2,962 research outputs found

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 192

    Get PDF
    This bibliography lists 247 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979

    Classification of different reaching movements from the same limb using EEG

    Get PDF
    Objective. Brain–computer-interfaces (BCIs) have been proposed not only as assistive technologies but also as rehabilitation tools for lost functions. However, due to the stochastic nature, poor spatial resolution and signal to noise ratio from electroencephalography (EEG), multidimensional decoding has been the main obstacle to implement non-invasive BCIs in real-live rehabilitation scenarios. This study explores the classification of several functional reaching movements from the same limb using EEG oscillations in order to create a more versatile BCI for rehabilitation. Approach. Nine healthy participants performed four 3D center-out reaching tasks in four different sessions while wearing a passive robotic exoskeleton at their right upper limb. Kinematics data were acquired from the robotic exoskeleton. Multiclass extensions of Filter Bank Common Spatial Patterns (FBCSP) and a linear discriminant analysis (LDA) classifier were used to classify the EEG activity into four forward reaching movements (from a starting position towards four target positions), a backward movement (from any of the targets to the starting position and rest). Recalibrating the classifier using data from previous or the same session was also investigated and compared. Main results. Average EEG decoding accuracy were significantly above chance with 67%, 62.75%, and 50.3% when decoding three, four and six tasks from the same limb, respectively. Furthermore, classification accuracy could be increased when using data from the beginning of each session as training data to recalibrate the classifier. Significance. Our results demonstrate that classification from several functional movements performed by the same limb is possible with acceptable accuracy using EEG oscillations, especially if data from the same session are used to recalibrate the classifier. Therefore, an ecologically valid decoding could be used to control assistive or rehabilitation mutli-degrees of freedom (DoF) robotic devices using EEG data. These results have important implications towards assistive and rehabilitative neuroprostheses control in paralyzed patients.This study was funded by the Baden-Württemberg Stiftung (GRUENS), the Deutsche Forschungsgemeinschaft (DFG, Koselleck and SP-1533/2-1), Bundes Ministerium für Bildung und Forschung BMBF MOTORBIC (FKZ 13GW0053), the fortune-Program of the University of Tübingen (2422-0-0), and AMORSA (FKZ 16SV7754). A Sarasola-Sanz’s work is supported by the La Caixa-DAAD scholarship, and N IrastorzaLanda’s work by the Basque Government and IKERBASQUE, Basque Foundation for Science

    Decision making study: methods and applications of evidential reasoning and judgment analysis

    Get PDF
    Decision making study has been the multi-disciplinary research involving operations researchers, management scientists, statisticians, mathematical psychologists and economists as well as others. This study aims to investigate the theory and methodology of decision making research and apply them to different contexts in real cases. The study has reviewed the literature of Multiple Criteria Decision Making (MCDM), Evidential Reasoning (ER) approach, Naturalistic Decision Making (NDM) movement, Social Judgment Theory (SJT), and Adaptive Toolbox (AT) program. On the basis of these literatures, two methods, Evidence-based Trade-Off (EBTO) and Judgment Analysis with Heuristic Modelling (JA-HM), have been proposed and developed to accomplish decision making problems under different conditions. In the EBTO method, we propose a novel framework to aid people s decision making under uncertainty and imprecise goal. Under the framework, the imprecise goal is objectively modelled through an analytical structure, and is independent of the task requirement; the task requirement is specified by the trade-off strategy among criteria of the analytical structure through an importance weighting process, and is subject to the requirement change of a particular decision making task; the evidence available, that could contribute to the evaluation of general performance of the decision alternatives, are formulated with belief structures which are capable of capturing various format of uncertainties that arise from the absence of data, incomplete information and subjective judgments. The EBTO method was further applied in a case study of Soldier system decision making. The application has demonstrated that EBTO, as a tool, is able to provide a holistic analysis regarding the requirements of Soldier missions, the physical conditions of Soldiers, and the capability of their equipment and weapon systems, which is critical in domain. By drawing the cross-disciplinary literature from NDM and AT, the JA-HM extended the traditional Judgment Analysis (JA) method, through a number of novel methodological procedures, to account for the unique features of decision making tasks under extreme time pressure and dynamic shifting situations. These novel methodological procedures include, the notion of decision point to deconstruct the dynamic shifting situations in a way that decision problem could be identified and formulated; the classification of routine and non-routine problems, and associated data alignment process to enable meaningful decision data analysis across different decision makers (DMs); the notion of composite cue to account for the DMs iterative process of information perception and comprehension in dynamic task environment; the application of computational models of heuristics to account for the time constraints and process dynamics of DMs decision making process; and the application of cross-validation process to enable the methodological principle of competitive testing of decision models. The JA-HM was further applied in a case study of fire emergency decision making. The application has been the first behavioural test of the validity of the computational models of heuristics, in predicting the DMs decision making during fire emergency response. It has also been the first behavioural test of the validity of the non-compensatory heuristics in predicting the DMs decisions on ranking task. The findings identified extend the literature of AT and NDM, and have implications for the fire emergency decision making

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF
    • …
    corecore