6,573 research outputs found

    Predicting drug side effects by multi-label learning and ensemble learning

    Get PDF

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    Predicting Drug Targets from Heterogeneous Spaces using Anchor Graph Hashing and Ensemble Learning

    Full text link
    © 2018 IEEE. The in silico prediction of potential drug-targetinteractions is of critical importance in drug research. Existing computational methods have achieved remarkable prediction accuracy, however usually obtain poor prediction efficiency due to computational problems. To improve the prediction efficiency, we propose to predict drug targets based on inte- gration of heterogeneous features with anchor graph hashing and ensemble learning. First, we encode each drug as a 5682- bit vector, and each target as a 4198-bit vector using their heterogeneous features respectively. Then, these vectors are embedded into low-dimensional Hamming Space using anchor graph hashing. Next, we append hashing bits of a target to hashing bits of a drug as a vector to represent the drug-target pair. Finally, vectors of positive samples composed of known drug-target pairs and randomly selected negative samples are used to train and evaluate the ensemble learning model. The performance of the proposed method is evaluated on simulative target prediction of 1094 drugs from DrugBank. Ex- tensive comparison experiments demonstrate that the proposed method can achieve high prediction efficiency while preserving satisfactory accuracy. In fact, it is 99.3 times faster and only 0.001 less in AUC than the best literature method 'Pairwise Kernel Method'

    Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes

    Get PDF
    BACKGROUND: Investigating and understanding drug-drug interactions (DDIs) is important in improving the effectiveness of clinical care. DDIs can occur when two or more drugs are administered together. Experimentally based DDI detection methods require a large cost and time. Hence, there is a great interest in developing efficient and useful computational methods for inferring potential DDIs. Standard binary classifiers require both positives and negatives for training. In a DDI context, drug pairs that are known to interact can serve as positives for predictive methods. But, the negatives or drug pairs that have been confirmed to have no interaction are scarce. To address this lack of negatives, we introduce a Positive-Unlabeled Learning method for inferring potential DDIs. RESULTS: The proposed method consists of three steps: i) application of Growing Self Organizing Maps to infer negatives from the unlabeled dataset; ii) using a pairwise similarity function to quantify the overlap between individual features of drugs and iii) using support vector machine classifier for inferring DDIs. We obtained 6036 DDIs from DrugBank database. Using the proposed approach, we inferred 589 drug pairs that are likely to not interact with each other; these drug pairs are used as representative data for the negative class in binary classification for DDI prediction. Moreover, we classify the predicted DDIs as Cytochrome P450 (CYP) enzyme-Dependent and CYP-Independent interactions invoking their locations on the Growing Self Organizing Map, due to the particular importance of these enzymes in clinically significant interaction effects. Further, we provide a case study on three predicted CYP-Dependent DDIs to evaluate the clinical relevance of this study. CONCLUSION: Our proposed approach showed an absolute improvement in F1-score of 14 and 38% in comparison to the method that randomly selects unlabeled data points as likely negatives, depending on the choice of similarity function. We inferred 5300 possible CYP-Dependent DDIs and 592 CYP-Independent DDIs with the highest posterior probabilities. Our discoveries can be used to improve clinical care as well as the research outcomes of drug development
    corecore