodelica.org/

19

[48] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen, “Metamorphic test-
ing: Testing the untestable,” IEEE Softw., vol. 37, no. 3, pp. 46–53,
May/Jun. 2020.

[49] S. Segura, J. Troya, A. Durán, and A. Ruiz-Cortés, “Performance meta-
morphic testing: Motivation and challenges,” in Proc. IEEE/ACM 39th
Int. Conf. Softw. Eng.: New Ideas Emerg. Technol. Results Track, 2017,
pp. 7–10 .

[50] S. Segura, A. Durán, J. Troya, and A. Ruiz-Cortés, “Metamorphic relation
patterns for query-based systems,” in Proc. IEEE/ACM 4th Int. Workshop
Metamorphic Testing, 2019, pp. 24–31.

[51] S. Segura, J. Troya, A. Durán, and A. Ruiz-Cortés, “Performance meta-
morphic testing: A proof of concept,” Inf. Softw. Technol., vol. 98, pp. 1–4,
2018.

[52] S. R. Shahamiri, W. M. N. Wan-Kadir, S. Ibrahim, and S. Z. M. Hashim,
“Artificial neural networks as multi-networks automated test oracle,” Au-
tomated Softw. Eng., vol. 19, no. 3, pp. 303–334, 2012.

[53] N. Srinivas, N. Panditi, S. Schmidt, and R. Garrelfs, “Mil/sil/pil
approach a new paradigm in model based development,” 2022, Accessed:
Jul. 2022. [Online]. Available: https://www.mathworks.com/content/dam/
mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-
2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf

[54] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour prediction
for autonomous driving systems,” in Proc. ACM/IEEE 42nd Int. Conf.
Softw. Eng., 2020, pp. 359–371.

[55] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proc. 40th Int. Conf.
Softw. Eng., 2018, pp. 303–314.

[56] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues,
“Crashing simulated planes is cheap: Can simulation detect robotics bugs
early,” in Proc. IEEE 11th Int. Conf. Softw. Testing, Verification Validation,
2018, pp. 331–342.

[57] J. Troya, S. Segura, and A. Ruiz-Cortés, “Automated inference of likely
metamorphic relations for model transformations,” J. Syst. Softw., vol. 136,
pp. 188–208, 2018.

[58] P. Valle, “Metamorphic testing of autonomous vehicles: A case study on
simulink,” in Proc. IEEE/ACM 43 rd Int. Conf. Softw. Eng.: Companion
Proc., 2021, pp. 105–107.

[59] E. J. Weyuker, “On testing non-testable programs,” Comput. J., vol. 25,
no. 4, pp 465–470, 1982.

[60] C. Wu, L. Sun, and Z. Q. Zhou, “The impact of a dot: Case studies of a
noise metamorphic relation pattern,” in Proc. IEEE/ACM 4th Int. Workshop
Metamorphic Testing, 2019, pp. 17–23.

[61] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu, “Metamorphic slice: An
application in spectrum-based fault localization,” Inf. Softw. Technol.,
vol. 55, no. 5, pp. 866–879, 2013.

[62] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Softw. Testing, Verification Rel., vol. 22, no. 2,
pp. 67–120, 2012.

[63] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, “Uncertainty-wise
cyber-physical system test modeling,” Softw. Syst. Model., vol. 18, no. 2,
pp. 1379–1418, 2019.

[64] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:
GAN-based metamorphic testing and input validation framework for au-
tonomous driving systems,” in Proc. 33 rd IEEE/ACM Int. Conf. Automated
Softw. Eng., 2018, pp. 132–142.

[65] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Trans. Softw. Eng.,
vol. 46, no. 10, pp. 1120–1154, Oct. 2020.

[66] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,” Commun.
ACM, vol. 62, pp. 61–67, 2019.

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

