316 research outputs found

    On the human taste perception: Molecular-level understanding empowered by computational methods

    Get PDF
    Background: The perception of taste is a prime example of complex signal transduction at the subcellular level, involving an intricate network of molecular machinery, which can be investigated to great extent by the tools provided by Computational Molecular Modelling. The present review summarises the current knowledge on the molecular mechanisms at the root of taste transduction, in particular involving taste receptors, highly specialised proteins driving the activation/deactivation of specific cell signalling pathways and ultimately leading to the perception of the five principal tastes: sweet, umami, bitter, salty and sour. The former three are detected by similar G protein-coupled receptors, while the latter two are transduced by ion channels. Scope and approach: The main objective of the present review is to provide a general overview of the molecular structures investigated to date of all taste receptors and the techniques employed for their molecular modelling. In addition, we provide an analysis of the various ligands known to date for the above-listed receptors, including how they are activated in the presence of their target molecule. Key findings and conclusions: In the last years, numerous advances have been made in molecular research and computational investigation of ligand-receptor interaction related to taste receptors. This work aims to outline the progress in scientific knowledge about taste perception and understand the molecular mechanisms involved in the transfer of taste information

    Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features

    Get PDF
    Background: Study of drug-target interaction networks is an important topic for drug development. It is both timeconsuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. Methods/Principal Findings: To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Conclusion/Significance: Our results indicate that the network prediction system thus established is quite promising an

    Integrative Systems Approaches Towards Brain Pharmacology and Polypharmacology

    Get PDF
    Polypharmacology is considered as the future of drug discovery and emerges as the next paradigm of drug discovery. The traditional drug design is primarily based on a “one target-one drug” paradigm. In polypharmacology, drug molecules always interact with multiple targets, and therefore it imposes new challenges in developing and designing new and effective drugs that are less toxic by eliminating the unexpected drug-target interactions. Although still in its infancy, the use of polypharmacology ideas appears to already have a remarkable impact on modern drug development. The current thesis is a detailed study on various pharmacology approaches at systems level to understand polypharmacology in complex brain and neurodegnerative disorders. The research work in this thesis focuses on the design and construction of a dedicated knowledge base for human brain pharmacology. This pharmacology knowledge base, referred to as the Human Brain Pharmacome (HBP) is a unique and comprehensive resource that aggregates data and knowledge around current drug treatments that are available for major brain and neurodegenerative disorders. The HBP knowledge base provides data at a single place for building models and supporting hypotheses. The HBP also incorporates new data obtained from similarity computations over drugs and proteins structures, which was analyzed from various aspects including network pharmacology and application of in-silico computational methods for the discovery of novel multi-target drug candidates. Computational tools and machine learning models were developed to characterize protein targets for their polypharmacological profiles and to distinguish indications specific or target specific drugs from other drugs. Systems pharmacology approaches towards drug property predictions provided a highly enriched compound library that was virtually screened against an array of network pharmacology based derived protein targets by combined docking and molecular dynamics simulation workflows. The developed approaches in this work resulted in the identification of novel multi-target drug candidates that are backed up by existing experimental knowledge, and propose repositioning of existing drugs, that are undergoing further experimental validations

    A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization.

    Get PDF
    BACKGROUND: G protein-coupled receptors (GPCRs) represent a family of well-characterized drug targets with significant therapeutic value. Phylogenetic classifications may help to understand the characteristics of individual GPCRs and their subtypes. Previous phylogenetic classifications were all based on the sequences of receptors, adding only minor information about the ligand binding properties of the receptors. In this work, we compare a sequence-based classification of receptors to a ligand-based classification of the same group of receptors, and evaluate the potential to use sequence relatedness as a predictor for ligand interactions thus aiding the quest for ligands of orphan receptors. RESULTS: We present a classification of GPCRs that is purely based on their ligands, complementing sequence-based phylogenetic classifications of these receptors. Targets were hierarchically classified into phylogenetic trees, for both sequence space and ligand (substructure) space. The overall organization of the sequence-based tree and substructure-based tree was similar; in particular, the adenosine receptors cluster together as well as most peptide receptor subtypes (e.g. opioid, somatostatin) and adrenoceptor subtypes. In ligand space, the prostanoid and cannabinoid receptors are more distant from the other targets, whereas the tachykinin receptors, the oxytocin receptor, and serotonin receptors are closer to the other targets, which is indicative for ligand promiscuity. In 93% of the receptors studied, de-orphanization of a simulated orphan receptor using the ligands of related receptors performed better than random (AUC > 0.5) and for 35% of receptors de-orphanization performance was good (AUC > 0.7). CONCLUSIONS: We constructed a phylogenetic classification of GPCRs that is solely based on the ligands of these receptors. The similarities and differences with traditional sequence-based classifications were investigated: our ligand-based classification uncovers relationships among GPCRs that are not apparent from the sequence-based classification. This will shed light on potential cross-reactivity of GPCR ligands and will aid the design of new ligands with the desired activity profiles. In addition, we linked the ligand-based classification with a ligand-focused sequence-based classification described in literature and proved the potential of this method for de-orphanization of GPCRs.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions

    Get PDF
    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While some mutants show enhanced binding affinity to the foreign pheromone, others only display weakened interactions with the network's negative regulators. Importantly, the latter changes have a limited impact on overall pathway regulation, despite their considerable effect on sensitivity. Our results demonstrate that a new receptor–ligand pair can evolve through network-altering mutations independently of receptor–ligand binding, and suggest a potential role for such mutations in disease

    Analysis of multiple compound–protein interactions reveals novel bioactive molecules

    Get PDF
    The authors use machine learning of compound-protein interactions to explore drug polypharmacology and to efficiently identify bioactive ligands, including novel scaffold-hopping compounds for two pharmaceutically important protein families: G-protein coupled receptors and protein kinases

    Computational Methods Generating High-Resolution Views of Complex Structure-Activity Relationships

    Get PDF
    The analysis of structure-activity relationships (SARs) of small bioactive compounds is a central task in medicinal chemistry and pharmaceutical research. The study of SARs is in principle not limited to computational methods, however, as data sets rapidly grow in size, advanced computational approaches become indispensable for SAR analysis. Activity landscapes are one of the preferred and widely used computational models to study large-scale SARs. Activity cliffs are cardinal features of activity landscape representations and are thought to contain high SAR information content. This work addresses major challenges in systematic SAR exploration and specifically focuses on the design of novel activity landscape models and comprehensive activity cliff analysis. In the first part of the thesis, two conceptually different activity landscape representations are introduced for compounds active against multiple targets. These models are designed to provide an intuitive graphical access to compounds forming single and multi-target activity cliffs and displaying multi-target SAR characteristics. Further, a systematic analysis of the frequency and distribution of activity cliffs is carried out. In addition, a large-scale data mining effort is designed to quantify and analyze fingerprint-dependent changes in SAR information. The second part of this work is dedicated to the concept of activity cliffs and their utility in the practice of medicinal chemistry. Therefore, a computational approach is introduced to search for detectable SAR advantages associated with activity cliffs. In addition, the question is investigated to what extent activity cliffs might be utilized as starting points in practical compound optimization efforts. Finally, all activity cliff configurations formed by currently available bioactive compounds are thoroughly examined. These configurations are further classified and their frequency of occurrence and target distribution are determined. Furthermore, the activity cliff concept is extended to explore the relation between chemical structures and compound promiscuity. The notion of promiscuity cliffs is introduced to deduce structural modifications that might induce large-magnitude promiscuity effects
    • …
    corecore