897 research outputs found

    Field Deployment and Integration of Wireless Communication & Operation Support System for the Landscape Irrigation Runoff Mitigation System

    Get PDF
    The study of water conservation technologies is critically important due to the rapid growth in urban population leading to a shortage in potable water supplies throughout the world. Current water supplies are not expected to meet the water demand in the coming decades; this could seriously affect human lives and socio-economic stability. About 30 percent of the current municipal supplies are being used for outdoor irrigation such as gardening and landscaping. These numbers are increasing due to the increase in urban population. Due to the current inefficient or improper landscape irrigation practices, substantial amounts of water are lost in the form of runoff or due to evaporation. Runoff occurs when the irrigation precipitation rate exceeds the infiltration rate of the soil, which depends on the soil and site characteristics such as soil type and the slope of the site. Runoff being an obvious water wastage, it also poses a great problem to the environment with its potential for transporting fertilizers and pesticides into storm sewers and, eventually, surface waters. Thus, this study focuses on designing a smart operational support system for landscape irrigation that has the potential to reduce runoff and also decrease water losses in the form of evaporation. The system consists of two main units, the landscape irrigation runoff mitigation system (LIRMS) and an operational support system (OSS). The combined system is referred to as the second-generation LIRMS. The LIRMS is installed at the border of a field/lawn. The LIRMS consists of a central controller unit and a runoff sensor. Based on the feedback from the runoff sensor, the controller unit pauses and resumes irrigation as needed in order to reduce runoff. The main purpose of OSS is to automate the scheduling of the irrigation process. A multilayer perceptron based OSS was designed and implemented on a dedicated web-server. The OSS processes historical irrigation data and the environmental/weather data to choose an optimal schedule to irrigate on a given day. The OSS aims to reduce irrigation water losses due to natural environmental factors such as evaporation and rain. A wireless communication link is established between LIRMS and OSS for monitoring and analyzing irrigation events. The second-generation LIRMS was installed in the Texas A&M Turfgrass Research Field Laboratory, College Station, TX for performing irrigation tests. The preliminary results show that the average soil wetting efficiency has increased with the use of the operational support system when compared to previous tests performed without the operational support system. Also the results suggest that the second generation LIRMS has comparable runoff reductions when compared to the first-generation LIRMS. Yet, more tests are required to quantify the overall water savings

    Monthly River Flow Forecasting by Data Mining Process

    Get PDF

    A Review of Models for Evaluation of Climate Change Impact on Water Resources

    Get PDF
    The use of models to simulate or predict impact of climate change on water resources management is very vital due to continual increase in global warming which invariably affects most important natural resources in the environment. This paper provides an overview of the existing models used for evaluating climate change impact on water resources management. It also compares their relative advantages and drawbacks. It was found that no model can perform satisfactorily the assessment of climate change impact; hence it may be necessary to use one model to compliment the weakness of another. Global Circulation Model (GCM) is not easily accessible in developing countries due to sophistications and processes involved in running it. Moreso, the nature of available data and cost of acquiring it is high. The main advantage of Water Balance (WATBAL) model is that it can model climate change impact in water resources but its major drawback is that it requires many inputs of hydro-meteorological parameters. Regression and Artificial Neural Network (ANN) models are readily available and not too expensive. They can model climate change impact on water resources and hydropower operation. However, the drawback is that enormous data are required for ANN model calibration and operation. It is imperative therefore to anticipate and efficiently prepare for future water resources management and suggest necessary measures to mitigate the effect of climate change

    Harnessing the power of neural networks for the investigation of solar-driven membrane distillation systems under the dynamic operation mode

    Get PDF
    Accurate modeling of solar-driven direct contact membrane distillation systems (DCMD) can enhance the commercialization of these promising systems. However, the existing dynamic mathematical models for predicting the performance of these systems are complex and computationally expensive. This is due to the intermittent nature of solar energy and complex heat/mass transfer of different components of solar-driven DCMD systems (solar collectors, MD modules and storage tanks). This study applies a machine learning-based approach to model the dynamic nature of a solar-driven DCMD system for the first time. A small-scale rig was designed and fabricated to experimentally assess the performance of the system over 20 days. The predictive capabilities of two neural network models: multilayer perceptron (MLP) and long short-term memory (LSTM) were then comprehensively examined to predict the permeate flux, efficiency and gain-output-ratio (GOR). The results showed that both models can efficiently predict the dynamic performance of solar-driven DCMD systems, where MLP outperformed the LSTM model overall, especially in the prediction of efficiency. Additionally, it was indicated that the accuracy of the models for the prediction of GOR can be significantly improved by increasing the size of the dataset

    Characterizing Evaporation Ducts Within the Marine Atmospheric Boundary Layer Using Artificial Neural Networks

    Full text link
    We apply a multilayer perceptron machine learning (ML) regression approach to infer electromagnetic (EM) duct heights within the marine atmospheric boundary layer (MABL) using sparsely sampled EM propagation data obtained within a bistatic context. This paper explains the rationale behind the selection of the ML network architecture, along with other model hyperparameters, in an effort to demystify the process of arriving at a useful ML model. The resulting speed of our ML predictions of EM duct heights, using sparse data measurements within MABL, indicates the suitability of the proposed method for real-time applications.Comment: 13 pages, 7 figure

    Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths

    Get PDF
    This research aims to model soil temperature (ST) using machine learning models of multilayer perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly optimization algorithm, i.e. MLP-FFA and SVM-FFA. In the current study, measured ST and meteorological parameters of Tabriz and Ahar weather stations in a period of 2013–2015 are used for training and testing of the studied models with one and two days as a delay. To ascertain conclusive results for validation of the proposed hybrid models, the error metrics are benchmarked in an independent testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that, in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. However, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of Tabriz station and ST10cm of Ahar station in comparison with SVM-FFA. Additionally, for all of the prescribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase was found to be meaningfully superior to the classical MLP and SVM models

    Smart models to improve agrometeorological estimations and predictions

    Get PDF
    La población mundial, en continuo crecimiento, alcanzará de forma estimada los 9,7 mil millones de habitantes en el 2050. Este incremento, combinado con el aumento en los estándares de vida y la situación de emergencia climática (aumento de la temperatura, intensificación del ciclo del agua, etc.) nos enfrentan al enorme desafío de gestionar de forma sostenible los cada vez más escasos recursos disponibles. El sector agrícola tiene que afrontar retos tan importantes como la mejora en la gestión de los recursos naturales, la reducción de la degradación medioambiental o la seguridad alimentaria y nutricional. Todo ello condicionado por la escasez de agua y las condiciones de aridez: factores limitantes en la producción de cultivos. Para garantizar una producción agrícola sostenible bajo estas condiciones, es necesario que todas las decisiones que se tomen estén basadas en el conocimiento, la innovación y la digitalización de la agricultura de forma que se garantice la resiliencia de los agroecosistemas, especialmente en entornos áridos, semi-áridos y secos sub-húmedos en los que el déficit de agua es estructural. Por todo esto, el presente trabajo se centra en la mejora de la precisión de los actuales modelos agrometeorológicos, aplicando técnicas de inteligencia artificial. Estos modelos pueden proporcionar estimaciones y predicciones precisas de variables clave como la precipitación, la radiación solar y la evapotranspiración de referencia. A partir de ellas, es posible favorecer estrategias agrícolas más sostenibles, gracias a la posibilidad de reducir el consumo de agua y energía, por ejemplo. Además, se han reducido el número de mediciones requeridas como parámetros de entrada para estos modelos, haciéndolos más accesibles y aplicables en áreas rurales y países en desarrollo que no pueden permitirse el alto costo de la instalación, calibración y mantenimiento de estaciones meteorológicas automáticas completas. Este enfoque puede ayudar a proporcionar información valiosa a los técnicos, agricultores, gestores y responsables políticos de la planificación hídrica y agraria en zonas clave. Esta tesis doctoral ha desarrollado y validado nuevas metodologías basadas en inteligencia artificial que han ser vido para mejorar la precision de variables cruciales en al ámbito agrometeorológico: precipitación, radiación solar y evapotranspiración de referencia. En particular, se han modelado sistemas de predicción y rellenado de huecos de precipitación a diferentes escalas utilizando redes neuronales. También se han desarrollado modelos de estimación de radiación solar utilizando exclusivamente parámetros térmicos y validados en zonas con características climáticas similares a lugar de entrenamiento, sin necesidad de estar geográficamente en la misma región o país. Analógamente, se han desarrollado modelos de estimación y predicción de evapotranspiración de referencia a nivel local y regional utilizando también solamente datos de temperatura para todo el proceso: regionalización, entrenamiento y validación. Y finalmente, se ha creado una librería de Python de código abierto a nivel internacional (AgroML) que facilita el proceso de desarrollo y aplicación de modelos de inteligencia artificial, no solo enfocadas al sector agrometeorológico, sino también a cualquier modelo supervisado que mejore la toma de decisiones en otras áreas de interés.The world population, which is constantly growing, is estimated to reach 9.7 billion people in 2050. This increase, combined with the rise in living standards and the climate emergency situation (increase in temperature, intensification of the water cycle, etc.), presents us with the enormous challenge of managing increasingly scarce resources in a sustainable way. The agricultural sector must face important challenges such as improving natural resource management, reducing environmental degradation, and ensuring food and nutritional security. All of this is conditioned by water scarcity and aridity, limiting factors in crop production. To guarantee sustainable agricultural production under these conditions, it is necessary to based all the decision made on knowledge, innovation, and the digitization of agriculture to ensure the resilience of agroecosystems, especially in arid, semi-arid, and sub-humid dry environments where water deficit is structural. Therefore, this work focuses on improving the precision of current agrometeorological models by applying artificial intelligence techniques. These models can provide accurate estimates and predictions of key variables such as precipitation, solar radiation, and reference evapotranspiration. This way, it is possible to promote more sustainable agricultural strategies by reducing water and energy consumption, for example. In addition, the number of measurements required as input parameters for these models has been reduced, making them more accessible and applicable in rural areas and developing countries that cannot afford the high cost of installing, calibrating, and maintaining complete automatic weather stations. This approach can help provide valuable information to technicians, farmers, managers, and policy makers in key wáter and agricultural planning areas. This doctoral thesis has developed and validated new methodologies based on artificial intelligence that have been used to improve the precision of crucial variables in the agrometeorological field: precipitation, solar radiation, and reference evapotranspiration. Specifically, prediction systems and gap-filling models for precipitation at different scales have been modeled using neural networks. Models for estimating solar radiation using only thermal parameters have also been developed and validated in areas with similar climatic characteristics to the training location, without the need to be geographically in the same region or country. Similarly, models for estimating and predicting reference evapotranspiration at the local and regional level have been developed using only temperature data for the entire process: regionalization, training, and validation. Finally, an internationally open-source Python library (AgroML) has been created to facilitate the development and application of artificial intelligence models, not only focused on the agrometeorological sector but also on any supervised model that improves decision-making in other areas of interest

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development
    corecore