1,310 research outputs found

    Oil price forecasting using gene expression programming and artificial neural networks

    Get PDF
    This study aims to forecast oil prices using evolutionary techniques such as gene expression programming (GEP) and artificial neural network (NN) models to predict oil prices over the period from January 2, 1986 to June 12, 2012. Autoregressive integrated moving average (ARIMA) models are employed to benchmark evolutionary models. The results reveal that the GEP technique outperforms traditional statistical techniques in predicting oil prices. Further, the GEP model outperforms the NN and the ARIMA models in terms of the mean squared error, the root mean squared error and the mean absolute error. Finally, the GEP model also has the highest explanatory power as measured by the R-squared statistic. The results of this study have important implications for both theory and practice

    Adapting Prosody in a Text-to-Speech System

    Get PDF

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    Convolutional and Deep Learning based techniques for Time Series Ordinal Classification

    Full text link
    Time Series Classification (TSC) covers the supervised learning problem where input data is provided in the form of series of values observed through repeated measurements over time, and whose objective is to predict the category to which they belong. When the class values are ordinal, classifiers that take this into account can perform better than nominal classifiers. Time Series Ordinal Classification (TSOC) is the field covering this gap, yet unexplored in the literature. There are a wide range of time series problems showing an ordered label structure, and TSC techniques that ignore the order relationship discard useful information. Hence, this paper presents a first benchmarking of TSOC methodologies, exploiting the ordering of the target labels to boost the performance of current TSC state-of-the-art. Both convolutional- and deep learning-based methodologies (among the best performing alternatives for nominal TSC) are adapted for TSOC. For the experiments, a selection of 18 ordinal problems from two well-known archives has been made. In this way, this paper contributes to the establishment of the state-of-the-art in TSOC. The results obtained by ordinal versions are found to be significantly better than current nominal TSC techniques in terms of ordinal performance metrics, outlining the importance of considering the ordering of the labels when dealing with this kind of problems.Comment: 13 pages, 9 figures, 3 table

    A novel framework for predicting patients at risk of readmission

    Get PDF
    Uncertainty in decision-making for patients’ risk of re-admission arises due to non-uniform data and lack of knowledge in health system variables. The knowledge of the impact of risk factors will provide clinicians better decision-making and in reducing the number of patients admitted to the hospital. Traditional approaches are not capable to account for the uncertain nature of risk of hospital re-admissions. More problems arise due to large amount of uncertain information. Patients can be at high, medium or low risk of re-admission, and these strata have ill-defined boundaries. We believe that our model that adapts fuzzy regression method will start a novel approach to handle uncertain data, uncertain relationships between health system variables and the risk of re-admission. Because of nature of ill-defined boundaries of risk bands, this approach does allow the clinicians to target individuals at boundaries. Targeting individuals at boundaries and providing them proper care may provide some ability to move patients from high risk to low risk band. In developing this algorithm, we aimed to help potential users to assess the patients for various risk score thresholds and avoid readmission of high risk patients with proper interventions. A model for predicting patients at high risk of re-admission will enable interventions to be targeted before costs have been incurred and health status have deteriorated. A risk score cut off level would flag patients and result in net savings where intervention costs are much higher per patient. Preventing hospital re-admissions is important for patients, and our algorithm may also impact hospital income

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Automatic Extraction of Ordinary Differential Equations from Data: Sparse Regression Tools for System Identification

    Get PDF
    Studying nonlinear systems across engineering, physics, economics, biology, and chemistry often hinges upon successfully discovering their underlying dynamics. However, despite the abundance of data in today's world, a complete comprehension of these governing equations often remains elusive, posing a significant challenge. Traditional system identification methods for building mathematical models to describe these dynamics can be time-consuming, error-prone, and limited by data availability. This thesis presents three comprehensive strategies to address these challenges and automate model discovery. The procedures outlined here employ classic statistical and machine learning methods, such as signal filtering, sparse regression, bootstrap sampling, Bayesian inference, and unsupervised learning algorithms, to capture complex and nonlinear relationships in data. Building on these foundational techniques, the proposed processes offer a reliable and efficient approach to identifying models of ordinary differential equations from data, differing from and complementing existing frameworks. The results presented here provide rigorous benchmarking against state-of-the-art algorithms, demonstrating the proposed methods' effectiveness in model discovery and highlighting the potential for discovering governing equations across applications such as weather forecasting, chemical reaction and electrical circuit modelling, and predator-prey dynamics. These methods can aid in solving critical decision-making problems, including optimising resource allocation, predicting system failures, and facilitating adaptive control in various domains. Ultimately, the strategies developed in this thesis are designed to integrate seamlessly into current workflows, thereby promoting data-driven decision-making and enhancing understanding of complex system dynamics
    corecore