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Abstract

Studying nonlinear systems across engineering, physics, economics, biology, and
chemistry often hinges upon successfully discovering their underlying dynamics.
However, despite the abundance of data in today’s world, a complete comprehen-
sion of these governing equations often remains elusive, posing a significant chal-
lenge. Traditional system identification methods for building mathematical models
to describe these dynamics can be time-consuming, error-prone, and limited by
data availability. This thesis presents three comprehensive strategies to address
these challenges and automate model discovery. The procedures outlined here em-
ploy classic statistical and machine learning methods, such as signal filtering, sparse
regression, bootstrap sampling, Bayesian inference, and unsupervised learning al-
gorithms, to capture complex and nonlinear relationships in data. Building on
these foundational techniques, the proposed processes offer a reliable and efficient
approach to identifying models of ordinary differential equations from data, differ-
ing from and complementing existing frameworks. The results presented here pro-
vide rigorous benchmarking against state-of-the-art algorithms, demonstrating the
proposed methods’ effectiveness in model discovery and highlighting the potential
for discovering governing equations across applications such as weather forecast-
ing, chemical reaction and electrical circuit modelling, and predator-prey dynamics.
These methods can aid in solving critical decision-making problems, including op-
timising resource allocation, predicting system failures, and facilitating adaptive
control in various domains. Ultimately, the strategies developed in this thesis are
designed to integrate seamlessly into current workflows, thereby promoting data-
driven decision-making and enhancing understanding of complex system dynamics.
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CHAPTER 1

Introduction

1.1 Background

In the modern era of data-centric engineering, machine learning and data science are

improving practices across various domains, such as materials science [1–4], manufac-

turing [5–7], operations [8, 9], control [10–15], and construction [16, 17]. Engineers

employ machine learning algorithms to build prediction models from empirical data

that enhance the dependability, safety, and efficiency of real-world systems. More-

over, these mathematical models are pivotal in describing the governing dynamics

of natural phenomena [18]. From studying turbulent flow in aeronautics [19–21], ex-

ploring the connectivity of the brain in biological engineering [22–24], and explaining

the actions of financial markets [25–27], machine learning is driving advancements

in many diverse areas. Furthermore, its significant impact has drawn the attention

of leading research institutions worldwide.

Led by forward-thinking individuals, The Alan Turing Institute in the United

Kingdom has established research programmes to harness the power of machine

learning and data science and revolutionise data-centric engineering [28]. The ver-

satility of these methods is evidenced by their application in smart city develop-
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ment [29–31], where they have been used to optimise urban mobility [32, 33], energy

consumption [34–36], waste management [37–39], and air quality [40–42].

One process gaining popularity within data-centric engineering is system iden-

tification. This crucial framework focuses on deriving governing equations through

an inverse problem procedure [43, 44]. By directly examining observational data,

engineers leverage statistical theory to assess the predictive capabilities of several po-

tential models. After rigorous evaluation, these engineers can determine the optimal

mathematical representation of the underlying system [45]. Machine learning has

been instrumental in enhancing system identification processes, as it facilitates the

determination of symbolic terms that describe complex dynamics from data [46–49].

Integrating statistical inference with machine learning algorithms has led to a

new paradigm in the field, prompting scientists and engineers to focus on assessing

and developing more optimal prediction models. These tools have demonstrated the

ability to learn the underlying patterns and relationships in large data sets, examin-

ing observations generated by a system and recognising their defining features [50–

52]. Furthermore, these methods offer a rigorous approach to model selection and

parameter estimation, reducing potential biases in the identification process [44].

Despite significant progress in identifying differential equations with symbolic

regression [53–56] and probabilistic methods [48, 57–59], as well as optimising pre-

dictions with deep learning [7, 60, 61] and compressive sensing [62], challenges in

interpreting these models persist [63]. However, as the field of system identification

advances, sparse regression has shown promise, empowering engineers to perform

variable selection and identify the governing equations that describe the behaviour

of complex dynamics [46, 64–66]. This approach, grounded in statistics, has the

potential to lead to faster and more accurate discoveries across various disciplines,

incentivising scientists and engineers to evaluate their models more carefully and

ensure the assumptions of these techniques and their predictions align with the ob-

served data. Furthermore, these methods can lead to the automation of the model

discovery process, which can enhance efficiency, scalability, and reproducibility and

facilitate the optimisation of the parameters of a given dynamical system [18].

This thesis aims to contribute to the growing trend of automating the discovery
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of underlying equations governing system dynamics from data by combining sparse

regression with bootstrap sampling, Bayesian methods, and clustering algorithms.

Unlike previous strategies that have implemented sparse regression [46, 64, 67, 68],

the methods here enable engineers to effectively adapt to different forms of ordi-

nary differential equations without requiring any manual tuning parameters. Fur-

thermore, the inference-based processes proposed here advance the field of system

identification by solving the inverse problem reliably with classic model assessment

methods. Ultimately, these developments will hopefully shape the future of scien-

tific methods for automatically discovering elusive laws describing many intricate

systems.

1.2 Motivation

Throughout my academic career, I have cultivated a fervent interest in statistical and

machine learning applications, consistently exploring avenues to harness these tools

for societal betterment. My journey began with the intention to model the spatial

and temporal usage behaviour of electric vehicle (EV) charging stations. Reliable

models in this domain promise to aid cities in strategically placing new stations,

reducing user waiting times, and promoting electric vehicle adoption—leading to

decreased greenhouse gas emissions.

However, I faced two critical challenges: limited data and, importantly, a need

for a novel, automated approach to system identification. The availability of com-

prehensive, high-quality data on EV charging station usage patterns was restricted,

which posed difficulties in developing predictive models that were both accurate

and reliable. Additionally, I quickly realised that even if I could obtain such data,

the behaviour of EV users is governed by a myriad of factors, both predictable

(like battery capacity or charging station distribution) and unpredictable (like user

preference or unforeseen events). This complexity led me to an important insight:

instead of directly predicting the behaviour, why not first identify the underlying

dynamical system governing it?

This pivot in research direction opened up the field to even more opportunities.
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Dynamical systems were not confined to understanding EV charging stations but

spanned various critical domains such as drug discovery, autonomous machines, epi-

demiology, and more. My refined research motivation thus became clear: to unearth,

understand, and automate the discovery of these governing dynamical systems that

dictate behaviours across diverse fields. The broader implications were thrilling: an

automated, reliable method to uncover these systems could revolutionise how vari-

ous sectors approach challenges that involve better understanding processes within

data.

Traditional system identification relies heavily on domain-specific expertise, often

making it labour-intensive and less generalisable. In contrast, my thesis aspires

to contribute to the automation of this process, harnessing the power of machine

learning and statistics. This endeavour is not just about the EVs but about providing

a toolkit to the scientific community to better understand and predict phenomena

in fields as diverse as physics, chemistry, biology, neuroscience, and environmental

science.

We can unlock the potential to predict behaviours across many real-world sys-

tems by elucidating and offering algorithms that can automatically deduce governing

equations. Such advancements are academically fascinating and can drive practical

benefits, especially when data is scarce or hard to obtain. Therefore, my work’s vi-

sion is dual-layered: firstly, to drive advancements in system identification through

machine learning and to motivate researchers from various disciplines to employ

these innovations, refining their methodologies and fostering enhanced discoveries.

1.3 Thesis Structure

This dissertation presents the development of innovative computational machine

learning tools for automating the discovery of dynamical systems from data. The

structure of this work addresses a series of fundamental research questions, each

leading to the next, ensuring clarity of purpose and highlighting the novelty of the

proposed methodologies.

1. Chapter 2 (Literature Review):
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What existing statistical methods form the foundation for automating the dis-

covery of dynamical systems?

This chapter provides a comprehensive review of statistical and machine learn-

ing methods, emphasising regression methodologies, unsupervised learning al-

gorithms, and system identification techniques, all as the groundwork for the

research presented herein.

2. Chapter 3 (Automatic Regression for Governing Equations (AR-

GOS)):

How can model discovery of ordinary differential equations be advanced by

integrating sparse regression with statistical inference?

A novel frequentist approach for advancing the field with sparse regression

is introduced, demonstrating its superiority over state-of-the-art implementa-

tions for model discovery.

3. Chapter 4 (Adaptive SINDy (ASINDy)):

How can clustering-based algorithms refine and enhance the sparse identifica-

tion of nonlinear dynamics?

The chapter presents Adaptive-SINDy (ASINDy), an extension of the sparse

identification of nonlinear dynamics approach that harnesses clustering method-

ologies to automatically discern the optimal thresholding parameter, showcas-

ing discernible enhancements over traditional mechanisms.

4. Chapter 5 (Automatic regression for governing equations with Bayesian

Inference (ARGOS-BI)):

How can integrating Bayesian methods into the ARGOS methodology lead to

improved system identification?

With a Bayesian perspective, this chapter augments the ARGOS method,

yielding robust results against noise, optimising efficiency, and demonstrating

successful system identification with fewer data samples.

5. Chapter 6 (Conclusion):
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How has this thesis advanced the field of system identification, and what av-

enues have been highlighted for upcoming investigations?

This chapter amalgamates the pioneering methodologies propounded, illumi-

nating the strides in data-driven system identification and paving avenues for

ensuing research endeavours.

After establishing the foundational principles in the literature review, Chapter 3

introduces ARGOS. The chapter sheds light on ARGOS’ enhanced performance in

system identification through sparse regression, focusing on its resistance to noise

and the employment of bootstrap sampling for effective variable selection from tem-

poral data sets.

Chapter 4 outlines the Adaptive-SINDy (ASINDy) method, an innovative clustering-

based approach to enhance sparse identification. It offers an inventive process for

determining the optimal sparsity-promoting parameters, showcasing its efficacy over

traditional mechanisms.

In Chapter 5, the ARGOS approach is reimagined through a Bayesian lens.

Unlike the frequentist bootstrap sampling approach, Bayesian regression is applied

to determine the optimal prediction model from credible posterior intervals. This

method provides the added benefit of increasing efficiency while displaying more

noise-robust results and requiring fewer observations to identify the underlying sys-

tem. Moreover, the chapter develops a comparison with a similar extension of the

sparse identification of nonlinear dynamics, which implements an ensembling proce-

dure.

Central to this dissertation is a novel systematic analysis dedicated to evaluat-

ing the efficacy of each algorithm in automatically discovering nonlinear systems

from data. The process expands ordinary differential equations using random ini-

tial conditions, thereby allowing for a more general representation of the ability of

each algorithm rather than studying the results of a method for one data set. Two

distinct test sets have been instituted to ascertain the data quality and quantity

essential for optimising each algorithm’s performance, focusing on increasing the

number of observations and modulating the signal-to-noise ratio.

The concluding chapter summarises the methodologies discussed, illuminating
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the advances in data-driven system identification. The culmination of this research

offers the engineering community new horizons for data exploration, embodying

significant contributions to automating model discovery.

1.4 Notation

The notation in this report is similar to [50, p.10; 51,52]. As such, n represents the

number of distinct data points or observations in the sample distribution, while p

represents the number of variables for prediction, sometimes referred to as predictors.

Lowercase bold will always denote a vector of length n:

a =


a1

a2
...

an

 ,

while lowercase normal font, a, describes vectors not of length n. Here, the lowercase

normal font also defines scalars, a. If there is a situation in which these two cases are

challenging to interpret, clarity will be provided for the intended use. Bold capitals

denote label matrices, e.g., A. Regardless of their dimensions, the normal capital

font will designate random variables, e.g., A, and specify whether an object is an

r × s matrix with A ∈ Rr×s [50, p.11].

The ith observation of the jth predictor is denoted as xij, such that i = 1, 2, ..., n

and j = 1, 2, ..., p. The description of matrix X ∈ Rn×p provides xij is its (i, j)th

element. Furthermore, the matrix X contains n rows and p columns:

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

 .

The rows of X as x1, x2, ..., xn denote xi as a vector with length p that stores

p predictors for the ith observation [50, p.10; 51,52]. Here, vectors are typically
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represented as columns

xi =


xi1

xi2

...

xip

 .

When describing the columns of X as x1,x2, ...,xp, vectors are of length n,

xj =


x1j

x2j

...

xnj

 .

The matrix X can then appear as

X = (x1 x2 · · · xp),

or

X =


xT
1

xT
2

...

xT
n

 .

The transpose of a matrix or vector is

XT =


x11 x21 · · · xn1

x12 x22 · · · xn2

...
...

. . .
...

x1p x2p · · · xnp

 ,

and

xT
i = (xi1 xi2 · · · xip).

Furthermore, yi denotes the ith observation of the dependent variable and represents
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the set of all n observations in vector form as

y =


y1

y2
...

yn

 .

With this notation, the observed data takes the form of {(x1, y1), (x2, y2), ..., (xn, yn)}.

When making predictions or estimating unknown parameters, the predicted values

are represented using “hat” notation, e.g., ŷ is the vector of predicted values for

y [50, p.11; 51,52].

Training data allows the construction of subsets from the original data set. Mea-

surements for the training data are defined as (xi, yi), i = 1, . . . , n, which helps de-

velop prediction models throughout this thesis [51, p.11]. The training set approach

allows for model evaluation since observations are withheld from the training data

set to assess the accuracy of the statistical learning model. The application of this

approach can vary depending on the type of data. For instance, in a time-series

setting, statistical learning models train on past observations, and scientists and

engineers assess the model’s predictive performance using future observations found

in the remaining test data. Later sections provide a more in-depth discussion of this

approach.

Finally, X denotes the input or independent variables, and the subscript Xj

distinguishes them. Similarly, Y represents the output or the dependent variable [50,

p.15; 51,52]. Machine learning methods assume that there is a relationship between

Y and X = (X1, X2, . . . , Xp), whose description takes the form

Y = f(X) + ϵ, (1.1)

where f is some fixed but unknown function of X1, . . . , Xp, and ϵ is a random error

term, which is independent of X and has mean zero [50, p.16]. In Eq. (1.1), f

develops a structured representation of Y with the information from X.
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CHAPTER 2

Literature Review

While data continues to be collected, stored, and manipulated in prolific quantities,

the ability to automatically extract governing equations from this information re-

mains arduous and elusive. In the face of this challenge, system identification, the

process of building mathematical models based on observational data, has gained

attention. Specifically, sparse modelling has become increasingly popular due to

its ability to uncover a parsimonious and interpretable representation of the data’s

governing equations by seeking models with only a small number of nonzero param-

eters. By applying this approach, engineers have leveraged a sparse methodology

across various domains, including signal processing, control, machine learning, and

neuroscience. This chapter introduces the fundamental concepts of sparse modelling

for system identification, including methods for selecting the most relevant features,

estimating the model parameters, and model evaluation techniques applied through-

out this thesis.
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2.1 Model Accuracy

Model accuracy defines a statistical learning method’s ability to develop robust pre-

dictions for the data. This concept is special in regression analysis, where establish-

ing a relationship between dependent and independent variables is key. This thesis

employs linear regression, an essential method for developing interpretable models,

with further details in Section 2.2.1. The essence of model accuracy hinges on its

congruence with actual observations, underscoring the need to minimise prediction

errors. Consequently, this section outlines the fundamental tools for assessing accu-

racy in statistical learning and system identification.

2.1.1 Measuring the Quality of Fit

Residual Sum of Squares

To begin, the notation ŷi = β̂0+
∑p

i=1 β̂ixi provides the prediction for Y based on the

ith value of X. Subsequently, ei = yi − ŷi determines the ith residual, representing

the difference between the observed value and the predicted estimate given by a

regression model [50, p.61]. Moreover, the most common error metric in regression

is the residual sum of squares (RSS)

RSS =
n∑

i=1

(yi − f̂(xi))
2

=
n∑

i=1

(yi − ŷi)
2,

(2.1)

where f̂(xi) = ŷi is the prediction of the ith observation of ŷ [50, p.29]. Equa-

tion (2.1) demonstrates the deviation between the predicted values of the model

and the observed data and thus explains how well the regression model fits the data

set.

Ordinary least squares (OLS) regression predicts Y by calculating the optimal

values of β̂0 through β̂p to minimise the RSS. Thus, the optimal regression model

fit provides predicted values closest to the data set’s actual observations. Since

Eq. (2.1) is squared and returns a nonnegative quantity, the best model is the one
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whose RSS is closest to zero. In contrast, a higher RSS indicates that the model fits

the data poorly.

Mean Squared Error

The mean squared error (MSE) provides an alternative measure for model accuracy

by calculating the average squared difference between the predicted values of the

model and the actual measurements of the data set. It corresponds to the expected

value of the squared error loss and is defined as [50, p.29]

MSE =
1

n
· RSS. (2.2)

A regression model reduces the MSE by selecting predicted responses close to the

observations in the data set. In contrast, when the MSE is large, the predicted

responses and the actual measurements differ substantially.

Typically, the training data {(x1, y1), (x2, y2), . . . , (xn, yn)} helps determine the

MSE for a given prediction model. These observations provide an estimate f̂ and

help calculate f̂(x1), f̂(x2), . . . , f̂(xn). However, in the time-series context, the train-

ing MSE only informs researchers of their model’s performance on past observations,

and in general, they are less interested in whether f̂(xi) ≈ yi. Rather, the fit of the

model f̂(x0) to a given point in the test data (x0, y0) is often far more desired be-

cause it is data that the statistical learning model has not previously assessed [50,

p.30]. Therefore, assuming there is a large enough test data set, the resulting metric

takes the form

Ave(y0 − f̂(x0))
2. (2.3)

Here, Eq. (2.3) describes the average prediction error for the test observations. Thus,

the smallest test MSE determines the optimal prediction model. If a model results

in a small training MSE but a large test MSE, it overfits the training data and may

not be the best prediction model for the test data. For example, statistical learning

models overfit data sets when they detect random patterns in the training data that

may not be properties of the unknown function [50, p.32]. Under this assumption,

the training MSE is not a sufficient metric for model deployment and sufficient test
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data is required to determine a reliable model.

The root mean squared error (RMSE) provides an alternatively relevant metric

by taking the square root of the MSE. In this case, measuring the standard deviation

of an observed value allows scientists and engineers to evaluate the accuracy of a

given method, clarifying the ability of the model to make predictions. This approach

adds the effect of giving relatively high weight to significant errors and provides a

more interpretable representation of the error, placing it on the same scale as the

dependent variable.

R2 Statistic

The R2 statistic, also known as the coefficient of determination, determines the

proportion of variability in Y explained by X [50, p.69]. This statistical measure

results in a value between 0 and 1 and is independent of the scale of Y . The R2

metric is calculated as:

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
, (2.4)

where TSS =
∑n

i=1(yi − ȳ)2 denotes the total sum of squares (TSS), quantifying

the total variance in Y . Here, ȳ = 1
n

∑n
i=1 yi denotes the mean of all n observed

values of the dependent variable Y . From Eq. (2.1), the RSS describes the variability

left unexplained after performing regression. Alternatively, the TSS measures the

total variance or variability in Y before performing regression. Therefore, measuring

TSS−RSS determines how well a given model explains the variability in Y . Hence,

the R2 statistic represents the proportion of variability in Y that X can explain [50,

p.70]. Ultimately, a regression model with an R2 statistic closer to 1 better explains

the variability in the response.

2.1.2 The Bias-Variance Trade-Off

Statistical and machine learning algorithms are essential tools that aim to make

predictions based on complex patterns in real-world observations. However, their

models often misrepresent the predictor variable due to noise and dependence be-
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tween variables found in data sets [69, p.63]. Dense, complex models may better

fit the training data by containing more variables but often suffer from overfitting

and may not generalise well to the test data [50, p.22; 70, p.145]. In contrast, sim-

pler models may only capture some of the nuances of the data but can be more

interpretable and make more accurate predictions on new data. Striking a balance

between model complexity and prediction accuracy is critical, and this trade-off is

commonly addressed by considering bias and variance. The following section ex-

plores how understanding the bias-variance trade-off can help improve the ability of

statistical and machine learning models to make better predictions.

Expected Value of the Dependent Variable

To understand the bias-variance trade-off completely, it is imperative to define sev-

eral important terms, the first being the expected value of the dependent variable.

Given x ∈ Rp×n, the expected value of the dependent variable is denoted as

f(x) = E [Y |X = x] =

∫
Y P(Y |X = x)dy. (2.5)

This equation highlights the mean squared loss, defined as the Mean Squared Error

(MSE) in Section 2.1.1, which represents the average of the squares of the errors

or residuals. In this context, the mean squared loss defines the optimal conditional

prediction as the conditional expected value, emphasising the importance of accu-

racy in this estimation. Furthermore, Eq. (2.5) is also referred to as the regression

function, which expresses the expected relationship between the target and the pre-

dictor variables [69, p.20; 71]. Thus, the primary goal of the regression function is

to estimate the unknown parameters of this relationship.

Expected Regression Function

Given a statistical learning algorithm, researchers want to estimate the regression

function’s expected value over every training data set:

E
[
f̂(x)|X = x

]
=

∫
x

f̂(x) P(X = x)dx. (2.6)
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Equation (2.6) provides the average estimate over every prediction model developed.

Importantly, this calculation converges to the actual value with enough data sets

based on the weak law of large numbers [72, p.335]. Unfortunately, this assumption

only holds when the data is in a finite set. If X is continuous, the probability of

obtaining a sample at any particular value is generally zero, which is also true about

the likelihood of acquiring multiple samples at exactly the same value of x. Thus,

the clear issue when estimating any function from data is that it will always be

undersampled, and researchers will need to approximate in between the values in

their data [69, p.23].

Researchers must also acknowledge that each yi is a sample from the conditional

distribution Y |X = xi and does not generally equal E [Y |X = xi]. Moreover, differ-

ent methods of estimating the regression function f(x) involve different interpola-

tion, extrapolation, and smoothing processes. Each choice affects the approximation

of f(x) with a limited class of functions that are estimable. Furthermore, there is

no guarantee that the choice will lead to a good approximation of the regression

function. Although challenging, the approximation error sometimes shrinks as the

size of the data set increases [69, p.23].

Expected Test Error

Given a specific prediction model f̂ , its generalisation error is defined as the resulting

error from testing an algorithm on new data. Hence, taking a new random pair (x, y)

drawn from the distribution P(X, Y ) and determine the squared error loss:

E
[(

y − f̂(x)
)2

|X = x, Y = y

]
=

∫
x

∫
y

(
y − f̂(x)

)2
P(X = x, Y = y)dxdy. (2.7)

Moreover, Eq. (2.7) determines how well the model generalises on previously un-

seen data. This notation helps decompose the algorithm’s test MSE and effectively

conceptualise the bias-variance trade-off.
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The First Bias-Variance Decomposition

While researchers assume that the actual regression function is f(x), f̂ develops

the predictions for the data. Subsequently, the MSE at X = x can be described

in terms of f̂ , which is used when predictions cannot be made with f . Thus, the

error (Y − f̂(x))2 can be expanded since the expectation of this formula is simply

the MSE at x:

(
Y − f̂(x)

)2
=
(
Y − f(x) + f(x)− f̂(x)

)2
=
(
Y − f(x)

)2
+ 2
(
Y − f(x)

) (
f(x)− f̂(x)

)
+
(
f(x)− f̂(x)

)2
.

(2.8)

From Eq. (1.1), Y −f(X) = ϵ, since ϵ is a random variable uncorrelated with X and

has an expectation of zero. The expectation in Eq. (2.8) allows us to remove the

middle term since E [Y − f(X)] = E [ϵ] = 0, while the last term remains the same

since it does not contain any random quantities. The first term in the equation then

becomes the variance of the irreducible error term ϵ, such that V[ϵ] = σ2(x):

MSE
(
f̂(x)

)
= σ2(x) +

(
f(x)− f̂(x)

)2
. (2.9)

The prediction function does not affect σ2(x); instead, this term displays the dif-

ficulty of predicting Y at X = x. The second term in Eq. (2.9) determines the

additional error that results from misrepresenting f . This breakdown is referred

to as the first bias-variance decomposition. Here, decomposing the total MSE at x

into a (squared) bias f(x)− f̂(x) denotes the amount by which the predictions are

systematically off, and an unpredictable variance σ2(x), which produces statistical

fluctuation around even the best prediction [69, p.24].

The Second Bias-Variance Decomposition

In Eq. (2.9), f̂ is theoretically a single fixed function when, in reality, it is a func-

tion approximated from earlier data. Assuming the data is random, the regression

function will also be random and denoted as M̂n, where the subscript symbolises
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the finite amount of data employed to evaluate it. From this actualisation, the

MSE
(
M̂n(x)|M̂n = f̂

)
is actually being assessed, conditional on a given estimated

regression algorithm. Thus, averaging over every possible training data set allows

for approximating the prediction error of the method:

MSE
(
M̂n(X)

)
= E

[(
Y − M̂n(X)

)2
|X = x

]

= E

Y − f(X)︸ ︷︷ ︸
a

+ f(X)− M̂n(X)︸ ︷︷ ︸
b

2

|X = x


= E

(Y − f(X)
)2︸ ︷︷ ︸

a2

+2
((

Y − f(X)
)(
f(X)− M̂n(X)

))
︸ ︷︷ ︸

2ab

+
(
f(X)− M̂n(X)

)2︸ ︷︷ ︸
b2

|X = x

 . (2.10)

Equation. (2.10) results in the equation a2 + b2 and adds a third term 2ab through

factorisation. The middle term is expected to be 0 based on the assumption that

the error term Y − f(X) has an expected value of zero and is uncorrelated with the

predictors. Therefore,

E
[(
Y − f(X)

)(
f(X)− M̂n(X)

)
|X = x

]
=
(
E [Y − f(X)|X = x]

)
×
(
E
[(

f(X)− M̂n(X)
)
|X = x

])
=
(
E [Y |X = x]− f(X)

)
×
(
f(X)− E

[
M̂n(X)

])
=
(
f(X)− f(X)

)
×
(
f(X)− E

[
M̂n(X)

])
= 0. (2.11)

This result stems from the fundamental regression assumption that the errors have

an expected value of zero and are independent of the predictors, which is crucial for

the model’s estimations to be unbiased and consistent.
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In Eq. (2.8), a2 defines the irreducible error or the data’s noise σ2(x). Therefore,

one can focus on b2 in Eq. (2.10) by adding and subtracting the expectation of the

random regression:

= σ2(x) + E
[(

f(x)− M̂n(x)
)2

|X = x

]
= σ2(x) + E

[(
f(x)− E

[
M̂n(x)

])2
+ 2
((

f(x)− E
[
M̂n(x)

])(
E
[
M̂n(x)

]
− M̂n(x)

))
+
(
E
[
M̂n(x)

]
− M̂n(x)

)2
|X = x

]
.

Again, the middle term can be shown to be 0:

E
[(

f(x)− E
[
M̂n(x)

])(
E
[
M̂n(x)

]
− M̂n(x)

)
|X = x

]
= E

[(
f(x)− E

[
M̂n(x)

])
|X = x

]
E
[(

E
[
M̂n(x)

]
− M̂n(x)

)
|X = x

]
=
(
f(x)− E

[
M̂n(x)

])(
E
[
M̂n(x)

]
− E

[
M̂n(x)

])
= 0.

Thus, the decomposition of the expected test error ends with the three remaining

terms,

MSE
(
M̂n(x)

)
= σ2(x)︸ ︷︷ ︸

Noise

+E
[(

f(x)− E
[
M̂n(x)

])2
|X = x

]
︸ ︷︷ ︸

Bias2

+ E
[(

E
[
M̂n(x)

]
− M̂n(x)

)2
|X = x

]
︸ ︷︷ ︸

Variance

= σ2(x) +
(
f(x)− Ex

[
M̂n(x)

])2
+ V

[
M̂n(x)

]
. (2.12)

The first term is the variance of the entire process. This variance, or noise, rep-

resents the difference between an actual observation and the expected value of the

true regression function f . The problem difficulty grows simultaneously with the

difference between these two values. The second term is the bias that develops when

estimating f with M̂n, known as approximation bias or approximation error. Inde-
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pendent of noise, the resulting Eq. (2.12) shows the bias as the difference between

the prediction model’s expectation and the true regression function [69, p.24].

When a prediction model consistently results in a particular solution, it is referred

to as a biased estimator, and its magnitude can be determined by the difference

between the actual outcome of f(x) and the average result of M̂n(x). The final

term in Eq. (2.12) is the variance in the statistical learning function’s estimate. If

one observes a random data set, the variance determines the difference between the

predictions of the statistical learning algorithm and the expected regression function.

Hence, even if the model is unbiased
(
f(x) = Ex

[
M̂n(x)

])
, if there is a substantial

amount of variance in the estimates, one can expect to observe significant prediction

errors [69, p.24].

Approximation bias arises when a model, due to its inherent simplifications,

cannot fully capture the underlying reality of the data. This is often the case

with models that assume a certain form or structure of the data, which may not

necessarily align with the actual, potentially more complex, structure. For instance,

linear models assume a linear relationship between variables and can introduce bias

if the true relationship is nonlinear. This type of bias results from the model’s

inability to conform to the true function that generated the data, often because of

oversimplification or assumptions imposed by the model’s form.

Flexible methods, while they can exhibit small approximation biases across a

wide range of regression functions, often come with their own set of challenges.

Primarily, reducing approximation bias typically results in an increase in estimation

variance, encapsulating the essence of the bias-variance trade-off. Notably, in some

instances, introducing a certain degree of bias intentionally can indeed reduce the

overall error, as the decrease in variance may outweigh the increase in bias, a strategy

known as regularization [69, p.25].

Ultimately, the approximation bias and estimation variance are heavily n-

dependent. A method is defined as consistent when it recovers the actual regression

function as n → ∞, thus reducing its bias and variance to zero. However, consis-

tency also depends on the method’s ability to match the data-generating process,

which creates another layer of the bias-variance trade-off. While the correct repre-
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sentation of f is rarely found in the real-world setting, multiple consistent methods

can be developed for the same problem. Furthermore, the bias and variance of a

model do not have to go to zero at the same rates [69, p.25]. Thus, it is clear that

the bias-variance trade-off raises serious concerns and provides distinct goals for the

modelling setting where the optimal model results in low bias and low variance.

In real-world modelling settings, this trade-off is not merely a theoretical concern

but a practical one that influences the reliability and predictability of models. A dis-

regard for this balance can lead to models poorly equipped for prediction, leading to

decisions that are either overcautious or reckless. Therefore, the bias-variance trade-

off poses significant challenges and delineates clear objectives for modellers striving

for low bias and low variance, ultimately guiding the creation of robust, reliable

models instrumental in fields as diverse as healthcare, finance, and technology.

2.2 Sparse Regression

Sparse regression is an augmentation of linear regression that attempts to identify a

small subset of predictors most relevant to the response variable. In many real-world

scenarios, the number of potential predictors is large, and not all are expected to

impact the outcome significantly. The approach employs regularisation techniques

to select the most important predictors and estimate their coefficients while setting

the remaining coefficients to zero. This process often produces more interpretable

models, reduces overfitting, improves prediction accuracy, and automatically per-

forms variable selection. The following section will explore some of the fundamental

methods for understanding the field of sparse regression.

2.2.1 Ordinary least squares

Linear regression estimates the underlying signal in a data set, with OLS being the

most common process for accomplishing this task. When developing predictions,

linear regression observes n observations of an outcome variable yi and p associated
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independent variables xi = (xi1, . . . , xip)
T . A linear regression model assumes

yi = β0 +

p∑
j=1

xijβj + ϵi, (2.13)

where β0 and β = (β1, β2, . . . , βp) are unknown parameters and ϵi is an error term [52,

p.2]. When assuming X has full column rank, the OLS approach can be solved

analytically with the closed-form solution of [73, p.293; 51, p.45]

β̂ = (XTX)−1XTy. (2.14)

OLS regression describes the fit of a linear model to a given data set by obtaining

parameter estimates that minimise the RSS,

β̂OLS = argmin
β0,β

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

. (2.15)

Equation (2.15) is a convex function because it only has one global minimum (that

may be attained at more than one point) and selects β̂ which minimises the objective

function. Moreover, Eq. (2.15) must be carefully interpreted to understand its re-

sults. First, the intercept β̂0 is the estimated expected value of y when all predictors

equal zero [71, p.9]. If zero is an impossible value for the predictor or predictors,

there will be no physical interpretation of the intercept, meaning there can be no

attempt to interpret its significance. However, when all predictors in X are centred

to have mean zero, β̂0 becomes the sample mean of the target values. If any partic-

ular value for each predictor provides a meaningful interpretation, each variable can

be centred around its specific value. When all predictors express meaningful values,

the intercept becomes an estimate of the expected value of y [71, p.9].

The jth predictor’s approximated coefficient β̂j can then be interpreted to esti-

mate the expected change in the target variable associated with one unit change in

the jth predictor variable while holding all other variables in the model fixed. From

this, the word “associated” implies that one cannot say that a change in the predic-

tor “causes” a change in the target variable. Instead, one can only associate the two
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variables, implying that a correlation does not indicate causation. Furthermore, the

phrase “holding all other variables fixed” demonstrates the conditional relationship

when fixing all other variables and assessing a particular predictor rather than the

marginal relationship between a given predictor and the target while ignoring all

other variables [71, p.9].

In multiple regression, explicitly including control variables in the model can help

to account for their effect statistically, depending on the conditional interpretation

of the coefficients. Although one cannot physically intervene in the experiment for

observational data to hold other variables fixed, the multiple regression framework

accomplishes this task statistically [71, p.10].

It is impossible to change one predictor and hold all others fixed from a practical

viewpoint. Ideally, each coefficient can be interpreted as one that accounts for the

presence of another predictor in a physical sense. However, at best, the multiple

linear regression framework only approximates the underlying random process [71,

p.10].

The OLS method is commonly used because of the Gauss-Markov Theorem,

which states that the least squares estimates of the parameters β have the smallest

variance among all linear unbiased estimates. However, a more biased estimator is

known to potentially exist with a lower mean squared error based on the knowledge of

the bias-variance trade-off. Therefore, any method that reduces the OLS coefficients’

size or even sets them to zero may result in a biased estimate [51, p.52]. Subsequent

sections explore methods that balance the complexity of the bias-variance trade-off.

Since the OLS method is convex, it always provides a solution. The Gauss-

Markov Theorem explains that the OLS estimates have a low variance when n ≫ p

and provide a good fit to the test observations. Unfortunately, because it yields

a coefficient estimate for every variable in the design matrix, OLS models become

more challenging to interpret as X obtains more predictors. The variability of the

model substantially rises when n is not much larger than p, which leads it to overfit

and poorly predict test data. Lastly, the results of the OLS method cannot be

trusted when p > n because the solution is no longer unique, forcing the variance

to become ∞ [50, p.204].
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2.2.2 Multicollinearity

Multicollinearity is a relevant pitfall of OLS regression, which refers to a situation

where several predictor variables are strongly correlated, even if no pair of variables

has an exceptionally high correlation [50, p.102]. Furthermore, structural multi-

collinearity occurs when the predictor variables are not independent of each other

due to the nature of the data or the way the model is constructed. It can contam-

inate the data when the sum of the predictor variables is used as a predictor or

when two or more predictor variables are derived from the same source or concept.

If one suspects that the predictor variables are inherently related to each other, it

is necessary to examine whether structural multicollinearity is present in the model.

Ultimately, the multicollinearity problem can be challenging to detect since it is

not a modelling error and typically transpires with insufficient data, meaning the

number of observations is not sufficient enough to accurately estimate the model’s

parameters [74, p.234].

When multicollinearity occurs, the interpretation of the OLS model becomes at

risk because the estimates are unstable. If the predictors covary almost perfectly,

the effects of the OLS estimates can no longer be observed by increasing the value of

one predictor while keeping all other variables constant. Furthermore, when highly

correlated predictors exist in the regression equation, each may proxy the others

without impacting the total explanatory power [74]. Therefore, this phenomenon

makes it challenging to separate the individual effects of collinear variables on the

response [50, p.99]. Ultimately, if two variables change together, it will likely be

difficult to identify each variable’s separate association with Y .

Although multicollinearity risks classical statistical inference, the regression

model may still produce good forecasting results. When expanding and observ-

ing the identified system, the relationship among independent variables must hold

for future data to ensure confidence in the predictions of the model. If the predictor

variables remain codependent, the forecast will remain accurate as the data expands

over time [74].

Multicollinearity can be measured by estimating each variable’s variance infla-
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tion factor (VIF) [74, p.248]:

VIFj =
1

1−R2
j

, j = 1, . . . , p. (2.16)

Here, regressing each predictor on all others in the model helps estimate the R2

value in Eq. (2.16). VIFj provides the proportional increase in the variance of β̂j as

opposed to what it would have been if the model contained uncorrelated independent

variables [71]. At best, the minimum VIFj = 1, indicating no multicollinearity

for that particular predictor. However, if a given Xj has a strong relationship

with other predictor variables, R2
j would be close to 1 and result in a high VIFj.

In regression problems, there is often a small amount of multicollinearity among

predictors. Therefore, the rule of thumb that VIFj higher than ten often indicates

a problematic amount of multicollinearity for the regression model’s estimation [50,

p.102; 74, p.250].

Fortunately, there are a few remedies for this problem. First, removing any

unnecessary variables from the model can subsequently reduce the VIF of remaining

predictors. It is easiest to exclude the most suspicious variables that increase the

VIF for all predictors. By removing these variables, the updated regression model

typically becomes more trustworthy since the remaining VIF values are also reduced.

However, this may not be a solution if Y depends on two mildly collinear predictor

variables collectively but not individually [74, p.251]. For example, some settings

require particular variables present to predict the true representation of Y , and using

only one term may not suffice.

In settings where retaining variables is preferred rather than removing them

from the regression model, a common method known as ridge regression can help

reduce the effects of multicollinearity rather than having to decide which variables

to exclude. Ridge regression is a traditional remedy for multicollinearity since its

estimates are biased toward zero, thus reducing the regression model’s variance and

standard errors [74, p.279]. Section 2.2.4 further discusses ridge regression and its

additional benefits for statistical modelling.
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2.2.3 Linear Measurements with IID Noise

Consider a linear measurement model with added noise where

yi = xT
i β + zi, i = 1, . . . , n. (2.17)

In Eq. (2.17), zi are assumed to be independent and identically distributed (IID),

with probability density P on R [73, p.352]. Using this notation, the likelihood

function is

Pβ(y) =
n∏

i=1

P(yi − xT
i β), (2.18)

with the log-likelihood function

loglik(β) = log (Pβ(y)) =
n∑

i=1

log
(
P(yi − xT

i β)
)
. (2.19)

The maximum likelihood estimate provides an optimal point for

maximise
n∑

i=1

log
(
P(yi − xT

i β)
)
, (2.20)

with variable β. The problem is convex if the density P is log-concave (log of P is

concave [73, p.104]) and employs the ℓq norm with the penalty function log(P) [73,

p.352]. Since optimisation problems aim to minimise functions, the negative log-

likelihood is minimised, equivalent to maximising the log-likelihood.

In the linear regression framework, utilising the likelihood function Pβ(y) facil-

itates the description of the probability that the predicted values best fit the data.

The values of β often have constraints, representing prior knowledge about β or the

domain of the likelihood function. These constraints can either be explicitly outlined

or assigned as Pβ(y) = 0 (for all y) when β does not meet the prior information

constraints of Eq. (2.20). For example, setting the value −∞ to the log-likelihood

function also sets boundaries of β that defy these previous constraints [73, p.351].

Furthermore, with prior knowledge of β, one can apply constraints to the function

and redefine Pβ(y) to be zero for particular values of β.

When estimating the value of the parameter β based on one sample y from the

25



distribution, the maximum likelihood estimation is often used and described as

β̂ml = argmax
β

(Pβ(y)) = argmax
β

(loglik(β)) . (2.21)

Thus, the function determines the estimates that maximise the likelihood (or log-

likelihood) of predicting the observed value of y. Many standard probability density

functions are log-concave, such as the multivariate normal distribution, exponential

distribution, and uniform distribution [73, p.104]. Therefore, if loglik(β) is concave

for each value of y, the constraints of β can be described as a set of linear equality and

convex inequality constraints. In that case, the maximum likelihood estimation is

a convex optimisation problem [73, p.352]. Therefore, convex optimisation methods

can be used to compute the maximum likelihood estimate in the current setting.

In the presence of Gaussian noise with zero mean and variance σ2, the probability

density is observed as

P(x) = (2πσ2)−1/2e
−x2

2σ2 , (2.22)

and the log-likelihood function is

loglik(β) = −n

2
log(2πσ2)− 1

2σ2
∥Xβ − y∥22, (2.23)

where X contains rows xT
1 , . . . , x

T
n . The maximum likelihood estimate of β is, there-

fore, the solution of a least squares approximation, βml = argminβ ∥Xβ−y∥22. Since

Gaussian noise frequently hinders data, the OLS model can be employed for many

real-world applications. However, OLS regression does not accurately estimate when

different noise types corrupt the data. For example, with Laplacian noise, the den-

sity function becomes

P(x) = (1/2a)e−|x|/a, a > 0, (2.24)

and β̂ = argminβ ∥Xβ − y∥1 is used as the maximum likelihood estimate, which is

the solution for the ℓ1 norm approximation problem. Finally, when zi are uniformly

distributed on [−a, a], the density function is

P(x) = 1/(2a) on [−a, a], (2.25)
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and the maximum likelihood estimate is any β such that ∥Xβ−y∥∞ ≤ a [73, p.352].

Since Gaussian noise measurements are most commonly observed, the ℓ2 norm can be

implemented with added regularisation penalties to solve the optimisation problem.

2.2.4 Regularisation

Regularisation is a standard scalarisation method to improve the RSS of a prediction

model and its interpretability. For example, adding a term to the objective function

helps penalise large β, sometimes having the effect of reducing their coefficients to

zero and allowing the development of a prediction model with fewer terms [50, p.203;

73, p.307; 51, 52]. The ℓq norms are often used to implement regularisation penalties

and denoted as [75, p.29]

||x||q=̇

(
n∑

i=1

|xi|q
)1/q

, 1 ≤ q < ∞. (2.26)

Moreover, adding the ℓq penalties allows us to generalise the OLS equation and view

its estimates as

argmin
β

{
1

2n

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|q
}
, (2.27)

for q ≥ 1 [51, p.72]. In Eq. (2.27), q = 2 results in ridge regression, while q = 1

provides the least absolute shrinkage and selection operator (lasso) solution. Fur-

thermore, when q = 0, the regularisation penalty counts the nonzero parameters

and corresponds to variable subset selection. When q < 1, the penalty is no longer

convex, and the optimisation problem becomes NP-hard.

As λ increases in Eq. (2.27), ridge regression, the lasso, and the adaptive lasso

shrink the coefficients toward zero. However, of these three methods, the lasso

and the adaptive lasso automate variable selection by reducing small coefficients to

exactly zero [76]. Section 2.2.5 discusses the adaptive lasso in further detail.

Many versions of Eq. (2.27) replace the standardisation factor 1/2n with 1/2 or

even 1, corresponding to a simple reparametrisation of λ. However, this standardis-

ation technique makes λ values comparable for different sample sizes and beneficial
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for some cross-validation techniques described in subsequent sections. As a shrink-

age method, Eq. (2.27) is known to scale well to large problems because it allows

one to solve the regression problem while maintaining convexity [52, p.22].

Regularisation methods fully encompass the bias-variance trade-off. The tech-

nique attempts to improve the MSE of the test set by reducing the number of

variables in the prediction model, which inherently increases the bias but decreases

the variance of the model. Furthermore, regularisation techniques identify a sparsity

pattern to select variables with nonzero coefficients and determine the optimal β̂j.

Hence, any method that reduces the size of the OLS coefficients or even sets them

to zero results in a biased estimate [51].

In 1970, Arthur Hoerl and Robert Kennard [77] proposed ridge regression, an

approach that employs the ℓ2 norm to reduce the RSS by decreasing the coefficient

estimates’ values. The ℓ2 norm observes the standard Euclidean length [75, p.29].

||x||2 =̇

√√√√ n∑
i=1

x2
i , (2.28)

With Eq. (2.28), the criterion in Eq.(2.27) can be written in matrix form,

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ. (2.29)

To find the ridge regression solution, Eq. (2.14) can be slightly adjusted such that

β̂ = (XTX+ λI)−1XTy, (2.30)

where I is a p×p identify matrix. Moreover, the ridge regression solution provides a

linear function of y since the penalty βTβ is quadratic. Before inversion, the solution

makes the problem nonsingular by adding a positive constant to the diagonal of

XTX. Thus, ridge regression always provides a solution, even if XTX is not of full

rank [51, p.64].

Ridge solutions are not equivariant under the scaling of the inputs. In Eq. (2.30),

λ requires each variable to have the same magnitude (a problem that does not appear
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in OLS). Therefore, the data are often standardised so that each column is centred

to have mean zero and unit variance before performing penalised regression [51,

p.64]. Without standardisation, the ridge regression solutions would rely on the

unit measurement of a predictor [52, p.9].

As a result of standardisation, the variables are all on a comparable scale [50,

p.215; 52, p.9]. Therefore, it is convenient for us to centre both the outcome values

and the design matrix to remove the intercept term in the proposed optimisation

method. Hence, the optimal solution β̂ of the original data can be determined on

the centred data. Using the standardised data, the estimates β̂j and β̂0 are identified

by

β̂j = (sy/sj)ν̂j, j = 1, 2, . . . , p,

β̂0 = ȳ −
p∑

j=1

x̄jβ̂j,
(2.31)

where ȳ and {x̄j}p1 are the uncentred means of the data set, and β̂j and ν̂j are the

jth estimated original and standardised regression coefficients [74, p.67; 52, p.9].

The tuning parameter λ in Eq. (2.27) directly corresponds to shrinkage because it

controls the relative effect of the ℓq norm on the OLS equation. Therefore, when λ =

0, the problem results in the OLS equation. However, as λ increases, the coefficient

estimates reduce towards zero. The optimal tuning parameter can be identified

by generating different coefficient estimates for several values of λ and assessing

the accuracy of each prediction model to determine the best one for estimating y

in data [50, p.215]. Section 2.3 discusses the model accuracy metrics for machine

learning methods including regularisation.

Ridge regression is a common remedy for multicollinearity since the OLS model

tends to predict coefficient estimates poorly and produces a high variance when it

contains several correlated variables. With multicollinearity, a substantially large

positive coefficient for one variable often cancels a comparably large negative coef-

ficient for its correlated cousin. Therefore, the added size constraint in Eq. (2.30)

improves prediction results in the presence of multicollinearity by shrinking the co-

efficients towards each other to decrease the linear dependency in the data [51, p.63;

78, p.2]. Although the added constant value introduces some bias, ridge regression
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often significantly improves the multicollinearity problem because the inverse of the

algorithm’s analytical solution always exists [73].

While ridge regression reduces multicollinearity, it does not perform variable se-

lection because it still provides a coefficient estimate for all variables in X. However,

a slight modification to Eq. (2.27) allows one to improve model interpretability by

forcing coefficient estimates to ”shrink” to zero and promoting sparsity within β̂ [50,

p.204].

As Hastie, Tibshirani, and Wainwright state in Statistical Learning with Sparsity:

The Lasso and Generalizations [52, p.xv]:

A sparse statistical model is one having only a small number of nonzero

parameters or weights.

Robert Tibshirani proposed the ℓ1 norm as a heuristic to find a sparse solution in

1996 [73, p.309; 76]. The ℓ1 norm attains the sum-of-absolute-values length [75,

p.29].

||x||1 =̇
n∑

i=1

|xi|, (2.32)

When using the ℓ1 norm as a sparse regression penalty, the resulting method becomes

the popular approach known as the lasso. The lasso shares a similar penalty to ridge

regression; however, the ℓ1 norm reduces coefficient estimates to exactly zero when

λ is large enough [50, p.219]. Varying λ helps identify the optimal trade-off curve

between ∥Xβ − y∥22 and ||x||1, approximating the optimal trade-off curve between

the OLS residual errors and the number of nonzero values in β̂ [73, p.310]. Thus,

the ℓ1 norm is a proxy for the number of nonzero entries (cardinality) of β̂ when

applying the lasso [75, p.333].

The lasso aims to find the smallest value of λ whose solution corresponds to

a subset of predictors from X equal to the cardinality of β̂. Furthermore, as λ

increases, the ℓ1 penalty detects sparse solutions for β̂ by shrinking variable coeffi-

cients with smaller residual errors to exactly zero [75, p.333; 73, p.296]. Therefore,

by identifying the sparsity pattern, variable selection is performed by utilising pre-

dictors with nonzero coefficients and determining the optimal β̂ that improves the

interpretability of the model and minimises its RSS [73, p.310].
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As a convex function, the lasso is both statistically and computationally efficient.

Statistically, the ℓ1 penalty does well to recover the underlying model when sparse.

However, the ℓ1 penalty may not be the best prediction method when the underlying

signal is not sparse. Furthermore, the lasso will never select more than n parameters

in its solution, resulting in a much easier computation [52, p.24]. Additionally, the

lasso sometimes provides inconsistent results, especially with varying noise levels

or collinear variables in the data set [79]. Here, the algorithm tends to select one

variable and discard the other correlated predictors arbitrarily, forcing researchers

to use alternative variable selection techniques [80].

2.2.5 The Adaptive Lasso

In 2006, Hui Zou proposed the adaptive lasso as a modification to potentially improve

identification results even in the presence of multicollinearity [81]. While maintain-

ing convexity, the adaptive lasso reduces bias in the lasso solution by adding weights

w to the ℓ1 penalty term to implement a less significant penalty on coefficients that

are expected to have a larger magnitude [82]. The added weights vector allows the

adaptive lasso to determine the underlying model’s correct variables without prior

assumptions [81, 83].

The adaptive lasso is defined as

β̂adaptive lasso = argmin
β

{
1

2

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

wj|βj|

}
, (2.33)

where w is

wj = 1/|β̂j(OLS)|ν (2.34)

or

wj = 1/|β̂j(ridge)|ν (2.35)

and ν > 0 is a tuning parameter [52, p.86; 51, p.92]. The weighted penalty in

the adaptive lasso can be interpreted as an approximation of the ℓq-penalties with

q = 1− ν [52].

OLS or ridge regression is typically performed to determine w because these
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techniques provide an initial coefficient vector that is not sparse, and initial estimates

equal to zero make weights infinite. If n > p, one typically applies the OLS solution

for the initial estimates of the adaptive lasso model. Since OLS estimates are not

defined when p ≥ n, ridge regression is alternatively used to identify a solution

for wj when this occurs. Furthermore, β̂(ridge) provides more stable results when

collinearity exists in the regression model [81].

The lasso is effective when only a few coordinates of the coefficients β are

nonzero. However, like OLS, the lasso provides unstable estimates when predic-

tors are collinear, whereas ridge regression produces more stable solutions when

multicollinearity exists in the data [51]. Therefore, the adaptive lasso performs a

two-stage procedure since it first performs ridge or OLS regression to identify its

weights vector [84, p.44].

In the first stage of the adaptive lasso, the method applies OLS or ridge regression

to obtain stable pilot estimates β̃, favouring ridge regression to reduce the effects

of multicollinearity [81]. The second stage of the algorithm then applies the β̃ pilot

estimates to the weights vector w and performs variable selection by solving the

problem in Eq. (2.27). Here, the adaptive lasso calculates the weights vector w using

pilot estimates β̃ corresponding to the optimal λ∗
ridge ridge regression model before

identifying a separate tuning parameter λ∗
adaptive lasso. By fixing ν = 1, the adaptive

lasso develops a soft-threshold approximation to the ℓ0-penalty. In doing so, the

adaptive lasso makes Eq. (2.33) less computationally expensive since it optimises

twice on a single parameter rather than simultaneously optimising over λ∗
ridge and

λ∗
adaptive lasso [84, p.44].

The adaptive lasso often yields a sparser solution than the lasso since applying

individual weights to each variable places a stronger penalty on smaller coefficients,

reducing more of them to zero. Here, small β̃ coefficients from the first stage of

the adaptive lasso lead to a larger penalty in the second. Larger penalty terms in

the second stage of the adaptive lasso result in more coefficients being set to zero

than the standard lasso method. Furthermore, a smaller penalty term enables the

adaptive lasso to uncover the true coefficients and reduce bias in the solution [84, 85].

The adaptive lasso is particularly useful for system identification since it obtains
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the oracle property when β̃j converges in probability to the true value of βj at

a rate of 1/
√
n (

√
n-consistency). As n increases, the algorithm will select the

true nonzero variables and estimate their coefficients equivalent to the maximum

likelihood estimation [81, 85].

Instead of using the adaptive lasso, an additional threshold to the original lasso

estimator can be applied as

β̂thresh,j(λ, δ) = β̂init,j1(|β̂init,j| > δ). (2.36)

OLS regression can then be fit to the selected variables which are given by Ŝthresh =

{j : |β̂thresh,j|} [84, p.33]. Although this thresholding and refitting method contains

theoretical properties that are as good or even slightly better than the adaptive

lasso, it is not commonly recommended to perform this approach over the latter.

Ultimately, this thresholding technique is employed to improve model discovery for

dynamical systems with the lasso and the adaptive lasso in this thesis.

2.3 Model Assessment and Selection

Model assessment and selection are two critical steps in statistical learning that

involve evaluating and choosing different models to make predictions and infer re-

lationships in the data. The model assessment process estimates a chosen model’s

prediction error or uncertainty on new data. Furthermore, these methods help us

determine a model’s performance or compare different models’ ability to make pre-

dictions. Model selection refers to identifying the optimal prediction model for a

given task. In doing so, different model assessment methods are used based on

criteria such as accuracy, complexity, interpretability, and generalisability. The fol-

lowing section discusses cross-validation, Bayesian Information Criterion (BIC), and

the bootstrap as standard model assessment and selection methods that allow us to

expand on limited data sets and create significant distributions for prediction.
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2.3.1 Cross-Validation

Cross-validation is the most common method for estimating model performance.

Like the method that divides the data into a training and a test set, the validation

set approach randomly splits the data set into three parts: a training set, a validation

set or hold-out set, and a test set [50, p.176; 51, p.222]. Statistical and machine

learning algorithms are initially fit to the training set before their predictions are

developed for the validation set observations using the identified model. Finally, the

predictions for the validation set observations enable the estimation of the test error

rate of the model, typically determined using the MSE or RMSE in the regression

setting.

Generally, the split depends on the size of the training sample, the signal-to-

noise ratio (SNR), and the complexity of the models used to fit the data. Ideally,

there would be enough data to use 50% for training and 25% each for validation and

testing [51, p.222]. However, real-world applications often lack an expansive data

set, so this approach typically uses a 50/50 split for only the training and validation

sets.

There are two important caveats to the validation set method. Firstly, since

the validation set is determined randomly, one can observe a highly variable test

error rate depending on the observations in each of the two data sets. Furthermore,

because the approach uses fewer observations to train and test models, the validation

error rate tends to overestimate the test error rate for the fit of the model to the

entire data set [50, p.200]. Therefore, one may have less confidence in the accuracy of

a prediction model due to the smaller size of the data set. Moreover, the validation

set approach may not be trustworthy if the distribution of test data significantly

differs from the training data, potentially leading to overfitting on the validation

set and poor generalisation performance on unseen data. Hence, alternative model

assessment options are generally preferred to improve on these issues.

Like the validation set approach, leave-one-out cross-validation separates the

data into two parts. However, rather than creating subsets of similar size, a single

observation (x1, y1) can be used as the validation set while composing the training set

from the remaining observations {(x2, y2), . . . , (xn, yn)}. With leave-one-out cross-
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validation, the model is fit to n−1 training observations and tested on the excluded

observation, resulting in separate estimates of model performance. Since (x1, y1) was

excluded from the fitting process, the MSE of the validation set is an approximate

unbiased estimate of the test error. However, the MSE provides a poor estimate

because it is highly variable based on a single observation. Therefore, this approach

can be repeated n times to develop the average MSE of n test error estimates [50,

p.200].

Leave-one-out cross-validation provides several advantages over the validation set

approach. First, it is significantly less biased than the former. Since statistical and

machine learning methods are fit to training sets containing n−1 observations, they

generally do not overestimate the leave-one-out cross-validation test error rate like

they often do with the validation set approach. Second, the validation set approach

yields different results since it is entirely random in its training and validation split.

Alternatively, leave-one-out cross-validation does not share this problem and always

produces the same results because the model is fit n times [50, p.179]. Unfortunately,

fitting the model n times makes the approach more computationally expensive as n

increases in size.

K–fold cross-validation provides a different model assessment procedure that

expands the data by creating K partitions of roughly equal-sized subsets. For ex-

ample, when K = 5, the first fold is treated as the validation set while the model

is trained to the other K − 1 folds of the data, allowing the prediction error of the

fitted model to be observed when evaluating the kth part of the data [[51, p.241];

50, p.203]. When performing K-fold cross-validation, the value of K determines

the number of subsets created for the method. The most frequently used values

include K = 5, 10, or 20, although the optimal value can depend on the size of the

data set and the complexity of the model. The K estimates of prediction error are

then combined after performing this method for k = 1, 2, . . . , K, using a different

fold for the validation set each time. Similarly to leave-one-out cross-validation, the

optimal model is identified by calculating the minimum average MSEK test error
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estimate [50, p.181]:

CV(K) =
1

K

K∑
i=1

MSEi, (2.37)

As different values of K are used for the K–fold cross-validation approach, there is

a clear fluctuation observed between the bias and variance in the determined model.

In addition to reducing bias and variance, K–fold cross-validation is often pre-

ferred over the previously discussed approaches because it provides a computational

advantage. With K–fold cross-validation, a set of candidate models with varying

flexibility is reviewed, and the model corresponding to the minimum test error is

identified as optimal. When performing cross-validation, one aims to determine how

well they can expect a given statistical learning model to perform on independent

data, i.e., the actual estimate of the test MSE of interest [50, p.183].

2.3.2 Bayesian Information Criterion

BIC is an alternative method for model assessment that applies the Bayesian argu-

ment to a list of candidate models and determines the one with the highest posterior

probability [51, p.234; 70, p.147]. This method assesses the maximum likelihood es-

timation to select the model that best fits the data,

BIC = −2 · loglik + log(n) · p, (2.38)

where p is the number of selected predictors. When assuming that the model con-

tains Gaussian errors, one expects prior knowledge of the variance, σ2, then−2·loglik

is equivalent to
∑

i(yi− ŷi)
2/σ2 for the squared error loss [51, p.233; 50, p.234]. The

BIC equation can then be transformed to

BIC =
1

nσ̂2

(
RSS + log(n) · pσ̂2

)
. (2.39)

The result from Eqs. (2.38) and (2.39) is often smaller for models with low test

errors. Hence, the optimal model corresponds to the one with the minimum BIC

value [50, p.234].

The BIC approach promotes sparsity because it places a heavier penalty on
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models with more variables and avoids complex models as n increases [70, p.147].

Equations. (2.38) and (2.39) can be generalised for variable selection techniques as

BIC(f̂) = MSE +
log(n)

n
· d̂f(f̂). (2.40)

where d̂f(f̂) is the number of selected variables found by a given variable selection

algorithm [86–88]. The optimal λ value can be determined in Eqs. (2.27) and (2.33)

by

λ(optimal) = argmin
λ

MSE +
log(n)

n
· d̂f(λ). (2.41)

where d̂f(λ) is the number of selected variables in the model corresponding to λ. The

λ(optimal) is identified by calculating the BIC for a set of models with unique values

of λ. Furthermore, one selects the model whose λ corresponds to the minimum BIC,

increasing the probability that our model most accurately predicts y.

BIC is asymptotically consistent and is much less computationally expensive

than cross-validation as n → ∞ [51, p.235; 87]. Additionally, if the true model

exists among the evaluated prediction models, the probability that the model with

the minimum BIC is the correct model converges to one as n increases. However,

BIC struggles when n is finite and p is large because it reduces bias and often

includes irrelevant variables for prediction [70, p.147].

2.3.3 Bootstrap Sampling

The bootstrap is a standard resampling method that assesses various prediction

models [51, p.249; 50, p.209]. As a method that applies to multivariate systems,

the bootstrap randomly draws samples with equal probability and replacement to

approximate the entire population and create an empirical distribution function [89,

90]. The bootstrap accomplishes this task by randomly creating new samples with

replacement when only a finite population exists in the original data set. The term

”with replacement” implies that the same observation can be selected more than

once in the bootstrap data set. Furthermore, each bootstrap sample contains the

same number of observations as the original data set. Therefore, generating B

samples renders many data sets fully representing the observations.
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The statistics of each bootstrap sample can then be evaluated, and the prediction

model can be examined over many data sets. For example, the bootstrap can be used

to estimate the standard error and bias of the developed model. Here, the original

data set acts as the test set, and the B bootstrap data sets act as the training

samples. However, when B < 50, the bootstrap standard error and bias estimates

are not always reliable because there is an overlap in observations between training

and test data sets that sometimes leads to overfitting predictions. As B increases,

the standard error and bias of the estimates are subsequently reduced. Ultimately,

B > 200 is rarely necessary to determine accurate standard error measures for a

prediction model [91, p.215; 89, p.52; 51, p.250].

Alternatively, bootstrap confidence intervals can be calculated for variable selec-

tion. However, many more bootstrap samples (B ≥ 2000) are needed to develop

robust confidence intervals for model selection [91, p.205; 89, p.52]. Therefore, with

B, one develops quantiles from the empirical distribution of bootstrap coefficient

estimates that denote the upper and lower bounds of the confidence intervals. The

desired 100(1 − α)% accuracy measure is then used to calculate the confidence in-

terval regions, where α denotes each variable’s significance level [90, p.4]. The lower

bound estimate, CIlo = [Bα/2], is the integer part of Bα/2, while the upper bound

estimate is CIup = B − CIlo + 1 [90, p.24]. Bootstrap confidence intervals provide

uncertainty measures to identify a model consisting of variables whose confidence

intervals do not cross zero and whose point estimates fall within their confidence

intervals [45, p.510; 50, p.82; 92].

2.4 Bayesian Regression

Bayesian regression provides an alternative to frequentist methods like cross-

validation, bootstrap sampling, and OLS regression, which addresses model un-

certainty in the regression problem by treating the parameters as random variables

with prior distributions, which are updated to obtain the posterior distributions of

these parameters given the data [93]. In this setting, y is assumed to be drawn from

a probability distribution rather than estimated as a single value. Thus, the model
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for Bayesian regression assumes the sampled response is from a normal distribution,

characterized by mean and variance:

y ∼ N(βTX, σ2I). (2.42)

Equation 2.42 describes the mean for linear regression as the transpose of the co-

efficient matrix multiplied by the design matrix [93]. Moreover, the variance is

defined as the square of the standard deviation σ multiplied by the identity matrix

for a multi-dimensional formulation of the prediction model. The choice of prior

distributions for the model parameters, β and σ2, is an important aspect to con-

sider in Bayesian regression, as they affect the posterior distribution, reflecting prior

knowledge about the parameters, or non-informative, representing a lack of prior

information.

Given the model, the method determines the posterior distribution for its param-

eters [93]. The coefficients or weights originate from posterior model probabilities,

which results from Bayes’ theorem [94]:

P (β | y,X) =
P (y | β,X)P (β)

P(y | X)
. (2.43)

Here, P(β | y,X) denotes the probability distribution of the model parameters

given the dependent variable and terms in the design matrix [95]. Furthermore,

this posterior distribution is obtained by updating the prior distribution with the

observed data, reflected in the likelihood of the data, P(y | β,X) [93]. With this

approach, assuming the priors are non-informative or weakly informative, as the

number of observations increases, the likelihood function becomes more powerful

than the prior probability, and the coefficients converge to the OLS estimates.

One challenge in Bayesian regression is computing the posterior distribution, es-

pecially when the number of parameters or data points is large. However, Markov

chain Monte Carlo (MCMC) methods provide a solution for this problem by generat-

ing samples from the posterior distribution, which can then be used to approximate

various quantities of interest. A popular MCMC method is the Gibbs sampler, which

iteratively samples from the full conditional distributions of each parameter given
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the others [96, p.42]. Another widely used method is the Metropolis-Hastings algo-

rithm, which generates a Markov chain whose stationary distribution converges to

the target posterior distribution [96, p.44]. MCMC methods have been extensively

used in Bayesian regression and other Bayesian modelling applications, allowing

practitioners to overcome computational challenges and make inferences based on

the posterior distribution of model parameters [96, p.37].

Importantly, Bayesian inference facilitates the development of posterior uncer-

tainty intervals, also known as credible intervals [97]. Credible intervals can follow

two forms: equal-tailed, where the probability mass is evenly distributed on both

sides of the interval, and highest posterior density intervals, which include the most

probable values of the parameter [97]. These intervals provide the likelihood that

a parameter estimate encompasses the true parameter value based on the data and

its prior distribution. Unlike the frequentist confidence intervals discussed in Sec-

tion 2.3.3, the posterior interval provides a valid statement that given the data and

model, the probability P indicates the likelihood of a parameter value being within

its 100P% bound [97]. This feature of Bayesian regression helps provide a more com-

prehensive understanding of model uncertainty and enhances the overall inference

quality.

2.5 Clustering Methods

Clustering enables researchers to partition the data into distinct subgroups or clus-

ters so that the observations within each group are similar. Meanwhile, these meth-

ods guarantee different observations between groups [50, p.516]. While supervised

learning problems aim to predict a particular outcome, unsupervised learning helps

discover structure within our data.

2.5.1 K -means Clustering

K-means clustering is a straightforward and refined process for partitioning a data

set into K distinct, non-overlapping clusters. The K-means clustering method is

performed by specifying the desired number of clusters K, then allocating each
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observation to precisely one of the clusters with theK-means algorithm. By applying

a simple and intuitive mathematical problem, C1, . . . , CK denotes sets containing the

indices of the observations in each cluster. Here, at least one of the observations

belongs to at least one of the K clusters, and the clusters are non-overlapping.

Therefore, no observation belongs to more than one cluster [50, p.517].

K-means clustering seeks to reduce the within-cluster variance as much as pos-

sible, where the within-cluster variance for cluster CK is a measure W (CK) of the

amount by which the observations within a cluster differ. Thus, the approach aims

to solve the problem

minimise
C1,...,CK

{
K∑
k=1

W (Ck)

}
. (2.44)

Here, Eq. (2.44) enables the method to partition the observations into K clusters

such that the total within-cluster variance over all clusters is minimal. To solve

Eq. (2.44), K-means clustering often uses the squared Euclidean distance

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2 , (2.45)

where |Ck| denotes the number of observations in the kth cluster. Thus, the within-

cluster variance for the kth cluster is the sum of all pairwise squared Euclidean

distances between each observation in the kth cluster, divided by the total number of

observations in the kth cluster [50, p.518]. Eqs. (2.44) and (2.45) are then combined

to derive the K-means clustering optimisation problem [50, p.518]:

minimise
C1,...,CK

{
K∑
k=1

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2

}
. (2.46)

To solve Eq.(2.46), a number from 1 to K is randomly assigned to each of the

observations, serving as initial cluster assignments. Next, the cluster centroid is

determined for each K cluster, where the centroids are computed as the mean of the

observations assigned to each cluster. Here, the kth cluster centroid is the vector

containing the p feature means for the observations in the kth cluster. Then, the

Euclidean distance is used to assign each observation to the cluster whose centroid
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is closest and repeat this process until the cluster assignments stop changing [50,

p.519].

In practice, the within-cluster dissimilarityW (CK) is often used to determine the

optimal K∗ for the algorithm, which generally decreases with increasing K. Here,

the solution criterion will tend to decrease substantially with each successive increase

in the number of specified clusters, W (CK+1) ≪ W (CK), as the natural groups are

successively assigned to separate clusters. Typically, there will be a sharp decrease

in the successive differences in criterion value, W (CK)−W (CK+1), at K = K∗ [51,

p.518]. A heuristic approach can then be applied to obtain an estimate of K̂∗ as the

optimal number of clusters, which can often be used to identify through an elbow

in the plot of W (CK) as a function of K.

2.5.2 Hierarchical Clustering

Although K-means clustering has many practical applications, it has the disadvan-

tage of pre-specifying the number of clusters K. Hierarchical clustering provides an

alternative approach that does not require a commitment to any choice parameters.

Furthermore, the method produces a tree-based representation of the observations

known as a dendrogram. Agglomerative clustering is the most common hierarchical

clustering method, referring to the fact that a dendrogram is built starting from

the leaves and combining clusters up to the trunk [50, p.521]. When applied, each

leaf of the dendrogram represents one of the observations in the data set. As one

moves up the tree, some leaves start to fuse into branches corresponding to similar

observations. Furthermore, as one continues up the tree, the branches eventually

fuse with leaves or other branches.

In hierarchical clustering, the earlier these fusions occur, the more similar groups

or observations are with one another. Alternatively, observations that fuse later

can be quite different, and the height of the dendrogram allows us to determine

how different two observations are from one another. To determine the number

of observations based on the dendrogram, one can make a horizontal cut across

the dendrogram and interpret the distinct sets of observations beneath the cut as

clusters. Therefore, the height of the cut acts like K in K-means clustering and
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controls the number of clusters obtained [50, p.524].

To perform hierarchical clustering, the dissimilarity measure between each pair

of observations is often defined using Euclidean distance. The algorithm then starts

from the bottom of the dendrogram and treats each n observation as its cluster.

First, the two most similar clusters are fused to contain n− 1 clusters, and then the

following two clusters most similar to each other are fused again, providing n − 2

clusters. The algorithm repeats this process until all observations belong to one

cluster and the dendrogram is complete [50, p.525].

Although this algorithm provides a simple clustering approach, the concept of

dissimilarity between observations needs to be extended to a pair of groups of obser-

vations. This problem can be achieved through linkage, which defines the dissimilar-

ity between two groups of observations, commonly developed as complete, average,

single, and centroid [50, p.525]. The choice of dissimilarity affects the resulting

dendrogram significantly and requires understanding the data type and scientific

question. Ultimately, this measure varies for different problems, and hierarchical

clustering becomes more challenging as the size of our data increases.

2.5.3 Otsu’s Method

Thresholding is a prolific method in image processing that can be viewed as a statis-

tical decision theory problem aiming to minimise the average error caused by assign-

ing pixels to two or more groups or classes [98, p.747]. Although this is a common

approach to image thresholding, it develops assumptions that are often complex and

only sometimes well-suited for real-world applications [98, p.747]. Otsu’s method

provides an alternative thresholding method by developing an optimum approach

that maximises the between-class variance, another well-known measure used in

statistical discriminant analysis [98, p.748].

The theory behind this process is that well-separated classes should have dis-

tinct measurement values and that the optimal threshold gives the best separation

between classes regarding their magnitudes. With Otsu’s method, properly thresh-

olded classes should be distinct concerning the intensity values of their pixels [98,

p.748]. Conversely, a threshold producing the best separation between classes in
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terms of their magnitudes will best represent the data. Additionally, Otsu’s method

is entirely derived from computations performed on an image’s histogram, a readily

available one-dimensional array [98, p.748].

Otsu’s method is commonly used for converting a grayscale image to

monochrome [99]. This technique involves iterating through all the possible thresh-

old values and calculating a variance for the pixel intensities on each side of the

threshold, i.e., the pixels in the foreground and background. In this context, ‘vari-

ance’ specifically refers to the statistical measure of the spread among the pixel

intensities within each class, foreground and background, and the method seeks

to minimise this within-class variance. By maximising the between-class variance,

Otsu’s method effectively minimises the within-class variance of thresholded black

and white pixels. First, the technique proposes a criterion for maximising the modi-

fied between-class variance equivalent to the usual between-class variance for image

segmentation [99]. Then, with the new criterion, the method applies a recursive

algorithm to find the optimal threshold efficiently.

The classic thresholding technique performs cluster-based image thresholding by

diminishing the grayscale image to a binary or threshold image [99]. The algorithm

considers that the image contains two classes of pixels backing a bimodal histogram.

Furthermore, the method then enumerates the optimum threshold disconnecting

the two classes, minimising their combined within-class variance. Thus, determin-

ing a minimal within-class variance makes the classes more distinct and easier to

separate [99, 100].

Otsu’s thresholding method performs automatic binarisation-level decisions

based on the shape of the histogram developed with the one-dimensional array [99].

The algorithm assumes that the image comprises a foreground and background class.

Otsu’s method computes the optimal threshold value that minimises the weighted

within-class variances of these two classes, distinguishing a given image. Further-

more, the method relies on the mathematical proof that minimising the within-class

variance is the same as maximising the between-class variance [99].

In Chapter 4, Otsu’s method will be instrumental in determining an initial

threshold value between OLS coefficients for the sparse identification of nonlinear
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dynamics algorithm (discussed in Section 2.9). The innovative application of Otsu’s

method in this context underscores its versatility and its unexplored potential in

areas beyond its conventional usage.

2.6 System Identification

Dynamical systems use mathematical models to describe the temporal evolution

of a physical process and exist throughout biology, engineering, and mathematics.

Since continuous-time dynamic models necessitate derivatives to illustrate their ex-

pansion rate, these systems are often expressed with sets of ordinary (ODEs) and

partial differential equations (PDEs). These equations enable researchers to analyse

climate and stock market trends, fluid flow dynamics, and epidemiological models.

Dynamical systems are described as [18, p.230; 46; 72, p.64]

d

dt
xj(t) = ẋj(t) = fj(x(t)), j = 1, . . . ,m. (2.47)

At time t, the vector x(t) = (x1(t) x2(t) · · · xm(t))
T ∈ Rm depicts the state

space of the system, where m is the state space dimension, while the function

f(x(t)) : Rm → Rm provides the restrictions that define the evolution of the system

in time [101]. Equation (2.47) examines nonlinear ODEs both qualitatively and

geometrically. Instead of determining exact or approximate functions for particu-

lar solutions, this model proves the occurrence, stability, and global behaviour of

various solutions [102, p.383].

Moreover, the jth equation of f can be approximated symbolically by

ẋ = f(x) ≈
p∑

i=1

θF(x)iβi

= θTF (x)β, (2.48)

where β = (β1, . . . , βp)
T is a sparse coefficient vector with elements that represent

the parameters of the system. In this setting, θF(x) is a feature vector containing

p symbolic functions, each representing an ansatz that can be used to describe the
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dynamics.

To develop a basis for data-driven, x(t) is expanded from measurements taken

at times t1, t2, ..., tn, creating a state matrix X̃ ∈ Rn×m [46]. Throughout this work,

the Savitzky-Golay filter [103], described Section 2.8, is employed to smooth each

column xj = SG(x̃j) and calculate the derivative ẋj. The smoothed state matrix X

is then consolidated to build the block design matrix Θ(X) ∈ Rn×p:

Θ(X) =

1 X X[2] · · · X[d] Φ(X)

 , (2.49)

where X[i] for i = 1, . . . , d is a matrix whose column vectors denote all possible

monomials of order i in x(t) [46], and

Φ(X) =

ϕ1(X) · · · ϕg(X) · · ·

 (2.50)

for i = 1, . . . , g can contain a set of nonlinear basis functions such as trigonometric,

logarithmic, or exponential [46].

Each ẋj are then combined to develop the derivative matrix Ẋ and a linear

regression is formulated to solve the system identification problem:

Ẋ = Θ(X)B+ E, (2.51)

where B ∈ Rp×m and E ∈ Rn×m are the coefficient and residual error matrices,

respectively. Methods can then be applied to extract the jth column of Ẋ and B

from Eq. (2.51) to determine the active terms for the jth equation in Eq. (2.47).

Thus, for the remaining chapters of this thesis, X will represent the state space

matrix andΘ(X) will define the block design matrix containing the candidate library

for system identification.

In most settings, the rectangular design matrix of candidate functions, Eq. (2.49),

is often defined as either overdetermined or underdetermined. Here, an overdeter-
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mined system contains more equations than unknowns (n > p), while an under-

determined one has fewer equations than unknowns (p > n) [102, p.273]. When

observing overdetermined systems, researchers aim to minimise the error towards

zero. However, since the error is typically never zero, researchers commonly apply

the least squares problem to each column of Eq. (2.47) because the approach is

numerically solvable and provides an estimate for the system.

When n > p and Θ(X) has full rank, there are infinitely many solutions to the

system, and one typically chooses the solution with the minimal ℓ2 norm. Conversely,

researchers can employ the ℓ1 norm, or sparse regression, to develop a solution for

underdetermined systems, which is important in compressed sensing problems [102,

p.274]. Uncovering the underlying equations of dynamical systems facilitates fore-

casting, predicting, controlling, and analysing their development and structural sta-

bility. Determining the equations and variables that make up dynamical systems is

a long-sought-after goal in the previously mentioned fields and is better known as

system identification.

System identification generates models to explore dynamical systems in real-

world data. A crucial aspect often underscoring the robustness of such explorations

is the role of boundary conditions in shaping the system’s behaviour and responses.

Boundary conditions delineate the limits within which systems evolve and interact,

fundamentally influencing the mathematical frameworks employed in system identi-

fication. They aid in formulating precise ODEs and PDEs that capture the intricate

dynamics of systems, whether in climate trends, fluid dynamics, or stock market

behaviours.

When these models expand over time, researchers can detect significant changes

in the system, observe adjustments based on parameters that have been identified,

and implement control methods for stabilisation [102, p.540]. System identification

models have two components. The first component, the deterministic model, pro-

vides the mathematical description of the cause-effect (input-output) relationships in

data. Here, boundary conditions play a pivotal role in demarcating the operational

scope within which the input variables, or independent variables, affect the output

variables or dependent variables. These conditions are particularly critical when

47



the input sets contain variables that can be controlled and manipulated, known

as probe signals, and those that are unalterable but measurable, known as mea-

sured disturbances. Since the profiles of the inputs of deterministic models are often

known, these models can be used to explain processes whose physics are accurately

known [72, p.62]. System identification aims to identify a model that describes the

input-output relationship because it explains the dynamic system in the data set.

The second component of system identification models is a statistical-plus-

mathematical description of the uncertainties in the data set, the stochastic model.

In this realm, boundary conditions help quantify and manage the unpredictability,

offering a structured approach to handling external disturbances and unmeasured

dynamics contributing to system uncertainties. The efficacy of the stochastic model

in depicting observation and modelling errors and process uncertainties is consider-

ably amplified when these boundary conditions are meticulously accounted for and

integrated [72, p.3].

While these two components of system identification allow for the description of

dynamical systems, the accuracy and reliability of the deterministic model heavily

depend on the assumptions the stochastic model represents. Unlike the optimal de-

terministic model that is developed in a functional sense, the stochastic model faces

the challenge that the observed response is one of several possible target variables

since the optimal model is fit using a statistical framework. Thus, this model is

predominantly referred to as a time-series model. Stochastic modelling theory is

commonly employed to forecast changes in any process where one cannot associate

any external cause or the cause is not measured or known. While inputs to de-

terministic models are known, inputs to stochastic models are random signals that

assume values from a probability distribution. Stochastic models are determined

from data since they contain fixed statistical properties [72, p.63].

Ultimately, since an element of uncertainty always exists, no system is truly de-

terministic. However, from an engineering perspective, systems are deterministic if

the degree of predictability is very high. Therefore, composite models are usually

built in identification, i.e., a deterministic plus stochastic model [72, p.63]. Fur-

thermore, identifying a parsimonious model helps distinguish a system’s behaviour
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within data. Statistical and machine learning methods commonly determine the

critical inputs for system identification models.

Nonlinear system identification continues to emerge as an area of growing in-

terest [18, 46, 47, 60, 67, 104–107]. The nonlinear nature of these systems makes

their identification difficult as they expand. Nonlinear system identification meth-

ods often use regression to observe a dynamical system [72, p.777]. In addition,

engineers often use black-box models, such as deep learning, to represent dynamical

systems. These models specify the functional relationships between input and out-

put measurements [108]. Deep learning appeals to many engineers due to its ability

to represent a complex system from high-dimensional data [60, 109].

Within deep learning, neural networks improve the ability to perform system

identification. Moreover, recurrent neural networks enable engineers to forecast and

reconstruct complex systems [60, 109–111]. Several layers of prediction often com-

pose neural network models, developing feedback paths from their output layers

using previous predictions for their input layers [72, p.778]. Black-box models are

customary because they provide user results without focusing on the model’s math-

ematical structure. However, black-box models face serious drawbacks because they

become more challenging to interpret as the system becomes increasingly complex.

When the model structure is unknown, methods that observe an overcomplete

basis of state variables, approximate model dynamics, and remove terms that do

not influence the dynamics are becoming more prevalent [64]. Engineers frequently

employ symbolic regression [53, 56, 112], polynomial nonlinear autoregressive moving

average models with exogenous inputs methods [113–115], and sparse regression [46,

62, 64] to perform system identification and represent the governing equations in

their data.

Recent methods deploy sparse regression techniques due to their ability to ac-

curately identify the underlying equations of the nonlinear ODE and PDE sys-

tems [46, 67, 105–107, 116–119]. It has also been extended to group sparsity prob-

lems to develop parsimonious representations of dynamics for ODEs [120] and para-

metric PDEs [104]. Sparse regression allows scientists to identify equations and

distinguish their underlying parameters from data, providing a unique approach to

49



system identification. Moreover, this approach extends the field of automation by

allowing researchers to determine transparent models efficiently, containing the most

significant variables for prediction.

Of course, selecting a favourable model depends on the data measurements that

reflect the system’s behaviour. System identification methods typically assume sta-

tionarity. Thus, data pre-processing is essential to ensure that drifts, trends, and

other non-stationarity properties do not corrupt the data set [72, p.21]. These noisy

data measurements compromise the results of the model identification process and

lead algorithms to select variables that do not accurately represent the system.

In the presence of contaminated data, denoising methods can improve modelling

for high-dimensional ODEs by smoothing the signal before performing identifica-

tion [103, 120, 121]. While most of these methods are theoretical, some techniques

provide a distinct representation of the numerical derivative and enhance the system

identification approach.

2.7 Signal-to-Noise Ratio

To observe the impact noise magnification has on system identification, researchers

quantify the quality of the noise-contaminated signal. If xs(n) are real-valued signal

samples and xn(n) are real-valued noise samples, researchers measure or estimate

the signal-power-to-noise-power ratio (SNR) of a signal x(n) = xs(n)+xn(n) as [122,

p.D-13]

SNR =
Signal power

Noise power
=

1
n

n−1∑
n=0

[xs(n)]
2

1
n

n−1∑
n=0

[xn(n)]
2

. (2.52)

When the variance of xs(n) and xn(n) is known, the SNR of the fluctuating (AC)

portion of a signal is defined as

SNR =
Signal variance

Noise variance
=

σ2
s

σ2
n

. (2.53)
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The SNR is commonly expressed in decibels (dB):

SNRdB = 10 log10 (SNR) dB. (2.54)

Furthermore, if the RMSE values of xs(n) and xn(n) are known, one can provide

the SNR of the signal as

SNRdB = 20 log10

(
Signal RMSE

Noise RMSE

)
dB. (2.55)

Since the ratio in Eq. (2.55) is expressed in terms of amplitude rather than power,

the factor of 20 is used to compute SNRdB based on RMSE values [122, p.D-12]. For

many data sets, the standard deviation of a signal is often known and therefore an

SNR is developed in the data by corrupting the state space matrixX with zero-mean

Gaussian noise Z ∼ N (0, σ2
Z), such that

SNR = 20 log10

(
σxj

σzj

)
, j = 1, . . . ,m. (2.56)

The standard deviation σzj of each column of Z is determined by

σzj = σxj
· 10−

SNR
20 , j = 1, . . . ,m, (2.57)

and can be implemented as

x̃j = xj + zj, zj ∼ N (0, σ2
zj
), j = 1, . . . ,m, (2.58)

where x̃j represents each column of the system corrupted by noise X̃ [122, 123]. The

following chapters employ this approach to observe the capability of each method

in performing system identification on noise-contaminated data sets.

2.8 Savitzky-Golay Filter

When performing system identification, one must be careful in determining the

correct method for approximating the derivative of a signal. With prior knowledge
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of the underlying function, the equations can be used to measure the derivative and

develop the problem in Eq. (2.51). However, researchers typically do not have access

to the governing equations and often approximate the derivative numerically from

the state vector x(t). Throughout this thesis, the Savitzky-Golay filter is employed

to approximate the numerical derivative, a standard tool when assuming noise exists

in the data set [103, 124–126].

Data smoothing is based on the idea that the measured variable changes slowly

and is affected by random noise [124, p.766]. In this setting, researchers can replace

each data point with the local average of surrounding data points. Furthermore,

averaging nearby points can reduce noise without introducing significant bias to

the obtained value since these nearby points measure almost the same underly-

ing value [124, p.767]. The low-pass Savitzky-Golay filter is well-adapted for data

smoothing and does not rely on a definition in the Fourier domain. Instead, the

method is derived from a specific formulation of the data smoothing problem in

the time domain [124, p.767]. This filtering approach was initially applied to noisy

spectrometric data to display the relative width and height of spectral lines [124,

p.767].

Savitzky-Golay filtering develops a generalised moving average technique to

smooth a noisy signal before differentiation. The method initially determines

coefficients by performing an unweighted linear regression with a polynomial to

smooth the data without distorting the signal tendency and maintaining the sig-

nal’s shape [103, 125]. Furthermore, the Savitzky-Golay filter performs this least

squares polynomial regression process on successive subsets, or windows, of adjacent

data points and develops a smoothed generalisation of the noisy data set [103, 125].

However, if the data’s underlying function is constant or changes linearly with time,

no bias is introduced into the result. Alternatively, if the underlying function has a

nonzero second derivative, a bias is introduced to the signal.

Typically, researchers aim to find a sparse solution to an overdetermined system

with noise, which is why the Savitzky-Golay filter provides a convenient smoothing

approach to perform system identification. Many scientists and engineers use the

Savitzky-Golay filter because the local regression process resembles the waveform
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of an oversampled signal corrupted by noise. Moreover, the filtered signal often

maintains the width and height of the peaks in the signal waveform [125]. With

the Savitzky-Golay filter, two parameters: window length and polynomial order are

employed to smooth the data [103, 125]. When using these parameters, the window

length must be odd to centre around a given point, and the polynomial order must

be less than the window length.

The smoothed output calculation acquired by sampling the fitted polynomial

equals a fixed linear combination of the local set of input samples at each position.

The filter’s derivative approximates ẋ(t) after fitting the regression model to the

data [103]. Therefore, researchers typically assume they are investigating noise-

contaminated data and apply the Savitzky-Golay filter to the state variables to

provide a smoothed signal before differentiation.

2.9 Sparse Identification of Nonlinear Dynamics

The recently proposed framework known as the sparse identification of nonlinear

dynamics (SINDy) provides an alternative machine learning-based method for de-

veloping parsimonious models to describe the underlying dynamics of a system from

observational data [46, 47]. SINDy accomplishes this task by adopting a sequential

thresholded least squares algorithm that relaxes the ℓ0 norm as a shrinkage penalty

to the OLS equation [46, 67, 105–107, 116–119]. Thus, to identify the dynamical

system in Eq. (2.51), SINDy adds the ℓq-penalties to the OLS estimate:

argmin
B

∥∥∥Ẋ−Θ(X)B
∥∥∥2
2
+ λ|B|0. (2.59)

The ℓ0 norm in Eq. (2.59) promotes sparsity in the OLS equation since it quantifies

the number of nonzero elements in the coefficient vector, encouraging solutions that

have a small number of nonzero elements [75].

The sequential thresholded least squares algorithm employed by SINDy allows

the algorithm to solve the problem in Eq. (2.59) by implementing a hard-thresholding

penalty, as opposed to the soft-thresholding algorithms described in Eq. (2.27), re-

quiring only a single parameter λ to determine the degree of sparsity [46]. This
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sparsity constraint ensures that the identified model is parsimonious and physically

interpretable, which helps to reduce the risk of overfitting the data. The process

is repeated recursively on the remaining nonzero coefficients until it arrives at a

prediction model containing only estimates greater than that threshold value, which

has proven computationally efficient, converging rapidly to a sparse solution while

requiring only a small number of iterations [46]. Furthermore, when applying sequen-

tial thresholded least squares, SINDy determines a final prediction model with OLS

regression, meaning the estimates of the identified variables are unbiased. However,

sequential thresholded least squares may require further investigation to identify a

sparse basis for its prediction model when highly correlated predictors exist in the

design matrix since OLS coefficients are unstable when this occurs.

To combat the issue of multicollinearity, the SINDy framework has also devel-

oped a sequential thresholded ridge regression algorithm. This modified algorithm

substitutes OLS with ridge regression to calculate its final estimates while imple-

menting regularisation [47]. Here, the added regularisation in the thresholding step

eliminates unnecessary terms and noisy features, which improves the stability of

the model by reducing overfitting. However, since ridge regression shrinks coeffi-

cients toward zero, the sequentially-thresholded ridge regression method imposes an

inherently biased process for identifying underlying systems.

The SINDy algorithm can be used to identify high-dimensional dynamical sys-

tems, such as fluid flow dynamics past a cylinder, nonlinear optics, and plasma

physics [18, p.250]. Several authors have developed a constrained SINDy optimi-

sation problem by consolidating physical constraints and symmetries in the equa-

tions. These constraints can promote stability, which improves energy preservation

on the quadratic nonlinearities in the Navier-Stokes equations imposed for fluid

system identification [127]. When examining fluid flows, SINDy can identify high-

dimensional dynamical systems models from a few physical sensor measurements,

such as lift and drag measurements on a cylinder. There have also been generalisa-

tions of SINDy to incorporate inputs and outputs control and implementation for

model predictive control [18, 116, 128]. Furthermore, SINDy extends to the identi-

fication of dynamics with rational function nonlinearities [119], integral terms [129],
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and highly corrupt and incomplete data [18, 130].

A general Pareto front analysis can also be applied to SINDy to assess a com-

binatorially large set of potential dynamical models, discover the underlying sparse

governing equations, and identify models with hidden variables using delay coordi-

nates [131]. The optimal prediction model can be automatically identified for SINDy

by assessing candidate models and determining the one with the lowest prediction

error. SINDy accomplishes this task by developing a grid of λSINDy values, applying

each cut-off to the data, and enumerating all resulting SINDy models to the pre-

diction models. The method then uses new random initial conditions to generate

100 Xval validation data before comparing the predictions X̂val to the optimal state

matrix model corresponding to the minimum relative corrected AICc [67]. However,

SINDy with AIC will fail without sufficient data and when a low SNR masks the

sampling of the dynamics [67].

Another variant of SINDy involves integrating ensembling methods to improve

predictions and reliability (Ensemble-SINDy) [132]. In this approach, Ensemble-

SINDy performs bragging, or robust bootstrapping, using bootstrap sampling to

discover a range of models that are aggregated by taking the median of the esti-

mates [132]. The identified ensemble of model coefficients can then be used to com-

pute probability density functions, which form a posterior distribution P(B|X) [132].

Furthermore, Ensemble-SINDy applies an additional threshold to the inclusion prob-

ability and removes terms that do not surpass that value [132].

Although SINDy has developed many avenues for data-driven system identifi-

cation, it still has several drawbacks. One significant issue is the potential for de-

generacy in the algorithm when dealing with complex functional forms. This occurs

when certain mathematical models or terms in the underlying equations, due to their

complexity or similarity, produce indistinguishable or nearly identical outcomes in

the system’s behaviour. This ambiguity complicates the process of accurately iden-

tifying the system’s underlying dynamics and necessitates a hierarchical approach

to the identification process. Here, terms of varying orders are systematically inte-

grated until the SINDy algorithm reaches a point of convergence or, conversely, fails

to find a solution [46]. Furthermore, SINDy requires a sufficiently large time series
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and is not fully automated since it requires users to determine the hyperparameters

for the numerical derivative from noisy data [46, 67].

2.10 Research Gaps

System identification remains a promising yet challenging area of study, charac-

terised by certain limitations in current methodologies. Rooted in the initial question

posed in Chapter 1 on the exploration of discovering dynamical systems, this chapter

has provided a comprehensive overview of existing statistical methods, with a special

emphasis on the SINDy framework [46]. SINDy aims to provide interpretable forms

for the data’s governing equations but relies on libraries of candidate functions and,

therefore, has difficulty expressing complex dynamics. While other methods have

also used the Gaussian process to identify underlying dynamics [47, 64, 67, 129],

they face the same overarching issue. Even the extensions and new methods intro-

duced in this thesis automatically perform system identification but still ultimately

encounter this problem. It must be clarified that regression-based algorithms will

always struggle to determine the true governing terms if they do not exist in the can-

didate library, which should be intuitive since these methods rely on the predictors

in the design matrix to develop their predictions. Although this pitfall may occur,

the results show that the novel methods outlined here can improve current identifi-

cation techniques by adding more nonlinear terms to the design matrix. With more

predictors available for selection, regression-based algorithms are more likely to dis-

cover the governing equations that describe the behaviour of the complex system in

data, and this thesis develops adaptive and reliable frameworks for accomplishing

this goal.

To address the advancement of model discovery by integrating sparse regres-

sion with statistical inference, Chapter 3 introduces a novel algorithm that employs

sparse regression with statistical inference amidst noisy data conditions. Further-

more, each chapter employs sparse regression methods with smoothing techniques

in its numerical differentiation schemes [46, 47], approximates weights of the terms

with error bars using a thresholded Bayesian approach [68], detects highly corrupted
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measurements [130], reduces errors using integral terms [129], and handles measure-

ment noise by representing data as a Gaussian process [48]. These methods enable

engineers to account for uncertainty in the measurements by allowing for nonzero

covariance in their representation. However, recent studies indicate that identifi-

cation with probabilistic methods faces the challenge of extracting a system that

shifts from a learnable, low-noise phase to a stage where the observation noise is

too high for any approach to learn the correct model [133]. This thesis’s previous

techniques and novel methods suffer from this fundamental issue and the problem of

automatically developing a numerical derivative from data. Therefore, an optimal

Savitzky-Golay filtering algorithm is developed here to provide the best predictions

for the noisy signal from data and further advance automation within these novel

frameworks.

The research question posed for Chapter 4, which emphasizes refining sparse

identification through clustering-based algorithms, underscores a lack of rigorous ap-

proaches in evaluating algorithmic capabilities. Historically, researchers have used

specific initial conditions for each system to perform identification on that data

set [46, 47, 64, 67]. This thesis aims to demonstrate a systematic analysis that en-

ables engineers to examine a given method better and trust its ability to discover

a particular system from data. The nuanced approach employed here uses random

initial condition bounds to expand each system, building separate matrix grids in-

creasing in observations and SNR values. In performing this procedure, researchers

can better understand how well their method uncovers their data’s governing equa-

tions by calculating a success rate for each system.

In Chapter 5, potential enhancements within the ARGOS framework by em-

ploying Bayesian methods to improve efficiency. At its core, Bayesian regression

offers a principled approach to handling uncertainties, allowing for probabilistic in-

terpretations of system parameters and dynamics. Through this integration, the

methodology gains the ability to capture the inherent uncertainties in the data

and improves the computational efficiency of the framework. This amalgamation,

therefore, promises a more robust and informed system identification, positioning

ARGOS-BI as a potent tool for researchers navigating complex dynamical systems.
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By far, the most important pitfall confronted here is the problem of the lack

of automation within system identification. Researchers have endeavoured to build

techniques to circumvent this issue. Still, either fail to automate the calculation of

the numerical derivative, require previous knowledge of the underlying system, or

prefer users manually implement a sparsity-promoting tuning parameter to deter-

mine the optimal estimates [46, 63, 64, 67, 104, 106]. The approaches described in

the following chapters leverage these flaws and develop several novel techniques for

automatically identifying dynamical systems from data, ensuring that researchers

can trust that the resulting models are optimal in describing the equations for their

data.
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2.11 Summary

• Regression problems represent data estimates y ∈ Rn as a linear com-

bination of columns from the design matrix X ∈ Rn×p. To determine

the predicted formula for y, linear regression is applied to estimate the

coefficient vector β ∈ Rp as [46, 50–52],

ŷ = Xβ̂,

• Sparse regression imposes a shrinkage penalty in the form of the ℓq norms

to reduce the coefficients’ values and the RSS of a given model for q > 0

[51],

β̃ = argmin
β


n∑

i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|q
 .

Sparse regression is commonly employed to perform automatic variable

selection.

• K–fold cross-validation provides a different model assessment procedure

that expands the data by creating K partitions of roughly equal-sized

subsets [51, p.241]. The K estimates of prediction error are combined

after performing this method for k = 1, 2, . . . , K, using a different fold

for the validation set each time [51, p.242].

CV(K) =
1

K

K∑
i=1

MSEi,

WithK–fold cross-validation, researchers review a set of candidate mod-

els of varying flexibility and identify the λ model with the minimum test

error. When performing cross-validation, researchers aim to determine

how well they can expect a given statistical learning model to perform

on independent data [50, p.183].
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• Bootstrap sampling creates a normal distribution of samples with re-

placement. Developing bootstrap confidence intervals provides uncer-

tainty measures to identify a model consisting of variables whose confi-

dence intervals do not cross zero and whose point estimates fall within

their confidence intervals. These intervals are calculated using the lower

bound estimate, CIlo = [Bα/2], is the integer part of Bα/2, while the

upper bound estimate is CIup = B − CIlo + 1 [90, p.24].

• K-means clustering is a popular unsupervised learning algorithm used

for partitioning a set of n observations into k clusters. The algorithm

separates a data set into k groups of similar observations based on the

mean distance of the points within each group of clusters. Furthermore,

K-means is a popular technique for clustering due to its simplicity, scal-

ability, and efficiency.

• Dynamical systems are mathematical models that describe the temporal

evolution of a process using ODEs and PDEs. Here, dynamical systems

are represented as [18, 46]

d

dt
x(t) = ẋ(t) = f(x(t)).

System identification attempts to determine the underlying equations

that describe dynamical systems.

• Savitzky-Golay filtering develops a generalised moving average technique

to smooth a noisy signal before differentiation. Initially, the technique

determines coefficients by performing an unweighted linear regression

with a polynomial to smooth the data without distorting the signal

tendency and maintaining the signal’s shape [103, 125]. When using

these parameters, the window length must be odd to centre around a

given point, and the polynomial order must be less than the window

length.
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CHAPTER 3

Automatically Identifying Dynamical Systems from Data

Discovering nonlinear differential equations that describe system dynamics from

empirical data is a fundamental challenge in contemporary science. This chap-

ter introduces a novel approach, ARGOS, which combines denoising methods and

sparse regression to construct bootstrap confidence intervals for the identification

of dynamical systems. The efficacy of ARGOS in automating model discovery is

demonstrated through a systematic analysis, showing that the method consistently

outperforms the established SINDy with AIC [67] in identifying ordinary differential

equations contaminated by significant levels of noise, particularly in three dimen-

sions. By accurately discovering dynamical systems automatically, our methodol-

ogy has the potential to impact the understanding of complex systems, especially

in fields where data are abundant, but developing mathematical models demands

considerable effort.
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3.1 Methods

3.1.1 Automatic regression for governing equations

ARGOS aims to automatically discover interpretable models that describe the dy-

namics of a system by integrating machine learning with statistical inference. As

illustrated in Figure 3.1, the algorithm comprises several key phases, including data

smoothing, numerical approximation of derivatives, sparse regression, and bootstrap

sampling for model selection to solve the system in Eq. (2.51).

ARGOS uses the Savitzky-Golay filter to approximate the derivative numerically,

a popular tool for signal denoising [103]. ARGOS determines the optimal filtering

parameters by setting polynomial order o = 4 and building a grid of window lengths

l [124]. For each column of the noisy state matrix X̃, ARGOS identifies the optimal

l∗ corresponding to the minimum MSE between x̃j and its smoothed signal xj.

With the optimal parameters, ARGOS uses the Savitzky-Golay filter to derive ẋj

and consolidate the smoothed X and Ẋ before constructing Θ(X) with monomials

up to the d-th degree (see Algorithm 1).

Algorithm 1 Automatic Savitzky-Golay Filter

Input: X̃ ∈ Rn×m, dt.
Output: Savitzky-Golay optimally smoothed X and Ẋ.
1: determine lower and upper bounds of (odd) window length l:

lmin = 13,
lmax = max (13, min (n− (n− 1) mod 2, 101) );

2: build L = (lmin, . . . , lmax);
▷ v = degree of derivative

3: for j = 1, . . . ,m do
l∗ = argminL ∥SG(x̃j, o = 4, l = L, v = 0, dt)− x̃j∥22
xj = SG(x̃j, o = 4, l = l∗, v = 0, dt);
ẋj = SG(x̃j, o = 4, l = l∗, v = 1, dt);

4: end for
5: consolidate X, Ẋ ∈ Rn×m with each xj and ẋj, respectively.

ARGOS then performs identification by extracting each column of Ẋ and B from

Eq. (2.51):

ẋj = Θ(X)βj + ϵj, j = 1, . . . ,m, (3.1)

and determine a prediction model for each ẋj by applying either the lasso [76] or the
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adaptive lasso [81] throughout the model selection process (see Algorithm 2). Both

algorithms add the ℓ1 penalty to the OLS regression estimate to shrink coefficients

to zero, enabling ARGOS to select the nonzero terms for parameter and model in-

ference. Since the weighted penalty in the adaptive lasso can be interpreted as an

approximation of the ℓp penalties with p = 1− ν, ARGOS fixes ν = 1, which allows

the adaptive lasso to develop a soft-threshold approximation to the ℓ0 penalty [52].

Furthermore, this approach provides an alternative to the hard thresholding applied

by the recent SINDy algorithm, which requires a choice of the cut-off hyperparam-

eter [46].

After identifying an initial sparse regression estimate of βj in Eq. (3.1), the design

matrix is trimmed to include only monomial terms up to the highest-order variable

with a nonzero coefficient in the estimate. Using the updated design matrix, the

previous sparse regression algorithm is reapplied, and a grid of thresholds is employed

to develop a subset of models, with each model containing only coefficients whose

absolute values exceed their respective thresholds. Next, OLS is performed on the

selected variables of each subset to calculate unbiased coefficients and determine the

point estimates from the regression model with the minimum Bayesian information

criterion (BIC) [86]. As a final step, bootstrap sampling is employed with this

sparse regression process with the trimmed design matrix to obtain 2000 sample

estimates [89]. Finally, 95% bootstrap confidence intervals are constructed using

these sample estimates and a final model is identified consisting of variables whose

confidence intervals do not include zero and whose point estimates lie within their

respective intervals.

3.1.2 Algorithm implementation

Since multicollinearity in the data is a concern, ARGOS applies ridge regression to

obtain stable pilot estimates for Eq. (2.33). Moreover, ARGOS uses glmnet [80]

to solve Eqs. (2.27) and (2.33) and produce a default λ grid before applying 10-

fold cross-validation to determine the optimal initial tuning parameter λ∗
0 [80]. Af-

ter identifying λ∗
0, ARGOS creates a refined grid with 100 points corresponding to

[λ∗
0/10, 1.1 · λ∗

0]. The novel method then solves Eq. (2.33) by imposing the updated
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Algorithm 2 Automatic Regression for Governing Equations (ARGOS)

Input: X ∈ Rn×m, ẋj ∈ Rn, d, α = 0.05.
▷ STEP ONE: Initial design matrix

1: p(0) =
(
m+d
d

)
;

2: create Θ(0)(X) ∈ Rn×p(0) with basis functions up to order d of the columns of
X;
▷ STEP TWO: Trim design matrix
▷ Variable selection with the lasso or adaptive lasso
▷ λ∗ : Optimal λ from 10-fold cross-validation
▷ lasso: w = 1
▷ adaptive lasso: w = ridge regression coefficients

3: β̂(0) = argmin
β

∥∥ẋj −Θ(0)(X)β
∥∥2
2
+ λ∗

p(0)∑
k=1

wk|βk|,

4: extract Θ(1)(X) to contain columns of Θ(0)(X) up to the largest order of the
selected variables in β̂(0);
▷ STEP THREE: Final point estimates
▷ Repeat sparse regression algorithm from STEP TWO

5: p(1) =
(
m+d(1)

d(1)

)
;

6: β̂(1) = argmin
β

∥∥ẋj −Θ(1)(X)β
∥∥2
2
+ λ∗

p(1)∑
k=1

wk|βk|,

▷ Apply threshold values
7: η = [10−8, 10−7, . . . , 101];
8: for i = 1, . . . , card(η) do

▷ Ordinary least squares regression (OLS) estimate after variable selection

β̂OLS[i] = argmin
βKi

∥∥∥ẋj −Θ
(1)
Ki
(X)βKi

∥∥∥2
2
where Ki = {k : |β̂(1)

k | ≥ ηi},

BICi = BIC(β̂OLS[i])
9: end for
10: β̂ =

{
β̂OLS[i]

∣∣∣i : argmin(BIC)
}

▷ STEP FOUR: Bootstrap estimates for confidence intervals
▷ B = 2000 bootstrap samples

11: bootstrap Statements 6 - 10 to approximate the confidence interval bounds:
CIlo = [Bα/2] and CIup = B − CIlo + 1;

12: construct bootstrap confidence intervals for β̂:

β̂k ∈
[
β̂
OLS{CIlo}
k , β̂

OLS{CIup}
k

]
, and 0 < β̂

OLS{CIlo}
k or 0 > β̂

OLS{CIup}
k
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grid on glmnet and determining the model corresponding to the optimal λ∗ that

most accurately predicts ẋj.

When applying ARGOS, the method uses η = 10−8, 10−7, . . . , 101 to thresh-

old the sparse regression coefficients before performing OLS on each subset

K = {k : |β̂k| ≥ η} of selected variables, determining an unbiased estimate for β [51].

ARGOS then calculates the BIC for each η regression model and selects the final

model corresponding to the one with the minimum value [86].

The number of bootstrap sample estimates B must be large enough to de-

velop robust confidence intervals for variable selection [89]. Therefore, AR-

GOS collects B = 2000 bootstrap sample estimates and sorts them by

β̂
OLS{1}
k ≤ β̂

OLS{2}
k ≤ · · · ≤ β̂

OLS{B}
k . ARGOS then uses the 100(1 - α)% accuracy

measure, where α denotes the significance level of each variable, to calculate

the integer part of Bα/2 and develop estimates of the lower and upper bounds:

CIlo = [Bα/2] and CIup = B − CIlo + 1. Finally, ARGOS implements these cal-

culations to develop confidence intervals
[
β̂
OLS{CIlo}
k , β̂

OLS{CIup}
k

]
from the sample

distribution [90].

To develop a fair comparison, Algorithm 1 was employed to filter the signal and

differentiate the derivative numerically for SINDy with AIC.

3.2 Results

3.2.1 Building the data sets and tests

The results section examines the impact of limited data and noise on the perfor-

mance of the system identification algorithms by conducting two sets of experiments.

Central to the approach in this analysis is the use of a distribution of random ini-

tial conditions. By leveraging this strategy, the efficiency of ARGOS was evaluated

with random data, reflecting its potential in real-world settings marked by inherent

unpredictability and variability.

The first test keeps SNR = 49 dB constant and increases the number of obser-

vations n for each ODE system, using a grid of matrices with 100 random initial

conditions. This enables the analysis to evaluate the identification performance of
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95% Confidence interval Point estimate
Selected

terms
0

e  Bootstrap confidence intervals f  Identified model

⇒

a  Smoothing and differentiation 

b  Trim design matrix

c  Point estimate

d  Bootstrap sampling

. .
 . . .
 .

Figure 3.1: Automatic regression for governing equations framework. This
example demonstrates the process of identifying the ẋ1 equation of a two-dimensional
damped oscillator with linear dynamics. (a) The algorithm initially smooths the
state x̃1 and calculates the derivative ẋ1 vector. (b) The design matrix Θ(0)(X) is
then constructed, containing the state-space variables and their interaction terms
up to monomial degree d = 5, before trimming the matrix to only include terms
up to the highest-order monomial degree of nonzero terms in each column of the
estimate β̂(0) (in this example, terms up to d = 2 are identified). Using Θ(1)(X), (c)
sparse regression is again performed with the previously used algorithm (lasso or
adaptive lasso), applying OLS on the subset of selected variables, and determining
the final β̂(1) point estimates. (d) Bootstrap sampling is subsequently employed to
obtain 2000 sample estimates and (e) develop 95% bootstrap confidence intervals
to (f) identify the β̂ prediction model by selecting the coefficients whose confidence
intervals do not include zero.
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each algorithm when working with limited data. For each ODE other than the

Lorenz system, the analysis uses temporal grids starting with tinitial = 0 and a vary-

ing tfinal between 1 (n = 102) and 1000 (n = 105) with a time step ∆t = 0.01.

However, for the Lorenz equations, the analysis uses ∆t = 0.001 to convert each

maximum value of n to tfinal between 0.1 (n = 102) and 100 (n = 105) [46].

The systematic analysis applies a similar process to observe the effect of noise

on system identification. In this setting, the SNR in the grids varies by corrupting

the state matrix with zero-mean Gaussian noise Z ∼ N (0, σ2
Z) (see Section 2.7 for

review). Keeping n constant, the analysis again uses 100 random initial conditions

before generating a grid of X̃ matrices by adding noise to the system such that

SNR = 1, 4, . . . , 61 dB with ∆SNR = 3 dB, including a noiseless system (SNR = ∞).

For both the increasing n and increasing SNR grids, the design matrixΘ(0)(X) of

each system was built with monomial functions up to d = 5 of the smoothed columns

of X [46]. ARGOS and SINDy with AIC then perform system identification with

the matrix grids, enabling the calculation of their success rates as the probability of

extracting the true underlying terms and observing their most frequently selected

variables. This metric allows for quantitatively measuring the performance of each

algorithm across different dynamical systems, as well as different SNR and n values

(see Tables 3.1 and 3.2).

Furthermore, the results in Section 3.4 reserve 80% of the data for training and

20% to test each prediction model and apply trapezoidal integration to approxi-

mate the predictions of each algorithm for the corresponding system. The analysis

then compares the predictions of each algorithm with the original X̃ and uses the

Frobenius norm to calculate the test set MSE:

MSE =
1

ntest

· ∥A∥2F =
1

ntest

· tr(A′A), (3.2)

where A = X̂−X for SNR ≤ ∞ [51, 52].
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3.2.2 Assessing ARGOS systematically

To evaluate the effectiveness of our approach, several well-known ODEs were ex-

panded using 100 random initial conditions, emulating real-world settings where

one cannot select these initial values. Data sets were then generated with varying

time series lengths n and SNRs (see Section 3.1.2) before a success rate metric was

introduced, defined as the proportion of instances where an algorithm identified the

correct terms of the governing equations from a given dynamical system. This metric

quantitatively measures the performance of an algorithm across different dynamical

systems, as well as different SNR and n values (see Tables 3.1 and 3.2). Figure 3.2

highlights success rates exceeding 80%, demonstrating that the proposed method

consistently outperformed SINDy with AIC in identifying the underlying system

from the data. ARGOS accurately represented linear systems with less than 800

data points and medium SNRs, underscoring its ability to handle straightforward

dynamics. Notably, even with only moderately-sized data sets or medium SNRs, the

approach successfully identified three out of five of the two-dimensional ODEs using

the lasso, showcasing the effectiveness of integrating classic statistical learning algo-

rithms within our framework. The adaptive lasso was able to identify the non-linear

ODEs in three dimensions with higher accuracy than the other algorithms tested.

These results suggest that the adaptive lasso is suitable for identifying non-linear

ODEs in higher dimensional systems.

The systematic analysis, presented in Figure 3.2, emphasised the efficacy of

the proposed approach as n and SNR increased. The importance of data qual-

ity and quantity is further supported by Figure 3.3, which illustrates the frequency

at which ARGOS identified each term in the design matrix across different values of

n and SNR. The boxes in the figure delineate regions where each algorithm achieved

model discovery above 80% for the Lorenz system, providing insights into the se-

lected terms contributing to the success and failure of each method across different

settings. When faced with limited observations and low signal quality, ARGOS

identified overly sparse models that failed to represent the governing dynamics ac-

curately, while SINDy with AIC selected erroneous terms, struggling to obtain a

parsimonious representation of the underlying equations. Figure 3.3 also illustrates
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Table 3.1: Minimum number of observations (n) needed for each method to ob-
tain 80% accuracy in identifying governing equations of dynamical systems. Top-
performing algorithms are in red, and three-dimensional systems have a shaded
background. See Appendix A for further details on governing equations.

System Algorithm n

Two-dimensional linear
ARGOS-Lasso 102.6 (399)
ARGOS-Adaptive Lasso 102.6 (399)
SINDy with AIC 103.3 (1996)

ARGOS-Lasso 102.9 (795)
ARGOS-Adaptive Lasso 103.2 (1585)Three-dimensional linear
SINDy with AIC NA

Two-dimensional cubic
ARGOS-Lasso 103.2 (1585)
SINDy with AIC 103.3 (1996)
ARGOS-Adaptive Lasso 104.1 (12590)

Lotka-Volterra
ARGOS-Adaptive Lasso 103.2 (1585)
SINDy with AIC 103.2 (1585)
ARGOS-Lasso 103.3 (1996)

ARGOS-Adaptive Lasso 102.9 (795)
ARGOS-Lasso 103.2 (1585)Rossler
SINDy with AIC 103.2 (1585)

ARGOS-Adaptive Lasso 103.8 (6310)
ARGOS-Lasso 103.9 (7944)Lorenz
SINDy with AIC NA

Van der Pol
ARGOS-Adaptive Lasso 102.9 (795)
SINDy with AIC 102.9 (795)
ARGOS-Lasso 103.0 (1000)

Duffing
ARGOS-Lasso 102.6 (399)
SINDy with AIC 102.9 (795)
ARGOS-Adaptive Lasso 103.0 (1000)
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Table 3.2: Minimum signal-to-noise ratio (SNR) tolerated by each method to achieve
80% accuracy in identifying the governing equations of the dynamical systems. Top-
performing algorithms are in red, and three-dimensional systems have a shaded
background. See Appendix A for further details on governing equations.

System Algorithm SNR

Two-dimensional linear
ARGOS-Lasso 25
ARGOS-Adaptive Lasso 25
SINDy with AIC 37

ARGOS-Lasso 31
ARGOS-Adaptive Lasso 40Three-dimensional linear
SINDy with AIC ∞

Two-dimensional cubic
ARGOS-Lasso 43
SINDy with AIC 46
ARGOS-Adaptive Lasso NA

Lotka-Volterra
ARGOS-Adaptive Lasso 16
SINDy with AIC 22
ARGOS-Lasso 28

ARGOS-Adaptive Lasso 31
ARGOS-Lasso 34Rossler
SINDy with AIC NA

ARGOS-Adaptive Lasso 46
ARGOS-Lasso 55Lorenz
SINDy with AIC ∞

Van der Pol
SINDy with AIC 16
ARGOS-Adaptive Lasso 19
ARGOS-Lasso 25

Duffing
ARGOS-Lasso 28
ARGOS-Adaptive Lasso 28
SINDy with AIC 34
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Figure 3.2: Success rate of ARGOS versus SINDy with AIC for linear and
nonlinear systems. 100 random initial conditions were generated to examine the
success rate of ARGOS and SINDy with AIC in correctly discovering each system
at each value of n and SNR. (a)-(b) Linear systems. First-order nonlinear systems
in two (c)-(d) and three (e-(f) dimensions. The time-series length n increases while
holding SNR = 49 dB (left panels) and fixing n = 5000 when increasing the SNR
(right panels). Shaded regions represent model discovery above 80%.
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the decline in the proposed method’s performance for deterministic systems, as it

identified several ancillary terms for the Lorenz dynamics when SNR = ∞. The

decrease in identification accuracy stemmed from the identified model’s violation of

the homoscedasticity assumption in linear regression, which occurs when residuals

exhibit non-constant variance. Figure 3.4 demonstrates that the identified model

from ARGOS did not satisfy this assumption when identifying the ẋ1 equation of

the Lorenz system. Consequently, the proposed approach selected additional terms

to balance the variance among the model’s residuals while sacrificing correct system

discovery. As the noise in the system slightly increased, however, homoscedasticity

in the residuals became more pronounced, enabling ARGOS to distinguish the equa-

tion’s true underlying structure. Thus, ARGOS proved more practical in accurately

identifying the correct terms of the governing equations when data contained low

levels of noise in the signal, which is often the case in many real-world applications,

as opposed to when dealing with noiseless systems.

The proposed method outperformed SINDy with AIC in identifying a range

of ODEs, especially three-dimensional systems. One potential explanation for the

lesser performance of SINDy with AIC is that multicollinearity in the design ma-

trix often causes OLS to produce unstable coefficients. Due to the sensitivity of

the estimated coefficients, small changes in the data can lead to fluctuations in

their magnitude, making it difficult for the sparsity-promoting parameter to de-

termine the correct model. As a result, the initial phase of the hard-thresholding

procedure of SINDy with AIC inadvertently removed the true dynamic terms of the

underlying system. Therefore, this model selection approach will likely face persis-

tent challenges when discovering higher-dimensional systems that contain additional

multicollinearity in the design matrix.

Figure 3.5 shows the computational time, measured in seconds, required for the

proposed approach and SINDy with AIC to perform model discovery. While AR-

GOS demanded greater computational effort for the two-dimensional linear system

than SINDy with AIC, it demonstrated better efficiency in identifying the Lorenz

dynamics as n increased. The decrease in efficiency of SINDy with AIC can be

attributed to its model selection process, which involves enumerating all potential
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Figure 3.3: Frequency of identified variables for the Lorenz system across
algorithms. Colours correspond to each governing equation; filled boxes indicate
correctly identified variables, while white boxes denote erroneous terms. Panels show
the frequency of identified variables for data sets with (a) increasing n (SNR = 49
dB), and (b) SNR (n = 5000). Purple-bordered regions demarcate model discovery
above 80%.
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prediction models—a procedure that becomes progressively more expensive with

data in higher dimensions [67]. In contrast, the proposed approach displayed a

similar increase in computational complexity as the time series expanded for both

systems, suggesting that ARGOS was less affected by the growing data dimension-

ality than SINDy with AIC. Thus, ARGOS offers a more efficient alternative for

identifying three-dimensional systems with increasing time series lengths.

Determining the grid of window lengths requires a constant that we cannot drop

in the optimal Savitzky-Golay filtering algorithm. Therefore, the method’s compu-

tational complexity can be described as O(nw). Furthermore, the computational

complexity of the lasso and the adaptive lasso is O(p3+np2) [81, 134]. The adaptive

lasso performs this process twice, identifying ridge regression pilot estimates. Thus,

engineers should be aware of the slight increase in efficiency. Finally, the complexity

of ARGOS can be described by O(B(p3 + p2n)) since the bootstrap method applies

the algorithm it is performing B times to develop as many sample estimates [89].
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Figure 3.5: Time-complexity (seconds) between ARGOS and SINDy with
AIC. Boxplots depict the computational time required for model discovery over 30
instances for (a) a two-dimensional damped oscillator with linear dynamics and (b)
the Lorenz system. The black bar within each box represents the median compu-
tational time. Whiskers extending from each box show 1.5 times the interquartile
range. Data points beyond the end of the whiskers are outlying points. Equations
accompanying the dashed lines indicate the fitted mean computational time for each
algorithm at various values of n.

3.3 Discussion

This chapter demonstrated a novel method, ARGOS, for extracting dynamical sys-

tems from scarce and noisy data without prior knowledge of governing equations.
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The proposed method combines the Savitzky-Golay filter for signal denoising and

differentiation with bootstrap sampling and sparse regression for confidence inter-

val estimation, effectively addressing the inverse problem of inferring underlying

dynamics from observational data through reliable variable section. By examining

diverse trajectories, this chapter showcases the efficacy of the proposed algorithm in

automating the discovery of mathematical models from data and consistently out-

performing the established SINDy with AIC, especially when identifying systems in

three dimensions, offering significant advances to researchers across disciplines.

Despite promising results, it is important to note several potential limitations

of the proposed approach. First, although ARGOS effectively automates model

discovery, it can only correctly represent the true governing equations if the active

terms are present in the design matrix, a constraint inherent in regression-based

identification procedures. Building on this point, the importance of data quantity

and quality must be stressed, as identification accuracy improved with sufficient

observations and moderate to high signal-to-noise ratios. The proposed method

also performs better when data contains low levels of noise, as opposed to noise-

less systems. Under noiseless conditions, the linear regression assumption of ho-

moscedasticity is violated, and the method identifies spurious terms to develop a

more constant variance among the residuals. However, this issue can be mitigated

in the presence of a small amount of noise in the data, leading to a more constant

variance in the residuals of the true model and enabling more accurate identification.

Lastly, as the number of observations and data dimensionality increase, bootstrap

sampling becomes computationally demanding, significantly prolonging the model

selection process and limiting the proposed algorithm’s applicability in real-time.

Nonetheless, obtaining confidence intervals through bootstrap sampling serves as a

reliable approach for ARGOS, allowing the method to eliminate superfluous terms

and select the ones that best represent the underlying equations, ultimately leading

to more accurate predictions of the system’s dynamics.

In this information-rich era, data-driven methods for uncovering governing prin-

ciples are increasingly crucial in scientific research. Combining statistical learning

with model assessment techniques provides an effective and reliable process for iden-
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tifying underlying equations and promoting automation. This chapter endorses an

inference-based approach, emphasising the importance of thorough model evalua-

tion for building confidence in discovering governing equations from data. Further

developments in automatic system identification will hopefully further accelerate

scientific discovery across various disciplines.

3.4 Additional Case Studies

3.4.1 Linear systems

Two-dimensional damped oscillator with linear dynamics

The two-dimensional damped oscillator with linear dynamics can be described as [46]

ẋ1 = −0.1x1 + 2x2,

ẋ2 = −2x1 − 0.1x2.
(3.3)

The tests used a random uniform distribution containing 100 values between

[10−1, 103] to develop x1(t) and x2(t). Figure 3.6 provides further details for the

systems generated to demonstrate model discovery. Each trajectory rapidly con-

verges to the true oscillator, allowing ARGOS to discover the governing equations.

Figure 3.7 illustrates the performance of ARGOS and SINDy with AIC in discov-

ering the two-dimensional damped oscillator with linear dynamics. For conditions

with limited data and low SNR, ARGOS identified overly sparse models and strug-

gled to identify the underlying equations of the system. As the length of the time

series n increased and the data became less contaminated with noise, the perfor-

mance of ARGOS improved in extracting the true terms. Conversely, SINDy with

AIC demonstrated a tendency to produce dense models, which contained numerous

erroneous variables, particularly when n and SNR were low.

The MSE values in Figure 3.8(a) show that when each algorithm identified

sparser models, their prediction error was reduced. However, Figure 3.8(b) illus-

trates that ARGOS began identifying models with fewer observations necessary
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Figure 3.6: 100 Instances of a two-dimensional damped harmonic oscillator
with linear dynamics. The two-dimensional linear system was generated using a
random uniform distribution containing 100 values between [10−1, 103] for the state
variables x1(t) and x2(t).
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Figure 3.7: Frequency of identified variables for the two-dimensional
damped harmonic oscillator with linear dynamics across algorithms.
Colours correspond to each governing equation; filled boxes indicate correctly identi-
fied variables, while white boxes denote erroneous terms. Panels show the frequency
of identified variables for data sets with (a) increasing n (SNR = 49 dB), and (b)
SNR (n = 5000). Purple-bordered regions demarcate model discovery above 80%.

78



than SINDy with AIC, proving that it was capable of extracting the true equations

and developing stronger predictions with limited data.
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Figure 3.8: MSE and minimum identification for the two-dimensional
damped oscillator with linear dynamics. The figure is vertically divided into
two regions: keeping SNR = 49 dB constant while increasing n in the left column.
(a) Provides the distribution of MSE values of each algorithm and (b) the average
number of observations n̄min necessary for each algorithm to identify the system as
the size of the time series increases. The right column (b) shows the distribution
of MSE values for each algorithm as the SNR increases in the data. (e) shows each
algorithm’s minimum average SNRmin before it begins to misidentify the system as
noise contaminates the system, fixing the number of observations n = 5000.

Figure 3.8(c) displays ARGOS consistently identifying models with a lower MSE

than SINDy with AIC. Here, ARGOS showed that it could develop stronger predic-

tions for the two-dimensional linear oscillator as noise increases in the system. Ulti-

mately, Figure 3.8(d) exhibits ARGOS and SINDy with AIC handled noise similarly

since they averaged a similar SNRmin until the system was no longer identifiable.
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Three-dimensional linear system

The analysis evaluates a three-dimensional system [46]:

ẋ1 = −0.1x1 + 2x2,

ẋ2 = −2x1 − 0.1x2,

ẋ3 = −0.3x3.

(3.4)

In Figure 3.9, 100 random initial conditions are generated using a uniform distribu-

tion containing values between [10−1, 103] to expand the state variables x1(t), x2(t),

and x3(t). Each trajectory rapidly converges to the true oscillator, allowing ARGOS

to discover the governing equations.

Figure 3.10 shows that ARGOS more consistently discovered the three-

dimensional system than SINDy with AIC, particularly when using the standard

lasso algorithm. Again, the importance of data quality and quantity must be em-

phasised, as ARGOS identified overly sparse models that did not fully represent the

system for low values of n and SNR. Additionally, SINDy with AIC consistently

misidentified this linear system by selecting several erroneous terms.

In Figure 3.11(a), ARGOS again developed stronger predictions than SINDy

with AIC as n increased in the matrix grid. These results show that, even as

more data was obtained, ARGOS more consistently identified and predicted the

three-dimensional linear system from data. Furthermore, on average, ARGOS be-

gan extracting the true equations of the underlying system around n = 200 (Fig-

ure 3.11(b)).

In Figure 3.11(c), ARGOS consistently identified models displaying a lower MSE

than SINDy with AIC. ARGOS more frequently outperformed SINDy with AIC in

extracting the system and developing predictions, providing a novel approach to

system identification with noise-robust results. Finally, Figure 3.11(d) displays AR-

GOS better handling noise than SINDy with AIC since, on average, it continued to

identify the system contaminated with larger SNR values. Therefore, by developing

robust confidence intervals, ARGOS required a limited number of observations to

uncover noisy linear systems from data.
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Figure 3.9: 100 Instances of a three-dimensional linear system. The three-
dimensional linear system was generated using a random uniform distribution con-
taining 100 values between [10−1, 103] for the state variables x1(t), x2(t), and x3(t).
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Figure 3.10: Frequency of identified variables for the three-dimensional lin-
ear system across algorithms. Colours correspond to each governing equation;
filled boxes indicate correctly identified variables, while white boxes denote erro-
neous terms. Panels show the frequency of identified variables for data sets with (a)
increasing n (SNR = 49 dB), and (b) SNR (n = 5000). Purple-bordered regions
demarcate model discovery above 80%.
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Figure 3.11: MSE and minimum identification for the three-dimensional
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constant while increasing n in the left column. (a) Provides the distribution of MSE
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the number of observations n = 5000.
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3.4.2 First-order nonlinear systems

Two-dimensional damped oscillator with cubic dynamics

The two-dimensional damped oscillator with cubic dynamics can be described as [46]

ẋ1 = −0.1x3
1 + 2x3

2,

ẋ2 = −2x3
1 − 0.1x3

2.
(3.5)

Figure 3.12 shows the state variables x1(t) and x2(t) were developed using a random

uniform distribution containing 100 values between [−2, 2]. These initial conditions

ensure that each trajectory rapidly converges to the true oscillator with n = 5000

observations, enabling the system to be contained within the data.

Figure 3.13 demonstrates the effectiveness of the lasso algorithm in conjunction

with ARGOS for identifying the two-dimensional damped harmonic oscillator with

cubic dynamics. In this case, the proposed approach consistently outperformed

SINDy with AIC. Thus, the lasso with ARGOS presents a powerful tool for discov-

ering these cubic dynamics.

Figure 3.14(a) shows that ARGOS provided stronger predictions by consistently

displaying lower MSE values than SINDy with AIC. Although the violin plots in

Figure 3.14(b) display a wide range of nmin for identification, ARGOS-Lasso proves

to be most successful in initially discovering the equations.

Figure 3.14(c) shows that, although each algorithm provided similar MSE values,

ARGOS developed a narrower MSE distribution than SINDy with AIC, displaying

less variability in its predictions. ARGOS consistently outperformed SINDy with

AIC in extracting the system and developing predictions, providing a novel approach

to system identification with noise-robust results. However, Figure 3.14(d) shows

that SINDy with AIC displays similarly competitive results in handling noise, as it

continued to identify the system contaminated with larger SNR values.

Lotka-Volterra system

Two first-order nonlinear differential equations describe the Lotka-Volterra equa-

tions, commonly utilised to depict the interaction dynamics between two species in
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Figure 3.12: 100 Instances of a two-dimensional damped harmonic oscil-
lator with cubic dynamics. The two-dimensional cubic system was generated
using a random uniform distribution containing 100 values between [−2, 2] for the
state variables x1(t) and x2(t).
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Figure 3.13: Frequency of identified variables for the two-dimensional
damped harmonic oscillator with cubic dynamics across algorithms.
Colours correspond to each governing equation; filled boxes indicate correctly identi-
fied variables, while white boxes denote erroneous terms. Panels show the frequency
of identified variables for data sets with (a) increasing n (SNR = 49 dB), and (b)
SNR (n = 5000). Purple-bordered regions demarcate model discovery above 80%.
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Figure 3.14: MSE and minimum identification for the two-dimensional
damped oscillator with cubic dynamics. The figure is vertically divided into
two regions: keeping SNR = 49 dB constant while increasing n in the left column.
(a) Provides the distribution of MSE values of each algorithm and (b) the average
number of observations n̄min necessary for each algorithm to identify the system as
the size of the time series increases. The right column (b) shows the distribution
of MSE values for each algorithm as the SNR increases in the data. (e) shows each
algorithm’s minimum average SNRmin before it begins to misidentify the system as
noise contaminates the system, fixing the number of observations n = 5000.
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biological systems, with one being the predator and the other the prey [135].

Identifying these equations accurately is essential as they are a fundamental

model for studying predator-prey dynamics in biological systems. If researchers can

accurately identify the Lotka-Volterra equation for a particular ecosystem, they can

use this model to predict how environmental changes, such as climate change and

human intervention, may affect the populations of different species. Researchers can

then inform conservation efforts and other management practices to promote healthy

ecosystems and seek sustainable resources. Furthermore, by accurately identifying

the Lotka-Volterra equations, researchers can develop more effective control strate-

gies for managing populations of invasive species, allowing us to develop targeted

interventions to control the invasive population without disrupting the balance of

the ecosystem. The predator-prey equations are represented as

ẋ1 = αx1 − ζx1x2,

ẋ2 = δx1x2 − γx2,
(3.6)

where the prey birth rate α = 1 and the predator death rate δ = −1, and the

interaction parameters ζ = −1 and γ = 1 [136]. Since the population cannot

start with a negative number, positive values were used for the 100 values of the

random uniform distribution between [1, 10] for x1(t) and x2(t) (see Figure 3.15).

Surprisingly, the figure shows these systems have not fully developed into predator-

prey dynamics. However, ARGOS and SINDy with AIC still identify the system

with a high degree of accuracy.

Figure 3.16 illustrates the effectiveness of each method, particularly ARGOS-

Adaptive Lasso, in discovering the governing equations of the Lotka-Volterra system.

As n and SNR increased, ARGOS demonstrated the most consistent discovery of the

true governing terms using the adaptive lasso within our framework. In contrast,

SINDy with AIC tended to discover numerous erroneous terms, especially when data

was limited.

Figure 3.17(a) shows that ARGOS provides stronger predictions with fewer ob-

servations than SINDy with AIC, corresponding to Figure 3.2(d) since ARGOS-

Adaptive Lasso was the first method to begin identifying the system successfully.
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Figure 3.15: 100 Instances of the Lotka-Volterra system with initial condi-
tions. The Lotka-Volterra system was generated using a random uniform distribu-
tion containing 100 values between [1, 10] for the state variables x1(t) and x2(t).
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Figure 3.16: Frequency of identified variables for the Lotka-Volterra system
across algorithms. Colours correspond to each governing equation; filled boxes
indicate correctly identified variables, while white boxes denote erroneous terms.
Panels show the frequency of identified variables for data sets with (a) increasing
n (SNR = 49 dB), and (b) SNR (n = 5000). Purple-bordered regions demarcate
model discovery above 80%.
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However, as n continued to increase, each method began successfully discovering

the governing equations and developing strong prediction models for the dynam-

ics. Furthermore, each approach ultimately required very few observations to begin

representing the underlying system from data, while ARGOS-Adaptive Lasso most

consistently selected the correct model, only requiring n̄min ≈ 158 (Figure 3.17(b)).

In Figure 3.17(c), each algorithm provided similarly low MSE values, but AR-

GOS developed a smaller average MSE than SINDy with AIC as the system became

more contaminated with noise. Moreover, Figure 3.14(d) displays the noise-robust

results of each algorithm, while ARGOS on average, performed better with larger

SNR values in the data.

Rossler system

The Rossler system is a three-dimensional chaotic system and is represented by the

equations

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b+ x3(x1 − c),

(3.7)

where a = 0.2, b = 0.2, and c = 5.7 [130]. For x1(t), x2(t), and x3(t), the tests

developed a random uniform distribution containing 100 values between [−10, 10],

[−10, 10], and [0, 20] (see Figure 3.18). These initial conditions ensure that each

trajectory rapidly converges to the true system with n = 5000 observations, enabling

the system to be contained within the data.

Figure 3.19 demonstrates the effectiveness of ARGOS in accurately representing

the Rossler system, provided that sufficient data is available. The novel approach

consistently identified the underlying dynamics and outperformed SINDy with AIC,

which struggled to achieve high success rates. Specifically, SINDy with AIC failed

to surpass 80% for any SNR value, highlighting its limitations in handling complex

dynamics in three dimensions. In contrast, ARGOS proved more reliable, making

it a superior choice for identifying the governing equations of chaotic systems under

various conditions.

From Figure 3.20(a), each algorithm developed similarly low MSE distributions

91



N = 102 N = 103 N = 104 N = 105 SNR = 1 SNR = 25 SNR = 49 SNR = ∞

10−5

100

105

1010

1015

1020

102 102.5 103 103.5 104 104.5 105

n

M
SE

a

10−15

10−10

10−5

100

105

1 13 25 37 49 61 ∞

SNR(dB)

M
SE

c

STLS

Adaptive
Lasso

Lasso

158 50079 1e+05
nmin

M
od

el

b

0 25 50 75100
Total NA

STLS

Adaptive
Lasso

Lasso

0 10 20 30 40 50 60 70
SNRmin

M
od

el

d

0 25 50 75100
Total NA

ARGOS−Adaptive Lasso ARGOS−Lasso SINDy with AIC
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Figure 3.18: 100 Instances of the Rossler system. Each system was gener-
ated using a random uniform distribution containing 100 values between [−10, 10],
[−10, 10], and [0, 20] for the state variables x1(t), x2(t), and x3(t).
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Figure 3.19: Frequency of identified variables for the Rossler system across
algorithms. Colours correspond to each governing equation; filled boxes indicate
correctly identified variables, while white boxes denote erroneous terms. Panels show
the frequency of identified variables for data sets with (a) increasing n (SNR = 49
dB), and (b) SNR (n = 5000). Purple-bordered regions demarcate model discovery
above 80%.
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as n increased in the system. However, ARGOS again displayed a lower MSE distri-

bution with fewer observations. Furthermore, in Figure 3.20(b), ARGOS required

significantly fewer observations to begin identifying the system and continued to do

so as the number of observations increased.

Figure 3.20(c) displays SINDy with AIC providing a lower MSE distribution

than ARGOS for smaller values of SNR. As the SNR increased in the system, AR-

GOS began identifying the equations correctly, leading to a lower MSE distribution.

Here, SINDy with AIC benefited from prior knowledge of the underlying system,

which enabled the method to extract the true equations even with significant noise.

Ultimately, however, ARGOS handled noise much better than SINDy with AIC

since the method consistently identified the equations as the system became more

contaminated with noise (Figure 3.20(d)).

Lorenz equations

The Lorenz chaotic system is a low-dimensional nonlinear structure originally a

simple model for atmospheric convection [46]. Researchers model the Lorenz system

using a set of ODEs:

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2 − ζx3,

(3.8)

with the values of the original parameters σ = 10, ρ = 28, and ζ = 8/3 [46].

Figure 3.21 shows 100 instances of the system expanded by values in a random

uniform distribution containing values between [−15, 15], [−15, 15], and [10, 40].

These values ensure the attractor is contained within the data, enabling a precise,

systematic analysis. Section 3.2.2 provides more detail regarding each algorithm’s

identification of the Lorenz system.

In Figure 3.22(a), each algorithm provided similarly low MSE distributions as

n increased in the system while ARGOS provided lower values around n = 100.

Furthermore, Figure 3.22(b) shows that ARGOS required significantly fewer obser-

vations to begin identifying the system (n ≈ 631) than SINDy with AIC (n ≈ 105).

Figure 3.22(c) shows that SINDy with AIC provided a lower MSE distribution
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Figure 3.20: MSE and minimum identification for the Rossler system. The
figure is vertically divided into two regions: keeping the SNR = 49 dB constant
while increasing n in the left column. (a) Provides the distribution of MSE values
of each algorithm and (b) the average number of observations n̄min necessary for
each algorithm to identify the system as the size of the time series increases. The
right column (b) shows the distribution of MSE values for each algorithm as the
SNR increases in the data. (e) shows each algorithm’s minimum average SNRmin

before it begins to misidentify the system as noise contaminates the system, fixing
the number of observations n = 5000.
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Figure 3.21: 100 Instances of the Lorenz system. Each system was generated
using a random uniform distribution containing 100 values between x1(t) ∈ [−15, 15],
x2(t) ∈ [−15, 15], and x3(t) ∈ [10, 40].
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Figure 3.22: MSE and minimum identification for the Lorenz system. The
figure is vertically divided into two regions: keeping SNR = 49 dB constant while
increasing n in the left column. (a) Provides the distribution of MSE values of
each algorithm and (b) the average number of observations n̄min necessary for each
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column (b) shows the distribution of MSE values for each algorithm as the SNR
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than ARGOS for smaller values of SNR. ARGOS identification dropped at SNR =

∞, showing that its MSE distribution subsequently increased when compared to

SINDy with AIC. Interestingly, ARGOS displayed more noise-robust results than

SINDy with AIC since it extracted the system with higher SNR values and continued

to do so as the system became less contaminated with noise (Figure 3.22(d)). If

ARGOS successfully uncovered the system, it would continue to do so as SNR → ∞.

3.4.3 Second-order nonlinear systems

Van der Pol oscillator

The canonical oscillator was initially proposed as a nonlinear circuit model with a

triode tube in 1922 and is a mathematical model used to describe self-sustaining

oscillations in physical and biological systems [64, 137]. As a result of the nonlinear

damping in the ẋ2 equation, the oscillator reaches a stable periodic state resulting

in limit cycle behavior [64]. The Van der Pol oscillator is represented as

ẋ1 = x2,

ẋ2 = µ(1− x2
1)x2 − x1,

(3.9)

where µ = 1.2 controls the nonlinear damping level of the system [64]. In Figure 3.23,

100 random initial conditions are generated between [−4, 4] for x1(t) and x2(t) to

expand the Van der Pol oscillator. The figure shows that the oscillator is well

represented in the data, which allows for a systematic comparison between ARGOS

and SINDy with AIC.

Figure 3.24 presents a comparison between our approach and SINDy with AIC

in discovering the governing equations for the Van der Pol oscillator. Initially, our

method developed overly sparse models, while SINDy with AIC produced dense

models for the underlying dynamics. However, as n and SNR increased, ARGOS

demonstrated a marked improvement in accurately representing the behaviour of

the oscillator.

In Figure 3.25(a), the sparse models identified by ARGOS provided a lower MSE

distribution with fewer observations than the dense models extracted by SINDy with
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Figure 3.23: 100 Instances of the Van der Pol oscillator. The Van der Pol
oscillator was generated using a random uniform distribution containing 100 values
between [−4, 4] for the state variables x1(t) and x2(t).
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Figure 3.24: Frequency of identified variables for the Van der Pol oscillator
across algorithms. Colours correspond to each governing equation; filled boxes
indicate correctly identified variables, while white boxes denote erroneous terms.
Panels show the frequency of identified variables for data sets with (a) increasing
n (SNR = 49 dB), and (b) SNR (n = 5000). Purple-bordered regions demarcate
model discovery above 80%.
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AIC. However, as n increased, each algorithm provided similarly low distributions

since they eventually uncovered the true equations. Furthermore, Figure 3.25(b)

shows that each algorithm required very few observations to extract the true terms

of the Van der Pol oscillator contaminated with limited noise.

Figure 3.25(c) again shows that each algorithm performed similarly well when un-

covering prediction models representative of the canonical oscillator. Figure 3.25(d)

further displays these results since ARGOS and SINDy with AIC develop similar

SNRmin values for the system. Ultimately, each algorithm was competitive in ex-

tracting the Van der Pol oscillator.

Duffing oscillator

The Duffing oscillator provides an alternative cubic nonlinear system that can rep-

resent chaos and often models a spring-damper-mass system that contains a spring

with a restoring force of f(ζ) = −κζ−ϵζ3, where ϵ > 0 represents a hard spring [64].

However, when ϵ < 0, it represents a soft spring and is given by:

ζ̈1 + γζ̇ + (κ+ ϵζ2)ζ = 0. (3.10)

Converting x = ζ and y = ζ̇ transforms Eq. (3.10) to

ẋ1 = x2,

ẋ2 = −γx2 − κx1 − ϵx3
1.

(3.11)

Here, the Duffing oscillator was generated using the parameter values for which the

equations do not represent chaotic behaviour: κ = 1, γ = 0.1, and ϵ = 5 [64].

Figure 3.26 state variables x1(t) and x2(t) were developed using a random uniform

distribution containing 100 values between [−2, 2], [−6, 6], respectively. These initial

conditions help the oscillator expand to its true form with enough observations

(n = 5000) and ensure that it is contained within the data for identification.

Figure 3.27 shows that ARGOS consistently represented the Duffing oscillator

with high accuracy. However, when the available data was insufficient, the novel

approach developed overly sparse models that inadequately captured the dynamics
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Figure 3.25: MSE and minimum identification for the Van der Pol oscil-
lator. The figure is vertically divided into two regions: keeping SNR = 49 dB
constant while increasing n in the left column. (a) Provides the distribution of MSE
values of each algorithm and (b) the average number of observations n̄min necessary
for each algorithm to identify the system as the size of the time series increases. The
right column (b) shows the distribution of MSE values for each algorithm as the
SNR increases in the data. (e) shows each algorithm’s minimum average SNRmin

before it begins to misidentify the system as noise contaminates the system, fixing
the number of observations n = 5000.
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Figure 3.26: 100 Instances of the Duffing oscillator. The equations were ex-
panded using a random uniform distribution containing 100 values between [−2, 2],
[−6, 6] for the state variables x1(t) and x2(t), respectively.
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of the system. In contrast, SINDy with AIC struggled to discover the system from

limited and noisy data, identifying numerous erroneous terms misrepresenting the

dynamics.
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Figure 3.27: Frequency of identified variables for the Duffing oscillator
across algorithms. Colours correspond to each governing equation; filled boxes
indicate correctly identified variables, while white boxes denote erroneous terms.
Panels show the frequency of identified variables for data sets with (a) increasing
n (SNR = 49 dB), and (b) SNR (n = 5000). Purple-bordered regions demarcate
model discovery above 80%.

Although each algorithm eventually extracted the governing terms of the Duffing

oscillator as n increased, ARGOS displayed lower MSE values than SINDy with

AIC with fewer observations (Figure 3.28(a)). Furthermore, Figure 3.28(b) shows

that ARGOS required significantly fewer observations to extract the system and

continued to do so as the time series length expanded.

Figure 3.28(c) exhibits that each algorithm performed similarly well when un-

covering prediction models representative of the Duffing oscillator. However, AR-
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Figure 3.28: MSE and minimum identification for the Duffing oscillator.
The figure is vertically divided into two regions: keeping SNR = 49 dB constant
while increasing n in the left column. (a) Provides the distribution of MSE values
of each algorithm and (b) the average number of observations n̄min necessary for
each algorithm to identify the system as the size of the time series increases. The
right column (b) shows the distribution of MSE values for each algorithm as the
SNR increases in the data. (e) shows each algorithm’s minimum average SNRmin

before it begins to misidentify the system as noise contaminates the system, fixing
the number of observations n = 5000.
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GOS had a lower tail in its distribution at higher values of SNR. Figure 3.28(d)

further shows that ARGOS was more robust than SINDy with AIC, developing a

lower SNRmin value for the system. Therefore, ARGOS provides a new, noise-robust

method for automatically identifying these second-order equations from data.

3.4.4 New England Bus System

Forced oscillations are a critical concern for the stability of power systems. Effective

identification and mitigation strategies are essential to safeguard against the oper-

ational risks they pose [138]. The reliability of power systems depends heavily on

the accurate location of the source of these oscillations. Consequently, this section

employs ARGOS to trace the origins of such disturbances within the ISO New Eng-

land system, using data from the IEEE Task Force’s test case library documenting

actual oscillation events [138].

The behaviour of power systems is complex and often characterised by nonlinear

Differential Algebraic Equations. These equations are particularly important when

analysing the dynamics of power generators under normal operating conditions.

Thus, the swing equations provide a standard approach to modelling generator rotor

dynamics, reflecting the balance of power within the system and the influence of

external disturbances:

ẋ1 = x2,

Ψẋ2 = Pmech −Pelec −Dx2 + u,
(3.12)

where vectors x1 and x2 correspond to the rotor angles and angular velocities of

the generators, respectively [138]. The equation parameters are defined as follows:

Ψ = diag[Ψ1, . . . ,Ψm] is the matrix of inertia constants for each generator, providing

insight into their respective abilities to resist changes in rotational speed. Similarly,

D = diag[D1, . . . , Dm] denotes the damping coefficients essential in offsetting power

fluctuations and maintaining operational equilibrium. The vectors Pmech and Pelec

represent the generators’ mechanical and electrical power outputs. Furthermore, the

term u signifies the external inputs that may include periodic forces exerted on the
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generator shafts, such as those arising from maladjustments in control systems like

turbine governors or exciters. In the study of forced oscillations, the external input u

is particularly interesting as it may embody the periodic forcing factors that disrupt

generator operations [138]. Such detailed examination of the swing equations and

their parameters affords deeper insight into potential disturbances, enabling more

effective preventive measures to be developed and implemented.

Cai et al. [138] have demonstrated that the forced oscillations, arising from the

excitation systems or turbine governors, can manifest themselves in the swing equa-

tions given by Eq. (3.12). The periodic inputs, denoted by u(t), exhibit regular

fluctuations that are aptly characterised by the Fourier series. This analytical ap-

proach transforms the periodic functions into the sum of sinusoidal components for

each generator, expressed as:

uj(t) =
l∑

i=1

(
aij sin

(
ωFij

t
)
+ bij cos

(
ωFij

t
))

=
l∑

i=1

(√
a2ij + b2ij sin

(
ωFij

t+ φij

)
=

l∑
i=1

(√
ζij sin

(
ωFij

t+ φij

))
,

(3.13)

where ζij =
√
a2ij + b2ij is the resultant amplitude and φij = arctan

(
bij
aij

)
is the phase

angle for each harmonic component within the generator’s input.

The shift from deterministic to stochastic modelling is critical in power system

analysis, as it allows for including inherent uncertainties in operational dynamics.

Such uncertainties often arise from load power variations, modelled as stochastic

elements characterised by Gaussian noise. These stochastic variations are a funda-

mental aspect of the system’s behaviour at the generator’s internal buses [138]. To

account for these load variations, the swing equations are expanded as

ẋ1 = x2,

Ψẋ2 = Pmech −Pelec −Dx2 − V 2GΣη + u.
(3.14)

Here, V represents the voltage magnitude at the generator’s internal buses, while
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G and Σ denote the conductance matrix and the standard deviations of the load

variations, respectively. The vector η, composed of standard Gaussian random

variables, correlates to the noise in load power. This extension of the swing equation

aims to encompass the stochastic nature of power systems, providing a more robust

and realistic model that better reflects the unpredictable aspects of power system

operation.

The structured framework of a physical power system model provides a me-

thodical approach to isolating and assessing the components indicative of forced

oscillations, as detailed in the approach by Cai et al. [138]. Here, ARGOS is applied

to data gathered from Phasor Measurement Units (PMU), facilitating the extrac-

tion of underlying terms that govern oscillatory behaviour. Such an assessment is

instrumental in pinpointing the origins of forced oscillations, which is critical in

maintaining system stability and reliability.

By integrating the expression for u(t) from Eq.(3.13) into the linearised stochas-

tic dynamic model of a power system shown in Eq.(3.14), the resulting model,

incorporating the periodic input vector, is depicted by the following state-space

representation:

 ẋ1

ẋ2

 =



0 −Ψ−1V 2GΣη

0 −Ψ−1 ∂Pelec

∂x1

I −Ψ−1D

0 a1

...
...

0 b1

0 bp



T



1

x1

x2

sin (ωF1t)

cos (ωF1t)
...

sin
(
ωFpt

)
cos
(
ωFpt

)



(3.15)

where ωFi, i = 1, . . . , p represents the dominant frequencies of forced oscillations af-

fecting the power system, while aij and bij quantify the oscillation input magnitudes

at the jth generator for each frequency ωFi [138].

The next phase involves transforming the model to focus solely on the magnitudes
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of these oscillation frequencies, leading to the formation of the coefficient matrixBT
ab:

BT
ab =



0 · · · a11 · · · a1m
... · · · b11 · · · b1m
...

. . .
...

. . .
...

... · · · ap1 · · · apm

0 · · · bp1 · · · bpm


. (3.16)

When the power system is under the influence of forced oscillations, the matrix

Bab exhibits significant non-zero values only at entries corresponding to the source

generators of the oscillations.

Cai et al. apply the Fast Fourier Transform (FFT) to the state matrix to identify

potential sources of oscillation frequencies [138]. This identification is refined using

the z-score-based peak detection method, which isolates the primary candidates

for the source of forced frequencies ωFi. The presence of peaks in the FFT spec-

trum indicates possible sources of disturbances, which are subsequently confirmed

by computing the squared magnitudes ζij:

ζij = a2ij + b2ij i = 1, . . . , p, and j = 1, . . . ,m. (3.17)

The calculated ζij values, derived from Bab, provide a measure of each oscillation’s

impact across frequencies and generators. In this setting, high ζ values correspond

to the frequency and generator locations of forced oscillations, thereby facilitating

the precise localisation of the oscillation sources.

The effectiveness of ARGOS for power system analysis was evaluated using a case

study of forced oscillations within ISO-New England’s bus network. This analysis

encompassed three key generators: G1 at Substation 6, G2 at Substation 7, and G3

at Substation 8 [138]. The study also considered the network’s interactions with

two external areas, designated as “Area 2” and “Area 3”. Here, Lines 7 and 21,

located at Substation 3 and Substation 9, respectively, served as the cumulative

interface points for these areas. Without rotor angle readings, voltage angle and

frequency measurements from the terminal buses of the aforementioned generators,
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as well as from the interface buses, were used. Despite this adjustment potentially

affecting the Jacobian matrix estimation, the integrity of forced oscillation data

within the Bab matrix remains intact. The system’s reference point was set at Line

11 in Substation 5 [138]. Importantly, the framework proposed by Cai et al. [138]

keeps the raw PMU data intact, which showcases ARGOS’ resilience to measurement

noise, temporal data shifts, and various real-world inaccuracies.

Figure 3.29 illustrates the effectiveness of the ARGOS-Adaptive Lasso in identi-

fying the source of forced oscillations across various cases. The method accurately

located the source within external Area 2—Line 7 for Cases 1 and 4, as depicted

in panels (a) and (c) of the figure. On July 20th, 2017, Case 3 presented as a

regional oscillation event, with the system’s response modes being thoroughly doc-

umented [138]. ARGOS-Adaptive Lasso correctly identified the source proximal

to G2, while ARGOS-Lasso recognised the significance of G2’s 1.13Hz oscillation

frequency. Case 5’s oscillation, also linked to G2, was successfully identified, un-

derscoring the method’s consistent performance in real-world applications and its

automated system identification capabilities.

In summary, the application of ARGOS to the ISO New England system has

provided valuable insights into the identification of forced oscillation sources within

a complex power network. By employing ARGOS to extract the stochastic swing

equations directly from PMU data, the resulting magnitudes elucidate the system’s

dynamics and susceptibility to operational disturbances. The case studies presented

demonstrate ARGOS’ robustness in addressing real-world data imperfections and

its precision in localising the source of oscillations. Such precise identification is

crucial for developing targeted mitigation strategies and reinforcing the grid’s oper-

ational reliability and stability. Future work will build on these findings, exploring

the scalability of the approach to larger systems and its integration with real-time

monitoring for proactive disturbance management. The continuous enhancement

of such analytical tools remains a cornerstone in the endeavour for power system

resilience, affirming the indispensable contribution of ARGOS to this critical field.
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Figure 3.29: ARGOS Analysis of Forced Oscillation Sources in the ISO-
New England Bus Network. Panels (a) to (d) display ζ parameter heatmaps for
Cases 1, 3, 4, and 5, using ARGOS-Lasso and ARGOS-Adaptive Lasso. The data
encompasses oscillation sources from generators G1, G2, and G3 and external lines
from “Area 2” and “Area 3”. Results for Case 2 are not depicted due to missing data
from G1 and G3. Heatmaps depict the geographic location and intensity of potential
sources of oscillation. A colour spectrum from cool to warm denotes oscillation
magnitude, with the efficacy of ARGOS-Adaptive Lasso highlighted by its precise
source identification.
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3.5 Summary

• ARGOS provides scientists and engineers with a reliable approach to

performing system identification. The novel method combines the lasso

and the adaptive lasso with bootstrap sampling to develop robust con-

fidence intervals and select the true governing terms from data securely.

• SINDy with AIC is a recently developed approach that performs se-

quential threshold least squares and determines the optimal model with

AIC [67]. Although the method automates model selection, it requires

prior knowledge of the governing equations and does not determine the

numerical derivative automatically.

• The optimal Savitzky-Golay filtering approach proposed here enables

ARGOS and SINDy with AIC to automatically perform the entire sys-

tem identification process. The method develops a grid of window

lengths l and uses polynomial order o = 4 before identifying the op-

timal l∗ that minimises the MSE between the original and smoothed

signal.

• Through a systematic analysis, this chapter highlights the ability of

ARGOS, showing that the method more frequently identifies the under-

lying equations from data than SINDy with AIC. Furthermore, ARGOS

represents a novel process for system identification and encourages re-

searchers to apply statistical inference methods to discover dynamical

systems from data automatically.

• Applying ARGOS within the ISO New England system demonstrated

its capability to identify sources of forced oscillations, using raw PMU

data to address real-world inaccuracies such as measurement noise and

temporal data shifts. This application underscores ARGOS’ effective-

ness in enhancing the reliability and stability of power systems through

precise source localisation and effective disturbance mitigation.
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CHAPTER 4

Clustering-Based Methods for the Sparse Identification of

Nonlinear Dynamics

Although the SINDy algorithm has extended the field, the approach has limita-

tions, primarily lacking a fully automated process for determining the appropriate

sparsity-promoting parameter λSINDy for system identification. Furthermore, the

manual selection of these hyperparameters is both time-consuming and susceptible

to human error. To overcome this limitation, a more standard method for model

evaluation, such as grid-search cross-validation, becomes essential. By systemati-

cally assessing several combinations of parameters, this model evaluation approach

can identify the optimal parameters, enhancing the accuracy and reliability of the re-

sulting models. This chapter builds on this idea by introducing ASINDy, an adaptive

extension that automates the SINDy algorithm. ASINDy uses several clustering-

based methods, namely Otsu’s method and the K-means algorithm, to identify an

initial sparsity-promoting parameter before developing a grid of threshold values for

cross-validation, forming the cornerstone of its automated hyperparameter tuning

process.

The following chapter demonstrates the effectiveness of ASINDy for several non-

linear systems, showing that it can automatically identify complex equations from

114



data. With this computationally efficient approach, engineers can study the be-

haviour of mathematical models more quickly and accurately than with manual

processes. Furthermore, by automating the tuning process with grid-search cross-

validation, ASINDy standardises the method for model evaluation, reducing the risk

of overfitting and optimising model selection.

4.1 Methods

4.1.1 Adaptive-SINDy

Similar to ARGOS, ASINDy begins by applying the optimal Savitzky-Golay filtering

algorithm for data smoothing and derivative approximation of each state matrix

column x̃j (see Section 3.1.1). The design matrix Θ(X) construction also mirrors

the ARGOS framework, with the addition of trigonometric functions for systems

containing Fourier transformations.

Next, ASINDy estimates each column of Ẋ in Eq. (2.51) using OLS regres-

sion. The normalised OLS coefficients serve to construct the matrix B̂OLS as an

initial approximation of the system. With this approximation, ASINDy employs

Otsu’s method or K-means clustering on the OLS coefficients to determine an ini-

tial sparsity-promoting λ0 value. These strategies are essential for constructing a

grid of thresholds used for performing subsequent cross-validation and distinguishing

significant coefficient estimates for the underlying system.

Otsu’s method maximises the between-class variance in the histogram of the nor-

malised coefficients, separating them into two groups of significant and insignificant

estimates. ASINDy applies Otsu’s method directly to the normalised coefficients,

which facilitates an initial sparsity-promoting parameter λ0 before establishing a

range of values for cross-validation, optimising the sequential thresholding process.

On the other hand, ASINDy uses the K-means algorithm to assign each parameter

estimate to precisely one cluster and establish significant coefficients between two

clusters of estimates. Since the K-means algorithm ensures that the clusters are

non-overlapping – no observation belongs to more than one cluster – this character-

istic allows ASINDy to calculate an initial λ0 = |C2 −C1|, where C1 and C2 are the
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corresponding cluster centroids [50].

Upon determining the initial λ0 (via Otsu’s method or K-means clustering),

ASINDy fine-tunes the sparsity-promoting parameter. This is accomplished by test-

ing a range of 100 evenly spaced λ values in the interval [λ0/10, 1.1·λ0] and identifying

the optimal λ∗
ASINDy that minimises the 5-fold cross-validation error. ASINDy then

uses the optimal λ∗
ASINDy as the final sparsity-promoting parameter for its predic-

tion model, enabling the method to solve the problem in Eq. (2.59). By employing

grid-search cross-validation, ASINDy improves upon the original SINDy method,

determining the optimal model through practical model evaluation rather than a

manually selected threshold [46].

Algorithm 3 Adaptive-SINDy

Input: X̃ ∈ Rn×m, d.
1: apply Savitzky-Golay Algorithm 1 and build Θ(X) with functions up to order

d;
2: for j = 1 to m do

β̂j = argminβj
∥ẋj −Θ(X)βj∥22;

3: end for
4: convert B̂OLS to one-dimensional vector β̂OLS;
5: obtain λ0 via K-means or Otsu’s method;
6: develop grid Λ = [λ0/10, 1.1 · λ0];

7: perform cross-validation to identify B̂ = argminB,Λ

∥∥∥Ẋ−Θ(X)B
∥∥∥2
2
+ Λ|B|0.

4.2 Results

4.2.1 Data Sets for System Identification

Building on the procedure outlined in Chapter 3, this section employs the same sys-

tematic approach to compare the performance of ASINDy with the original SINDy

method. Thus, ASINDy builds design matrices Θ(X) with monomial functions up

to d = 5 of the smoothed columns of X. However, trigonometric basis functions

are also included in the design matrix to account for the Fourier dynamics in the

Pendulum motion model and the Thomas system.

The specific implementations of ASINDy are evaluated using Otsu’s method and

the K-means clustering approach to identify the initial hyperparameter cut-off value
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for sequential thresholded least squares and ridge regression methods. ASINDy then

applies 5-fold cross-validation to determine the optimal model, assessing a range of

regularisation tolerance values αtol = [0, 0.01, 0.05, 0.1, 0.5] when performing sequen-

tial thresholded ridge regression. Finally, each method’s success rate is calculated

and compared against the original SINDy algorithm using its default parameters [46].

4.2.2 Lotka-Volterra System

Two-dimensional nonlinear systems offer a simplified, more tractable model for un-

derstanding complex phenomena, allowing engineers to isolate specific properties

and behaviours that additional dimensions would otherwise obscure. Thus, the

predator-prey equations of the Lotka-Volterra system were re-examined to deter-

mine the efficacy of ASINDy in model discovery, using the same random initial

conditions as Chapter 3 Section 3.4.2.

Figures 4.1 and 4.2 illustrate the initial challenge of discovering erroneous terms

during the sequential thresholding process. However, as the length of the time series

and SNR increased, ASINDy eventually attained strong success rates, as shown in

Figure 4.5(a). The interaction terms in the design matrix posed added challenges for

OLS regression, making it difficult for Otsu’s method and the K-means algorithm

to distinguish a suitable initial threshold value.

Yet, in spite of these initial challenges, the method developed promising re-

sults for model discovery. The figure shows that the K-means method, when used

in conjunction with the grid-search cross-validation process employed by ASINDy,

consistently discovered these predator-prey dynamics with a high level of accuracy

as n and SNR increased. Furthermore, ASINDy performed similarly to the original

SINDy method, identifying the system with success rates above 80% even when con-

taminated with moderate levels of noise in the data. Thus, the proposed approach

effectively demonstrated its ability to automate the discovery of this two-dimensional

system.
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Figure 4.1: Thresholding estimates for the Lotka-Volterra system using
Otsu’s method. Otsu’s method is applied to the initial normalised OLS coeffi-
cients to establish a grid of threshold values (shown in blue). Coefficients above
this grid are marked with green dots, indicating their preliminary selection before
ASINDy begins its sequential thresholding process. Purple dots within the grid
highlight coefficients potentially relevant for identification. Orange dots outside the
grid represent coefficients immediately excluded by all thresholds.

Figure 4.2: Thresholding estimates for the Lotka-Volterra system using
K-means clustering. K-means clustering procedure is applied to the initial nor-
malised OLS coefficients to establish a grid of threshold values (shown in blue).
Coefficients above this grid are marked with green dots, indicating their preliminary
selection before ASINDy begins its sequential thresholding process. Purple dots
within the grid highlight coefficients potentially relevant for identification. Orange
dots outside the grid represent coefficients immediately excluded by all thresholds.
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4.2.3 Chaotic Systems

Chaotic systems present a rich source of complex behaviour to scientists, appearing

unpredictable but governed by deterministic laws. The Halvorsen attractor is an

example of such a system, featuring chaotic flows that involve cyclic interchanges

of the symmetrical state variables. Its governing equations are first-order and ex-

hibit characteristics similar to those found in mechanical, electrical, and biological

systems, making the dynamics versatile for studying a range of applications. The

equations are represented as

ẋ1 = −αx1 − 4x2 − 4x3 − x2
2,

ẋ2 = −αx2 − 4x3 − 4x1 − x2
3,

ẋ3 = −αx3 − 4x1 − 4x2 − x2
1,

(4.1)

where α = 1.27 [139]. Furthermore, the system was expanded by generating 100

random values for x1(t), x2(t), and x3(t) from a uniform distribution in the range

[−4, 4].

Figure 4.3: Thresholding estimates for the Halvorsen system using Otsu’s
method. Otsu’s method is applied to the initial normalised OLS coefficients to
establish a grid of threshold values (shown in blue). Coefficients above this grid
are marked with green dots, indicating their preliminary selection before ASINDy
begins its sequential thresholding process. Purple dots within the grid highlight
coefficients potentially relevant for identification. Orange dots outside the grid rep-
resent coefficients immediately excluded by all thresholds.

Both Otsu’s and K-means thresholding methods proved to be effective ap-

proaches for the proposed technique, as demonstrated in Figures 4.3 and 4.4. Sepa-
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rately, these two algorithms successfully determined a value to establish a grid that

distinguished between significant and non-significant terms in the regression coef-

ficients, leading to a more accurate representation of the Halvorsen system. Even

in the absence of cross-validation, these methods managed to extract the optimal

value for the sequential thresholding approach, enabling the discovery of the true

governing equations. Moreover, Figure 4.5(b) shows that ASINDy identified the

underlying terms under limited and noisy conditions, providing similar results to

SINDy in identifying the Halvorsen system.

Figure 4.4: Thresholding estimates for the Halvorsen system using K-
means clustering. K-means clustering procedure is applied to the initial nor-
malised OLS coefficients to establish a grid of threshold values (shown in blue).
Coefficients above this grid are marked with green dots, indicating their preliminary
selection before ASINDy begins its sequential thresholding process. Purple dots
within the grid highlight coefficients potentially relevant for identification. Orange
dots outside the grid represent coefficients immediately excluded by all thresholds.

The next phase of the analysis examined the Lorenz system. As described in

Chapter 3, this canonical example of chaos is an excellent candidate for testing

the efficacy of any method in model discovery and is used throughout this thesis.

Therefore, to examine the system, Eq. (3.8) was expanded using the same parameters

and initial condition bounds consistent with Chapter 3.

The thresholding results presented in Figures 4.6 and 4.7 reveal that both Otsu’s

method and K-means clustering struggled to develop a grid of values that contained

optimal threshold values for the sparsity-promoting parameter λASINDy in identify-

ing the Lorenz equations, due to the wide range of initial OLS estimates of the

system. Nevertheless, the proposed method demonstrated success rates above 80%
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Figure 4.5: Automatic nonlinear system identification with each proposed
ASINDy implementation. The time-series length n is increased in the system
while holding SNR = 49 dB (left panels) and fix n = 5000 when increasing the SNR
(right panels). Success rates are defined by the proportion of correctly discovered
models for each system at each value of n and SNR. First-order nonlinear systems
in (a) two and (b)-(c) three dimensions, including (d) trigonometric transforma-
tions. ASINDy employs K-means clustering and Otsu’s method to establish the
initial sparsity-promoting tuning parameter for existing sequential thresholded least
squares (STLS) [46] and ridge regression (STRR) [47] techniques. Shaded regions
represent model discovery above 80%.
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as n increased and with high levels of SNR, consistently outperforming the original

SINDy algorithm in model discovery (Figure 4.5(c)).

Figure 4.6: Thresholding estimates for the Lorenz system using Otsu’s
method. Otsu’s method is applied to the initial normalised OLS coefficients to
establish a grid of threshold values (shown in blue). Coefficients above this grid
are marked with green dots, indicating their preliminary selection before ASINDy
begins its sequential thresholding process. Purple dots within the grid highlight
coefficients potentially relevant for identification. Orange dots outside the grid rep-
resent coefficients immediately excluded by all thresholds.

Ultimately, these examples demonstrate ASINDy’s effectiveness in automatically

representing several examples of chaotic systems from data, offering an advantage

over SINDy for discovering three-dimensional dynamics. This advantage is evident

in the higher success rates achieved by ASINDy in model discovery, as well as its

ability to automate the process of finding the optimal sparsity-promoting parameter,

thus potentially saving valuable time for engineers.

4.2.4 Trigonometric Thomas System

Finally, the analysis assessed the identification of a system with Fourier transforma-

tions in its nonlinear equations, representing an added challenge for capturing the

underlying dynamics. Systems containing trigonometric functions provide a useful

mathematical representation of oscillatory and periodic behaviour. In particular,

these dynamics are widely used in many areas of science to describe the conduct of

waves, signals, and vibrations.

The Thomas system represents a large class of autocatalytic models frequently

occurring in chemical reactions. The nonlinear equations governing its dynamics
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Figure 4.7: Thresholding estimates for the Lorenz system using K-means
clustering. K-means clustering procedure is applied to the initial normalised OLS
coefficients to establish a grid of threshold values (shown in blue). Coefficients above
this grid are marked with green dots, indicating their preliminary selection before
ASINDy begins its sequential thresholding process. Purple dots within the grid
highlight coefficients potentially relevant for identification. Orange dots outside the
grid represent coefficients immediately excluded by all thresholds.

exhibit cyclical symmetry in the state variables and are given by

ẋ1 = sin(x2)− ζx1,

ẋ2 = sin(x3)− ζx2,

ẋ3 = sin(x1)− ζx3,

(4.2)

where ζ = 0.208186 was used to expand the time series along with a random uniform

distribution containing 100 values between [−1, 1] for x1(t) and x2(t) [140]. In

Eq. (4.2), ζ modulates the Thomas system between two and three dimensions by

serving as a damping force for a particle moving in a three-dimensional lattice,

influenced by an external energy source or similar resource [140].

Given the trigonometric functions in Eq. (4.2), the design matrix contained can-

didate trigonometric terms such that

Θ(X) =

1 X X[2] X[3] sin(X) cos(X)

 . (4.3)

In Figure 4.5(d), the Thomas system required a sufficiently large time series
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length for ASINDy to perform model discovery, while the original SINDy algorithm

failed to reach an accuracy above 80%. These results were primarily due to the mul-

ticollinearity in the design matrix, which was caused by additional trigonometric

functions required to transform the state variables. From these additional terms,

Figures 4.8 and 4.9 show that the initial OLS regression estimated higher coefficient

values for a significant number of erroneous terms that did not exist in the differen-

tial equations. Furthermore, these spurious terms made it difficult for ASINDy to

perform sequential thresholding and represent the underlying system successfully,

as shown in Figure 4.5(d).

Additionally, when using Otsu’s method to establish a range of λASINDy values for

cross-validation in conjunction with the sequential thresholded least squares method,

ASINDy performed best in discovering the underlying equations. Furthermore, se-

quential thresholded ridge regression clearly reduced multicollinearity, identifying

the system more frequently as n increased and with lower values of SNR.

Figure 4.8: Thresholding estimates for the Thomas system using Otsu’s
method. Otsu’s method is applied to the initial normalised OLS coefficients to
establish a grid of threshold values (shown in blue). Coefficients above this grid
are marked with green dots, indicating their preliminary selection before ASINDy
begins its sequential thresholding process. Purple dots within the grid highlight
coefficients potentially relevant for identification. Orange dots outside the grid rep-
resent coefficients immediately excluded by all thresholds.

The results of each system show the effectiveness of the sequential thresholded

ridge regression approach employed by ASINDy, as shown in Figure 4.5. It is impor-

tant to note that, throughout this study, the original SINDy method used a default

sparsity-promoting hyperparameter of 0.1, which often proved to be an efficient ap-
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proach for identification. However, the proposed approach demonstrated improved

results for the Thomas system, indicating that a larger threshold value was essential

for successful model discovery when employing sequential thresholded least squares.

Additionally, even though the established method often produced similar results,

introducing small levels of regularisation allowed ASINDy to mitigate the effects of

multicollinearity slightly, leading to a more consistent system identification by the

proposed approach.

Figure 4.9: Thresholding estimates for the Thomas system using K-means
clustering. K-means clustering procedure is applied to the initial normalised OLS
coefficients to establish a grid of threshold values (shown in blue). Coefficients above
this grid are marked with green dots, indicating their preliminary selection before
ASINDy begins its sequential thresholding process. Purple dots within the grid
highlight coefficients potentially relevant for identification. Orange dots outside the
grid represent coefficients immediately excluded by all thresholds.

4.3 Discussion

The proposed ASINDy approach builds upon the recently developed SINDy algo-

rithm to facilitate its ability to discover nonlinear dynamical systems automatically.

ASINDy advances the original sparse regression technique by optimising the pa-

rameters for the Savitzky-Golay filter and employing classic unsupervised learning

methods to determine an initial sparsity-promoting value. In this process, ASINDy

applies the clustering-based thresholding approach of Otsu’s method, as well as the

K-means algorithm and uses the identified λ value to build a range of thresholds for

grid-search cross-validation. These enhancements enable ASINDy to effectively de-
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termine an optimal sparsity-promoting parameter for the sequential process, result-

ing in improved performance for discovering three-dimensional dynamical systems.

Despite these improvements, a critical limitation in all regression-based tech-

niques is the requirement for the active terms to exist in the design matrix when

performing identification, and ASINDy is no exception. Additionally, ASINDy may

falter when some systems contain very small coefficients, with magnitudes signifi-

cantly below the threshold, as the identified sparsity-promoting parameter may not

be low enough to keep these governing terms in its model. This is where grid-

search cross-validation becomes crucial, as it allows for a comprehensive exploration

of potential sparsity-promoting parameters, ensuring that ASINDy performs model

validation correctly and increasing the likelihood of preserving significant terms even

with small coefficients or large initial OLS estimates.

When OLS estimates reasonably approximate the system well, Otsu’s method

and the K-means clustering approach enable ASINDy to ensure that the true model

exists within the subset of developed models. However, when large initial OLS

estimates are present, the system may be difficult to discern, relying heavily on the

sequential thresholding process of the algorithm. In both settings, engineers must

know the systems they aim to discern and understand the potential terms that

govern their dynamics. With sufficient data, ASINDy provides a unique approach

to determining the optimal sparsity-promoting tuning parameter for many systems,

furthering automation in the field, and effectively building more interpretable models

from data.

Turning to a comparative evaluation, the systematic analysis of the results

highlights the efficacy of ASINDy in identifying various forms of ordinary differ-

ential equations, consistently outperforming SINDy in discovering several three-

dimensional systems. For instance, the method performs well when the design matrix

incorporates Fourier transformations, as demonstrated by its ability to discern the

dynamics of trigonometric systems from data. By employing the optimal Savitzky-

Golay filter parameters, ASINDy conducts model selection on the smoothed data

without making prior assumptions about the underlying structure of a given dynam-

ical system. The approach employsK-fold cross-validation as a standard method for
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model evaluation, offering a dependable means of assessing the accuracy of identified

models. In contrast, the original approach depends on the identified model without

any validation [46]. These results provide a viable alternative to the established

technique, particularly in improving the discovery of three-dimensional systems.

While SINDy has significantly impacted the field of system identification, engi-

neers are still required to determine manual tuning parameters to perform model

discovery effectively. Here, the adaptive approach employed by ASINDy aims to

encourage engineers to seek alternative machine learning methods that help further

automate and optimise the conventional system identification framework, enabling

them to focus on their data’s governing equations rather than spending valuable

time determining them manually.

4.4 Additional Case Studies

4.4.1 Van der Pol Oscillator

The Van der Pol oscillator was used to evaluate the efficacy of ASINDy in discovering

second-order two-dimensional nonlinear equations from data. For the expansion of

the canonical oscillator, µ = 1.2 was again applied to Eq. (3.9), along with the same

random uniform distribution containing 100 values between [−4, 4] for x1(t) and

x2(t).

Applying Otsu’s method andK-means clustering yielded efficient results in devel-

oping a threshold grid for cross-validation with ASINDy. From the initial estimates,

as illustrated in Figures 4.10 and 4.11, it is clear that these two methods determined

threshold parameters that successfully guided ASINDy in discovering the Van der

Pol oscillator. Additionally, Figure 4.16(a) shows the accuracy of ASINDy in iden-

tifying the oscillator, achieving high success rates when using K-means to cluster

the initial parameter estimates and developing a grid for determining the optimal

threshold.

Interestingly, although Otsu’s method and the K-means clustering approach

provided noise-robust results for the Van der Pol oscillator, the identification per-

formance using Otsu’s method to determine the sparsity-promoting parameter grid
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Figure 4.10: Thresholding estimates for the Van der Pol oscillator using
Otsu’s method. Otsu’s method is applied to the initial normalised OLS coeffi-
cients to establish a grid of threshold values (shown in blue). Coefficients above
this grid are marked with green dots, indicating their preliminary selection before
ASINDy begins its sequential thresholding process. Purple dots within the grid
highlight coefficients potentially relevant for identification. Orange dots outside the
grid represent coefficients immediately excluded by all thresholds.

Figure 4.11: Thresholding estimates for the Van der Pol oscillator using
K-means clustering. K-means clustering procedure is applied to the initial nor-
malised OLS coefficients to establish a grid of threshold values (shown in blue).
Coefficients above this grid are marked with green dots, indicating their preliminary
selection before ASINDy begins its sequential thresholding process. Purple dots
within the grid highlight coefficients potentially relevant for identification. Orange
dots outside the grid represent coefficients immediately excluded by all thresholds.
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for ASINDy with sequential thresholded ridge regression showed a similar drop when

the system was noiseless (SNR = ∞). This drop can be attributed to the autocor-

relation in the final model’s residuals. Under these conditions, the identified model

corresponding to the minimum cross-validation error contained several erroneous

terms to ensure the residuals were homoscedastic and contained minimal autocor-

relation. Ultimately, using grid-search cross-validation to determine the optimal

sparsity-promoting parameter was critical for the success of ASINDy in identifying

the Van der Pol oscillator.

4.4.2 Dadras system

The Dadras equations, proposed by Dadras and Momeni [141], represent a novel

three-dimensional autonomous chaotic system like the Lorenz. The Dadras system

can generate two, three, and four-scroll chaotic attractors with a single parameter

variation, showcasing its rich nonlinear dynamics, including chaos and period double

bifurcations. The governing equations are described as

ẋ1 = x2 − αx1 + ζx2x3,

ẋ2 = υx2 − x1x3 + x3,

ẋ3 = δx1x2 − ηx3,

(4.4)

with the values of the original parameters α = 3, ζ = 2.7, υ = 4.7, δ = 2, and

η = 9 [141]. Moreover, the state variables were expanded with random uniform

distribution containing 100 values between [−4, 4] for x1(t), x2(t), and x3(t).

As a hard-thresholding algorithm, determining the optimal threshold is crucial

to the success of ASINDy in automating model discovery. Traditionally, engineers

spend time reviewing different models to discover the true form of the underlying

system. Figures 4.12 and 4.13 show the effectiveness of thresholding OLS coefficients

for this purpose, particularly using Otsu’s method, which clearly identified the ac-

tive terms in the Dadras system when applied to the normalised coefficients. By

applying Otsu’s method to determine the sparsity-promoting grid, ASINDy identi-

fies the active terms in the Dadras system more consistently than SINDy, as shown
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Figure 4.12: Thresholding estimates for the Dadras system using Otsu’s
method. Otsu’s method is applied to the initial normalised OLS coefficients to
establish a grid of threshold values (shown in blue). Coefficients above this grid
are marked with green dots, indicating their preliminary selection before ASINDy
begins its sequential thresholding process. Purple dots within the grid highlight
coefficients potentially relevant for identification. Orange dots outside the grid rep-
resent coefficients immediately excluded by all thresholds.

in Figure 4.16(b). This allows ASINDy to reliably perform sparse regression with

the underlying model in its subset, ensuring that the true model can be identified,

given it contains the minimum cross-validation error. Moreover, ASINDy provided

a noise-robust method for identifying the underlying system as the SNR increased in

the data. Therefore, performing clustering on the initial OLS estimates provides a

robust approach for automatically extracting the chaotic Dadras system from data.

The original SINDy algorithm had difficulty identifying the system as the num-

ber of observations and SNR increased. As observed with previous examples of

chaotic systems, SINDy faces challenges when the assumptions of linear regression

are violated. In the case of the Dadras equations, SINDy struggled to derive the

underlying equations due to multicollinearity in the design matrix and outliers in

the data as the time series expanded. Consequently, the method inadvertently adds

erroneous terms to improve its prediction model. Evaluating the integrated state

matrix makes the process even more challenging to identify the system, rather than

using the traditional approach of comparing the error between the predicted ẋj equa-

tions. Therefore, using K-fold cross-validation enables ASINDy to develop a more

straightforward process for discovering equations.
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Figure 4.13: Thresholding estimates for the Dadras system using K-means
clustering. K-means clustering procedure is applied to the initial normalised OLS
coefficients to establish a grid of threshold values (shown in blue). Coefficients above
this grid are marked with green dots, indicating their preliminary selection before
ASINDy begins its sequential thresholding process. Purple dots within the grid
highlight coefficients potentially relevant for identification. Orange dots outside the
grid represent coefficients immediately excluded by all thresholds.

4.4.3 Sprott system

The Sprott system, a chaotic attractor that exhibits complex and unpredictable

behaviour, is known for its nested collection of invariant tori and quasi-periodic

orbits [142]. Furthermore, this system can provide valuable insights for electrical

and mechanical engineers due to the wealth of chaotic dynamics it exhibits. The

following equations describe the Sprott system:

ẋ1 = x2 + 2x1x2 + x1x3,

ẋ2 = 1− 2x2
1 + x2x3,

ẋ3 = x1 − x2
1 − x2

2.

(4.5)

Here, the state variables were expanded with a random uniform distribution con-

taining 100 values between [−1, 1] for x1(t), x2(t), and x3(t).

Thresholding methods such as Otsu’s method and the K-means algorithm can

significantly contribute to the discovery of the Sprott system, as evidenced in Fig-

ures 4.14 and 4.15. These methods allowed for a sparse representation without

necessitating the entire sequential thresholding process, indicating the potential for

effective system identification using ASINDy.
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Additionally, Figure 4.16(c) illustrates ASINDy consistently outperforming the

established SINDy as the number of observations n and SNR increased. Interest-

ingly, the sequential thresholded ridge regression implementation within ASINDy

provides the most accurate representation of the system for both tests, suggesting

that slight regularisation facilitates the success of the algorithm.

Figure 4.14: Thresholding estimates for the Sprott system using Otsu’s
method. Otsu’s method is applied to the initial normalised OLS coefficients to
establish a grid of threshold values (shown in blue). Coefficients above this grid
are marked with green dots, indicating their preliminary selection before ASINDy
begins its sequential thresholding process. Purple dots within the grid highlight
coefficients potentially relevant for identification. Orange dots outside the grid rep-
resent coefficients immediately excluded by all thresholds.

In summary, the analysis of the Sprott system shows that thresholding methods,

particularly Otsu and K-means, are effective in revealing the underlying dynamics.

Furthermore, the results highlight the critical role of grid search cross-validation in

automating the model discovery process and emphasise ASINDy as a more noise-

robust and effective method for model evaluation.

4.4.4 Nonlinear Pendulum Motion Model

In contrast to the simple linear pendulum model, the nonlinear model provides a

more complex system, considering larger angles of oscillation and nonlinearities such

as air resistance and friction [101]. The pendulum motion is described by the angle
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Figure 4.15: Thresholding estimates for the Sprott system using K-means
clustering. K-means clustering procedure is applied to the initial normalised OLS
coefficients to establish a grid of threshold values (shown in blue). Coefficients above
this grid are marked with green dots, indicating their preliminary selection before
ASINDy begins its sequential thresholding process. Purple dots within the grid
highlight coefficients potentially relevant for identification. Orange dots outside the
grid represent coefficients immediately excluded by all thresholds.
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Figure 4.16: ASINDy identification for nonlinear differential equations.
The time-series length n is increased in the system while holding SNR = 49 dB (left
panels) and fix n = 5000 when increasing the SNR (right panels). Success rates are
defined by the proportion of correctly discovered models for each system at each
value of n and SNR. First-order nonlinear systems including (a) two and (b)-(c)
three dimensions, as well as (d) trigonometric transformations. ASINDy employs
K-means clustering and Otsu’s method to establish the initial sparsity-promoting
tuning parameter for existing sequential thresholded least squares (STLS) [46] and
ridge regression (STRR) [47] techniques. Shaded regions represent model discovery
above 80%.
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x1(t) and the angular velocity x2(t) over time t [136]:

ẋ1 = x2,

ẋ2 = −αx2 + ζsin(x1),
(4.6)

where α = −0.25 and ζ = −5 [136]. The system was simulated by initializing the

state variables using a random uniform distribution. Here, 100 values were selected

within the range x1(t) = [−1− π, 1 + π] and x2(t) = [−1, 1].

Analysis of the performance of ASINDy in identifying the nonlinear pendulum

motion model indicates that initial OLS regression estimates resulted in large param-

eter values for the system. As illustrated in Figures 4.17and4.18, several OLS coeffi-

cients are initially above the originally identified threshold value λ0, leading ASINDy

to face challenges reducing these erroneous coefficients to zero during the sequential

thresholding process. Consequently, the high coefficients persisted throughout the

model identification process.

Figure 4.17: Thresholding estimates for the pendulum motion model using
Otsu’s method. Otsu’s method is applied to the initial normalised OLS coeffi-
cients to establish a grid of threshold values (shown in blue). Coefficients above
this grid are marked with green dots, indicating their preliminary selection before
ASINDy begins its sequential thresholding process. Purple dots within the grid
highlight coefficients potentially relevant for identification. Orange dots outside the
grid represent coefficients immediately excluded by all thresholds.

Another factor that affects the performance of ASINDy in identifying the pen-

dulum motion model is multicollinearity. Figure 4.16(d) further illustrates the chal-

lenges the proposed approach encounters in the presence of system noise. Despite

increases in n and SNR, each method struggled to reach an 80% success rate, with
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the notable exception of when SNR = ∞. The figure illustrates how even small

noise magnitudes had a noticeable impact on identification, as ASINDy was able to

extract the system with 100% success when the data was noiseless.

Like the Thomas system, engineers should be aware of the impact of multi-

collinearity on the sequential thresholding methods’ ability to discover models con-

taining trigonometric transformations effectively. When contaminated with addi-

tional multicollinearity, even when using ridge regression with ASINDy, the active

terms may be misrepresented due to initial unstable coefficient estimates, leading

the method to misidentify the governing equations. Thus, engineers should be aware

of this challenge when identifying systems with Fourier transformations in their gov-

erning equations.

Figure 4.18: Thresholding estimates for the pendulum motion model us-
ing K-means clustering. K-means clustering procedure is applied to the initial
normalised OLS coefficients to establish a grid of threshold values (shown in blue).
Coefficients above this grid are marked with green dots, indicating their preliminary
selection before ASINDy begins its sequential thresholding process. Purple dots
within the grid highlight coefficients potentially relevant for identification. Orange
dots outside the grid represent coefficients immediately excluded by all thresholds.

4.5 Computational Time for ASINDy

Figure 4.19 illustrates the computing time required to perform ASINDy when em-

ploying Otsu’s method for the sparsity-promoting parameter grid in the sequential

thresholded least squares and ridge regression processes compared to the original

SINDy algorithm [46]. Each algorithm was executed using one CPU core with a
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single thread, allowing for a fair comparison of efficiencies in the model discovery

process. The figure highlights that the original SINDy approach exhibits linear time

complexity, while ASINDy demonstrates quadratic time complexity. This difference

can be observed in the steeper growth of computing time for ASINDy as the length

of the time series increases. However, despite ASINDy’s higher computational de-

mand, its more elaborate approach is beneficial. Integrating the for statement in

Algorithm 3, followed by k–fold cross-validation, is pivotal in model assessment.

This rigorous process ensures that ASINDy evaluates each prediction model’s fit to

the data, a more comprehensive method than the original SINDy approach. Despite

the higher time complexity, the proposed approach consistently outperformed the

original SINDy algorithm in identifying complex three-dimensional dynamics, such

as the Lorenz system, as evidenced by the success rates previously discussed.

Lorenz system computing times

~ 2.28(log10n)2

~ 1.75(log10n)2

~ 8.55log10n10−1

100
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Figure 4.19: Time-complexity (seconds) between ASINDy and SINDy.
Boxplots depict the computational time required for model discovery over 100 in-
stances for the Lorenz system. The black bar within each box represents the me-
dian computational time. Whiskers extending from each box show 1.5 times the
interquartile range. Data points beyond the end of the whiskers are outlying points.
Equations accompanying the dashed lines indicate the fitted mean computational
time for each algorithm at various values of n.

Ultimately, the optimal Savitzky-Golay filtering algorithm can be described as

O(nw), where w represents the grid of window lengths. Furthermore, the sequential
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thresholding algorithm within ASINDy displays a similar computational complexity

to the lasso, O(p3 + np2). However, the incremental time requirement in ASINDy

is justified due to its comprehensive nature, particularly as it employs 5-fold cross-

validation across several parameters to determine its optimal model, thus offering a

more robust and reliable framework for model evaluation and selection.
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4.6 Summary

• Clustering algorithms, such as Otsu’s method and K-means, enable

ASINDy to group initial OLS parameter estimates together and au-

tomatically determine an initial sparsity-promoting grid. With this

process, the proposed approach employs the standard cross-validation

method for model evaluation to effectively determine coefficient esti-

mates.

• The methods employed by ASINDy provide a computationally effi-

cient and adaptive process that enables researchers to extract the most

significant terms from data, often outperforming the original SINDy.

This is particularly important for large datasets or systems with high-

dimensional state spaces, where alternative techniques may be compu-

tationally prohibitive.

• ASINDy implements the optimal Savitzky-Golay filtering method to

compute numerical derivatives automatically. Consequently, the signal

is smoothed optimally, and the underlying trends become more clearly

represented, allowing ASINDy to identify the best-fit prediction models.

• By employing clustering methods for preprocessing, the proposed ap-

proach determines a sparsity-promoting parameter grid suitable for se-

quential thresholding. Furthermore, using the standard K-fold cross-

validation technique enables ASINDy to determine the optimal model

effectively, as opposed to the original SINDy algorithm, which identifies

a single model through an iterative process that lacks a validation set.

Thus, this hybrid learning approach enables users to perform system

identification reliably and automatically, advancing the original method

by carefully evaluating initial estimates and the final model.
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CHAPTER 5

A Bayesian Approach to Nonlinear System Identification

This chapter introduces an alternative method, ARGOS-BI, which expands upon

the original ARGOS framework by replacing the frequentist bootstrap sampling

technique with Bayesian regression for model inference. By employing Bayesian

inference, ARGOS-BI offers an efficient and noise-robust process for uncovering dy-

namical systems from data. The efficacy of ARGOS-BI will be demonstrated for sev-

eral dynamical systems, showcasing advancements in the ability to automate model

discovery of three-dimensional systems, including those involving Fourier transfor-

mations in their underlying equations.

In this context, a comparison with the recent Ensemble-SINDy proves advanta-

geous [132]. Chosen for its methodological similarities, Ensemble-SINDy employs

bootstrap aggregation (bagging) and posterior probabilities in model identification,

akin to the Bayesian underpinnings of ARGOS-BI. This methodological resemblance

provides a more precise and robust basis for comparison, highlighting the enhance-

ments and strengths ARGOS-BI introduces to automated model discovery, particu-

larly in terms of robustness and reliability.
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5.1 Automatic regression for governing equations

with Bayesian Inference

Building upon the original framework in Chapter 3, ARGOS-BI also applies the

Savitzky-Golay filtering method to smooth and differentiate the data before devel-

oping an initial design matrix Θ(0)(X) by expanding the columns of X with mono-

mials up to the d-th degree and any additional basis functions (defined as degree

d = 1).

The regression procedure in ARGOS-BI includes two versions of the adaptive

lasso, one establishing a weights vector w from ridge regression and the other from

OLS regression, to develop two potential prediction models concurrently. These

models are then refined by reducing their design matrices to include only terms

up to the highest order nonzero monomial d of the corresponding estimate. This

process is repeated with the updated design matrices, applying OLS to the selected

variables of the final models. The model exhibiting the minimum BIC value is then

chosen as the optimal model, advancing to the next stage of the algorithm.

In the next stage, ARGOS-BI employs Bayesian regression on the selected vari-

ables, enhancing the final model’s reliability by addressing inherent uncertainties.

This process employs MCMC sampling, which relies on defining a probability func-

tion and using independent Gaussian priors to explore the posterior distribution ef-

fectively. The preference for Gaussian priors is twofold. Firstly, their mathematical

simplicity and computational efficiency in shaping posterior estimations make them

particularly useful for ARGOS-BI. In practical terms, these priors facilitate more

straightforward calculations and precise interpretations of the model’s outputs. This

clarity is crucial in ARGOS-BI, where understanding the impact of each variable

on the predictions helps in refining the final model and ensuring its accuracy and

reliability. Secondly, the choice of Gaussian priors aligns with the insights provided

by the central limit theorem. This theorem suggests that, regardless of an initial

distribution’s shape, the distribution of sample means tends to a normal (Gaussian)

distribution as the number of samples increases [93, p.51]. For ARGOS-BI, this im-

plies that employing Gaussian priors is not just mathematically convenient but also
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statistically robust, especially when dealing with large data sets where the theorem’s

effects become pronounced.

After Bayesian regression, the Gaussian prior’s effectiveness particularly shines

when dealing with data that inherently approximate Gaussian distributions in their

noise characteristics or when the central limit theorem’s applicability is a reasonable

assumption, ensuring not just mathematical convenience but also an alignment with

the empirical data’s nature. This alignment not only simplifies computations but

also enhances the model’s predictive accuracy by closely mirroring the underlying

statistical properties of the data.

This robustness underpins the reliability of Bayesian regression within the

ARGOS-BI framework, providing confidence in the model’s performance across vary-

ing scenarios and data characteristics. Consequently, the approach aims for the

samples to converge to an accurate posterior distribution, capturing the inherent

uncertainties in the final model. Significantly, MCMC sampling from this distribu-

tion quantifies uncertainty and calculates the posterior medians for each coefficient,

which act as precise point estimates in the final model, illuminating the influence of

each variable on prediction.

Lastly, ARGOS-BI then constructs credible intervals using the posterior prob-

abilities derived from the Bayesian regression process. Rather than the traditional

95% intervals, ARGOS-BI constructs 90% credible intervals to offer greater stability

and reliability in the estimates [97]. Like the ARGOS framework in Chapter 3, the

proposed ARGOS-BI finalises the model by selecting variables whose credible inter-

vals do not include zero and whose point estimates fall within these intervals. The

detailed step-by-step procedure of this regression process is outlined in Algorithm 4,

which encapsulates the complete computational workflow of ARGOS-BI.

5.2 Results

5.2.1 Building the data sets

This study applies the methodology established in Chapters 3 and 4 for creating

data sets, aiming to evaluate the effectiveness of ARGOS-BI in performing model
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Algorithm 4 Automatic Regression for Governing Equations - Bootstrap Inference
(ARGOS-BI)

Input: X ∈ Rn×m, ẋj ∈ Rn, d, α = 0.05.
▷ STEP ONE: Initial design matrix

1: p(0) =
(
m+d
d

)
;

2: create Θ
(0)
ridge(X) and Θ

(0)
OLS(X) ∈ Rn×p(0) with basis functions up to order d of

the columns of X;
▷ STEP TWO: Determine optimal adaptive lasso model
▷ λ∗

ridge, λ
∗
OLS : Optimal λ from 10-fold cross-validation with ridge and OLS

regression weights
▷ wridge, wOLS : ridge and OLS regression coefficients

3:

β̂
(0)
ridge = argmin

β

∥∥∥ẋj −Θ
(0)
ridge(X)β

∥∥∥2
2
+ λ∗

ridge

p(0)∑
k=1

wridge,k|βk|,

β̂
(0)
OLS = argmin

β

∥∥∥ẋj −Θ
(0)
OLS(X)β

∥∥∥2
2
+ λ∗

OLS

p(0)∑
k=1

wOLS,k|βk|

4: extract Θ
(1)
ridge(X) and Θ

(1)
OLS(X) to contain columns of Θ

(0)
ridge(X) and Θ

(0)
OLS(X)

up to the largest order of the selected variables in β̂
(0)
OLS and β̂

(0)
ridge;

5: p
(1)
ridge =

(
m+ d

(1)
ridge

d
(1)
ridge

)
, p

(1)
OLS =

(
m+ d

(1)
OLS

d
(1)
OLS

)

6:

β̂
(1)
ridge = argmin

β

∥∥∥ẋj −Θ
(1)
ridge(X)β

∥∥∥2
2
+ λ∗

ridge

p
(1)
ridge∑
k=1

wridge,k|βk|,

β̂
(1)
OLS = argmin

β

∥∥∥ẋj −Θ
(1)
OLS(X)β

∥∥∥2
2
+ λ∗

OLS

p
(1)
OLS∑
k=1

wOLS,k|βk|

▷ Apply threshold values
7: η = [10−8, 10−7, . . . , 101];
8: for i = 1, . . . , card(η) do

▷ Ridge and OLS regression estimates after variable selection

β̂OLS
ridge[i] = argmin

βKi

∥∥∥ẋj −Θ
(1)
ridge,Ki

(X)βKi

∥∥∥2
2
where Ki = {k : |β̂(1)

ridge,k| ≥ ηi},

β̂OLS
OLS [i] = argmin

βKi

∥∥∥ẋj −Θ
(1)
OLS,Ki

(X)βKi

∥∥∥2
2
where Ki = {k : |β̂(1)

OLS,k| ≥ ηi},

BICridge,i = BIC(β̂OLS
ridge[i])

BICOLS,i = BIC(β̂OLS
OLS [i])

9: end for
10: β̂ =

{
β̂OLS[i], β̂ridge[i]

∣∣∣i : argmin(BICOLS,i,BICridge,i)
}

▷ STEP SIX: Bayesian regression and confidence intervals
11: perform Bayesian regression (BR) with β̂

12: select final model: β̂k ∈
[
β̂
BR{CIlo}
k , β̂

BR{CIup}
k

]
, and 0 < β̂

BR{CIlo}
k or 0 > β̂

BR{CIup}
k
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discovery of two- and three-dimensional nonlinear systems from limited observa-

tions and varying noise levels. Moreover, the recently developed Ensemble-SINDy

is used to compare the success rates of the proposed approach. In this comparison,

Ensemble-SINDy is deployed using the default bragging method, which obtains the

median coefficient over all models [132].

5.2.2 Success Rates for Three-dimensional Systems

As previously discussed, many real-world applications involve three-dimensional sys-

tems to describe intricate dynamics in complex phenomena that cannot be accurately

modelled using only two dimensions. Therefore, this study focuses primarily on the

effectiveness of the proposed ARGOS-BI for discovering three-dimensional systems.

To illustrate the effectiveness of ARGOS-BI, Figure 5.1 shows its performance

when discovering each system from data, highlighting model discovery accuracy

above 80%. ARGOS-BI significantly outperformed Ensemble-SINDy across the ex-

amined systems, often requiring fewer observations and tolerating higher levels of

noise when identifying the underlying dynamics automatically. Additionally, the

method successfully discovered the trigonometric Thomas system from moderately-

sized data sets, showcasing its ability to extract the true governing terms when

additional multicollinearity exists in the design matrix.

To provide more insight into the decision-making process of ARGOS-BI, Fig-

ure 5.2 displays the uncertainty levels for each selected term in ARGOS-BI and

provides a clear interpretation of the approach. The figure displays narrow credible

intervals for each selected term in the equations of the Lorenz system. Furthermore,

the figure shows that Bayesian inference enabled the removal of predictors whose

uncertainty intervals contained zero while also estimating the standard deviation of

the residuals from the regression model (σ).

Figure 5.3 demonstrates the method’s ability to effectively remove terms from

its prediction model since the z variable in the ẋ2 equation crosses zero. The plot

exhibits the posterior probability distribution crossing zero, indicating that the un-

certainty levels were too high for the term to be included in the prediction model.

Ultimately, this approach enabled the method to effectively select or remove terms
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Figure 5.1: Success rates of ARGOS-BI and Ensemble-SINDy for three-
dimensional systems The time-series length n is increased in the system while
holding SNR = 49 dB (left panels) and fix n = 5000 when increasing the SNR (right
panels). Nonlinear chaotic systems are shown in panels (a)-(f). Success rates are
defined by the proportion of correctly discovered models for each system at each
value of n and SNR. Shaded regions represent model discovery above 80%.
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ARGOS−BI posterior distributions
with medians and 90% intervals for the Lorenz system
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Figure 5.2: Posterior Distributions for the Lorenz system. Credible intervals
for the identified variables of each equation were developed using the 90% confidence
level. Terms with intervals containing zero are removed from the final prediction
model.

from its prediction model and more accurately represent the underlying system.

As shown in Figure 5.1, the identification success rate of ARGOS-BI slightly

reduced as n increased. These results can be explained by the number of influential

observations in the data, which negatively impact the proposed method’s efficacy in

model discovery, as shown in Figure 5.4. Although the method identified the system

accurately when n = 104, the data contained more influential data points that

impacted the regression model with n = 105 observations, causing the approach to

incorrectly select the intercept term in the ẋ1 equation. Interestingly, this contrasts

with the consistent identification demonstrated by the original ARGOS method, as

reported in Chapter 3, which was seemingly unaffected by these observations.

Figure 5.4 highlights the Cook’s Distance values for each observation, a critical

statistical metric assessing the influence of individual data points on the overall

model fit. A high Cook’s Distance value suggests a significant influence of that

observation on the model, potentially leading to a skew in the results. By excluding

observations with Cook’s Distance values exceeding 1, a measure of the influence

of an observation on the overall model fit [143], this issue was mitigated, and the

145



z

−0.02 0.00 0.02

with median and 90% interval for the x⋅2 equation of the Lorenz system

ARGOS−BI posterior distribution of z variable

Figure 5.3: Posterior Distribution for z variable in the ẋ2 Lorenz system
equation. This figure demonstrates the rationale behind removing terms with cred-
ible intervals containing zero. The posterior distribution’s median value indicates
that uncertainty levels cross zero, suggesting this term should not be selected for
prediction.

proposed method was able to identify the underlying equations more accurately.

Thus, assessing these influential points suggests the identification results improve

when adhering to the assumptions of linear regression.
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Figure 5.4: Cook’s Distance values for the identified model of the ẋ1 equa-
tion of Dadras system. These plots, corresponding to (a) n = 104 and (b)
105 observations, use Cook’s Distance to highlight influential data points affecting
the model’s estimates. High Cook’s Distance values signal potentially significant
impacts on the model from specific observations, aiding in identifying outliers or
pivotal data points at varying observation scales.
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Similar to ARGOS in Chapter 3, when SNR = ∞, the proposed method’s per-

formance deteriorated for several systems, as shown in Figure 5.1. This decrease

in identification accuracy occurred from the identified model’s violation of the ho-

moscedasticity assumption in linear regression, stating that residuals should exhibit

a non-constant variance. As shown in Figure 5.5, the model identified by ARGOS-

BI did not satisfy this assumption for the ẋ1 equation of the Sprott system, subse-

quently leading to the addition of erroneous terms to alleviate this issue and reduce

the heteroscedasticity in the residuals. However, as the noise in the system slightly

increased, the variance among the residuals became more homoscedastic, enabling

the proposed method to identify the system correctly. Therefore, ARGOS-BI also

provides a practical alternative for accurately discovering the correct terms of the

governing equations when data contain low levels of noise in the signal, which is

helpful for many engineers working with real-world data.
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Figure 5.5: Residuals vs fitted diagnostics for the identified model of the
Sprott ẋ1 equation. Comparison of residuals for the prediction models identified
for the Sprott system’s ẋ1 equation when data are (a) noiseless and (b) contaminated
by SNR = 61 dB.

5.2.3 Success Rates for Two-dimensional Systems

Although the main focus of this chapter is to illustrate the proposed method’s perfor-

mance with three-dimensional systems, two-dimensional systems have been widely

studied in system identification and control due to their simplicity and ease of vi-

sualisation. Figure 5.6 highlights the effectiveness of ARGOS-BI in identifying two-

dimensional systems, showing that it consistently required fewer observations and

tolerated higher levels of noise for these simpler dynamics. As opposed to previously
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studied methods, the Bayesian approach enabled ARGOS-BI to achieve a 20% suc-

cess rate when n = 100 for the two-dimensional oscillator with linear dynamics and

the Lotka-Volterra system, indicating that the credible confidence intervals were

effective in identifying the underlying equations.

As n and SNR increased, the proposed approach continued to improve in model

discovery for the examined two-dimensional systems. These results can be attributed

to the adaptive lasso’s ability to more easily determine the correct equations for

these simpler systems, enabling the Bayesian regression approach to develop simpler

models and more accurate predictions. Hence, this approach proved more accurate

and efficient for model discovery in many cases compared to Ensemble-SINDy, which

struggled to extract the underlying equations for several systems.

Ultimately, these two-dimensional examples provide insight into the versatility

of ARGOS-BI, outperforming Ensemble-SINDy in identifying the underlying equa-

tions for most systems tested here. Furthermore, the results show that ARGOS-BI

provides an effective method for automatic model discovery of both two- and three-

dimensional systems from data.
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Figure 5.6: Success rates of ARGOS-BI and Ensemble-SINDy for two-
dimensional systems The time-series length n is increased in the system while
holding SNR = 49 dB (left panels) and fix n = 5000 when increasing the SNR
(right panels). Panel (a) provides a linear system, while two-dimensional nonlinear
systems are examined in (b)-(d). Success rates are defined by the proportion of
correctly discovered models for each system at each value of n and SNR. Shaded
regions represent model discovery above 80%.
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5.2.4 Computational Time for ARGOS-BI

Figure 5.7 compares the computing time required for ARGOS-BI and Ensemble-

SINDy [132]. The figure illustrates the time complexity (in seconds) required to

perform each method using one CPU core with a single thread for the Lorenz sys-

tem. Furthermore, the figure shows a wider variability in the proposed method’s

computational effort with lower values of n, which is consistent with the drawbacks

of the approach in that it requires enough observations to develop valid estimates

of the system. However, as n increased, the computational effort of each algorithm

eventually began to converge, while ARGOS-BI more consistently identified the un-

derlying system.
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Figure 5.7: Time-complexity (seconds) between ARGOS-BI and Ensemble-
SINDy. Boxplots depict the computational time required for model discovery over
100 instances for the Lorenz system. The black bar within each box represents the
median computational time. Whiskers extending from each box show 1.5 times the
interquartile range. Data points beyond the end of the whiskers are outlying points.
Equations accompanying the dashed lines indicate the fitted mean computational
time for each algorithm at various values of n.

Since determining the grid of window lengths, denoted as w, requires a constant

that cannot be dropped, the optimal Savitzky-Golay filtering method can be de-

scribed as O(nw), where n represents the number of observations. Moreover, the
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computational complexity of the adaptive lasso is O(p3 + np2), where p denotes the

number of variables in the design matrix. However, it is important to note that the

adaptive lasso performs this process twice with ridge regression, meaning engineers

should be aware of the slight increase in efficiency [81]. Furthermore, the com-

putational complexity of Bayesian regression is O(p3 + np2). By transforming the

algorithm into O(2 ∗ (p3 +np2)), the constant can be dropped, allowing ARGOS-BI

to mimic the computational efficiency of the standard lasso method [134]. However,

engineers should be aware that the multistage nature of the ARGOS-BI algorithm

might necessitate more effort for accurately identifying the underlying equations.

5.3 Discussion

This chapter presented ARGOS-BI as an innovative extension to the ARGOS frame-

work, enhancing the method’s capability for automated system identification under

noisy conditions. Through the integration of Bayesian inference, ARGOS-BI effi-

ciently facilitates the discovery of governing equations from inherently noisy data.

Despite its promising contribution, the proposed method does have limitations.

First, ARGOS-BI displayed a wider range of computational time required for model

discovery with fewer observations than when the system contained sufficient data.

In such cases, the adaptive lasso may fail to identify a sparse representation of

the system, resulting in a more computationally expensive procedure during the

MCMC process for estimating posterior probability values. However, as the length

of the time series expanded, the adaptive lasso identified a more accurate, sparse

representation of the system and facilitated the Bayesian regression approach to

develop a more accurate identification of the true model.

When applying regression-based algorithms, such as the original ARGOS,

ASINDy, or the proposed ARGOS-BI, attention must be paid to the potential impact

of influential observations on the model’s accuracy. While ARGOS’ demonstrated

consistent identification with an increase in observations, as seen in Chapter 3,

ARGOS-BI’s success rate slightly decreased with the expansion of the Dadras sys-

tem. This reduction in performance can be attributed to potential outliers in the
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data, which were identifiable using Cook’s Distance. These observations can be

excluded during regression by determining influential data points that might dis-

proportionately affect the model’s performance, enabling the proposed approach to

select the true model accurately.

ARGOS-BI’s performance was also affected by the violation of homoscedasticity,

similar to ARGOS’s behaviour in Chapter 3. The residuals displayed non-constant

variance for deterministic systems, and the proposed approach identified extraneous

terms to improve prediction accuracy while sacrificing correct identification. How-

ever, this issue was again mitigated with a slight increase in noise in the system,

and ARGOS-BI could represent each system more accurately.

The proposed method only assumes a parsimonious underlying model structure

and employs independent and identically distributed Gaussian prior probabilities

for each term in its prediction model. This choice is strategically sound for a broad

range of applications due to the balance it offers between computational efficiency

and accuracy. Gaussian priors provide a mathematical simplicity that facilitates

quicker calculations and generally acceptable accuracy, making them a preferred

choice in many engineering contexts. However, the decision to employ specific priors

should not be taken lightly, especially in real-world settings where the underlying

dynamics might be complex or not well-understood.

While Gaussian priors are generally robust and versatile, different scenarios

might necessitate alternative distributions. For instance, employing a Laplace prior

can promote sparsity in the final model, which is advantageous in systems where

only a few predictors are truly influential. Alternatively, using a Cauchy distribu-

tion can enhance the model’s robustness against influential observations, reducing

the impact of outliers.

It’s crucial to note that these alternative priors come with their own challenges.

They often require more intricate hyperparameter tuning, which can introduce a

higher computational cost and complexity. Such complexity not only demands more

from the computational infrastructure but also from the users in terms of their exper-

tise and understanding of Bayesian statistics. For example, in practice, the efficiency

of a Laplace prior in promoting sparsity might be offset by the increased difficulty
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in estimating the correct scale parameter, making it less accessible for engineers

without in-depth statistical training. Therefore, while exploring different prior dis-

tributions can theoretically enhance the model’s ability to identify the underlying

system accurately, one must balance this potential gain against increased complex-

ity and the risk of model misspecification. The strength of the Gaussian prior lies

in its general applicability and tractability, especially when dealing with large data

sets where the central limit theorem reinforces its suitability. Thus, although in-

tegrating different prior distributions can be beneficial in refining system discovery

and prediction accuracy, engineers are advised to weigh these benefits against the

original method’s simplicity and efficiency. Careful consideration is needed to ensure

the chosen prior is appropriate for the specific context and does not inadvertently

compromise the model’s overall utility.

In summary, ARGOS-BI offers a valuable contribution to the field of system

identification by providing a statistically rigorous and noise-robust method for au-

tomating model discovery. Its Bayesian approach holds great potential for advancing

the state-of-the-art and paving the way for new and innovative methods for extract-

ing governing equations from data. By leveraging the benefits of Bayesian regression

and developing credible intervals for model inference, this approach provides a sta-

tistically rigorous and noise-robust identification procedure for ARGOS. As a result,

researchers and engineers can employ ARGOS-BI to effectively discover the govern-

ing equations of dynamical systems from noisy data while providing uncertainty

measures in the process.
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5.4 Summary

• ARGOS-BI, a Bayesian inference approach, provides a probabilistic

method for automating system identification, producing uncertainty

measurements and optimal system representation through credible in-

tervals.

• The method establishes a computationally efficient approach for iden-

tifying systems automatically and consistently outperforms Ensemble-

SINDy in model discovery, despite varying computational times for

smaller data sets.

• Results emphasise the importance of satisfying linear regression assump-

tions, demonstrating better performance when data is free from signifi-

cant outliers, and improved identification when slight levels of noise are

present, as opposed to deterministic systems.

• The proposed approach is an efficient alternative to frequentist methods,

providing reliable results and noise-robust identification capabilities.
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CHAPTER 6

Conclusion

This thesis has presented innovative contributions to data-driven system identifica-

tion, focusing on the automated discovery of interpretable prediction models. The

initial chapters underlined the potential of data-centric engineering across a broad

spectrum of applications, laying the groundwork for developing advanced statistical

and machine-learning methods to perform system identification.

Chapter 3 introduced ARGOS, an automatic method for identifying systems of

ODEs from data. ARGOS combines signal denoising, sparse regression, and boot-

strap sampling to formulate a reliable solution path for model discovery. A com-

parison with the recently developed SINDy with AIC [67] demonstrated ARGOS’s

efficiency in automating model discovery.

The subsequent chapter presented an enhancement to the original SINDy algo-

rithm, ASINDy, that integrates standard unsupervised learning methods and estab-

lishes a grid of thresholds to perform the more common model evaluation approach,

K-fold cross-validation. By employing a range of threshold values for the sequential

thresholding algorithm, ASINDy outperforms the original SINDy method, offering

an approach that reduces the need for engineers to determine sparsity-promoting

hyperparameters manually.
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Finally, Chapter 5 extended the ARGOS framework by proposing a Bayesian ap-

proach as an alternative to the frequentist bootstrap sampling technique employed

in Chapter 3. Despite the method’s limitations, the proposed Bayesian implementa-

tion of ARGOS illustrated its consistency and efficacy in automating model discovery

compared to Ensemble-SINDy [132].

An additional contribution of this thesis is an optimal Savitzky-Golay filtering

method. This optimisation enhances the ability of each algorithm to automatically

smooth each vector of the state matrix and develop the numerical derivative, a

critical element in many data-driven fields. Without this approach, users are left to

determine the Savitzky-Golay algorithm’s parameters manually.

6.1 Implications and Applications

The methods developed in this thesis hold significant potential implications for di-

verse fields. In engineering, these algorithms can streamline the process of model

discovery for systems of ordinary differential equations found in climate modelling

or intricate manufacturing processes, enabling more efficient development of proce-

dures for optimisation, control, and analysis. Throughout biological sciences, these

methods can aid in examining systems like cell signalling or ecological dynamics, po-

tentially offering profound insights into complex phenomena. Moreover, economists

leverage these algorithms to discover equations that describe historical performance

data, modelling revenue, cash flow, expenses, or sales, and improve the accuracy

of financial forecasts. Finally, astrophysicists are another group that could benefit

from data-driven system identification, as building cosmological models from large

amounts of data often requires a sparse representation in the form of ordinary differ-

ential equations. These are just a few examples of potential real-world applications,

and the methodology presented here serves as a stepping stone towards more reli-

able, accurate, and automated modelling of dynamical systems, hopefully propelling

scientific research and technological advancements across various disciplines.
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6.2 Future Directions

The methods developed in this thesis offer noise-resistant system identification for

equations, which is crucial for engineers when extracting valuable information from

data. However, some statisticians may question the post-selection inference methods

avoided here [144]. Despite the accurate model assessment techniques used in this

thesis, the field of post-selection inference for model selection is still developing.

While integrating these methods into ARGOS may yield a more rigorous framework,

their current state of development prevented their application here as the statistical

community continues seeking secure implementation procedures. Consequently, the

techniques discussed in this thesis provide a statistically robust approach to system

identification.

The importance of balancing computational efficiency and statistical inference

cannot be stressed enough. This thesis introduced three methods that automate the

model discovery of dynamical systems. When dealing with large-scale data (n =

105), the bootstrap sampling employed by the original ARGOS framework requires

significant time to perform model discovery compared to ASINDy and ARGOS-BI.

However, the original ARGOS method displayed a smaller increase in computational

effort as n increased. Therefore, although ARGOS did not necessarily take less

time to accomplish model discovery, the results suggested that it may become more

efficient with larger data sets.

Moreover, substituting bootstrap sampling with Bayesian regression sacrificed

a slight degree of accuracy but considerably increased efficiency with fewer obser-

vations. These results showed the flexibility and enduring success of the ARGOS

framework for system identification. Although computational efficiency is an im-

portant metric, emphasis must also be placed on each algorithm’s success rate.

Therefore, engineers should consider the MSE of each method’s predictions when

assessing their final model.

The systematic analysis presented in this work provides a practical evaluation

of identification procedures, emphasising their advantages and drawbacks while en-

couraging comparisons between studies. A standardised framework facilitates a more

relevant assessment, improving transparency, replication, and scientific rigour. This
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approach addresses knowledge gaps and encourages interdisciplinary collaboration,

fostering a unified scientific community.

Automating system identification has the potential to expedite discoveries and

enhance accuracy across various scientific disciplines, from engineering, chemistry

and biology, to economics and physics. With these methods, engineers can generate

large models with numerous variables that would otherwise be daunting and labour-

intensive to create manually. Additionally, the proposed algorithms minimise the

risk of errors and inconsistencies often associated with manual model development,

enhancing model accuracy and reliability and leading to more effective decision-

making and more robust engineering designs. In conclusion, methods for automati-

cally discovering dynamical systems from data are essential for advancing scientific

research and accelerating technological progress.
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APPENDIX A

Equations of Dynamical Systems

A.1 Two-Dimensional Damped Oscillator with

Linear Dynamics

As discussed in Section 3.4.1, the governing equations for the two-dimensional

damped oscillator with linear dynamics are represented by

ẋ1 = −0.1x1 + 2x2,

ẋ2 = −2x1 − 0.1x2.
(A.1.1)

A.2 Three-Dimensional Linear System

The equations for the three-dimensional linear system are

ẋ1 = −0.1x1 + 2x2,

ẋ2 = −2x1 − 0.1x2,

ẋ3 = −0.3x3,

(A.2.2)

as discussed in Section 3.4.1.
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A.3 Two-Dimensional Damped Oscillator with

Cubic Dynamics

As mentioned in Section 3.4.2, the equations for the cubic system are given by

ẋ1 = −0.1x3
1 + 2x3

2,

ẋ2 = −2x3
1 − 0.1x3

2.
(A.3.3)

A.4 Lotka-Volterra System

The predator-prey equations are represented as

ẋ1 = αx1 − ζx1x2,

ẋ2 = δx1x2 − γx2,
(A.4.4)

where the prey birth rate α = 1 and the predator death rate δ = −1, and the

interaction parameters ζ = −1 and γ = 1 [136]. See Section 3.4.2.

A.5 Rossler System

In Section 3.4.2, the Rossler system is provided in detail as

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b+ x3(x1 − c),

(A.5.5)

where a = 0.2, b = 0.2, and c = 5.7 [130].
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A.6 Lorenz System

The Lorenz chaotic system is represented by

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2 − ζx3,

(A.6.6)

with the values of the original parameters σ = 10, ρ = 28, and ζ = 8/3 [46]. See

Section 3.4.2 for more details.

A.7 Van der Pol oscillator

Section 3.4.3 offers further information on the Van der Pol oscillator, represented as

ẋ1 = x2,

ẋ2 = µ(1− x2
1)x2 − x1,

(A.7.7)

where µ = 1.2 controls the nonlinear damping level of the system [64].

A.8 Duffing oscillator

The Duffing oscillator, described in Section 3.4.3, provides an alternative cubic non-

linear system that can represent chaos and often models a spring-damper-mass sys-

tem that contains a spring with a restoring force of f(ζ) = −κζ − ϵζ3, where ϵ > 0

represents a hard spring [64]. However, when ϵ < 0, it represents a soft spring and

is given by:

ζ̈1 + γζ̇ + (κ+ ϵζ2)ζ = 0. (A.8.8)

Converting x = ζ and y = ζ̇ transforms Eq. (A.8.8) to

ẋ1 = x2,

ẋ2 = −γx2 − κx1 − ϵx3
1.

(A.8.9)
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Here, the Duffing oscillator was generated using the parameter values for which the

equations do not represent chaotic behaviour: κ = 1, γ = 1, and ϵ = 5 [64].

A.9 Thomas System

In Section 4.2.4, the Thomas system is represented by

ẋ1 = sin(x2)− ζx1,

ẋ2 = sin(x3)− ζx2,

ẋ3 = sin(x1)− ζx3,

(A.9.10)

where ζ = 0.208186 [140].

A.10 Dadras System

The Dadras equations are described as

ẋ1 = x2 − αx1 + ζx2x3,

ẋ2 = υx2 − x1x3 + x3,

ẋ3 = δx1x2 − ηx3,

(A.10.11)

with the values of the original parameters α = 3, ζ = 2.7, υ = 4.7, δ = 2, and

η = 9 [141]. Section 4.4.2 provides further detail regarding the system.

A.10.1 Sprott System

The following equations describe the Sprott system:

ẋ1 = x2 + 2x1x2 + x1x3,

ẋ2 = 1− 2x2
1 + x2x3,

ẋ3 = x1 − x2
1 − x2

2.

(A.10.12)

See Section 4.4.3 for more details.
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A.11 Nonlinear Pendulum Motion Model

The pendulum motion is described by the angle x1(t) and the angular velocity x2(t)

over time t [136]:

ẋ1 = x2,

ẋ2 = −αx2 + ζsin(x1),
(A.11.13)

where α = −0.25 and ζ = −5 [136]. Section 4.4.4 provides further information

regarding the nonlinear pendulum.
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