1,152 research outputs found

    Multi‐speaker experimental designs: Methodological considerations

    Get PDF
    Research on language use has become increasingly interested in the multimodal and interactional aspects of language – theoretical models of dialogue, such as the Communication Accommodation Theory and the Interactive Alignment Model are examples of this. In addition, researchers have started to give more consideration to the relationship between physiological processes and language use. This article aims to contribute to the advancement in studies of physiological and/or multimodal language use in naturalistic settings. It does so by providing methodological recommendations for such multi-speaker experimental designs. It covers the topics of (a) speaker preparation and logistics, (b) experimental tasks and (c) data synchronisation and post-processing. The types of data that will be considered in further detail include audio and video, electroencephalography, respiratory data and electromagnetic articulography. This overview with recommendations is based on the answers to a questionnaire that was sent amongst the members of the Horizon 2020 research network ‘Conversational Brains’, several researchers in the field and interviews with three additional experts.H2020 Marie SkƂodowska‐Curie Actions http://dx.doi.org/10.13039/100010665Peer Reviewe

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl

    Collocated Collaboration Analytics: Principles and Dilemmas for Mining Multimodal Interaction Data

    Full text link
    © 2019, Copyright © 2017 Taylor & Francis Group, LLC. Learning to collaborate effectively requires practice, awareness of group dynamics, and reflection; often it benefits from coaching by an expert facilitator. However, in physical spaces it is not always easy to provide teams with evidence to support collaboration. Emerging technology provides a promising opportunity to make collocated collaboration visible by harnessing data about interactions and then mining and visualizing it. These collocated collaboration analytics can help researchers, designers, and users to understand the complexity of collaboration and to find ways they can support collaboration. This article introduces and motivates a set of principles for mining collocated collaboration data and draws attention to trade-offs that may need to be negotiated en route. We integrate Data Science principles and techniques with the advances in interactive surface devices and sensing technologies. We draw on a 7-year research program that has involved the analysis of six group situations in collocated settings with more than 500 users and a variety of surface technologies, tasks, grouping structures, and domains. The contribution of the article includes the key insights and themes that we have identified and summarized in a set of principles and dilemmas that can inform design of future collocated collaboration analytics innovations

    Sensor-Free or Sensor-Full: A Comparison of Data Modalities in Multi-Channel Affect Detection

    Get PDF
    ABSTRACT Computational models that automatically detect learners' affective states are powerful tools for investigating the interplay of affect and learning. Over the past decade, affect detectors-which recognize learners' affective states at run-time using behavior logs and sensor data-have advanced substantially across a range of K-12 and postsecondary education settings. Machine learningbased affect detectors can be developed to utilize several types of data, including software logs, video/audio recordings, tutorial dialogues, and physical sensors. However, there has been limited research on how different data modalities combine and complement one another, particularly across different contexts, domains, and populations. In this paper, we describe work using the Generalized Intelligent Framework for Tutoring (GIFT) to build multi-channel affect detection models for a serious game on tactical combat casualty care. We compare the creation and predictive performance of models developed for two different data modalities: 1) software logs of learner interactions with the serious game, and 2) posture data from a Microsoft Kinect sensor. We find that interaction-based detectors outperform posture-based detectors for our population, but show high variability in predictive performance across different affect. Notably, our posture-based detectors largely utilize predictor features drawn from the research literature, but do not replicate prior findings that these features lead to accurate detectors of learner affect

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Automatic Context-Driven Inference of Engagement in HMI: A Survey

    Full text link
    An integral part of seamless human-human communication is engagement, the process by which two or more participants establish, maintain, and end their perceived connection. Therefore, to develop successful human-centered human-machine interaction applications, automatic engagement inference is one of the tasks required to achieve engaging interactions between humans and machines, and to make machines attuned to their users, hence enhancing user satisfaction and technology acceptance. Several factors contribute to engagement state inference, which include the interaction context and interactants' behaviours and identity. Indeed, engagement is a multi-faceted and multi-modal construct that requires high accuracy in the analysis and interpretation of contextual, verbal and non-verbal cues. Thus, the development of an automated and intelligent system that accomplishes this task has been proven to be challenging so far. This paper presents a comprehensive survey on previous work in engagement inference for human-machine interaction, entailing interdisciplinary definition, engagement components and factors, publicly available datasets, ground truth assessment, and most commonly used features and methods, serving as a guide for the development of future human-machine interaction interfaces with reliable context-aware engagement inference capability. An in-depth review across embodied and disembodied interaction modes, and an emphasis on the interaction context of which engagement perception modules are integrated sets apart the presented survey from existing surveys
    • 

    corecore