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SUMMARY 
It is estimated that 115 million animals are used in experimental testing each year. Hence, 

shifting efforts toward alternative methods for toxicity assessment is essential. However, slow 

regulatory acceptance of new approaches is governed by knowledge gaps in toxicity modes of 

action. In this thesis, I describe these challenges and the use of in vitro screening as an 

alternative of animal testing. I also discuss common data-based methods to derive hypotheses 

about toxicity modes of actions, and the associated limitations in capturing multiple biological 

perturbations. 

 I applied novel data-based workflows, using rule models, to prioritize in vitro assays predictive 

of toxicity as well as to detect significant polypharmacology profiles. I explain how constraints 

were applied to rule-based models to inform meaningful mechanistic interpretation for two 

toxicity endpoints: rat hepatotoxicity and acute toxicity.  

I compared assays selected, by rules, for predicting hepatotoxicity with endpoints used in in 

vitro models from commercial sources. An overlap was observed including cytochrome 

activity, mitochondrial toxicity and immunological responses. However, nuclear receptor 

activity, identified in rules, is not currently covered in commercial setups. I also demonstrate 

that endocrine disruption endpoints extrapolate better into in vivo toxicity when a set of specific 

conditions are met, such as physicochemical properties associated with good bioavailability.  

Next, I examined synergistic interactions between conditions in rules describing acute toxicity. 

I gained novel insights into how specific stressors potentiate the perturbation by known key 

events, such as acetylcholinesterase inhibition and neuro-signalling disruption. I show that 

examining polypharmacology profiles is particularly important at low bioactive potencies. 

Further, the overall predictive performance of rules describing acute toxicity was tested against 

a benchmark Random Forest model in a conformal prediction framework. Irrespective to the 

data type used in the training, the models were prone to bias over compounds promiscuity, by 

which high promiscuous compounds were more likely to be predicted as toxic.  

Overall, the studies conducted in this thesis provide novel insights into molecular mechanisms 

of toxicity, namely hepatotoxicity and acute toxicity, and with regards to chemical properties 

and polypharmacology. This knowledge can be used to improve the utility and design of 

alternative methods for toxicity, and hence, accelerate the regulatory acceptance.  
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INTRODUCTION 
 

 

According the Cruelty Free International, 115 million animals are used in experimental testing 

each year, where the USA, Japan and China top the list.1 A worldwide movement against 

animal testing resulted in number of regulatory changes including the animal ban in the EU on 

cosmetic products since 2013.2  Yet, the adoption of animal free drug testing is still far from 

common practice, as the number of animals tested each year is not declining.1 The demand for 

banning animal tests does not only arise from ethical pressures but also the lack of efficiency 

and reliability of animal models as representatives of effects in human. Research have shown 

low concordance between outcomes from preclinical animal experiments and human effects.3,4 

This partly explains why 90% of drug candidates which were found promising in animal tests 

fail in clinical trials.5 Rectifying the current situation requires broad-scale actions from the 

regulatory and scientific communities to define alternative measures, as well as from the 

general public to raise awareness. 

 

In the first part of this chapter, we address challenges of animal testing and discuss alternative 

toxicity testing methods, giving great attention to in vitro methods. In part 2, we explain how 

data can be used to generate hypotheses about toxicity modes of action, as well as how to 

predict toxicity with confidence using conformal models. 
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PART 1: THE USE OF IN VITRO SCREENING IN 
TOXICOLOGY 
 

1.1 Current status in toxicity testing and the need to reduce, refine and 
replace animal testing 

 

In order to fulfil the requirements by regulatory agencies for compounds produced or used at a 

large scale, stakeholders are obligated to provide information about substance properties, 

exposure and risk management measures.6 As defined by the United States Environmental 

Protection Agency (EPA), risk assessment is the characterization of “the nature and magnitude 

of health risks to humans and ecological receptors (e.g., birds, fish, wildlife) from chemical 

contaminants and other stressors, that may be present in the environment”.7 Risk assessment 

and toxicity profiling are key steps in the regulation and legalization of chemicals. Safety 

profiling is also a vital part in the drug discovery process, which runs as early as stages of hit 

identification and optimization. Suboptimal safety profiles contributes to the high attrition rates 

of drug candidates reaching the market, due to unwanted adverse effects.5  

 Chemical safety requirements in both pharmaceutical and environmental industries demand 

extensive repeated-dose animal testing for a wide range of endpoints. Consequently, a 

considerable of animals battery is consumed to assess acute and chronic toxicity effects.8 For 

example, reproductive, developmental and carcinogenic endpoints require long-term animal 

exposure to chemicals on two or more species.9,10 Moreover, toxicity profiling of compounds 

involves conducting pharmacological safety tests to survey all organs for any adverse effect 

using various toxicity measures; such as lethal doses (LD50) and no observed adverse effect 

level (NOAEL).11 The timeline of animal-based safety assessment during the drug discovery 

process is presented in Figure (1-1). The reader can refer to relevant reports on the protocols 

of in vivo testing for drugs12 and environmental chemicals.13  

Animal-based testing is inefficient and raises considerable economical and ethical concerns, 

resulting in global pressures.14 Large numbers of potentially hazardous chemicals are not yet 

tested because current traditional methods are economically unfeasible. The estimated cost to 

legalize 68,000 compounds (in 2009) under the REACH (Registration, Evaluation, 

Authorisation and Restriction of Chemicals) regulations is $9.5 billion using 54 million 
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vertebrate animals, which is difficult to handle. Additional limitations are the lack of 

mechanistic information on the toxicological modes of action15 as well as the difficulty in 

extrapolating results from animal models to estimate effects in human. From the 

pharmaceutical industry’s perspective, the vast majority of potential drug candidates are still 

failing during late stages of clinical trials due to insufficient safety evidence, despite passing 

preclinical safety testing.5 Therefore, actionable steps are to be conducted in order to fill the 

gaps in traditional methods. 

 
Figure (1-1) The timeline of animal-based safety assessment during drug discovery and development.16 
GLP: good laboratory practice, IND: investigational new drug, NDA: new drug application.  
 

The first step towards reducing the reliance on in vivo testing methods is to reduce the number 

of animals used. The 3Rs principle, which stands for Replacement, Reduction and Refinement 

of the use of animals in testing and research, was first introduced by Russell and Burch in 

1959.17 Since then, efforts to apply the 3Rs principles in the pharmaceutical sector resulted in 

reducing the number of animals used for testing through improving study design and 

coordinating projects.18 The most common and accepted animal testing guidelines, which is 

described by OECD documentation, has already entitled a significant reduction in the number 

of animal used to assess systemic toxicity.19  

The second step, to facilitate the aspirations of the 3Rs, is to develop and validate non-animal 

testing methods, which can be used to integrate with or replace in vivo approaches.20 The most 

common alternative methods are in vitro screening and in silico models, as will be discussed 

subsequently in this chapter. Several in vitro tests have already been validated and accepted in 

toxicity profiling as exemplified in Table (1-1). The set of validated assays represent endpoints 

Drug Discovery Preclinical Studies Human clinical trials

• Exploratory non-GLP
single and repeated 
dose studies in 2 species

• Safety Pharmacology
• Hepatotoxicity 
• Embryotoxicity

• GLP and non-GLP 
28 days repeated dose 
in 2 species

• GLP safety 
pharmacology

• GLP Genotoxicity

• GLP chronic toxicity
for 3-12 months in 2 
species

• GLP reproductive 
toxicity 

• GLP carcinogenicity for 
24 months in 2 species

IND NDA
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that can directly translate into in vivo effects. However, this may not be the case for complex 

endpoints such as toxicities in the liver and the nervous system, where multiple pathways and 

mechanisms are involved. In order to address this, a broad scale in vitro approach is adopted, 

as will be reviewed next. 

Table (1-1) Examples of accepted in vitro assays to predict in vivo toxicity.  

 

1.2  Large scale In vitro methods as a potential alternative for animal 

testing  

Driven by the need for an in-depth understanding of the molecular basis of toxicity events, and 

parallel to the calls for reducing animal testing, several technologies have been proposed and 

studied to characterize and predict adverse effects.25 The vision of toxicology in the twenty-

first century is motivated by shifting the standard and predefined battery of toxicology tests 

into hypothesis-driven methodologies which are adapted to the specific characteristics and use 

of chemicals.26 With the wealth of in vitro screening methods that have been proposed for 

Endpoint In vitro assay examples 
OECD 

document 
number 

Adopted 

Genotoxicity21 

 
Bacterial reverse mutation assay 
In vitro mammalian chromosomal 
aberration test 
In vitro mammalian cell gene mutation 
test 
In vitro mammalian cell micronucleus 
test 
In vitro gene mutation assays using the 
TK locus  
 

471 
473 

 
476 

 
487 

 
490 

 

1983 
1983 

 
1984 

 
2010 

 
2015 

 

Acute toxicity22 
 

 
- Skin corrosion 

 
- Phototoxicity 

 

 
 
In Vitro Skin Corrosion: Human Skin 
Model Test 
In Vitro 3T3 NRU phototoxicity test 
 

 
 

431 
 

432 
 

 
 

2004 
 

2004 
 

 
Endocrine 
disruption23,24 
 

ER binding assay 
Steroidogenesis 

TG 493 
TG 456 

2015 
2011 
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toxicity profiling,27,28 our focus in this chapter will be on in vitro approaches aimed for broad 

biological space screening.  

The special attention towards large-scale screening methods has arisen due to the 

unprecedented advances in biotechnology, genetics and engineering which have created an 

enriched environment for the rapid screening of chemical compounds for their gene expression 

profiles and biological activities via high-throughput screening (HTS) technologies.14,29,30 

Within the scope of drug discovery, HTS has not only allowed for the identification of hits and 

lead optimization, but also facilitated the success of some drug candidates in reaching the 

market.31,32,33  Following this success, several projects such as the Tox2115 (Toxicity testing in 

the 21st century) and ToxCast16 programs have been launched to evaluate toxicity via HTS 

techniques and consequently generate large in vitro data. 

Typically, HTS involves the screening of chemical entities in high-quality assays that capture 

biological functions at various degrees of complexity ranging from interaction with pure 

biological macromolecules, such as proteins and DNA, up to whole cellular systems and 

tissues. HTS is performed in an efficient automated manner using 96, 384, 1536 or 3456 

microtiter wells with the aid of high-performance detection techniques and followed by data 

processing and chemical profiling.30 Assays can be categorized as target-based, or phenotypic-

based according to readout complexity (Figure (1-2)). The measured phenotype can be an 

alteration in a biomarker or cellular components, such as changes in cell morphology and 

physiology. In contrast, target-based assays measure the direct or indirect interactions of 

compounds with specific predefined targets.  The hypothesis behind the utilization of HTS in 

toxicity assessment is that the chemical-induced toxicity is initiated by an interaction between 

the chemical and biological targets, by which one or multiple pathways are perturbed.34 

Several repositories were created to store measurements from in vitro screening, such as 

PubChem,35 ChEMBL,36 DrugBank37 and ChemBank.38 We will focus on two examples where 

broad scale in vitro screening is conducted for toxicity assessment purposes. The first example 

explains the use of secondary pharmacology profiling for drug development projects. Then, 

considerable attention will be given to the US EPA ToxCast initiative, which forms the 

backbone of data used for the analysis in this thesis. 
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Figure (1-2) Target-focused screening versus phenotypic screening. Target-focused assays are simpler 

and explain specific molecular functions. On the other hand, phenotypic assays involve at least a cellular 

biological system and can also extend to tissues of various cell types. Adapted from 

http://www.sulsa.ac.uk/research-facilities/uk-npsc/phenotypic-screening. 

 

1.2.1 Secondary pharmacological screening 

During the drug development process, secondary pharmacology screening, often termed off-

targets profiling, is conducted to identify possible bioactivities against targets other than the 

intended therapeutic target.39,40 It is reported that around 75% of adverse drug reactions can be 

attributed to the pharmacological profile of drugs, and hence, these unwanted effects can be 

predicted early on.41  Secondary pharmacological profiling involves screening against a range 

of targets types including enzymes, nuclear receptors, ion channels and transporters. A list of 

targets commonly used by four major pharmaceutical companies have been reviewed by Bowes 

et al.41  

Data from secondary pharmacology screening can be used to assess the promiscuity of 

compounds.42 Promiscuity is defined as the percentage at which a compound show activity at 

a given concentration (for example 1µM) against multiple pharmacological targets.43 Despite 

controversial reports, high promiscuity has commonly been associated with a higher likelihood 

of adverse reactions.44 Some marketed drugs show high promiscuity, yet tolerable effects.45 

Hence, disregarding promiscuous compounds in drug discovery projects may not be the best 

approach to address the risks of potential clinical effects.46 In Chapter 6, we will address the 

confounding effect of promiscuity on the classification of toxic compounds. 

Bowes et at argued that the associations between hitting particular targets can have higher 

relevance to human effects in comparison to animal models. Hence, these profiles provide 
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mechanistic insights about side effects observed in human. The secondary pharmacology 

profiling data can also be used to prioritize potential drug candidates as well as to inform 

subsequent tests. For example, if a hit target is identified, further experiments should be 

conducted to determine the selectivity across the target family and the potency in dose response 

assays. Also, target activity can guide the design and selection of in vivo studies relevant to the 

detected activity.  

One of the key off targets is potassium voltage-gated channel subfamily H member 2 (hERG), 

which is responsible for cardiovascular effects upon inhibition through the prolongation of QT 

interval of the electrocardiogram.40  Due to the high impact of inhibiting hERG, a regulatory 

requirement in drug submissions in first in human trials is including results of screening against 

this ion channel.47 One way to improve risk assessment using off-target activity is estimating 

safety margins by calculating the ratio of in vitro off-target potency (IC50) to the maximum 

plasma concentration Cmax.48 Several studies have shown how incorporating Cmax can improve 

the predictivity of clinical effects (see section 1.4.1). Yet, the limitation of this approach is 

overlooking the consequences of polypharmacology profiles of low potencies. The later will 

be addressed in Chapter 5 for chemicals inducing acute toxicity. 

1.2.2 ToxCast in vitro screening 

ToxCast is a chemical prioritization research program launched by the EPA in 2007 in 

collaboration with the National Toxicity program and the National Institute of Health Chemical 

Genomic Centre.15,49,50 One of the EPA's goals is to effectively manage and regulate 

environmental chemicals that are likely to cause harm to humans. However, such regulations 

require the assessment of large numbers of chemical entities. Inspired by the vision of the 

National Research Council for measuring perturbations in toxicity pathways as signatures to 

predict adverse effects in vivo,15,51 the EPA's  ToxCast program has adopted high throughput 

screening as a tool to assist in toxicity profiling by incorporating mechanistic in vitro assays50. 

Moreover, the advances in toxicogenomics, transcriptomics and proteomics have made a  great 

contribution in the determination of toxicological pathways and targets responsible for 

inducing diseases in vivo25. Hence, the toxicity biomarkers identified by transcriptomics have 

been utilized as assay endpoints, in conjunction with conducting a large scale screening 

approach for building the ToxCast database.  

The wealth of ToxCast assays ranges from cell-free biochemical to physicochemical and 

phenotypic endpoints. These are contributed by several platform sources in collaboration with 
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the EPA.49 An overview of the core screening platform within the ToxCast project is given in 

Table (1-2), describing the various technological screening systems.  This shows the diversity 

of assays in the ToxCast assay pool, and hence, the potential of that data to derive novel 

mechanistic information associated with in vivo toxicity. The platforms providing the largest 

number of assay measurements are Apredica, Attagene, Bioseek and NovaScreen52, in addition 

to Tox21 using NCGC technology53 (see Table (1-2) for assay details).  

The ToxCast chemical library was designed by selecting compounds using specific activity 

and physicochemical criteria. First, the environmental compounds that have the potential of in 

vivo toxicity were selected (e.g. as pesticides, insecticides in addition to drugs).50 In addition, 

the ToxCast chemical library shows variable scaffold structures in order to assure as much 

chemical and bioactivity diversity as possible.49 Figure (1-3) represents the number of 

compounds screened in different phases of the ToxCast project. The Tox21 phase cover 

measurements for over 8000 compounds against a subset of endpoints including cell viability 

and nuclear receptor disruption.53 Overall, the number compounds with the broadest assays 

screens is around 1061.52 

Table (1-2): Description of HTS screens in phase I of the ToxCast project, adapted from Kavlock et 
al., Chem. Res. Toxicol., 2012.49 

 

Technology 
platform source 

 

Description 

ACEA 
 

Real time cell electronic sensing (RT-CES) of growth of A549 cells 

Apredica 
 

Cellular high content screening (HCS) evaluating cellular markers such as 
stress pathways, mitochondrial involvement, cell cycle, cell loss, mitotic arrest, 
and the cytoskeleton in HepG2 cells 
 

Attagene 
 

Multiplexed transcription factor profiling in HepG2 cells 

Bioreliance Gene mutation and DNA and chromosomal damage assays 
 

Bioseek ELISA based readouts of interactions of co-cultures of primary human cells 
  
Continued Table (1-1) 
CellzDirect qNPA on select genes relevant to xenobiotic metabolism in primary human 

hepatocytes 
 

Gentronix GreenScreen genetic toxicity assay using GADD45a GFP in TK6 cells 
 

NCGC qHTS profiling of nuclear receptor function in agonist and antagonist mode by 
reporter genes using a variety of cell types 
 

NovaScreen Biochemical profiling, largely using human proteins, of receptor binding, 
enzyme assays, GPCRs, and ion channels 
 

Odyssey-Thera Protein complementation assays for a wide variety of intracellular signalling 
networks. 
 

Vela Sciences High content multiparameter assays providing quantitative digital imaging of 
cultured cells as well as information on a variety of cellular 
proteins/structures/function 
 

Zebrafish Zebrafish embryonic development assay 
 

Mouse embryonic 
stem cells 

Mouse embryonic stem cell cytotoxicity and differentiation 

	

Technology 
platform source 

 

Description 

ACEA 
 

Real time cell electronic sensing (RT-CES) of growth of A549 cells 

Apredica 
 

Cellular high content screening (HCS) evaluating cellular markers such as 
stress pathways, mitochondrial involvement, cell cycle, cell loss, mitotic arrest, 
and the cytoskeleton in HepG2 cells 
 

Attagene 
 

Multiplexed transcription factor profiling in HepG2 cells 

Bioreliance Gene mutation and DNA and chromosomal damage assays 
 

Bioseek ELISA based readouts of interactions of co-cultures of primary human cells 
  
Continued Table (1-1) 
CellzDirect qNPA on select genes relevant to xenobiotic metabolism in primary human 

hepatocytes 
 

Gentronix GreenScreen genetic toxicity assay using GADD45a GFP in TK6 cells 
 

NCGC qHTS profiling of nuclear receptor function in agonist and antagonist mode by 
reporter genes using a variety of cell types 
 

NovaScreen Biochemical profiling, largely using human proteins, of receptor binding, 
enzyme assays, GPCRs, and ion channels 
 

Odyssey-Thera Protein complementation assays for a wide variety of intracellular signalling 
networks. 
 

Vela Sciences High content multiparameter assays providing quantitative digital imaging of 
cultured cells as well as information on a variety of cellular 
proteins/structures/function 
 

Zebrafish Zebrafish embryonic development assay 
 

Mouse embryonic 
stem cells 

Mouse embryonic stem cell cytotoxicity and differentiation 
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Figure (1-3) Number of compounds tested and assay endpoints screened in the key ToxCast and Tox21 
phases. 

 

 

1.3  ToxCast for Integrated Approaches in Testing and Assessment 
(IATA) 

 

The new toxicology approach, commonly referred to as the Integrated Approaches in Testing 

and Assessment (IATA), is mainly intended to reduce, refine and replace animal use for 

toxicity evaluation (3R measures).26 These approaches are used to prioritize testing, identify 

and characterize hazard, as well as to assess risk according to exposure measures. The aim 

through IATA is to provide a mechanistic oriented system for an efficient and 

human/environmental relevant safety evaluation.54  The IATA approach is designed to tailor 

the specific chemical and its exposure level. The components of IATA can be categorized into 

i) mode of action and adverse outcome pathways, ii) in vitro in vivo extrapolation (IVIVE) and 

iii) data-based methods55 (see Figure (1-4). These are performed by integrating two or more of 

the following; physicochemical properties, in vitro assays, mode of action analysis (MOA), 

human epidemiology data, animal test data, kinetic models and in silico models.56 These 

components, however, are not discrete. For example, data methods can be used to derive 

hypotheses about modes of action and also to predict kinetic parameters in IVIVE.  

 In vitro methods form a key pillar in the IATA paradigm.  In the following sections, each 

component will be explained followed by examples of how ToxCast assays has been 

implemented.  
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Figure (1-4) Integrated Approaches in Testing and Assessment (IATA) which consists of three main 

components, namely Mode of Action/ Adverse Outcome Pathway (MOA/AOP), in vitro in vivo 

extrapolation (IVIVE), and data mining. 

 

1.3.1 Mode of Action/ Adverse Outcome Pathway 
 

1.3.1.1 Overview of MOA/AOP framework 

 The mode of toxicity can be defined as a set of physiological signs that characterize adverse 

responses in the biological system.57 It is associated with identifying the perturbation in the 

biochemical pathway as well as the resulted physiological changes produced by that 

perturbation. A more recent term for the concept, which is the adverse outcome pathway 

(AOP), was first described by Ankley et al.58 The AOP can be defined as the conceptual 

framework which reflects the existing knowledge linking the initial triggers at the molecular 

level and the adverse outcome at the organizational level58,59 (see Figure (1-5) and Table (1-

1)). The AOP can be viewed as a series of sequential events reflecting a gradual increase in the 

complexity of the biological levels. These key events are linked via causal, mechanistic or 

inferential connections termed as key event relationships (KERs).59,60 The downstream adverse 

outcomes commonly describe effects which are relevant to regulatory testing requirements. 61  
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Figure (1-5) Adverse outcome pathway (AOP) framework. 

 

Table (1-3) Components of AOP. 

Key Event (KE) • Represent the nodes in the AOP  

• Describes measurable endpoints in the biological state 

Molecular initiating event 

(MIE) 

• Specific type of key events and the starting node in the AOP 

• Describes the interaction between chemical and biological 
targets, chemical reactivity, such as the formation of a hapten 
conjugate 

Key Event Relationship 

(KER) 

• Directional relationship between adjacent key events 

• Describes the weight of evidence which supports the functional 
or structural relationship between upstream and downstream key 
events 

Adverse Outcome (AO) 
• Key event at the biological organization level 

• Describes an apical endpoint usually of a regulatory relevance or 
part of guideline test 

 

High throughput and high content screening methods combined with computational modelling 

have provided useful tools for predicting adverse reactions and identifying measurable 

biomarkers. However, in order to incorporate this knowledge in the regulatory decision 

making, the mechanistic framework has to be validated and verified.62 The AOP not only 

provides a means for mechanistic verification and approval but also outline the current 

knowledge on how initiating events progress into adverse outcomes. Another advantage of the 

AOP system is reducing the complexity of the biological signalling pathways involved in the 

toxicological events.59 This is achieved by identifying measurable markers in the pathway in 

form of key events (KE). Hence, each key event in the pathway captures an upstream effect 
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which induces the relevant downstream effect if sufficient magnitudes and durations of 

perturbations were reached.  

In an attempt to promote the utility of the AOP framework as a predictive tool in risk 

assessment, the Organization for Economic Co-operation and Development (OECD) has lead 

initiatives towards guiding and promoting AOP development. The OECD formulated a set of 

guidelines for the development and evaluation of AOPs in 201363 followed by a revised version 

in 2017.54 Additionally, the OECD constructed an assembly of the accumulated knowledge in 

AOPs, namely the AOP-knowledge base (AOP-KB) which was made publicly available in 

2014.60 The AOP-wiki module of the AOP-KB represents a documented source of key events 

and associated adverse outcomes. The OECD has also organized workshops to encourage the 

collaboration and harmonization in the AOP community across the academic, governmental 

and private sectors to accelerate the acceptance of AOP in regulatory toxicology.61 Next, we 

will explore examples to derive molecular initiating events and early key events in the AOP 

captured as chemical substructures, i.e. structural alerts, and biological activities from in vitro 

assays. 

1.3.1.2 Structural alerts to understand initiating events 

Structural alerts are molecular substructure patterns that are associated with adverse 

reactions,64,65 also known as toxicophores. These molecular features are popular in elementary 

evaluations of the possible adverse effects because of their simplicity and interpretability.66 

The application of structural alerts can be in a form of a rule, which is described as; if alert X 

present in a molecule then it will have Y activity. The use of these alerts can be used for a 

specific in vitro assay activity67 or a complex adverse effect such hepatotoxicity.68 Structural 

alerts can be derived from expert knowledge and literature as well as from data-derived 

methods.69 However, the boundaries between these approaches are not fixed, and rather a 

spectrum where expert knowledge can be integrated to refine and curate substructures detected 

from large datasets.70  

Structural alerts resources include Derek71, Toxtree72 and ToxAlerts73, which are derived from 

curating literature. Data-based methods used to prioritize these alerts vary in complexity and 

enrichment methods. For example, with univariate methods, alerts are represented as 

independent substructural features for a given endpoint, such as the case of calculating the 

binomial distribution in a dichotomous fashion.74 Other methods such as emerging patterns 
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rather identify a set of one or more substructural features as a unit of enrichment.67,75 In such 

case, the rule involves one or more substructural conditions. These methods will be further 

discussed in part 2 of this section. 

The success of structural alerts is dependent on the type of endpoint used. Hence, in cases 

where the effect originates from a specific pharmacophore or chemical reactivity, i.e. 

electrophilicity, structural alerts are successful in flagging active compounds. This is 

particularly evident for effects such as mutagenicity75  and carcinogenicity67,76. Yet, the use of 

structural alert as a sole predictor can come with limitations. There is a probability to 

incorrectly label flagged compounds as toxic, encountering for false positives.66 Also, the use 

of structural alerts on their own is not enough to capture modes of actions in toxic compounds, 

and hence the integrating bioactivity data can be highly beneficial.77  

1.3.1.3 Using ToxCast to derive important key events 

The Toxcast in vitro project provides a wealth of bioactivity data for hundreds of compounds, 

for many of which in vivo toxicological data are available. These bioactivity measurements 

represent key events at the molecular and cellular levels which can be used to elucidate 

statistical links with adverse outcomes,61 and hence, understand the associated modes of action. 

The Toxicity Reference Database78 (ToxRefDB) has commonly been used as a source of 

animal-based in vivo toxicity endpoints generated in compliance with standard guidelines. For 

example, Martin et al. evaluated the effects of 309 environmental chemicals on the gene 

regulatory network by targeting nuclear receptors and transcription factor response elements 

in 73 assays.79 The authors were able to detect 133 significant univariate associations between 

ToxCast in vitro assays and 77 rodent in vivo endpoints and rabbits from the ToxRefDB.  In 

this study, significant associations were reported for Peroxisome proliferator-activated 

receptors; PPARa and PPARg, with liver tumors in rats, whereas, estrogen receptor (ERa) and 

its response element (ERE) had associations with reproductive effects such as decreased 

fertility. Additionally, Hu et al. utilized Comparative Toxicogenomics Database to explore the 

annotated toxicities and adverse reaction in humans induced by ToxCast chemical set.80 The 

annotated adverse effects and toxicities were grouped into four major toxicological categories; 

cardio-, hepato-, neuro- and renal-toxicities. The authors identified significant associations, by 

calculating the proportional reporting ratio (PRR), between the annotated toxicities and some 

genes mapped by ToxCast in vitro library. The analysis has shown that assays for modulating 

androgen receptors (AR) and glucocorticoid receptors (NR3C1) appeared repeatedly as 
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significant predictors of the four toxicological categories. Svensson et al used ToxCast assays 

to prioritize key events in structural cardiotoxicity (morphological damage of cardiac cells).81 

In this study, ToxCast compounds were mapped with drugs reported in the FDA Adverse Event 

Reporting System (FAERS). This resulted in identifying 22 adverse events-assays associations, 

involving estrogen receptors, PPARa/g and androgen receptors. Additionally, the authors 

developed two adverse outcome pathways, namely, downregulating tissue factor (TF) and 

modulating translocation protein (18 kDa) TSPO as key events for heart failure and mitral 

valve incompetence, respectively. Overall, the data-based enrichment of important in vitro 

activities has shown that nuclear receptor disruption, such as ER, AR and PPARs, frequently 

and significantly correlated with a broad range of in vivo toxicities.  

However, the insights gained from in vitro assays are limited to the biological space of the 

input data. Some of the chemical-gene interactions, which are important in toxicological 

events, were missing from the ToxCast assay library. For example, the catalase gene (CAT), 

which encodes for a vital antioxidant enzyme is missing from the ToxCast in vitro set. 80  The 

retinoic acid signalling pathway is involved in development toxicity,82 for which several 

endpoints have been screened in the ToxCast project, such as retinoic acid receptor (RAR) and 

retinoid X receptor (RXR). However, retinal dehydrogenase is missing in the data which 

represent an early key event in the pathological pathway.83 

 It is important when analysing in vitro data of broad biological space, to understand the 

confounders attributed by chemical and biological properties. In vitro bioactivity 

measurements rarely act as independent variables. An observed and reported confounder is the 

cytotoxic-based assay promiscuity of ToxCast activity measurements.84 Chemicals can show 

cytotoxic effects at same concentration ranges where target specific assays are activated. 

Judson et al reported that cytotoxic compounds (up to 100 µM), activated, in average, 12% of 

assays in comparison to only 1.3% of assays activated by non-cytotoxic compounds.85 This 

phenomenon is called the “cytotoxic burst” (CTB) at which intracellular machinery is activated 

due to unspecific effects such as cell stress and disruption of proteins and membranes. Also, 

the authors reported that in vivo toxicity can be explained by either i) specific target activities 

below cytotoxic concentrations or via ii) unspecific cytotoxicity and cell stress pathways. 

ToxCast assays that are frequently activated below CTB concentration were investigated.84 50 

unique targets were prioritized which occupied the top 90th percentile of assays with the 

greatest percentage of hits below CTB. A fraction of these was proposed as novel targets for 
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the development of AOP, such as sodium-dependent dopamine transporter (SLC6A3), 

prostaglandin E receptor (PTGER2) and chemokine ligand 10 (CXCL10).84  Additionally, 

target-specific assays were utilized to map genes and biological pathways. For example, Judson 

et al. mapped 315 unique genes from 467 assays so as to identify the magnitude of perturbing 

biological pathways by chemicals and its relation to toxicity.15 The results revealed an 

association between the number of pathways perturbed by a chemical and the minimum 

bioactivity concentration in a set of 15 cytotoxic assays. There was also an association between 

the concentration that caused pathway perturbation in vitro and the lowest effective dose on rat 

prenatal developmental toxicity.15 Another pattern is the inter-assay correlations of relevant 

biological functions. As will be shown in Chapter 3, assays for endocrine disruption (such as 

ER, AR and GR) broadly correlate with phenotypic and cytotoxic assays. This in part may 

explain why endocrine disruption assays frequently top in vitro readouts that are prioritized in 

data-based approaches as shown in previous examples. We will also report that assays for 

endocrine disruption are key predictive endpoints for hepatotoxicity (in Chapter 4) and acute 

toxicity (Chapter 5). 

Overall, linking in vitro bioactivities to mapped genes and biological pathways is useful to gain 

novel mechanistic information about in vivo toxicity. However, confounders such as inter-

assays correlation, cytotoxicity and promiscuity should be considered when in vitro data are 

interpreted. We will demonstrate in Chapter 4 that potent hepatotoxicants are characterized by 

specific pathway perturbations in contrast to low potent hepatotoxicants which tend to trigger 

more often non-specific phenotypic effects. Additionally, in Chapter 6 we report compound 

promiscuity as a confounder that can bias toxicity prediction in two different models.   

Deriving hypotheses about toxicity modes of action using data-based methods to is the 

backbone of research conducted in this thesis. These approaches will be further explained in 

part 2 of this chapter. Important in vitro profiles of chemicals-inducing hepatotoxicity and acute 

toxicity will be discussed in Chapter 4 and Chapter 5, respectively. 

1.3.2 In vitro in vivo extrapolation (IVIVE)  

Quantitative in vitro in vivo extrapolation (QIVIVE), which is the second component in the 

IATA, is defined as the process of estimating the human dose which achieves concentrations 

at the tissue target equivalent to that observed in in vitro tests.86 As the traditional estimation 

of pharmacokinetic parameters involves in vivo exposure tests to measure plasma 
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concentrations, volume of distribution and clearance rates, QIVIVE provides an alternative 

approach to model the kinetic behaviour of compounds.  The main components in QIVIVE 

rely on i) in vitro screening of biological properties and ii) kinetic parameters of compounds 

which are together incorporated in a physiologically based pharmacokinetic model (PBPK).87 

The biological characterization includes deriving the characteristics of dose-response effects 

and identifying the tissue target. Whereas, in vitro estimation of kinetic parameters includes 

measurements of permeability, plasma protein binding and hepatic clearance. The QIVIVE 

process has also benefitted from the advancement in computational modelling. The use of 

Quantitative Structure Activity Relationship (QSAR) models was proposed as a third pillar in 

QIVIVE in order to aid the prediction of bioactivity effects and kinetic parameters.88 Therefore, 

combining QSAR with in vitro tests and pharmacokinetic modelling has the potential to replace 

quantitative in vivo studies.  

QIVIVE can facilitate time- and cost-effective strategy in risk assessment by improving the 

translatability of in vitro assay results into in vivo effects.89 Wetmore et al used IVIVE methods 

to calculate daily human oral doses that are required for steady state blood concentrations 

equivalent to AC50 or lowest effective level (LEL) of ToxCast assays.90 Assessing the 

possibility of observing adverse effects can be improved when the real exposure dose is 

compared with the estimated dose associated with toxicity. 91  

Despite the significant steps towards replacing animal testing for exposure assessment, 

limitations still exist in modelling the pharmacokinetic parameters. This is particularly evident 

in the case of estimating compound clearance, at which models fail short to provide accurate 

predictions because of the complexity of this parameter.88 Wambaugh et al argued that the 

assumptions and approximations in common IVIVE methods can result in false estimation of 

equivalent in vivo doses when using in vitro derived kinetics.87 The authors reported that 

inaccurate estimation (up to 10 fold of underestimation or overestimation) results from 

excluding or improper incorporation of active transport, secretion and reabsorption in bile, and 

extra-hepatic metabolism.  

In Chapter 4, and in order to avoid assumption about estimating plasma and tissue 

concentrations, the approach we applied uses physiochemical properties as conditions to 

extrapolate important in vitro activities into in vivo hepatotoxicity. We demonstrate how some 

physicochemical properties can act as simple proxies for exposure, such maximum plasma 

concentrations, because they reflect properties of good bioavailability. 
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1.3.3 Applications of data-based methods 

 Data-based statistical mining on ToxCast can be categorized into i) understanding toxicity 

modes of action by linking in vitro activity to in vivo toxicity (see section 1.3.1.3 for examples), 

ii) identifying chemical categories using bioactivity profiles as well as iii) using assay 

measurements as toxicity predictors in machine learning models. We report below examples 

of studies where ToxCast data were used to achieve the latter two goals. 

The ToxCast data were explored for their ability to detect compound clusters of similar 

bioactivity and phenotypic properties. MacDonald et al. analysed the chemical-induced 

changes on Protein-Protein Interactions (PPI) by 107 ToxCast phase I compounds across 49 

high-content protein fragment complementation assays.92 Ward clustering of compounds 

showed that structurally similar entities clustered together, as well as compounds modulating 

the same therapeutic target classes. The authors, therefore, reported that known structure 

activity relationships were reproduced and suggested the mechanism of action of four drugs 

with unknown biological interactions. Moreover, the bioactivities of 976 compounds (ToxCast 

phase II) were analysed against 311 biochemical-target binding assays in cell-free 

environments. The results also demonstrated co-clustering of compounds sharing similar 

scaffolds as well as related targets.93 309 environmental94 chemicals and later 776 

environmental and pharmaceutical compounds95 were screened against BioAMAP system as 

part of the phase I and phase II ToxCast program, respectively. The results demonstrated that 

the BioMAP screening system was able to classify compounds according to major toxic and 

therapeutic mechanisms upon clustering bioactivity profiles. These studies show that ToxCast 

assays can be successfully used in grouping chemical classes and providing insights into some 

mechanistic information about modes of action.  

However, several studies have shown the negligible benefit of incorporating in vitro 

measurements to improve the predictive power of machine learning models.96,97 For example, 

Abdelaziz et al. used chemical descriptors, ToxCast in vitro readouts and the corresponding 

perturbed biological pathways to predict 61 toxicity endpoints via various classifiers.98 The 

authors concluded that only 10 endpoints, including rat developmental and hepatic toxicity, 

actually significantly benefited from using in vitro measurements as predictors in multi-domain 

predictive models98. Similarly, Thomas et al. applied more than 600 ToxCast in vitro assay 

readings for constructing predictive models against 60 in vivo endpoints.99 It was reported that 

bioactivities from assays had a limited effect on the overall predictive power, with the 
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exception of cholinesterase inhibition. Dix et al, however, argued that using statistical models 

without incorporating chemical and biological knowledge will result in poor predictivity from 

in vitro measurements.100 The authors recommended selecting relevant assay endpoints, 

applying relevant data aggregation and ensuring a sufficient size of compound data. For 

example, Lui et al reported a good overall accuracy when data of relevant hepatotoxicity 

endpoints were aggregated, and grouped into hypertrophy, injury and proliferative lesions. 101 

It is often seen that building predicting machine learning models from in vitro measurements, 

in general, performs better when chemical properties are incorporated.102 Yet, standard 

predictive models, especially non-linear models, provide little insight into the complex 

conditional associations between input data and toxicity outcomes.103  

1.4  Case studies: in vivo endpoints of regulatory importance 
1.4.1 Hepatotoxicity 
 

Hepatotoxicity is an adverse effect manifested in liver injury induced by drugs or chemicals. 

Drug-induced liver injury (DILI) resulted in the withdrawal of several drugs postmarketing, 

such as troglitazone in 2000 and sitaxentan in 2010. Between 2005 and 2010, hepatotoxicity 

attributed to 14% and 12% of the termination of AstraZeneca’s drug discovery projects due to 

unsatisfactory safety in preclinical and clinical studies, respectively.104 Liver injury can be 

induced by the parent compound or its reactive metabolites in a predicted dose-response 

fashion, as in paracetamol, or unpredictable (idiosyncratic) such as the case of phenytoin.105 

One way drugs can initiate liver injury is via chemical reactivity, by forming covalent bonds 

with intracellular components, eg proteins, or by depleting reduced glutathione (GHS) content 

at which cells are incapable of averting oxidative stress. As a result of these chemical reactions, 

cytotoxic immune responses and mitochondrial toxicity can be induced. Additionally, injury 

can result from specific interactions that perturb biological targets and signalling pathways, 

such as inhibiting bile acid pump, eg BSEP, resulting in blocking bile flow, i.e. cholestasis.106 

Russmann et al have reviewed a three-step model for mechanisms in DILI, which involves one 

or more of the three initial injuries, namely, cell stress, mitochondrial impairment and induction 

of immune reactions.107  These can further lead to inducing cell death pathways and severe 

mitochondrial dysfunction. Given the regenerative and detoxification capabilities of the 

liver,108 capturing mechanistic pathways in chemical-induced hepatotoxicity is challenging. 

In order to detect hepatotoxicity via in vitro models, relevant mechanistic endpoints are 

prioritized. However, this is not a straightforward task, primarily because hepatotoxicity 
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involves complex pathological pathways. Based on expert knowledge and known mechanisms 

of hepatotoxicity, several in vitro models have been developed, such as cytotoxicity, bile salts 

pump inhibition, mitochondrial impairment109, Cytochrome P activity,110  and covalent 

binding.111 Alternative models consider immunological activity through changes in cytokines 

profiles.112 Another in vitro technique used to screen for hepatotoxic compounds is high content 

screening (HCS), which utilizes multiple cellular measurements, such as changes in nuclear 

size, cell count, mitochondrial mass and cell membrane integrity, as biological responses.113–

115 Considering this diversity in biological mechanisms leading to hepatotoxicity, it is not 

surprising that in vitro assays which adopt a fraction of this bioactivity space would suffer from 

relatively low detection rates, with sensitivity ranging from 40 to 60%.95,113–115 It has been 

hence recommended that in vitro models for hepatotoxicity should involve a broad range of 

bioassay endpoints that cover wider biological perturbation points and cellular phenotypes, in 

order to increase overall sensitivity.114,116  However, which endpoints to consider, and how to 

combine their readouts, is not clear. 

The second important parameter for an efficient in vitro – in vivo translatability is exposure, 

i.e. to what extent the compound actually reaches the site where it exerts its action86, which is 

related to physicochemical properties.117,118 This parameter poses considerable difficulties in 

predictive toxicology modelling, mostly because this information is difficult to obtain for large 

sets of compounds. As a proxy for exposure, parameters such as maximum plasma 

concentrations (Cmax) and administered dose levels have shown improvements in the prediction 

of compounds in vivo toxicity. 109,114,115 For example, compounds had significant odds ratio for 

liver injury when levels of maximum plasma concentrations, Cmax, are greater than 1.1µM 

combined with a set of three bioactivities, namely cytotoxicity with an IC50 below 100µM, bile 

transport inhibition with an IC50 below 30µM, and mitochondrial impairment assays IC50 below 

25µM.109 It has also been recommended, as a rule of thumb, to have 100-fold separation 

between the concentration at which compounds are toxic in in vitro HCS assays and Cmax value 

in vivo.114,115 Additionally, some studies used total daily dose as an estimate for hepatotoxic 

liability combined with lipophilicity levels of compounds or in vitro bioactivity. For example, 

“the rule of two” states that the drug is likely to be hepatotoxic (with an odds ratio of about 

3.9) if the lipophilicity expressed as logP is greater than 3 and the daily dose is higher than 

100mg.119,120 Dose was also combined with in vitro covalent binding to generate a zone 

classification system which has shown a clear separation of drugs causing idiosyncratic 

toxicity.121 Another study has also shown that the likelihood for observing hepatotoxicity is 
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significantly higher when the administrated daily dose is higher than 100mg and the drug i) 

forms active GHS adduct, ii) has 5-fold IC50 decrease in Cytochrome P450 metabolism-

dependent inhibition, or iii)  binds covalently to proteins at levels higher than 200 pmol eq/mg 

protein.111 These studies demonstrate how incorporating daily dose or Cmax can be powerful in 

improving the predictivity of hepatotoxicity. Obtaining these measurements from in vivo 

experiments, however, is generally not feasible at early stages of drug development, or for 

profiling large number of compounds.  

In conclusion, early assessment of hepatotoxicity can be challenging for two factors. Firstly, 

how to capture the minimum biological space in assays for maximum compound coverage, and 

secondly, how to account for exposure when in vivo parameters are unavailable. We attempted 

to address these challenges in Chapter 4 using ToxCast in vitro data and physicochemical 

properties.  

1.4.2 Acute toxicity 

Acute toxicity is a key adverse outcome required in registration and legalization of chemical 

compounds used in industry.19 According to the R.7.4 documentation by European Chemicals 

Agency (ECHA)122, it is defined as “health adverse effects following short-term exposure” 

upon oral or dermal administration as well as the inhaled route. These effects include 

irritability, changes in organ weight, sensitization or mortality. The conventional method for 

assessing systemic acute toxicity is via measuring doses in oral and dermal exposure, or 

concentrations in inhalation route, at which mortality occurs for half of the tested animals, 

namely (LD50) and (LC50), respectively.6 The most common and accepted animal testing 

guidelines, which are described by OECD documentation, have already allowed for a 

significant reduction in the number of animals used to assess systemic toxicity.19 In 1981, 30 

animals per chemical were needed to derive a LD50 for the oral acute toxicity and 20 animals 

for dermal systemic toxicity.19 The current protocol was fewer than 10 animals for both oral 

and dermal toxicities according to adjusted OECD guidelines.123,124  

In order to reduce and replace traditional animal testing for acute toxicity in concordance with 

the 3Rs principles, alternative in vitro methods have been proposed. The current state of art for 

alternative approaches include in vitro assay for basal cytotoxicity using neutral red uptake 

(NRU) to identify starting doses in animal testing.125 Another method uses embryo-larval fish 

models, which has shown high correlations with acute systemic toxicity in rodents.126 Recent 

efforts have shifted into target-based bioactivities and chemical features to understand the 

underlying molecular mechanisms. Some of the key mechanisms identified for acute toxicity 
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include the interference with neurotransmission, ion channels, energy haemostasis, antioxidant 

pathways and cellular integrity.6 The description of toxic effects through adverse outcome 

pathway (AOP) frameworks provides, in conjunction with computational models, a realistic 

application of mechanistic data in risk assessment. Several AOPs were proposed around these 

key events (KE) to describe acute mortaltity127–129, which are published in the AOP database. 

These include the modulation of ionotropic GABA (gamma-Aminobutyric acid)129 and 

ionotropic glutamate receptors128, and the inhibition of acetylcholinesterase.130  

The key element to fully utilize the AOP framework is to understand how to implement 

mechanistic information at the molecular level to capture an endpoint with complex and diverse 

pathological pathways as in acute toxicity. Current efforts focus on understanding the 

complications of each key event separately. However, a more plausible approach is to 

investigate the toxicity triggered by multiple key events, which is more realistic given the 

polypharmacology nature of bioactive compounds. Experimental validation of multiple target 

activities can be laborious. For example, knockout mice are used to inactivate an existing gene 

by altering its sequence.131  When a knockout mouse of a specific gene is exposed to bioactive 

compounds, phenotypic effects can be compared with a control group which helps to form 

hypotheses about the effects of combining multiple activities. A study reported that aryl 

hydrocarbon receptor (AhR) activity, as a single variable, correlates with in vivo acute 

toxicity.132 AhR knockout mice have shown a higher expression of a1D-adrenergic receptors 

and an increase in the maximal effect in aorta contraction by a-receptors agonists; 

noradrenaline and phenylephrine.133 This indicates that combining AhR disruption with a-

receptors modulators have greater implications as compared to single bioactivities. While this 

approach is very informative to understand the effects of multiple targets, it is not feasible to 

explore all possible interactions that can lead to observable toxicological effects.  

In alignment with this concept, the AOP networks integrate multiple intersecting AOPs in order 

to explain and anticipate complex toxicological pathways.134,135 AOP networks allow for two 

key objectives to be achieved. First, to anticipate the actual critical path in which molecular 

initiating events (MIE) eventually result in the observed outcome. Second, to understand the 

possible effects when multiple MIE/KE are combined for which their AOPs have downstream 

intersections, leading to additive, synergistic or antagonistic interactions.136 The current 

challenge to fully utilize the AOP network framework is the incomplete information about 

KE/MIE linked by key event relationships (KER) resulting in either known or unexpected 
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phenotypic outcomes.135–138 Therefore, it likely that the current state of knowledge will not 

capture all possible risks in cases where multiple stressors exist in the occasion of bioactive 

mixtures or compounds’ polypharmacology.138  

Thus data-based approaches, which consider statistical interaction of variables, can offer an 

alternative way to investigate significant polypharmacology as will be proposed in Part 2 of 

this chapter, and investigated in Chapters 4 and 5. 

1.5  Filling knowledge gaps in toxicity modes of action can accelerate 
regulatory acceptance of new methods 
 

Despite the rapid advancement in new testing technologies, the acceptance of these methods 

by regulatory bodies is still slow. In the US, regulatory acceptance and utilization of non-

animal methods vary in formal legislative requirements.6 For example, the guidance on 

nonclinical safety studies for the conduct of clinical trial recommends obtaining data from 

animal studies including lethality tests, as described in the  ICH 2009.139 Whereas,  the EPA 

Office of Pollution Prevention and Toxins (EPA OPPT) would accept and recommend non-

animal test such as QSAR models and in vitro tests.19 In the EU, the Cosmetics Directive has 

implemented regulations in 2009, which imposed an animal testing ban on cosmetics 

ingredients.2 Given the large numbers of chemicals yet un-tested in traditional animal studies, 

REACH has also recommended implementing non-testing methods including QSAR, read-

across and physicochemical methods.  

Although regulatory bodies in environmental industries have recommended the use of 

alternative methods, the approval of these methods for drug regulation to substitute animal 

testing is yet hindered by a number of factors.140 For example, the lack of clarity in applying 

weight of evidence, as well as concerns about robustness and reproducibility, are some of the 

obstacles slowing regulatory acceptance.140 The purpose of alternative methods is not to 

reproduce outcomes of animal studies, but to provide insights into possible risks relevant to 

human.55 Given the large number of potential mechanistically-based models, effort should be 

streamlined for international harmonization. One way to accelerate this process is by using data 

to derive novel hypotheses about modes of action and use these insights to rationalize toxicity 

assessment. We will next review some data-based approaches used to derive mechanistic 

hypotheses about in vivo toxicity, then propose rule models as a potential method to address 
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challenges in capturing important mechanism of toxicity as well as significant 

polypharmacology profiles.  
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PART 2: DATA-BASED METHODS TO UNDERSTAND 
TOXICITY MODES OF ACTION USING IN VITRO 
DATA 
 

This section will address data-based methods used to generate hypotheses about toxicity modes 

of action. While generating hypotheses from data is a broad topic, our focus will be on how to 

prioritize molecular and cellular key events in the toxicological pathway using large scale in 

vitro data. Examples of studies reporting important key events from data were given in section 

1.3.1.3. In this section, we will first review some the most common methods to find significant 

associations between in vitro activity and in vivo toxicity. Then we will explore the potential 

of rule models to prioritize key events, as well as to understand conditional associations, such 

as significant polypharmacology profiles and important physicochemical conditions. Finally, 

we will address how to classify toxic compounds with confidence using the conformal 

prediction framework.    

2.1 Common data-based methods to prioritize key events  

In order to generate hypotheses about modes of action, interpretable feature space and 

algorithms are to be used. With regards to data, common sources include in vitro bioactivity 

measurements such as assay readouts and gene expression, as well as substructures and 

physicochemical properties. Some of the popular methods for exploring key events, including 

univariate association and regression methods, are reviewed below.  

2.1.1 Univariate associations 

Data-based endpoint prioritization has until this stage, been commonly performed by 

analyzing significant univariate associations and correlations between in vitro readouts and in 

vivo observations. These associations are frequently performed in a dichotomous manner to 

link a binary activity call in an assay, i.e. active or non-active, against a two-class toxicity label, 

i.e. toxic or non-toxic. The counts of these flags can be summarized in a contingency table, as 

presented in Figure (2-1). When the activity in assays is captured as continuous variables, such 

as IC50 (concentration at half maximum inhibition), a discretization step is performed by setting 

an arbitrary value as a threshold for activity.  
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Figure (2-1) 2 ´ 2 contingency table used to calculate dichotomous associations between in vitro 

activity and in vivo toxicity. 

Examples of algorithms commonly used to mine univariate associations are summarized in 

Table (2-1). Prioritization of key events in this way is useful to identify predictive in vitro 

assays as well as enriched structural alerts. This process can also be performed during 

exploratory analysis as a primary step to select important features prior to advanced statistical 

modelling. The limitations of these methods, however, arise when important key events may 

not be predictive on their own and need to be accompanied by other conditions such as specific 

chemical space, permeability requirements or multiple biological perturbations. As a result, 

key events of toxicity importance may not top the rankings and hence, excluded or overlooked.  

The analysis in this chapter attempts to overcome this limitation by using rule models. Rules 

will be used to mine conditional associations using chemical and biological properties, as will 

be explained in section 2.2 and demonstrated in the subsequent chapters. 

 

2.1.2 Multiple linear regression  

Linear regression describes the relationship between a response variable and predictor variable 

using linear parameters. 141 The simplest regression can be described as follows: 

y=	wo+w1x1+w2x2	+	...	+	wnxn  [1] 

where y is the numeric response, wo is the intercept, (w1,	w2,	…,	wn) are the coefficients for x1,	

x2,	…,	 xn variables. The advantage of the linear regression is interpretability given that the 

absolute numeric values of the coefficients reflects the importance of the corresponding 

variables.  

  Toxic effect 

  Toxic 
Non-

toxic 

Assay 
activity 

active a b 

inactive c d 
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Table (2-1) Examples of common algorithms to estimate univariate associations for key event 
prioritization  

 

Univariate 
method Equation Comment 

Relative 
Risk/Positive 
Reporting 
Ratio  

RR/PRR =
1

1 + 2 3
3 + 4

5  

a,b,c,d correspond to values 
in Figure (2-1). This measure 
was used to prioritize 
ToxCast assays against 
multiple in vivo and human 
toxicity endpoints.79,80 

Odd Ratio OR	 =
1
2 3
4

5  
a,b,c,d correspond to values 
in Figure (2-1). 

Fisher test 7 =
(1 + 2)! (3 + 4)! (1 + 3)! (2 + 4)!

1! 2! 3! 4! ;!
 

a,b,c,d correspond to values 
in Figure (2-1), N is the sum 
of a, b, c and d. P value for 
significance of association 
(probability of observing 
values as random). A 
threshold of 0.05 or lower is 
usually used to describe 
significance. Fisher test was 
used to identify ToxCast 
assay associated with tumors 
in rat.15 

Mutual 
information 

I(X; Y) = @@A(B, C)DEF
A(B, C)
A(B)A(C)

G∈IJ∈K

 

Mutual information between 
two variables X and Y of 

discrete values, where xÎX 

and yÎY. mutual 
information was used to 
prioritize ToxCast assays 
associated with structural 
cardiotoxicity in human.81 

Binomial 
distribution 

P=  ∑ 	MN
OPQN ((n'!)/(i!	(n'-i)!))	×	(m/n)i	×			

																							(1-(m/n))(n	'	-i) 

P value is derived from the 
probability density function 
of a binomial distribution. 
This measure is used to 
identify substructures that 
are enriched in active or 
toxic compounds.74,142 n is 
the total number of 
compounds, m is count of 
active/toxic compounds, n’ 
is counts of compounds with 
substructure and m’ is count 
of active compounds with 
the substructure. 
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In cases where the response is dichotomous, i.e. a label accounting for 2 classes, such as toxic 

and non-toxic, the response (y) can represent the probability P of observing one class variable. 

In order to fit the probability estimates between 0 and 1, a sigmoidal function (s) is used as: 

A = 	s	(y) = 	 W
WXYJZ[\

      [2] 

As linear regression can capture multiple features at a time, this model has been applied to 

assess drug toxicity by combining in vitro activity and exposure. For example, assay 

measurements for covalent binding in hepatocytes and daily dose were used to predict 

idiosyncratic drug reactions.121 Using regression analysis, the authors reported a three zone 

system that classifies multiple safety categories. 

Additionally, linear regression equation can also capture feature interactions when the variables 

used are mutually dependent.143 For a response y described by variables x and z with an 

interaction, the regression equation can be represented as follows: 

y	=	wo+w1x+w2z+w3	(x×z)   [3] 

where w1, w,2, w3 are the coefficients and (x´z) is the interaction variable. Lazic et al used 

hERG potassium channel activity from in vitro measurements as well as clinical Cmax 

(maximum plasma concentrations) to derive probabilities of observing QT elongation on an 

electrocardiogram.144 The authors used a linear model and considered an interaction between 

hERG activity and Cmax. Additionally, the authors controlled the direction of association 

between hERG activity and QT elongation assuming a positive monotonic association between 

these variables.144 Combining hERG activity and Cmax has shown improvement in capturing 

cardiotoxicity in comparison to using hERG in vitro activity alone. 

Although linear models help understand the contribution of multiple variables towards the 

target endpoint, they are sensitive to noise and may not perform well using highly correlated 

variables. A prior pre-processing step is to be conducted, most importantly, to capture the most 

important and causal predictor variables.145 As shown in the example above, when few 

variables of direct association with the endpoint are used, the linear regression model can be 

very informative. However, these models may not be able to capture toxicity endpoints 

characterized by highly diverse underlying mechanisms.101 High dimension feature space can 

be captured by nonlinear models such as Random Forest146, support vector machines147, and 

deep neural networks148, which have shown high performance, but at the cost of 
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interpretability. In order to derive interpretable associations between large scale in vitro activity 

and toxicity, we used rule models. Rules can capture both conditional associations and allow 

for the description of toxic compounds that exert diverse modes of action. In the next section, 

we will explain generic rule models and algorithms. Additionally, we will propose 

modifications so as to overcome limitations of conventional rule models when capturing 

toxicity data. 

2.2  Rule models to understand polypharmacology of toxic compounds 

Rules can be defined as sets of feature conditions that are commonly associated with another 

variable and presented in if-then statements.149 Hence, unlike univariate associations, rules find 

a set of features, when are all present (using an AND operator), the association with the 

response label is stronger. Here, we will define different rule types, and algorithms used to 

generate these rules. Then we will explore the limitations of conventional rule methods and 

how to overcome these limitations so as to extract meaningful in vitro-in vivo associations as 

well as to identify significant polypharmacology profiles.  

Rules are meant to be simple representation of data. They can run in a supervised or 

unsupervised manner. The notion, association rules, run in an unsupervised fashion where one 

or more features are associated frequently with another feature, i.e. finding the frequent 

itemset.150 Whereas, classification rules use a predefined response label to find discriminating 

condition sets in a supervised fashion. Table (2-2) compares classification rules with 

association rules. 
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Table (2-2) Comparison between association rules and classification rules. 

 
 

Association rules‡1 
 

Classification rules 

 
Mining approach 

 
Unsupervised 

 
Supervised 

Most common searching 
score 

Frequency Entropy or Gini index 

Data representation Transactions 
binary matrices 

Matrices of categorical or 
continuous variables (rules) 
Transactions/binary matrices 

(emerging patterns) 

Left hand side (LHS) Combination of feature 
items 

Combination of feature values 
(rules) or feature items (emerging 

patterns) 

Right hand side (RHS) One feature A class label 

Algorithm example 
 

Apriori 
 

C4.5, CPAR 
 

 

2.2.1 Classification rules versus emerging patterns 

Emerging patterns are a form of contrast data mining techniques which identify feature sets 

frequent in one class of the data, but not the others.151  Rules and emerging patterns are 

describing the same concept. However, during the construction of conventional rules models, 

a discretization process is usually involved especially when continuous features are used. In 

contrast, emerging patterns take as input features described in true/false or categorical values. 

Hence, data are discretized beforehand and prior the generation of emerging patterns. For a set 

of binary variables, the common input structure for classification rules is a binary matrix as the 

left representation in Figure (2-2), whereas, emerging patterns handle transaction 

representation of data as an input (right in Figure (2-2)).  

Given a dataset of X samples where Xi Î X described by feature set Y, where Y= {A, B, C, 

…, Z} and class C, where C = {1, 2}. A rule R can be represented as follows: 

 
‡ Associations rules can be used for classification by pruning all rules not describing the class label as the RHS 

variable. An example for this implementation is the CBA383 algorithm (Classification Based on Association). 
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IF predictor A > 0.1 AND predictor B < 0.5   THEN   class C=1 

The example above describes a rule for data samples that are described by continuous variables. 

Each rule condition in this case is represented by two segments, which are the feature and a 

corresponding split. For example, the first condition in the rule entitled the predictor A and 

split specification at values greater than 0.1. 

 

 

Figure (2-2) Pseudo dataset of binary features and class labels represented as a conventional binary 

matrix (left) commonly used to derive classification rules, and transactions lists (right) which are used 

to generate emerging patterns. 

 

Emerging patterns aim to find combinations of discriminating features in a supervised 

classification problem.149 For each entry in the data (a compound in the training), the features 

are described as ‘s’, where s Ì S, and label c Í C, where S are all feature set and C are all 

labels. An itemset is a subset of features which are present in one or more entries.  If an itemset 

of features is present frequently among entries in the data set, such itemset is called a frequent 

pattern.  

Measures to describe the performance of rules and emerging patterns are the same. The 

frequency of a pattern (i) or a rule R is described by the support (Suppi), which is the count or 

fraction of entries in the dataset that support this patterns. In other words, the support is the 

count of entries where a pattern or a rule is fulfilled. The minimum support level, for an itemset 

to be frequent, is set by the user. Another key measure for the performance is the confidence 

(Conf) which describes how accurately a pattern or a rule can predict the class label of fulfilling 

entries. Confidence is presented in Equation [4] for a rule i describing label c: 



 31 

Conf(a	Þ	c) 	= 	Supp(a	Ç	c)	/		Supp(a)       [4] 

Where i  Í S and c  Í  C, S is the group of all feature set, and c is a class label in all labels C. 

2.2.2 Algorithms to generate discriminating rules 

Many algorithms were developed to generate rules. Here we will focus on two algorithms, 

which are C50 for classification rules and CPAR for emerging patterns. These algorithms were 

used in Chapter 4 and Chapter 5, respectively. For comparison purposes, we applied a Random 

Forest model in Chapter 6 to evaluate the predictive performance of emerging patterns. Hence, 

the Random Forest algorithm was also reviewed below.  

2.2.2.1 C5.0  

C5.0 algorithm was developed by M. Kuhn152 based on the C4.5 algorithm introduced by 

Quinlon in 1992.153  Rules, in the C4.5 algorithm, are constructed by collapsing an unpruned 

decision tree. The decision tree, in a classification problem, consists of nested if-then 

statements of predictors to describe a class label. A simple tree can be represented as follows: 

IF predictor A > 0.1 then 
|      if predictor B < 0.5   THEN   class C=1 
else class C=2 
 

This tree can be converted into the following rules: 

IF predictor A > 0.1 AND predictor B < 0.5   THEN   class C=1 
IF predictor A <= 0.1   THEN   class C=2 
 

As each rule represents a unique path in the tree (a route to a terminal node), the number of 

conditions in a rule is equal to the number of nodes in that path. 

 The first step in constructing a tree is finding the feature set and split points that achieve 

maximum discrimination between classes (highest purity).  To find the best split, searching 

measures quantify the purity in order to rank the generated splits. C4.5 uses the information 

statistic, entropy, which is originated from the information theory154. First, the information 

statistic is calculated before and after the split using Equation [5]. 

afgE = 	−[	7	 logl 7 + (1 − 7) logl(1 − 7)	]           [5] 

Where info is the information statistic, p is the probability of the first class and (1-p) is the 

probability of the second class.  

 To estimate the improvement in purity, the difference in the information statistic before and 

after the split is calculated and represents the entropy, Equation [6]. The higher the entropy, 

the higher the ability of the condition to discriminate between the classes. 
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afgEno1paEf	F1af	(qfpnE7C) = afgE	(2qgEnq	r7Dap) − 	afgE(1gpqn	r7Dap)             [6] 

The splits are gradually added, in a nested tree, to eventually create homogenous partitioning 

of data classes. 

The second step is collapsing the tree into rules. Then, rules are pruned using a pessimistic 

pruning approach to remove conditions with the least improvement in rule accuracy. The error 

is estimated for the unpruned rule (baseline error) as well as for the rule except for one 

condition. The condition with the highest error rate is removed iteratively, given that the error 

rate is greater than the baseline error. This is repeated until the maximum error rate of any 

conditions is greater than the baseline error or until all conditions are removed, i.e. the rule is 

removed. The remaining rules are then prioritized to select the minimum representative set. 

The minimum description length (MDL) metric selects the simplest rule combination using 

search methods such as simulated annealing. Finally, the rules are ordered by accuracy. C5.0 

algorithm adds on to the C4.5 features such as boosting and unequal cost.141,152 Also in C5.0, 

rules are not ranked. Instead, predictions are made according to a voting system which is 

weighted by confidence. 

2.2.2.2 CPAR (Classification based on Predictive Association Rules)  

CPAR is an emerging pattern algorithm developed by Yin and Han,155 extended from the PRM 

(Predictive Rule Mining) and FOIL (First Order Inductive Learner) algorithms. FOIL156, which 

was developed by Quinlan, uses gain (Equation [7]) as the searching measure to build rules. 

The best feature in gain is added, one by one, until the maximum rule size is reached.  

Gain	 = |A∗|	(log
|w∗|

|w∗|X	|x∗|
	− 		 log

|w|
|w|X	|x|

)          [7] 

Where |P*| and |N*| are the counts of positive and negative instances after adding the feature 

condition to the rule, whereas, |P| and |N| are the counts of positive and negative instances 

before adding the feature.  

A key feature in the FOIL algorithm is that example entries are removed from the training data 

as soon as a fulfilling predictive rule is generated. PRM (Predictive Rule Mining) extends from 

FOIL by applying a decay factor to the used examples instead of removing these instances. 

CPAR adds up to these features by considering multiple options in the gain-based feature 

selection, which results in generating multiple rules simultaneously. For example, if the top 

gain feature co-occurred with other features with 0.99 gain similarity, multiple rules are 
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produced considering these options. Therefore, CPAR can be seen to combine the properties 

of the exhaustive association classification and the conventional greedy rule-based algorithms. 

2.2.2.3 Random Forest 

Random Forest as described by Breiman (2001)157, is an ensemble of m number of unpruned 

tree models, each producing an independent prediction. Using m number of trees, m number of 

predictions are then aggregated for each instance, i.e. via number of votes in classification or 

average prediction in regression. The Random Forest is based on the CART158 algorithm, 

originally developed by Breiman et al in 1984, which uses Gini impurity as the search metric 

for the best split. Gini index which was introduced by Breiman et al158 is presented in Equation 

[8]. 

Fafa	af4qB = 	71	 (1 − 71) +	 72	(1 − 72)           [8] 

where p1 and p2 are the probabilities of class 1 and class 2, respectively. In two class data, the 

Gini index is equivalent to 2p1p2. At equal distributions of the two labels, i.e. p1=p2, the Gini 

index value is maximum and equal to 0.5. Therefore, as the purity increases the value of the 

Gini index decreases.  

The random component in the Random Forest algorithm is introduced by training trees on a 

random subset of predictors/features P, referred to as mtry using random bootstrap samples. 

This randomness prevents the low variance in predictions as a result of highly correlated trees, 

i.e. trees of similar structures. The recommended value for mtry is 1/3 P for regression and √A 

for classification, where P is the number of features.157 The higher the number of trees, the 

lower the error rate of the ensemble model. However, as a rule of thumb, a recommended 

number of trees is between 500159 and 1000.141 

2.2.3 Limitations of conventional rule models  

Rules are useful to understand patterns within data and can be highly interpretable. They find 

conditions at which high purity of a label class is achieved. In other words, rules with sufficient 

discriminating power can be useful to extract the combination of related features which 

together can translate better into the outcome property.  
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Despite the interpretability of rule models, they suffer from two key limitations that may hinder 

their applicability for extracting meaningful information from toxicity data. Firstly, 

conventional rule algorithms do not imply any constraints on the direction of the association 

between activity in vitro and toxicity in vivo. The general assumption in the relationship 

between the activity in an in vitro assay and the in vivo effect has often been a positive direction. 

In other words, in vivo toxicity is related to activity against a target or perturbation of a pathway 

rather than inactivity. This assumption is applied when in vitro – in vivo associations are 

interpreted or univariate correlations are derived.80,101 Also, this directional association is 

fundamental in developing AOPs from a series of key events (see Figure (1-5)).   

In this thesis, constraints were applied in rule models to preserve a positive direction for the 

association between in vitro activity and in vivo toxicity. Hence, the presence of toxicity is 

linked to the presence, (but not absence) of in vitro activity. Whereas, the absence of toxicity 

is related to the absence of in vitro activity. These constraints were applied in two ways, i) 

pruning rule space generated by C50 algorithm in Chapter 4, and ii) pruning the data space 

prior to running CPAR algorithm in Chapter 5. 

Secondly, when a high dimensional feature space is used against a toxicity label of complex 

mechanistic pathways, the number of generated rules can be large and difficult to interpret. 

This was handled in two ways: i) selecting the most representative rules which have the 

maximum assay diversity and maximum compound coverage, and ii) combining rule models 

with network analysis to visualize and extract important patterns. The first approach was used 

in Chapter 4 for hepatotoxicity and the second was used in Chapter 5 for acute toxicity. 

2.3  Using Conformal prediction framework to assess uncertainty in toxicity 

classification   

The main challenges for accepting alternative methods in regulatory toxicology are the low 

interpretability of common statistical models, as well as the uncertainty level of predictions 

made.  

One of the most common data-based approaches in predictive toxicity is QSAR models. QSAR 

is a mathematical model that associates molecular representations of compounds with an 

important chemical property or biological endpoint.160 The development of efficient molecular 

representations, such as 2D molecular fingerprints by Klopman, has also assisted in the 
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growing utilization of QSAR models.161 The reader can refer to published articles for detailed 

accounts of molecular representations and machine learning algorithms used for 

QSAR.160,162,163 

In order to improve model interpretability, the QSAR framework in toxicity prediction has 

evolved to incorporate knowledge in biological pathways and perturbation points.100 The so-

called MoA QSAR (Mode of Action QSAR) combines biological assay results with structural 

features as predictive descriptors.160 For example, readouts from ToxCast in vitro assays were 

used with chemical descriptors to predict hepatotoxicity in rats.101 It is argued that associating 

in vivo phenotypic effects of compounds from their biological information alone can be 

limiting.146 In fact, utilizing chemical information in addition to bioactivity data can be critical 

in deriving meaningful mechanistic interpretations.146  

A key step in the generation of QSAR models is defining the applicability domain, which 

assesses the chemical space where reliable predictions can be made.164 In concordance with 

this principle, the OECD has determined a set of specific criteria for the use of QSAR in 

toxicity prediction in regulatory applications.165 These criteria include defining the 

applicability domain, and the ability to provide mechanistic interpretation.  

 The applicability domain aims to assess the similarity of the test points with those used in the 

training the model.166 Yet, a more practical assessment of the model performance should 

address the uncertainty or confidence of each prediction. In this context, the conformal 

prediction framework has been proposed as a technique to allow predictive models to only 

generate valid predictions within a given level of confidence.167 This framework has a great 

potential in the field cheminformatics167 and drug discovery168  where a robust measure of 

uncertainty is required for decision making. The level of confidence is set by the user and it 

controls when a model can assign a prediction to a new instance. Svensson et al have applied 

conformal prediction using a Random Forest model to predict the compound cytotoxicity in 

different cell lines.169 The conformal models achieved 80% average accuracy and 87% average 

coverage at a confidence level of 80% despite the significantly unbalanced cytotoxicity labels.  

Moreover, Ji et al have developed a web server, eMolTox, to predict 174 in vitro and in vivo 

toxicity endpoints for compounds under a conformal prediction setting.170 Hence, evaluating 

the reliability of predictions made by models is very insightful in toxicity assessment. 

In order to have an unbiased evaluation for the confidence of the conformal model, a reference 

dataset which is independent to the training set is used, i.e. the calibration set. Figure (2-3) 
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represents a basic workflow for conducting a conformal predictor using Random Forest. The 

training data are split into proper training and calibration sets. The proper training set is used 

to develop the underlying model, whereas, the calibration set is used as a reference to rank the 

test samples. 

The conformal predictor uses a non-conformity measure (NCM) to make predictions and 

estimate the confidence. This numeric measure correlates with the likelihood of the class label 

in question. In other words, the NCM represents a way to describe the similarity of new 

instances in comparison to the training set. Some of the commonly used NCM include the class 

probabilities from machine learning models such as Random Forest169 as well as similarity 

measures used in applicability domain evaluation.171 With respect to the calibration set, test 

instances are ranked.  The level of accepted rank is determined by the confidence level set by 

the user. For example, a confidence level of 80% means that the models will only give a valid 

class label for the new instances if its NCM rank falls within the top 80% of the calibration 

data. On the other hand, if the NCM of new instance does not fall within that region, the model 

fails to assign a valid label, and hence, it is considered outside the confidence level of the 

conformal model. 

When the data set is significantly unbalanced, it is preferred that the rankings are performed 

for each class label independently as in the Mondrian conformal prediction, which was 

introduced by Vovk et al.172 In a binary classification problem, conformal predictor models 

produce four types of outcome for each instance. For example, given arbitrary class labels of 

A and B, the possible outcomes are either ‘A’, ‘B’, ‘Both’ or ‘None’. In terms of a conformal 

predictor, a correct classification is achieved when the correct label is assigned, hence ‘A’ or 

‘B’ in addition to ‘Both’. The latter label represents cases where the instance satisfies the 

model’s requirements of both classes for a given confidence level. Whereas, the ‘None’ label 

means that the model cannot assign a confident classification for an instance because it does 

not satisfy the model characteristics for either class.  

The performance of conformal models is evaluated by the validity and efficiency. Validity 

represents the accuracy of the conformal model, i.e. the rate of correct classification including 

the ‘Both’ label. Whereas, the efficiency represents the percentage of single class predictions, 

i.e. the ability of the models to discriminate between classes with confidence.  

In Chapter 6, the conformal prediction framework was applied to evaluate the uncertainty of 

predictions made by rule models in comparison to a benchmark Random Forest model.
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Figure (2-3) Mondrian conformal prediction using Random Forest as an example for the learning 
algorithm. The first step is to split the data into training and test set, where the training data is further 
split into proper training and calibration sets (step A). The proper training is used to build the machine 
learning model (Random Forest in step B), whereas the calibration set is used as an unbiased reference 
for the test set. A key component in the conformal model is the non-conformity score, which is a 
continuous variable that measures the similarity of the predicted instance to the calibration samples 
with regards to each class label. In the case of Random Forest, the probabilities are used as the 

nonconformity score (step C). Two rankings for a test point are obtained for the two class labels (ai, 

bi). Based on a predefined level of confidence and the two obtained rankings, a prediction is made or 
rejected. 
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2.4   The application of data-based methods in this thesis 

The aim of this thesis was to improve our understanding of chemical-induced toxicity by 

extracting meaningful knowledge from data. A better understanding of the mechanistic basis 

of toxicity allows to utilize in vitro methods more efficiently, and eventually accelerates the 

regulatory acceptance of the alternative methods. The conventional data-based approach in 

deriving mechanistic information on toxicity is conducted from interpreting univariate 

associations between molecular bioactivities and in vivo observations. The novelty, in this 

thesis, extends this approach by extracting important interacting stressors, which together have 

greater associations with in vivo toxicity, namely hepatotoxicity and acute toxicity. These 

interacting stressors may represent significant polypharmacology profiles or combinations of 

biological activities and chemical properties. 

While in vitro – in vivo associations are often directional and involve multiple conditions, there 

is a shortage in studies that consider these constraints in a multivariate non-linear level. The 

analysis here is first to explore these associations using i) rule models with constraints over in 

vitro readouts, and ii) in combination with chemical properties in order to capture chemical 

reactivity and kinetics. This approach allows to inform meaningful conditional associations 

with regards to predictive bioactivities and chemical properties. 

First, the ToxCast dataset will be explored in Chapter 3, as it represents the backbone of in 

vitro data used throughout the thesis. Here we explained the key patterns observed in target-

based and phenotypic assays, and how these patterns relate to the cytotoxic burst phenomenon 

reported in literature,85 and mechanisms of hepatotoxicity and acute toxicity, explored in 

Chapter 4 in Chapter 5, respectively. In Chapter 4, we will prioritize assays predictive of 

hepatotoxicity, as this adverse effect significantly contribute to failures of drug discovery 

projects. Current in vitro models have low detection rates due to incomplete biological 

coverage.95,113–115 Hence, we will compare assays prioritized by rules with endpoints used in 

four commercial in vitro setups for hepatotoxicity. Additionally, we will explore how 

physicochemical properties used in rules can act as proxies for exposure and can help improve 

the translatability of in vitro-in vivo associations. Next, in Chapter 5, we will investigate modes 

of action in compounds which induce acute toxicity, given that the in vitro mechanistic 

screening for this remains immature. Significant polypharmacology profiles of toxic 

compounds will be explored by combining rules and network analysis. Next, to examine the 

predictivity of rules generated in Chapter 5, we will compare the performance of rules with a 
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benchmark Random Forest model in Chapter 6, using a Mondrian conformal prediction 

framework. 
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3      EXPLORING CORRELATION PATTERNS OF 

SPECIFIC AND UNSPECIFIC PATHWAY 

PERTURBATIONS IN TOXCAST ASSAYS 

 

3.1 Introduction  

In order to properly utilise bioactivity data in toxicity assessment, it is important to 

understanding in vitro-related biases and confounders. For example, an observed phenomenon, 

“cytotoxic burst” (CTB) is reported in which cytotoxic compounds show high promiscuity by 

activating a broad range of target specific assays.84 While 1.3% of assays are activated by non-

cytotoxic compounds, 12% of assays are activated by cytotoxic compounds.85 This indicate 

that observing cytotoxicity at a given concentration can bias the measurements of target-

specific assays, and hence any interpretation from these can be misleading.  A list of ToxCast 

assays that are frequently activated below CTB concentration were investigated by Fay et al.84  

It is argued that toxicity in vivo can be explained by either i) specific target activities below 

cytotoxic concentrations or via ii) unspecific cytotoxicity and cell stress pathways. In order to 

examine the associations between specific and non-specific in vitro effects, we analyse the 

variance and similarity within the ToxCast assay library. We group the assays into target and 

phenotypic based according to the intended target type. The target focussed assays were 

designed to capture major biological pathways that have known relevance to toxicological 

events, either by direct chemical-protein binding or indirect effects on up- or downstream 

proteins. Phenotypic assays screen a broad-spectrum of cellular changes, with focus on 

cytotoxicity, proliferation and the cell cycle as well as other intracellular changes related to 

organelles and proteome production. 

We will show that cytotoxicity assays have shown broad correlation with target specific 

readouts, which align with the CTB phenomenon. Also, we report that assays predictive of 

toxicity show specific patterns in the bioactivity space.  
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3.2 Materials and Methods 

3.2.1 Dataset 

The ToxCast in vitro data173 were used to extract bioactivity measurements for 673 compounds 

against 821 assays in concentrations at half maximum activity (AC50). The matrix was curated 

by removing chemical mixtures and inorganic constituents. The overall percentage of complete 

AC50 readouts in the matrix was 9%. Therefore, in order to increase data density, a subsets was 

retrieved by keeping assays with at least 20% complete AC50 measurements. An overall of 109 

assays were selected for this study. Then assays were categorised into two parts: target-based 

and phenotypic-based assays, according to the “type of intended target” in the ToxCast assay 

annotation file. If the intended target is a protein, the assay is classified as target-focussed, 

otherwise, it was considered to be a phenotypic assay.  The target-based and phenotypic-based 

assay matrices contained 56 and 53 assays, respectively. The AC50 readout values ranged from 

as low as fractions of nM up to just below 1 mM concentrations (Appendix A, Figure (A-1) 

and (A-2)). Detailed information on some targets is given in Appendix A, Table (A-1). 

3.2.2 Analysis of variance using principal component analysis (PCA) 

Principal component analysis converts original dataset variables into their uncorrelated linear 

combinations, which are called principal components.141 To test the diversity of the assays 

matrices, a PCA was performed. First, the data were pre-processed via scaling and centring 

using the caret174 and e1071175 packages in R176 environment (version 3.3.3). The data were 

sclaed by converting measurements into Z-scores (subtracting the mean from the values, then 

dividing by the standard deviation). Then the normalized values were centred via Box-Cox 

transformation statistic. Next a PCA was then conducted using the FactoMineR177 R package. 

The percentage of variance explained by each principal component for both target and 

phenotypic assays were visualised. 

3.2.3 Cluster analysis 

Clustering is a multivariate technique that assembles apparently unrelated objects into fewer, 

similar or homogenous groups called clusters.5,179 Hierarchical clustering was performed on 

Spearman coefficients derived similarity matrices using the complete linkage method. 

Spearman correlation is a non-parametric rank method 180, derived from the following 

equation:          r  = 1 − z∑{|	
M(M|}W)

                [9] 
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The results were visualized in a heatmap plot. Clustering and visualization were conducted 

using the function ‘heatmap.2’ in the (gplots)181 package under R programming environment 

in default settings. 

 

3.3 Results and Discussion 

3.3.1 PCA shows high diversity among phenotypic assays in ToxCast data 

 

In order to examine the variance in ToxCast assays, we performed PCA analysis on 109 assays 

as well as on subsets of 56 and 53 target and phenotypic assays, respectively. The percentage 

of variance was plotted for assays in Figure (3-1). The PCA on the overall set had shown that 

70% of the variance was described by 33 components, meaning that the ToxCast assays are 

diverse and highly dimensional. The Figure also show that variance is higher among 

phenotypic assays in comparison to target-based assays. The first principal component of 

phenotypic and target assays explains around 15% and 25% of the total variance, respectively. 

Therefore, we can conclude that phenotypic assays carry higher overall variance and can 

provide novel insights on toxicity which may not be captured by target assays. Recent efforts 

were directed into understanding specific target and pathways perturbation.58 However, it is 

argued that in vivo toxicity may also result from non-effects such cytotoxicity and cell stress.84
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Figure (3-1) Percentage of variance captured by principal components with regards to: a) 109 ToxCast 
assays, b) 56 target-based assays, c) 53 phenotypic assays. In (a) the accumulated variance of 70% 
require 33 principal components. Capturing variance in a large number of principal components 
indicates the low variance described by principal components and, hence, high diversity within the 
ToxCast data. The first two principal components in target-based assays explain around 25% and 12% 
variance respectively, whereas the first and second components of phenotypic assays explain around 
15% and 6% of variance, respectively. Therefore, phenotypic measurements are more diverse than 
readouts from target-based assays.  
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3.3.2 Assays relevant to toxicity show specific patterns in cluster analysis 

 Given the challenges in analysing in vitro data for toxicity assessment due to the confounding 

effect of cytotoxic burst, we were motivated to examine the assay space of ToxCast with 

regards to correlation patterns between target and phenotypic assays. A similarity matrix 

between the two classes was created by calculating the Spearman correlation coefficient 

between each target and phenotypic assay pair. The count of mutual readouts for each assay 

pair are presented in Figure (3-2). The number of complete pairwise measurements between 

target and phenotypic assays ranged from 25 up to 244, with a mean of 90 common data points. 

This means that there were enough mutual data points for each assay pair to generate 

meaningful and informative similarity values.  

 

  

 Figure (3-2) a) The frequency of complete pairwise measurements between target- and phenotypic-based 
assays. b) The frequency of mutual hits counts in assay pairs where both possess AC50 activity ≤ 10µM. 
Figures show that there were sufficient mutual readouts to generate informative similarity scores. 

 

 Unsupervised hierarchical clustering was performed on the Spearman-derived similarity 

matrix and visualized as a heatmap in Figure (3-3). Assays of similar activity profiles, co-

cluster. The horizontal axis in Figure (3-3) illustrates the co-clustering of similar target-target 

assays, whereas, the vertical axis illustrates co-clustering of phenotypic assays. We found that 

assays correlation values ranged from -0.44 to 0.71. The average Spearman correlation 

coefficient was 0.2, whereas only 25% of the assay pairs had shown magnitudes above 0.34. 

These results align with findings from PCA and indicate assay diversity.  

 

a b 
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Figure (3-3) Heatmap plot of the hierarchical clustering of target- and phenotypic-based ToxCast 
assays along the horizontal and vertical axes, respectively. The colours in the heatmap plot were set to 
visualize correlation magnitudes that are under -0.3 in blue or over 0.3 in red. Clustering divides the 
matrix into four major sectors describing the chief biological classes of assays. Assays for cell loss and 
cell cycle arrest correlate broadly with target specific assays used in this analysis, aligning with the 
cytotoxic burst phenomenon. Tox21 nuclear receptor assays have wide correlations with the majority 
of phenotypic assays. ATG nuclear receptor assays, however, have weak correlations with most 
phenotypic assays. The arrow point to stress kinase assay which broadly correlates with targets assays 
in the dataset. 

 

The biological-dependent clustering was seen for assay families as well as individual assays. 

Phenotypic assays clustered roughly into two major groups; assays for cytotoxicity and assays 

for changes in intracellular content. For example, the first phenotypic cluster involved in 

screening for cell loss, oxidative stress, cell cycle arrest, mitotic arrest as well as increases in 

nuclear size and mitochondrial mass on various cell lines. The second sub-cluster included 

assays involved toxic effects on microtubules and mitochondria, as well as changes in the total 

protein content. Target-based assays also clustered into two groups; the first related to DNA 
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and nuclear receptors binding, while the second mainly consisted of assays that screen changes 

in cell adhesion proteins. Details on some of these targets can be found in Appendix A, Table 

(A-1).  

In general, the heatmap in Figure (3-3) shows three key bioactivity patterns: i) broad-scale 

correlations in bioactivity space of assays relevant to toxicity, ii) co-clustering of assays of 

relevant biological pathways, and iii) co-clustering of assays conducted by the same platform.  

First, the broad-scale correlation can be seen for three groups, namely, cytotoxicity (cell loss 

and cell cycle arrest), endocrine disruption and the stress kinase assay. We can observe from 

the heatmap in Figure (3-3) that phenotypic assays describing cell loss and cell cycle arrest 

have shown broad correlations with the set of target assays used in this study. This observation 

agrees with the cytotoxic burst phenomenon reported in literature,85 which is defined as broad 

intracellular machinery activation due to unspecific effects. 

Additionally, assays for endocrine disruption, listed below, correlated broadly with phenotypic 

measurements at an overall magnitude of 0.32 up to a maximum of 0.67 Spearman coefficient. 

- Tox21_GR_BLA_Antagonist_ratio (glucocorticoid receptor) 

- Tox21_ERa_LUC_BG1_Antagonist (estrogen receptor)  

- Tox21_AR_LUC_MDAKB2_Antagonist (androgen receptor)  

- Tox21_AR_BLA_Antagonist_ratio (androgen receptor)     

- Tox21_TR_LUC_GH3_Antagonist (thyroid hormone receptor)  

These  nuclear receptors control a variety of metabolic and developmental functions by sensing 

steroids and thyroid hormone.182–185 In vitro screening for endocrine disruption is classically 

used to predict reproductive and developmental toxicities.186 However, endocrine disruption is 

also associated with a broad range of chronic effects including cardiovascular diseases, 

neurodevelopment disorders, carcinogenicity and cognitive functions.187 In a data-derived 

approach, Hu et al investigated the associations between ToxCast in vitro measurements and 

human effects from Comparative Toxicogenomics Database (CTD).80 The authors reported 

significant associations between assays for endocrine disruption and four major toxicity 

categories in human, namely, hepato-, cardio-, renal- and neuro-toxicities. Our analysis of 

mechanisms in hepatotoxicity in Chapter 4 and acute toxicity in Chapter 5 have reproduced 

these patterns. As will discussed in Chapter 4, endocrine disruption represented a key 

independent cluster of hepatotoxic compounds, which included activities against estrogen, 

androgen and glucocorticoid receptors. In Chapter 5, disruption of thyroid hormone receptor 
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had shown significant synergistic links with key events in chemical-induced acute toxicity.  

Despite the broad correlation of these assays in the bioactivity space, seen here, as well as in 

the disease space, reported in literature,80,187 their utility as predictors for organ-specific effects 

is limited.  

Another assay that had shown a unique pattern was the stress kinase assay on Hep G2 cell lines 

(APR_HepG2_StressKinase_1h_up). This assay had a broad-spectrum correlation with target-

based assays, at an average of 0.41 Spearman coefficient up to a maximum of 0.66. 

Additionally, as will be described in Chapter 4, the stress kinase assay has the strongest 

correlation among the pool of ToxCast assays with in vivo hepatotoxicity. Upon environmental 

stimuli, such as exposure to toxins, stress-activated protein kinases are activated and 

consequently phosphorylate a range of transcription factors.188 Eventually, a variety of gene 

expression events are initiated in response to the external stimuli. This explains why the stress 

kinase up-regulation assay broadly correlated with the majority of target-based assays, 

including nuclear receptors. Overall, assays that show broad correlations in the bioactivity 

space seem to act as key predictors for in vivo toxicity. 

Besides global correlations, the second observation is the co-clustering of assays of relevant 

cellular pathways co-clustered. For example, phenotypic assays associated with changes in 

organelle conformation, such as APR_HepG2_NuclearSize_72h_up, 

APR_HepG2_MitoMass_72h_up and APR_HepG2_MitoMass_24h_up, correlated with a 

large number of DNA and nuclear receptor binding assays. Such observation can be explained 

by the fact that nucleus size is proportional to the compactness of chromosomes.189 Similar 

behaviour is likely to occur in mitochondria during the Mitochondrial DNA expression for 

energy production.190 Also, changes in cell adhesion molecules correlated with a broad range 

of cytotoxicity assays, oxidative stress screens and reduction of cellular protein content screens. 

Cell adhesion molecules are responsible for attaching cells together to maintain tissues 

integrity, cellular functions and anti-inflammatory responses.191 Inhibition of cell adhesion 

molecules may be associated with cytotoxicity via the disruption of cellular integrity and 

communication. BSK assays that screen for chemical-induced changes in the regulation of cell 

adhesion molecules, were associated with renal toxicity.80 Our results demonstrated the co-

clustering of CIS and TRANS regulatory elements assays of the same transcription factor. This 

is evident by the alignment of ATG_PXR_TRANS_up next to the ATG_PXRE_CIS_up, 

ATG_ERa_TRANS_up and ATG_ERE_CIS_up as well as ATG_PPARg_TRANS_up and 

ATG_PPRE_CIS_up. CIS and TRANS acting elements are DNA sequences that regulate the 
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transcription of a specific gene. However, transcription factor response elements, CIS, regulate 

gene expression by acting as binding sites for transcription factors.192 TRANS regulatory 

elements are DNA sequences that encode the transcription factors.192 The co-clustering of CIS 

and TRANS assays is a pattern previously in the literature.79 Therefore, the similarity between 

relevant assays validates the bioactivity content of ToxCast measurments. 

The third key observation in Figure (3-3) implies that assays supplied by the same platform 

cluster together. The majority of APR assays clustered together, especially HepG2 screening 

for cell loss, oxidative stress, cell cycle arrest and mitotic arrest. Both phenotypic- and target-

based assays, from the Bioseek platform, co-cluster together as well as mutually correlate at 

Spearman score of over 0.5. Moreover, Bioseek’s target-based assays show moderate, albeit 

weaker, correlations with APR-HEPG2 assays. It is clear that not only does the BSK platform 

co-clustered together but also the assays performed on the same type of cell line were adjacent 

to each other. For example; fibroblasts, mixtures of peripheral blood, mononuclear cells, 

endothelial cells and endothelial cell lines co-clustered. Given that each platform performs 

specific assay setups with regards to cell lines, solvents and detection techniques, it is possible 

to achieve similar profiles within the same platform. Another factor is the relatively limited 

space of modes of action and cellular pathways in each platform. This is exemplified by BSK 

cell adhesion molecules assays and DNA and nuclear receptor binding assays by ATG. Overall, 

the similarity within platforms can be attributed to the conserved biological space as well as 

the bias from the assay setup. 

3.4 Conclusions 

The similarity and variance of the ToxCast bioactivity space were investigated. The diversity 

and biological patterns in the ToxCast in vitro measurements indicate its utility to explore key 

events in adverse outcome pathways and to understand toxicity modes of action. The higher 

variance among phenotypic assays, compared to target assays, demonstrate that these assays 

capture complex bioactivity profiles. Hence, phenotypic measurements can be useful 

predictors of toxicity key events which may not be captured by specific target interactions.  

The results also agree with the cytotoxic burst phenomenon. Assays for cell loss and cell cycle 

arrest correlated broadly with target specific assays used in this analysis. We also observed that 

assays for endocrine disruption show unique patterns in the bioactivity space as evident by 

broad correlations with phenotypic readouts. The utility of these assays to predict organ-
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specific toxicities is limited, as will be discussed in Chapter 4 regarding commercial in vitro 

setups for hepatotoxicity. It is argued that the manifestation of endocrine disruption into 

adverse effects is influenced by a number of genetic and environmental factors.187 The 

endocrine disruption-cytotoxicity cluster, seen here, will also be observed among assays 

predictive of hepatotoxicity (Chapter 4) and acute toxicity (Chapter 5). In the following 

chapters, we demonstrate that in vitro activities, including endocrine disruption, can translate 

better into in vivo effects if specific chemical and bioactivity conditions are considered. We 

suggest that initiators of toxicity at the molecular level occur as a result of multiple chemical 

conditions as well as compounds’ polypharmacology rather than single initiating events. 

 

 

 

 

 

 

 

 

 



 

50 

4   UNDERSTANDING CONDITIONAL 

ASSOCIATIONS BETWEEN TOXCAST IN VITRO 

READOUTS AND HEPATOTOXICITY USING RULE-

BASED METHODS  

4.1 Introduction 
 

  Hepatotoxicity is a complex adverse effect which is associated with diverse biological 

perturbations, at molecular and cellular levels. Several in in vitro endpoints were proposed to 

capture the key perturbation points.109–112  It has been reported that using a subset of the relevant 

bioactivity endpoints would result in relatively low detection rates, with sensitivity ranging 

from 40 to 60%.95,113–115 

In general, for an efficient translatability of in vitro outcomes in to in vivo effects, two key 

factors are to be considered. First, to design and select the assay set up and endpoints relevant 

to the toxicological effect in question.15,100 Second, to understand and incorporate relevant 

conditions such as multiple bioactivity stressors,193 as well as exposure and 

bioavailability.86,194114,116  With regards to which endpoints to consider, and how to combine 

their readouts, is by no means clear. Parameters such as maximum plasma concentrations 

(Cmax) and administered dose levels are commonly used to improve translatability of in vitro 

activity in to in vivo hepatotoxicity. 109,114,115 Yet, obtaining these measurements from in vivo 

experiments is generally not feasible at early stages of drug development, or for profiling large 

number of compounds.  

A possible alternative for exposure measures are physicochemical properties, which are 

associated with pharmacokinetic parameters117,118, and can be used as proxies to 

exposure.195,196 Yet, the mechanistic understanding of how these properties influence the 

concordance between in vitro measurements and in vivo effects, to our knowledge, has not been 

investigated. Therefore, understanding and prioritizing biological effects of hepatotoxic 
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compounds with respect to chemical properties should involve a holistic approach which 

combine background knowledge as well as data driven methods. 

The current study is, to the best of our knowledge, the first to apply rule-based models on 

ToxCast in vitro measurements and ToxRefDB in vivo hepatotoxicity data with the 

incorporation of physicochemical properties. Rule based classifiers describe each class label 

by a combination of conditions using the input property set. As such, rules can facilitate 

prioritizing significant assays, as well as the interpretation and analysis of multivariate 

associations between in vitro activity and in vivo toxicity. However, conventional rule models 

do not consider directional associations which may occur between input features and outcome 

class, leading to associations that are either spurious or difficult to interpret. Therefore, we 

modify rules according to two key assumptions: 1.) Positive bioactivity in an assay (and not 

absence of an activity) potentially contributes to hepatotoxicity; and 2.) Multiple conditions 

influence in vitro–in vivo associations, which means for an assay to extrapolate well into in 

vivo outcome, number of other conditions have to be met. These conditions can be a 

combination of bioactivities and/or physicochemical properties (related to exposure). With 

those two key assumptions in mind, we manually modify the rules for hepatotoxicity to 

enhance interpretability and biological relevance. The framework we describe here can also 

generally be used to optimize in vitro models for toxicity by selecting significant assay 

combinations, as well as identifying relevant physicochemical conditions.  
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4.2  Materials and Methods 

The steps followed to generate and prioritize rules for hepatotoxic compounds are 

summarized in Figure (4-1).  

 

Figure (4-1) Dataset and workflow for extracting biologically relevant rules for hepatotoxic 
compounds. Firstly, ToxCast bioactivity measurements and an interpretable set of physicochemical 
properties were used as descriptors against hepatotoxicity labels. Rat hepatotoxicity endpoints, from 
the ToxRefDB, were converted into binary labels by setting two maximum exposure thresholds for 
lowest effective level (LEL), 500mg/kg/day and 15mg/kg/day (step 1). The dataset was used to generate 
rule-based classifiers via the C5.0 algorithm (step 2). At each threshold level, rules capturing toxicity 
were pruned by removing inactive assay statements (step 3). Next, in step 4 the modified rules were 
reassessed in terms of balanced accuracy and number of correctly classified compounds (true coverage). 
Prioritization of biologically relevant rules was conducted in multiple steps. The primary selection in 
step 5 involved performance measures, keeping rules that exerted at least 70% accuracy and median 
value of coverage (50 at 500mg/kg/day and 20 at 15mg/kg/day). The secondary selection (step 6) was 
performed based on overall compound coverage, by prioritizing the combination of most accurate rules 
that describe 80% of toxic compound set. The final set of prioritized rules were analyzed in terms of 
contributing bioactivity and physicochemical conditions. 
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4.2.1 Data collection 
 (Figure (4-1), step 1) 
 

Hepatotoxicity endpoints. Rodent hepatotoxicity measures were extracted from the 

Toxicity Reference Database (ToxRefDB, version toxrefdb_v1 released on October 2014)78 . 

Histopathological endpoints (Appendix B, Table (B-1)) from rat studies in liver which were 

observed for chronic, sub chronic, multigenerational and prenatal development were used in 

this analysis, recorded as lowest effective level (LEL) in mg/kg/day for 882 compounds. These 

measurements were converted into a binary format by applying two toxicity thresholds of 

500mg/kg/day and 15mg/kg/day which were subsequently analyzed separately. This 

classification was adapted from Martin et al197 considering the highest and lowest quantile bins 

for toxic effects, corresponding to 15mg/kg/day or less, and 500mg/kg/day or less. 

 

 In vitro measurements. Assay bioactivity data were extracted from the ToxCast 

database173, version December 2014, for 1,057 compounds which represents phase I and II. In 

vitro measurements in ToxCast are recorded as the concentrations at which half-maximum 

activity is reached (AC50), generated from dose-response curves for more than 800 assays in 

units of log10 µM concentration. Assays are annotated by their “intended target type”, in the 

ToxCast assays summary file173 into protein, cellular, pathway, DNA, RNA or unspecified. We 

used this annotation to describe the assays as target-based or phenotypic; if the intended target 

type was described as protein, it was considered target-based, otherwise, for high-dimensional 

readouts, assays are annotated as phenotypic. 

 

Compound set. The compound set used in this study represent the intersection between 

compounds in ToxRefDB and ToxCast, resulting in 673 compounds in total matched by 

ToxCast compound ID. Applying the toxicity threshold of 500mg/kg/day resulted in 395 toxic 

compounds and 278 non-toxic compounds; whereas, at the threshold of 15mg/kg/day 162 

compounds were annotated as toxic and 511 as non-toxic (Step 1 in Figure (4-1)).  

 

Dataset curation. Assay endpoints with empty fields (missing values) were considered 

inactive and an arbitrary (very large) AC50 value of 106 µM was assigned, adapted from Lui et 

al.101 In order to select a data matrix that was as complete as possible (to reduce the bias of 

subsequent analyses) only assays which had valid AC50 measurements for at least 5% of the 
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compounds were selected.  This step resulted in 361 assays which are listed in Appendix B, 

Table (B-2). 

 

Structural preprocessing and calculation of physicochemical properties. Compounds 

were standardized using ChemAxon standardizer198 (version 15.12.14.0) using the parameters 

cleaning 2D, mesomerisation, neutralization, tautomerization (generating the most stable 

tautomer) and removal of fragments. Physicochemical properties were generated using 

RDKit199 via KNIME200 and the Calculator Plugins201 in Instant JChem (version 15.12.14.0)202. 

A subset of 29 physicochemical properties were used in the current analysis which are listed 

in Appendix B, Table (B-3).  

 

4.2.2 Constructing rule-based classifiers  
(Figure (4-1), step 2) 

Multivariate associations between assays and hepatotoxicity endpoints were modelled via 

rule-based machine learning classifiers (Step 2 in Figure (4-1)) as follows. Input variables were 

29 physicochemical properties and 361 ToxCast in vitro AC50 measurements for 673 

compounds against two hepatotoxicity labels of 500mg/kg/day and 15mg/kg/day. The rules 

were generated using the C5.0 algorithm (modified from the C4.5153 algorithms by Ross 

Quinlan) as implemented in the C5.0152 and caret174 R packages using 5-fold repeated cross-

validation with 100 trials and without winnowing. Other parameters are set to default. The 

models with the highest correct classification rate (CCR) at each trial were retained so as to be 

used to generate the rules (accuracy distribution in Appendix B, Figure (B-1)). Throughout 

text, we refer to rules associated with hepatotoxicity as rules predictive or describing toxicity, 

exchangeably.  

 

4.2.3 Rule modification  

(Figure (4-1), step 3) 

Each rule derived from the above procedure consists of one or more conditional statements 

to predict the hepatotoxicity label at a given dose, based on the input variables (ie 

physicochemical properties and ToxCast readouts; Step 3 in Figure (4-1)). In order to extract 

biologically relevant associations between activity in vitro and hepatotoxicity in vivo, rules 

were manually modified to retain interpretable and biologically meaningful patterns. To 

achieve this, modification was applied by removing conditions of inactivity in assays from 
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rules describing hepatotoxic compounds. On the other hand, positive activities in assays and 

physicochemical properties were kept for further analysis as provided by the machine learning 

method. As conventional rule methods that take continuous variables as input can generate 

conditional splits contradicting the assumption stated above, manual curation of rules was 

applied to retain only splits satisfying this assumption.  

Positive activity and inactivity in an assay were discriminated according to the direction of 

the conditional split. Since the compound potency in an assay is inversely related to the 

concentration at which a certain biological response was obtained (such as an IC50 value or 

similar), a bioactivity condition was considered active if the split represent a concentration 

range below a defined cutoff, and vice versa.  

One example of how rules were modified is provided in Figure (4-2) and illustrated in the 

following. For example, in the condition Tox21_p53_BLA_p5_viability <= 0.026, the first part  

 

 

Figure (4-2) An example of rule pruning to retain biologically relevant conditions. Left: unmodified 

rule, describing toxic compounds, as generated by the C5.0 algorithm. This rule consists of five 
conditions, namely two inactive bioactivities (shown in red), one positive bioactivity and two 
physicochemical properties. These represent the increase in mitochondrial membrane potential 
(inactive), heat shock protein agonist (inactive), cytotoxicity assay (active), average molecular weight, 
and number of aromatic heterocycles (physicochemical properties). The rule was then modified by 
removing the inactive bioactivities so as to retain only positive bioactivity readout (cytotoxicity) and 
physicochemical properties (right), which are more meaningful, and biologically more plausible to be 
associated with toxicity. 

 

describes the viability of a human intestinal cell line, and the second part (<= 0.026) represents 

the range of AC50 (in log10 µM concentration) to be less than 0.026 (< ~1.06µM) for the 

condition to be fulfilled. As the statement describes the range below a bioactivity cutoff (split 

point), this example represents a bioactivity condition with positive activity. On the other hand, 

the two conditions, i) APR_HepG2_MitoMembPot_72_up > 2.037 and ii) 

Tox21_HSE_BLA_agonist_ratio > 2, represent respectively the increase of mitochondrial 

membrane potential and Heat Shock Protein (HSP) agonism (both relative to negative control) 

Original rule:

APR_HepG2_MitoMembPot_72h_up > 2.036928
Tox21_HSE_BLA_agonist_ratio > 2.40309
Tox21_p53_BLA_p5_viability <= 0.02595656
AMW > 192.001
NumAromaticHeterocycles <= 1

>>  class toxic  

Modified rule:

Tox21_p53_BLA_p5_viability <= 0.02595656
AMW > 192.001
NumAromaticHeterocycles <= 1

>>  class toxic  

Original rule:

APR_HepG2_MitoMembPot_72h_up > 2.036928
Tox21_HSE_BLA_agonist_ratio > 2.40309
Tox21_p53_BLA_p5_viability <= 0.02595656
AMW > 192.001
NumAromaticHeterocycles <= 1

>>  class toxic  

Modified rule:

Tox21_p53_BLA_p5_viability <= 0.02595656
AMW > 192.001
NumAromaticHeterocycles <= 1

>>  class toxic  

Pruning
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with AC50 values higher than 100µM. The latter conditions were considered inactive, and 

hence removed from rules capturing toxicity during the pruning process. 

 

4.2.4 Performance assessment and rule prioritization  

(Figure (4-1), steps 4 and 5) 

In the current study, the performance of rules was assessed at two levels, for individual 

conditions used in original rule set as well as for rules before and after modification.  

Individual rule conditions were first extracted by collecting the unique set of features used 

by the rules. These were assessed for their association with the hepatotoxicity outcome, at both 

thresholds, 15mg/kg/day and 500mg/kg/day, by calculating the information gain (entropy), 

which is described in Chapter 2 under section 2.2.2. The comparison was conducted with 

respect to condition type, which were categorized into three groups; conditions describing 

positive assay activity, inactivity in an assay and physicochemical properties. 

As the applied modification may change rule performance, the next step was to assess the 

accuracy (confidence) and coverage of rules before and after modification (Step 4 in Figure (4-

1)). Rule confidence, represents the percentage of correctly classified compounds for a given 

class, i.e. here hepatotoxicity. In order to account for the imbalanced distribution of toxicity 

classes, the balanced accuracy of modified rules was calculated by generating 500 randomly 

selected balanced data subsets, each composed of 300 data points, and then averaging the 

accuracy. Rule coverage was calculated for the number of toxic compounds that satisfy the rule 

conditions (true positives).  

As the modification arrived at a rule set that is overall not optimal, a set of prioritization and 

selection steps were conducted. The prioritized rules were subsequently assumed to capture 

biologically meaningful information to the maximum possible extent, given the unavoidable 

limitations of chemical space coverage and bias of the dataset that was available to us. 

The rules predictive of toxicity were filtered based on minimum coverage and accuracy (Step 

5 in Figure (4-1)). Minimum coverage was set to 50 and 20 compounds per rule at thresholds 

of 500mg/kg/day and 15mg/kg/day, respectively. The cutoffs for coverage represented the 

median values after modification, in other words, the best 50% of rules in terms of coverage 

were selected (see Appendix B, Figure (B-2)). Secondly, an accuracy cutoff of 70% was 

applied for both rule sets. Another selection step was undertaken to reduce assay redundancy, 

that is if an assay contributes to multiple rules, then the rule with the highest accuracy that 
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contains that particular assay was selected. Finally, the minimal rule set which covers 80% of 

toxic compounds at each toxicity threshold was selected (see Results and Discussion below). 

To identify the key bioactivity groups captured in toxic compounds in the dataset, the final 

rule sets were clustered according to their similarity in compound membership. This was 

performed by generating a matrix of rules against compounds fulfilling the respective rule 

conditions, from which a rule similarity matrix (based on shared detected and not detected toxic 

compounds) was calculated based on the Jaccard index.203 Hierarchical clustering was applied 

to the similarity matrix using the Agglomeration method Ward.D2204 algorithm via the ‘hclust’ 

function in R (version 3.3.2).176 Visualizations were generated using ‘ggplot2’205 package in 

R. The bioactivity assay conditions under each cluster were examined. 
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4.3   Results and Discussion  

4.3.1 Extracting biologically relevant rules for toxic compounds 

4.3.1.1 Information content of conditions in hepatotoxicity rule-based classifiers 

To have a picture of how original rules were structured, Table (4-1) describes the average 

frequency of each condition type. Overall, on average, rules capturing toxicity include one 

positive assay activity and four inactive bioassay conditions at both toxicity levels. Close to 

one (0.9) physicochemical condition is on average involved in toxic rules at a threshold of 

15mg/kg/day, whereas only on average 0.6 physicochemical conditions are included in rules 

at a threshold of 500mg/kg/day. Hence, although inactive conditions are by themselves not 

very information-rich, they frequently are contained in automatically derived rules. Given that 

inactive assay conditions cannot be mechanistically meaningfully linked to toxic events this 

underlines the need for rule modification as our method of choice (the difficulty of deriving 

toxicity predictors entirely automatically from ToxCast data have also been discussed, using 

different methods, before).99,100 

Table (4-1) Average number of conditions per toxic rule in the original set. Overall per rule, there is 
one positive bioactivity, four negative bioactivities and one physicochemical property. The abundance 
of inactive assay conditions and physicochemical conditions is slightly lower at toxicity threshold 
500mg/kg/day. 

 Condition type in toxic rules 

Toxicity 
threshold 

Active in an 
assay 

Inactive in an 
assay 

Physicochemical 
properties 

15mg/kg/day 1 3.8 0.9 
500mg/kg/day 1 3.6 0.6 

 

  In order to evaluate to what extent individual assays might be able to predict hepatotoxicity 

we firstly examined how much information was gained from each type of conditions in the 

rules. Given the distribution of data points in the classes of the overall dataset, the maximum 

possible information gain was 0.79 and 0.98, at thresholds of 15mg/kg/day and 500mg/kg/day, 

respectively. Figure (4-3) displays the distribution of the information gain (IG), for positive 

bioactivities, negative bioactivities, and physicochemical conditions in toxic rules at toxicity 

levels of 15mg/kg/day and 500mg/kg/day, respectively, and we can observe two key trends. 

Firstly, the maximum observed IG obtained by any split is very low overall, with the maximum 

IG being only slightly higher than 0.04 and the median IG of positive bioactivity conditions 
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being around 0.01. This indicates that single assays on their own have little predictivity for 

hepatotoxicity. 

Figure (4-3) The distributions of the information gain (IG) for each condition type (positive bioactivity, 
assay inactivity and physicochemical properties), in rules capturing toxicity, at two toxicity thresholds, 
LEL= 500mg/kg/day and 15 mg/kg/day. IG is a metric used to describe to which extent particular 
condition (split) improves the homogeneity (purity) of the partitioned data, and which features are hence 
associated with the classes under consideration. To fully discriminate between all toxic from non-toxic 
compounds, IG of variable split should be 0.79 and 0.98, for levels of 15mg/kg/day and 500mg/kg/day, 
respectively. The overall values of IG in the plot are low compared to the maximum possible values. 
Positive bioactivity conditions had the greatest average IG in comparison to other condition types, 
whereas, negative bioactivity conditions had the lowest. This means that the predictive power of a single 
positive activity in classifying toxic compounds is generally larger than single bioassay inactivity and 
physicochemical property conditions. Yet, single assays on their own are not sufficient to fully predict 
compounds in the dataset, which aligns with findings in previous studies.96,97,99 

 

Secondly, the median IG for physicochemical and negative bioactivity conditions is even lower 

and does not exceed 0.005. This means that these conditions on their own are less predictive 

for hepatotoxicity than active assay conditions. Examples of assays that scored the highest IG 

values include the downregulation of CD40 and IP-10 cytokines at the level of 15mg/kg/day 

and the upregulation of stress kinase and AMP response element binding protein (CREB) at 

500mg/kg/day toxicity level (see “prioritizing endpoints for hepatotoxicity detection” below 

for details). 

Although positive bioactivities provide the relatively highest IG overall, their low 

quantitative values indicate that one condition (or assay) is certainly not sufficient to 

discriminate all toxic from non-toxic compounds. This observation can be attributed to two 

factors: Firstly, hepatotoxicity involves diverse and complex mechanisms that cannot usually 

be captured by single endpoints.107,193 Secondly, without considering exposure (or at least some 
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proxies, such as chemical properties),117 assay readout do not translate readily into in vivo 

outcomes,99.206 Our conclusion in this work is hence that, in order to improve our ability to 

predict in vivo toxicity, we need to use rules which, on the one hand, involve a combination of 

assay endpoints to cover wider bioactivity space, and on the second hand incorporate also 

physicochemical conditions.  

4.3.1.2 Rule modification 

To make rules capturing toxicity more biologically meaningful, we next modified them by 

removing inactive assay conditions, and then keeping rules which retain the highest accuracy 

and coverage (as described in Methods).  

The changes in error rates (accuracy) from rule modification are presented in Figure (4-4). 

modification resulted overall in a deterioration in accuracy of 10% and 20% on average for 

rules set at thresholds of 15mg/kg/day and 500mg/kg/day, respectively, as shown in Figure (4-

4). The change in accuracy is broad, ranging between -20% up to +40% at both toxicity levels. 

However, the improvement in accuracy (negative values in Figure (4-4)) can be seen for one 

fifth of rules at the level of 15mg/kg/day and less than a quarter of the rules at level of 

500mg/kg/day (Figure (4-4)).  

 

 

Figure (4-4) The error rate change (accuracy deterioration) in percentage from removing inactive 
bioactivity conditions from rules. The error rate is calculated by subtracting the accuracy of the rule 
after modification (by removing inactive bioactivity conditions) from the accuracy of the original rule. 
The deterioration in rule accuracy after modification is, in general, greater at threshold 500mg/kg/day, 
at an average of 20%, whereas, the overall drop in accuracy at 15mg/kg/day after modification is 10%. 
Simplifying the rules by pruning inactive conditions resulted in a variable level of accuracy 
deterioration. Yet, negative values mean improvement in accuracy which was observed in almost 25% 
of rules.  
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4.3.1.3 Prioritizing predictive rule sets (Figure (4-1), step 6) 

 As some modified rules have shown severe deterioration in accuracy, a selection step was 

introduced to keep only highly performing modified rules, defined as at least 70% minimum 

accuracy, in addition to a minimum of 50 and 20 compounds being covered (corresponding to 

the median in coverage), at the toxicity thresholds 500mg/kg/day and 15mg/kg/day, 

respectively. Finally, rules were ranked by accuracy, then the minimum rule set able to detect 

at least 80% of all hepatotoxic compounds was selected (Step 6 in Figure (4-1)).  

Figure (4-5) shows the relationship between the overall compound coverage, at both toxicity 

thresholds, with i) the minimum rule accuracy in the series of ranked rules and ii) the number 

of unique bioassays used in the rules. Firstly, if higher percentages of toxic compounds are to 

be detected, then more rules (some of which will have lower accuracy) are needed. For 

example, to obtain collectively 80% compound coverage at a threshold of 500mg/kg/day 

requires including 35 rules up to a lower limit of 73% accuracy. On the other hand, in order to 

achieve equivalent coverage at a threshold of 15mg/kg/day 20 rules with a lower accuracy limit 

of 81% is sufficient. Hence, potent toxicants can be captured by rules of higher confidence than 

compounds fall under weaker toxicity levels.  

 
Figure (4-5) Percentage of overall toxic compounds matching rules ranked by accuracy. The x-axis 
represents the percentage of compound coverage as a function of minimum accuracy in ranked rules 
(Y-axis, red) and number of unique bioactivity assays used in rule combination (Y-axis, black). The 
most accurate rule sets sufficient to cover 80% of toxic compounds, at each threshold level, were 
selected as the minimal rule set to describe hepatotoxicity. Fewer numbers of unique assays were 
required at a threshold of 15mg/kg/day in comparison to level of 500mg/kg/day to cover 80% of all 
compounds, namely 24 and 38 assays, respectively. 
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  Secondly, in order to cover larger proportions of compounds, higher numbers of unique assays 

to be used by the rules (Figure (4-5)). It can be seen that up to 50% of compounds, at both 

thresholds, can be described in rules using readouts from 11 assays. For 80% compound 

coverage, 24 and 39 assays are needed in rules, at thresholds 15mg/kg/day and 500mg/kg/day, 

respectively. Further for 90% coverage, 34 unique assays are needed in rules at 15mg/kg/day, 

whereas, more than 70 unique assays are required to cover the same proportion of toxicants at 

500mg/kg/day threshold.  

Hence overall, single assay endpoints, for the dataset employed here, are only sufficient to 

anticipate in vivo hepatotoxicity for rather few compounds individually. Instead, a combination 

of bioactivity measurements is required for enhancing the detection rate of hepatotoxic 

compounds, for which larger numbers of assays (with broader mechanistic coverage) are 

needed. 

 

4.3.2 Prioritizing endpoints for hepatotoxicity detection 

We next interpreted the bioactivity endpoints used in rules predicting hepatotoxicity, as 

determined from the assays used by the best-performing rules covering 80% of the toxic 

compounds at both LELs of 15mg/kg/day and 500mg/kg/day.  

The diversity of the bioactivity space in the prioritized rules was analyzed by firstly 

clustering rules according to compound coverage, and subsequently interpreting the biological 

associations between the selected endpoints and hepatotoxicity. Rules were clustered according 

to the similarity in toxic compound coverage, which means that rules that satisfy similar 

compound sets are grouped together. Tables (4-2) and (4-3) present the rule clusters labelled 

by the major contributing bioactivity described by the assay endpoints used in the rules. At 

both thresholds of 15mg/kg/day and 500mg/kg/day, the rules clustered into three bioactivity 

groups, namely those involving i) Cytochrome P enzymes, ii) immune responses, and iii) 

nuclear receptors and transcription factor elements. 
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Table (4-2) Description of unique bioactivity assays in best performing rules for toxicity, which cover, combined, 80% of toxic compounds, at threshold of 
500mg/kg/day. Rules were clustered according to similarity in compound coverage, which resulted in three major clusters of rules. Each is describing predominantly 
one class of bioactivity assay, namely, Cytochrome P activity, immunological responses and nuclear receptor activity. The information gain was calculated for 
individual conditions (split points) and highlighted for values higher than median (0.02), whereas, accuracy represents the rule in which the bioactivity was used. Some 

rules used two assay conditions at a time, and assays in the table. are linked by the symbol; ë. 
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 Table (4-3) Description of unique bioactivity assays in best performing rules capturing toxicity, which cover, combined, 80% of toxic compounds, at threshold of 
15mg/kg/day. Rules were clustered according to similarity in compound coverage, which resulted in three major clusters of rules. Similar to findings in Table (4-2), 
the predominant assay class used by each rule cluster are Cytochrome P activity, immunological responses and nuclear receptor activity. The information gain was 
calculated for individual conditions (split points) and highlighted for values higher than median (0.022), whereas, accuracy represents the rule which the bioactivity 

was used. Some rules used two assay conditions at a time, and these assays are linked in the table by the symbol; ë. 
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4.3.2.1 Cytochrome P 

Activity against Cytochrome P enzymes is one of the key properties of hepatotoxic 

compounds at both toxicity thresholds (Tables (4-2) and (4-3), cluster 1). There are multiple 

assays in the rules describing activity against different Cytochrome P isoforms, namely against 

CYP3A, CYP2C18 and CYP2C19 at a dose of 500mg/kg/day, and against CYP2A, CYP2C6, 

CYP2C12, CYP2C13 and CYP2C19 at a level of 15mg/kg/day. All Cytochrome P enzymes 

exerted information gain (IG) values higher than average in the selected assay set (Tables (4-

2) and (4-3), cluster 1), i.e. higher than 0.02 and 0.022 at levels of 500mg/kg/day and 

15mg/kg/day, respectively. The average potency in Cytochrome P enzymes as described by 

rules is less than 10µM (Appendix B, Figure (B-3)). Activity against Cytochrome P isoforms 

CYP3A4 and CYP2C19, which are responsible for the majority of drug metabolic reactions207, 

can be linked to liver injury via generating toxic metabolites or interfering with the metabolism 

of co-administered drugs resulting in slow elimination and chemical accumulation.80,101,207  

 

4.3.2.2 Immunological responses 
Multiple assays contribute to immunological responses at both toxicity cutoffs (Tables (4-2) 

and (4-3), cluster 2). Immunological responses in hepatotoxicity rules, in general, had shown 

assay potency requirements lower than Cytochrome P activities, of around 40µM (Appendix 

B, Figure (B-3)). At a threshold of 500mg/kg/day, assays associated with the downregulation 

of cytokines CXCL10 and CD40 were frequently selected for rules, and they also had an 

individual information gain values above the median at values around 0.029, namely the assays 

“A.15”, “A.17” and “A.20”. These cytokines are associated with both proinflammatory and 

regenerative responses depending downstream signaling. 208,209 For example, CD40-mediated 

activation of IL-12 has a proinflammatory effect.210,211 On the other hand, it can also activate 

IL-10 immune response, which primarily participates in regenerating and repairing hepatic 

cells via anti-inflammatory responses.208,212 Similarly, the CXCL10 cytokine can reduce liver 

injury in mice models via upregulating CXCR2.213 Yet, also blocking CXCL10 has a 

regenerative effect after liver damage.209 Hence, hepatotoxicity can be predicted from the 

perturbing the expression of relevant genes, and can be irrespective to the direction of change. 

Similarly, immunological endpoints detected at a threshold of 15mg/kg/day involve the 

downregulation of CXCL10 and CD40, as above, and in addition that of CCL2, captured by 

the assays “B.13”, “B.15” and “B.10”, respectively. At this threshold, downregulation of CCL2 

had a high associated information gain of 0.037, hinting to its importance for hepatotoxicity 
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prediction. CCL-2 expression can increase tissue damage via IL-12  signaling214, but 

simultaneously has a protective effect by activating the hepatoprotective cytokine IL-10.214,215 

A study has shown an overall downregulation of a variety of cytokines (CCL2, IL-10, IL-12 

and IL-16) in primary and liver sinusoidal endothelial (LSEC) cell lines upon the exposure to 

free fatty acids in contrast to hepatocytes. The authors suggested the anti-inflammatory effect 

as a response to overcome liver damage.216 Therefore, assays which detect changes in the 

expression of immunological cytokines, such as CXCL10 and CCL2, are biologically not 

entirely understood, but nonetheless they are statistically informative and hence, can be 

regarded as valuable in hepatotoxicity in vitro models. 

 

4.3.2.3 Nuclear receptors and response elements 

Activity against nuclear receptors contributes considerably to the overall bioactivity profile 

of hepatotoxic compounds (cluster 3 in Tables (4-2) and (4-3)). Compared to the above 

bioactivity groups, lower potencies of approximately 50µM were used in the rules to predict 

hepatotoxicity (Appendix B, Figure (B-3)). Endocrine disruption is seen at both thresholds, 

such as activity against estrogen and androgen receptors, which is captured in multiple assays 

(“A.3”, “A24”, “A.34”, “B.4”, “B.12”, “B18”, “B23”). There are established links between 

estrogen and glucocorticoid receptors (“A.35”) with cholestasis (impairment of bile flow)217 

and steatosis (fatty liver)218, respectively. In addition, androgen receptor antagonism is 

associated with a range of hepatotoxic effects with hepatitis as most commonly reported .219 

Rules obtained at both thresholds for hepatotoxicity also share activity against CAR 

(constitutive androstane receptor), FXR (farnesoid X receptor) and PPAR (peroxisome 

proliferator-activated receptor) which are described by the assays “A10”, “A.11”, “B.24”, 

“A.2” and “B.17”. Both CAR and FXR play a key role in preventing xenobiotic induced 

hepatotoxicity by regulating a number of genes including phase I and II metabolizing enzymes 

and bile acid transporters.220,221 The activity of FXR was found to be correlated with the degree 

of protection from chemical-induced liver injury.221 PPAR-gamma agonist activity, which 

represented by up regulation in A.2, is known to be involved in chemical-induced liver injury. 
222 Whereas, PPAR-delta has a hepatoprotective effects against toxicants223. 

Additionally, there were bioactivities contributing specifically to each toxicity cutoff under 

the nuclear receptor activity class. For example, at 500mg/kg/day, several transcription factor 

response elements were involved in cluster 3 in Tables (4-2), such as the regulation of cyclic-

AMP response element binding protein (CREB), which provided a relatively high information 



 

67 

gain, at this dose, of 0.048 in “A.31”. It has been found that the activation of CREB-binding 

protein/b-catenin interaction promotes liver fibrosis.224 Another response element is the 

upregulation of SMAD (“A.28”) , which mediates TGF-b-induced apoptosis and fibrosis via 

downstream immune responses.225,226 

At a toxicity threshold of 15mg/kg/day, bioactivities under the nuclear receptors cluster 

included those against the vitamin D (VDR) and liver X receptors (LXR) in the assays “B.8” 

and “A.21”. Upregulation of the VDR response element (VDRE) is associated with anti-

inflammatory properties and xenobiotic metabolism.227,228 LXR has an anti-inflammatory 

effect227 and can reduce chemical-induced toxicity229. Thus, the activation of these nuclear 

receptors can be linked to triggering protective response against xenobiotics.  

Overall we can conclude that hepatotoxic compounds are frequently associated with multiple 

changes in nuclear receptor activity, with different types of nuclear receptors being activated 

or inhibited at different dose levels, based on dataset and analysis type considered here.  

 

4.3.2.4 Other targets and mechanisms 
Furthermore, the prioritized rules involved a number of phenotypic and less specific 

activities that cannot be attributed to a specific target. These include cytotoxicity, cell cycle 

arrest, oxidative stress and mitochondrial impairment (Tables (4-2)). There are ten assays 

describing cell cycle or cell morphology under the toxicity level of 500mg/kg/day, whereas 

this is only the case for four assays detected by best rules at 15mg/kg/day (Tables (4-2) and (4-

3)). Also, these assays had shown significant difference in the overall assay potencies, of 

around 50µM, between levels of 500mg/kg/day and 15/mg/kg/day. The phenotypic assay 

overlapping between the two toxicity levels include increase in nuclear size and mitochondrial 

mass, represented by “A.1”, “A.25”, “B.19” and “B.20”. Mitochondrial dysfunction is one of 

the key mechanisms of chemical-induced hepatotoxicity.107,212,230,231 Nuclear size increase is 

accompanied by nuclear receptor activity, as a result of activating gene expression. 

Additionally, at threshold of 500mg/kg/day, two assays describe mitochondrial effects with 

information gain higher than the median (0.02 and 0.029), which are associated to changes in 

mitochondrial membrane potential, namely “A.22” and “A.23”. Chemical toxicants can cause 

mitochondrial permeability transition (MPT) via the opening of permeability transition pores 

in the mitochondrial membrane, either directly or indirectly. As a result, mitochondrial 

depolarization takes place which leads to ATP depletion and reactive oxygen species (ROS) 

release, followed by mitochondrial membrane rupture and apoptosis or necrosis.107 Another 
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effect is the increase in stress kinase expression as a response to stress; “A.27”. This assay has 

amongst the highest information gains of all assays (of 0.052) and the accuracy of its rule is 

95%, which indicates that it is highly associated with toxicity at a 500mg/kg/day level. Also, 

rules at this level involve other cell cycle assays which screen for cytotoxicity, oxidative stress 

and cell cycle arrest. Hence, we can conclude that less potent hepatotoxic compounds are more 

likely to have unspecific effects which can be difficult to detect using target-specific assays. 

Judson et al reported a greater likelihood of disrupting target specific pathways when active 

concentrations fall within the range of eliciting cytotoxicity.85 What we observe here is an 

association between potency of toxicity in vivo and specificity of in vitro effects that are 

predictive for toxicity. We also observe that these unspecific effects are embedded more 

frequently in clusters describing nuclear receptor activity and endocrine disruption. This 

observation aligns with findings in Chapter 3, where assays for endocrine disruption have 

shown broad correlations with cytotoxicity assays. Additionally, for compound to be toxic at 

low doses, they are required, according to the rules, to be more potent in assays (see Appendix 

B, Figure (B-3)).  

In addition to the major bioactivity classes, further rules for hepatotoxicity involved other 

target assays. For example, the Novascreen target binding affinity assay (“A.6” and “B.22”), 

which appeared in rule sets at different dose levels, is related to the transporter SLC6A3 gene 

with relatively high information gain of 0.021 and 0.024 (see Figure (4-3) for distributions of 

information gain values) at 500mg/kg/day and 15mg/kg/day, respectively. The SLC6A3 gene 

encodes for the dopamine transporter (DAT). DAT-dependent neurological degeneration is 

linked with hepatic dysfunction related to ROS overproduction and mitochondrial impairment 

in rodents.232 Another endpoint related to the toxicity threshold of 500mg/kg/day is the 

translocator protein (TSPO) (assay “A.9”), which is involved in the transport of cholesterol 

across mitochondrial membrane. The expression of TPSO has also been found to be associated 

with activating macrophages in chemical-induced liver injury and hence leads to cell 

death.233,234 At a toxicity level 15mg/kg/day, upregulation of prostaglandin E2 (PGE2), in assay 

“B.1”, was also used by rules. PGE2 is a lipid autocoid which protects against liver damage by 

downregulating the expression of inflammatory cytokines. 235,236 It has also been reported that 

PGE2 participates in liver regeneration upon injury. 237 

Therefore, we can overall conclude that hepatotoxicity can be initiated by a variety of 

mechanisms (also very likely beyond the ones covered in the assays used here), supporting the 

need for broad range of endpoints when screening for potential hepatotoxic compounds.  
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4.3.2.5 Combined bioactivity readouts 
Our study goes beyond interpreting univariate associations into investigating rules 

constructed from multiple assay conditions. Previous studies has reported the benefit of 

combining multiple pathway perturbations to detect hepatotoxic compounds, but were 

narrowed to specific modes of action.109,193 Some rules for hepatotoxicity involve two 

bioactivities at a time (linked by the symbol ë in Tables (4-2) and (4-3)). There are seven and 

six rules including multiple bioactivity features at toxicity thresholds 500mg/kg/day and 

15mg/kg/day, respectively. For example, multiple rules combined androgen receptor activity 

with a range of bioactivity assays, such as change in mitochondrial membrane potential, at 

threshold 500mg/kg/day, Cytochrome P (CYP2A1) activity at 15mg/kg/day, and PPAR 

activity at both thresholds. AR ligand, dihydrotestosterone, has shown to induce mitochondrial 

membrane potential238, which establish a link between AR modulation and disrupting 

mitochondrial membrane. Additionally, CYP2A1, which metabolizes 90% of testosterone239, 

is subject to inducers leading to a decrease in serum testosterone.240 Hence, the dual activity of 

AR antagonist and CYP2A1 modulation can potentiate compounds to be hepatotoxic.  There 

is an established bidirectional crosstalk between AR and PPAR isoforms by which each can 

influence the expression as well as the transcription activity of the other.241,242 Primary 

hepatocytes of obese male AR-knockout mice had shown hepatic steatosis which is associated 

with altered PPAR-a and PPAR-g expression.243  

Other interactions which are seen at a level of 500mg/kg/day include multiple combinations 

Firstly, CYP2C19 appeared in conjunction with SLC6A3 (dopamine transporter) in rules 

(Table (4-2)). It is found that the antagonists of D2 dopaminergic receptors interfere with the 

regulation if CYP2C enzymes.244,245 This can support the link between interfering dopamine 

transportation and CYP2C19 activity highlighted in the rules. Secondly is the combination of 

CD40 with IL-8 cytokine. Activation of CD40 increases the secretion of IL-8 in hepatic stellate 

cells resulting in an amplification of proinflammatory effects.246  Also, the hypoxia inducible 

factor-1 (HIF-1) was combined with CCAAT/enhancer binding protein B (C/EBPB) (Table (4-

2)).  Studies have shown mutual regulation between these two transcription factors in 

expression and transcription.247,248 Also, HIF-1 is one of the key transcription factors which 

binds to C/EBPB during liver regeneration.249  

At 15mg/kg/day, multiple assay combinations predictive for hepatotoxicity can be seen in 

Table (4-3), including CYP2C6 with VDR and CXCL-9 with ER agonists. VDR involves in 

the metabolic liver damage and its expression correlates inversely with the severity of liver 
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steatosis250 and fibrosis.251 In response to xenobiotics, VDR directly induces the upregulation 

of CYP2C6.252 Hence, it is plausible that compounds that combine activity against CYP2C6 

and upregulation of VDR are more likely to cause hepatotoxicity. Studies have shown links 

between ER agonists and CXCL9, at which estrogen-treated mice have shown a significant 

reduction in the expression of CXCL9,253 a cytokine associated with liver fibrosis.254  

These observations support the importance of conditional associations in studying the 

translatability of in vitro activity into in vivo effects, and using rules we were able to suggest 

which assays are most predictive for hepatotoxicity when used in combination, based on the 

dataset used here. 

4.3.2.6 The case study of troglitazone 
As a case study for the benefit of considering bioactivity combinations in screening 

hepatotoxic compounds, we chose troglitazone, an antidiabetic drug that was withdrawn from 

the market in 2000 due to incidences of hepatotoxicity.255 It was reported that the mechanism 

of troglitazone liver toxicity is initiated through the mitochondrial impairment, cellular stress256 

and triggering immunological responses.257 It was also argued that risk factors including 

genetic and environmental factors, besides biological activity of the compound itself, play a 

contributing role.258,259   

Troglitazone is labelled in our data as toxic at the LEL level of 500mg/mg/day but not at 

15mg/kg/day as extracted from rat studies. This compound matched ten of the rules at the level 

of 500mg/kg/day and two rules at the level of 15mg/kg/day (see Appendix B, Table (B-4) and 

(B-5)). These are described by assays for mitochondrial toxicity, endocrine disruption and 

activity of immunological responses. At level of 500mg/kg/day, troglitazone fulfilled the rules 

describing the combinations of AR with PPAR-g as well as IL-8 with CD40 (see “Combined 

bioactivity readouts”). Additionally, this compound also matched multiple rules in which 

cytotoxicity was combined with specific target activities, for both toxicity levels (see Appendix 

B, Table (B-4) and (B-5)). The average hepatotoxic compound, however, complied with only 

four rules at 500mg/mg/day and two rules at 15mg/kg/day (Appendix B, Figure (B-4)). Also, 

there is significant difference in number of satisfied rules by toxic and non-toxic compounds 

at both thresholds (Appendix B, Figure (B-4)). Given the number of rules satisfied by 

troglitazone, it had more bioactive liabilities compared to the average toxic compound at the 

level 500mg/kg/day and equivalent to the average liability at the level of 15mg/kg/day. 

Therefore, troglitazone’s promiscuity in hepatotoxic rule space predict it to be likely 

hepatotoxic in vivo. 
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4.3.3 Comparison of prioritized bioactivities with commercial hepatotoxic assay 
endpoints 
 

Further, we compared the bioactivities covered by prioritized rules with the in vitro endpoints 

conducted by commercial models for hepatotoxicity. Bale et al., reviewed a series of 

commercially available in vitro platforms for the detection of hepatotoxic compounds260 which 

we will use here. From this review, we selected four in vitro models which screen against 

multiple readouts and endpoint classes, namely Cellciphrâ261, 3D Insightä262 , Hepatopacâ263 

and RegeneMed112, which are summarized in Table (4-4). 

There is an overall large overlap between bioassay endpoints (see Table (4-4)) screened 

within commercial models and assays prioritized by the rules generated in this study. Firstly, 

all models, as well as the rules derived in the current study, involve screening against 

mitochondrial impairment and cell stress, which are known as key signals for hepatotoxicity.107 

Secondly, phenotypic readouts associated with cell growth or morphology are used by 

CellCiphrâ, InSphero 3D Insightä as well as in the rules, examples of which are apoptosis, 

cell loss and changes in nuclear size and mitochondrial mass. Additionally, screening for 

Cytochrome P activity is an endpoint used in InSphero 3D Insightä, Hepatopacâ, RegeneMed. 

3D Insightä and RegeneMed also screen for changes in cytokine levels, which is in agreement 

with the assays identified as important in the current study. Another relevant endpoint is the 

inhibition of the bile acid transporter which is screened in 3D Insightäand Hepatopacâ. 

Although the original ToxCast assay set we used in this analysis did not include the inhibition 

of bile acid transporters, the rules detected activity against FXR and CAR, which directly 

regulate the expression of these transporters.220 Moreover, inhibition of a set of proteins, such 

as albumin, urea, and fibrinogen is conducted by InSphero 3D Insightä, Hepatopacâ and 

RegeneMed. The counterpart assay used in the prioritized rules screen for the decrease in total 

protein level in the cell (“A.21”). 

  In addition to the above endpoints, our analysis also identified other assay readouts with 

association with hepatotoxicity, in particular nuclear receptor activity (Tables (4-2) and (4-3)), 

that at the current stage are less covered in commercial hepatotoxicity assays.  The involvement 

of nuclear receptors in hepatotoxicity is supported by mechanistic studies - for example, Liu et 

al. reported that estrogen and androgen antagonism are related to proliferative lesions.101 

Additionally, Hu et al., demonstrated a significant univariate association of two ToxCast assays 

for androgen receptor activity with human hepatotoxicity.80 Hence, although it is known that 
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estrogen and androgen disruption can cause hepatotoxicity217,219, this endpoint is often not 

currently used in commercial assay setups (Table (4-4)). Therefore, while generally overlap 

between the features identified in our work and commercial assays for hepatotoxicity exists, it 

would be suggested that including endocrine activity among in vitro models can improve the 

coverage, and hence detection, of hepatotoxic compounds beyond the current state of the art. 
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Table (4-4) Comparison of bioactivities used in prioritized rules and assay endpoints adopted by hepatotoxicity in vitro models in four commercial setups. The table shows that 
the endpoints prioritized by rule models represent a combination of endpoint types used in the four commercial in vitro models. Nuclear receptor activity, and in particular 
endocrine disruption, was prioritized by rules in but not included in in vitro models. With reference to Tables (4-2) and (4-3), nuclear receptor activity represents a key 
independent cluster among hepatotoxic compounds. 
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4.3.4 Influence of physicochemical properties in improving in vitro/in vivo associations 

We next analyzed the significance of physicochemical properties in the prioritized rule sets, 

to see to what extent those proxies for exposure 117,118  add value when attempting to anticipate 

the hepatotoxicity of compounds. For this, the deterioration in accuracy after removal of 

physicochemical condition combinations from prioritized rules was quantified with respect to 

the two toxicity thresholds, the results are shown in Appendix B, Figure (B-5). The absolute 

drop in accuracy by removing physicochemical conditions from all bioactivity rules ranged 

from 0% up to almost 20%. The overall drop in accuracy was more pronounced at a toxicity 

threshold of 15mg/kg/day, with an overall error rate usually around 6-11%. The distribution of 

error rate as a result of removing physicochemical conditions from rules at 500mg/kg/day was 

broad, ranging from no effect to up to 9% in most cases. Hence, incorporating physicochemical 

properties improve in vitro-in vivo associations, especially at a lower dose (and hence for the 

more potent toxicants). 

 

Figure (4-6) Percentage change in error rates as a result of removing physicochemical property 
conditions from best performing rules as a function of assay class. The overall deterioration of accuracy 
by removing physicochemical conditions varies with the assay type. The accuracy drop is minimal 
among rules of Cytochrome P activity and at the dose level of 500mg/kg/day, while very significant 
accuracy deterioration is seen in rules described by nuclear receptor activity, especially at a threshold 
of 15mg/kg/day. 

The error rate varied not only by the toxic dose level but also by assay class (Figure (4-6)). 

The error rates of physicochemical conditions were minimal in rules describing Cytochrome P 
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activity, particularly at 500mg/kg/day. Immunological and phenotypic bioactivities had 

moderate accuracy deterioration from discarding physicochemical properties, at around 5%. 

Yet rules describing phenotypic assays showed a significant difference between toxicity 

thresholds, of more than 10% (p<0.05 Wilcoxon rank sum test). Rules related to nuclear 

receptor activity had the largest increase in error upon removing physicochemical conditions, 

especially at a threshold of 15mg/kg/day, reaching values higher than 10%. The peak in 

accuracy drop is for glucocorticoid receptor activity of almost 20%, followed by over 15% for 

androgen receptor activity at the toxicity level of 500mg/kg/day. Estrogen receptor activity 

showed an approximately 13% drop in accuracy at both toxicity thresholds.  

Direct perturbation of nuclear receptors requires compounds to penetrate the nucleus 

membrane with sufficient permeability to be toxic at low doses. Overall, for an improved 

association with in vivo effect, some assay bioactivities, such as phenotypic and nuclear related 

effects, are more dependent on meeting physicochemical conditions, and hence require a proxy 

for exposure. This is more important for anticipating potent toxicants. 

We next analyzed the most frequent physicochemical properties occurring in the rules (Table 

(4-5)). At a threshold of 15mg/kg/day, these were the number of rotatable bonds (which are 

equal to or below 6 in rules describing hepatotoxicity), the number of hydrogen bond donors 

(where hydrogen bond donors are required to be absent) and the number of aliphatic rings 

(which needs to be equal to or smaller than two). The number of rotatable bonds had the highest 

frequency, occurring in over a third of the rules. This physicochemical condition was 

associated with an accuracy deterioration (error rates) equivalent to 8% when it was removed 

from the rules. The number of rotatable bonds was, however, not abundant among rules at the 

level of 500mg/kg/day. Instead, the number of rings (<=3) was the most frequent 

physicochemical property in this case, and was associated with an increase in error rate of 6% 

and a frequency of 29%.  

The above increase in error rates, when removing physicochemical properties from rules, is 

apparently due to a link between the physicochemical properties of compounds and in vivo 

pharmacokinetics parameters, such as bioavailability.118,264 Bioavailability is governed by the 

extent and onset of absorption and distribution, which in turn are linked to some molecular 

properties such as membrane permeability and plasma protein binding. Good bioavailability in 

vivo means that, upon exposure, compounds achieve sufficient concentrations to achieve an 

effect at the site of action. Rotatable bond count, for example affects the magnitude of cell 

membrane permeability of compounds.196 Majority of compounds that contain 6 rotatable 

bonds or fewer show oral bioavailability higher than 20%, irrespective to their molecular 
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weight.196 Additionally, a number of aromatic rings greater than 3 in a compound is linked to 

higher plasma protein binding (PPB) (>90%), irrespective to cLogP.265 Strong PPB may slow 

the rate of compound distribution among body compartments which will consequently affect 

the concentration at the site of action.266,267 Additionally, higher numbers for aromatic rings 

are linked with Cytochrome P inhibition and higher lipophilicity, both of which are associated 

with toxicity.119,265 DeGoey et al. have introduced a simple multiparametric scoring function 

to describe rat oral bioavailability consisting of three properties, namely cLogD, the number of 

rotatable bonds and the number of rings of a compound.195 This score which involves summing 

the values of these properties (with a correction for cLogD). The authors reported a negative 

correlation between this score and bioavailability with correlation coefficient of -0.41, in 

agreement with our findings above.  

Table (4-5) Physicochemical properties frequently present in prioritized hepatotoxicity rules. The most 
frequent physicochemical property in rules for threshold of 15mg/kg/day is number of rotatable bonds. 
Whereas, number of rings is the most frequent physicochemical property in rules at 500mg/kg/day level.  

 15mg/kg/day 

Physicochemical condition Error 
rate%* Frequency %** 

NumRotatableBonds <= 6 7.8 ± 3.2 35 
NumHBD <= 0 9.2 ± 3.7 10 
NumAliphaticRings <= 2 2.7 ± 0.3 10 

 
 
 
 
 
 
 
 

 
*Error rate % represents the deterioration in rule accuracy as a result of removing each of the 
physicochemical properties presented in the table. 
** Frequency % is the percentage of rules containing the physicochemical property out of all prioritized rule 
set. 

 

An additional observation, however, is that rules used different properties at different potency 

levels, but consistent properties within each potency threshold. Also, different assay types have 

shown variable magnitudes of dependence on physicochemical properties when measurements 

are extrapolated into in vivo effects. Still, it is apparent that also simple proxies for 

bioavailability are able to improve the prediction of hepatotoxic compounds on the dataset 

 500mg/kg/day 

Physicochemical condition Error 
rate %* Frequency %** 

NumRings <= 3 5.7±3.6 29 

NumHeavyAtoms <= 33 3.9±0.5 11 
NumAromaticCarbocycles > 0 11.5±1.9 9 
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employed here. Hence, given that in vivo exposure parameters (i.e. dose and Cmax) are often 

not available at primary stages of drug development, these simple proxies such as the number 

of rings and rotatable bonds may act as simple alternatives to exposure measures to anticipate 

the hepatotoxicity of compounds at an early stage. 

 

4.4  Conclusion 

 

We propose in this work a novel framework for generating interpretable rules for the 

hepatotoxicity of compounds, which use both in vitro bioactivity measurements and 

physicochemical properties. Rules generated from machine learning algorithms were pruned 

to remove statistically less informative and biologically less meaningful inactive assay 

conditions from rules describing toxicity. The resulting interpretable rules were used first to 

prioritize hepatotoxicity in vitro endpoints, considering 80% overall compound coverage. The 

resulting rules were compared with four commercial in vitro models for hepatotoxicity. Finally, 

the influence of physicochemical properties on the derived in vitro- in vivo associations were 

investigated separately for each assay class. 

Our results suggest that a set of multiple ToxCast assays are needed for a sufficiently high 

coverage of hepatotoxic compounds, as no single assay can discriminate toxic from non-toxic 

compounds. This was also apparent from the information gain derived for single ToxCast 

assays alone. At two toxicity threshold levels of 15mg/kg/day and 500mg/kg/day, the best- 

performing modified rules, which cover 80% of toxic compounds, cluster into three major 

bioactivity classes, namely Cytochrome P activities, immunological responses, and nuclear 

receptor activities. While overall assays selected for predicting hepatotoxicity overlapped with 

endpoints used in in vitro models from commercial sources, nuclear receptor activity, which 

represented an independent mechanistic cluster, is not currently covered in this way.  

 Specific bioactivity combinations were seen in the rules, such as disruption of androgen 

receptors combined with activities against PPARs, Cytochrome P and increase in 

mitochondrial membrane potential. These describe perturbation in multiple biological 

pathways resulting in a greater likelihood of observing toxicity in vivo. Incorporating 

physicochemical properties, in general, also improved the accuracy of rules describing toxicity 

especially for potent toxicants, i.e. those toxic at the toxicity level of 15mg/kg/day. The likely 

explanation is that, for those compounds, bioavailability plays an important role for toxicity to 
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be observed, which to some extent can be anticipated by physicochemical properties. The most 

frequent physicochemical properties used in rules, namely the number of rotatable bonds and 

the number of rings, are linked to bioavailability parameters, such as membrane permeability 

and plasma protein binding, respectively. Hence, the likelihood of a compound to be 

hepatotoxic in vivo increases both if it is active in relevant bioassays as well as showing the 

necessary bioavailability. 

There has been an increasing interest in understanding the molecular mechanisms 

responsible for initiating toxic side effects, in the form of adverse outcome pathways (AOP) 

frameworks. The assay endpoints screened in the ToxCast project can in principle describe key 

events in an AOP,61 since they provide insights to the perturbation in biological processes in 

the cells by the screened compounds. Our proposed rule-based method can be used as a tool to 

generate molecular hypotheses so as to guide the identification of key events of the AOPs. In 

order to be practically successful in this direction, assay coverage in biological space, 

compound coverage in chemical space and a complete data matrix linking both domains are 

crucial. 

Another application to this rule method framework is to optimize in vitro models for toxicity 

screening. For example, in order to improve the compound coverage of hepatotoxicity in vitro 

models, we recommend assays from three major bioactivity classes are incorporated when 

testing for hepatotoxicity, which are Cytochrome P activity, immune responses and endocrine 

disruption. This is in addition to phenotypic readouts such as cell viability, cell stress, 

mitochondrial impairment and changes in cellular organelles. The combination of assays from 

all areas will then allow for the better detection of hepatotoxic compounds. We also 

recommend considering physiochemical properties as simple proxies for in vivo exposure 

measures, such as Cmax, when attempting to anticipate potential hepatotoxicity. While simple, 

those properties are fast to calculate and they are able to improve predictivity of in vivo 

hepatotoxicity, at least on the data based in this study.  

The workflow presented here can finally be generalized to other types of toxicity, considering 

any type of chemical and biological input data, provided coverage in the chemical and 

biological domain for the toxic endpoint of interest is given. 
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5 DISCOVERING COMPLEX MECHANISMS IN 

ACUTE TOXICITY USING MULTISOURCE DATA 

AND EMERGING PATTERNS  

 

5.1  Introduction 

The use of in vitro screening for systemic acute toxicity, that are derived from a mechanistic 

understanding of modes of action, is as yet immature.6  The current state of art for alternative 

approaches include in vitro assay for basal cytotoxicity using neutral red uptake (NRU) to 

identify starting doses in animal testing.125 Some of the key target specific mechanisms 

identified for acute toxicity include the interference with neurotransmission, ion channels, 

energy haemostasis, antioxidant pathways and cellular integrity.6 Several AOPs were proposed 

around these key events (KE) to describe acute mortality127–129, which are published in the AOP 

database. These are represented by the modulation of ionotropic GABA (gamma-Aminobutyric 

acid) receptors129 and ionotropic glutamate receptors128, and the inhibition of 

acetylcholinesterase.130 However, not much is understood on how perturbation of more than 

one biological pathway influences in vivo observations as the result of compounds’ 

polypharmacology. Studying these interactions is especially essential in cases where complex 

mechanisms are involved such as acute toxicity. 

In the case of acute organophosphate poisoning, the key mechanism driving acute toxicity is 

the inhibition of acetylcholine esterase. A study on the pathological pathways associated with 

the potent AChE inhibitor, chlorpyrifos-oxon, on zebra fish had shown multiple downstream 

effects including calcium ion dysregulation, immune and inflammatory responses and 

cytotoxicity, collectively referred as the cholinergic toxidrome.268 Such complex downstream 

effects can be points of perturbation via diverse stressors due to compounds’ 

polypharmacology, or exposure to bioactive compound mixtures. In this context, adverse 

effects should be captured by multiple pathway perturbations attributed to multiple key events.  

One way to extract the complex associations that can discriminate between classes is emerging 

patterns. Emerging patterns are a form of rule models which identify feature sets frequent in 
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one class of the data, but not the others.151 The main implementation of emerging patterns in 

cheminformatics is to derive structural alerts. This was first conducted by Auer and Bajorath269 

who used discretized physicochemical properties were used to describe target bioactivities. 

Sherhod has used emerging patterns67 and jumping emerging patterns76 to discover structural 

alerts for Ames mutagenicity and hERG activity. Emerging patterns were also implemented on 

gene expression profiles to predict toxic compounds270 and identify diagnostic gene groups.271 

Yet, emerging patterns have limited applications in cheminformatics,272 despite their ability to 

extract interpretable insights about patterns in data. 

 In this study, we analyse the complex associations between acute toxicity and potential 

KE/MIE represented as structural alerts and bioactivity properties. To the best our knowledge, 

this is the first attempt to use emerging patterns by combining chemical and bioactivity data to 

describe toxicity. This study uses data collected from Tox21 screening measurements, 

predicted biological targets, known toxicophores and Globally Harmonized System (GHS) 

labels for acute toxicity. In order to generate hypotheses about features’ additive and 

synergistic interactions, we integrate emerging patterns with network analysis and mutual 

information. We illustrate how some features, which on their own show moderate correlations 

with acute toxicity, play vital roles to intensify the liability of other features through synergy. 

The conditional associations derived here provide novel insights into the mechanisms of acute 

toxicity. We believe that these findings can encourage interpreting potential toxicity as an 

assembly of interacting, rather than independent, key events that reflect multiple perturbations 

in the physiological system. 
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5.2   Materials and Methods 

5.2.1 Datasets 

Tox21 data  The Tox21 project involve high throughput screening measurements of almost 

10,000 compounds against phenotypic cytotoxicity and target-specific assays for toxicity 

pathway profiling.53 Tox21 bioactivity data were collected from PubChem273 (accessed 21 Jul 

2017) for 8747 unique compounds labelled with PubChem ID against 110 assays (see 

Appendix Table (C-1)). The activity label used in this study is the percent activity compared 

with a positive reference determined from three replicates at 1µM. The conventional 

binarization procedure in PubChem is determined by a 40% activity threshold, above which a 

compound is considered active, i.e. 1 for active and 0 for inactive. Here we also added three 

thresholds levels, namely 20%, 60% and 80% activities (in addition to 40%). Therefore, each 

compound was described in an assay by four levels of bioactivity labels, resulting in 440 Tox21 

assay descriptors. For example, if a compound has a bioactivity of 66% in a given assay, then 

this compound will show a positive label at levels of 20%, 40% and 60% but not 80%. This 

intervention was introduced so as to consider potency in Tox21 assays when generating the 

toxic describing rules.  

Predicted bioactivities Compounds extracted from the Tox21 data were also annotated with 

their predicted bioactivities using an in-house predictive model “PIDGIN” (Prediction 

IncluDinG INactives) version 2.274 PIDGIN was built using targets annotated against 

compounds in PubChem including 3394 unique targets in a Random Forest model. In this 

study, targets that have shown True Positive Ratio of 0.7 or higher were considered summing 

to 1790 targets. The annotations outcomes are in binary format (1 if active and 0 if inactive). 

Chemical Descriptors Toxicophores were generated using the Online Chemical Modeling 

Environment (OCHEM) ToxAlerts server73 against over 2300 structural alerts collected from 

17 references. The server performs normalization and curation on query compounds after 

which it matches the curated compounds with the SMARTS of predefined toxicophores. The 

results were stored in form of binary matrix which represent the presence or the absence of the 

structural alert in the compound.  

Additionally, substructures observed in at least 2% of the compounds in the dataset were 

generated using MoSS275 node in KNIME.200 The MoSS undergoes a graph based 

fragmentation followed by appropriate curation to avoid redundant detection of substructures. 
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GHS acute toxicity The Globally Harmonized System of Classification and Labelling (GHS)276 

is international standard system agreed by the United Nations to classify chemical compounds 

for their hazardous potential. The system includes a labelling system for toxicities such as acute 

toxicity, mutagenicity and organ specific toxicity. In this study, we used acute toxicity (oral, 

dermal and inhaled) to label compounds in the dataset. Compounds are assigned with a severity 

level from 1 to 5, where 1 is the most potent toxicant whereas, 5 demonstrate the least severity. 

These classes are derived from the LD50 for oral and dermal and equivalent LC50 for inhalation. 

The data were extracted from PubChem273 for the compounds in the Tox21 dataset (Accessed 

26 July 2017). The GHS classifications reported in PubChem are compiled from multiple 

sources, namely the European Chemcials Agency (ECHA), the EU regulation (EC), 

the Chemical Management Center (CMC) of Japan National Institute of Technology and 

Evaluation (NITE) and the Australian Hazardous Chemical Information System (HCIS). The 

GHS grading was discretised into an arbitrary two-class toxicity label, i.e. toxic and non-toxic. 

Compounds were considered toxic if the classification of either oral, dermal or inhalation were 

at levels 1,2 or 3, and non-toxic otherwise. The compounds selected for this study must show 

at least a valid classification for oral acute toxicity. Also, wherever a contradiction in the GHS 

labelling system was observed, the associated compounds were excluded. Compounds with 

valid labels sum up to 3573, 1261 toxic and 2312 are non-toxic.  

Chemical curation Compound structures were extracted in SMILES format using the 

PubChem exchanger service for their corresponding PubChem CIDs. Chemical standardization 

of compounds was conducted in ChemAxon198 considering the following specifications: add 

explicit hydrogens, clean 2D, remove fragments, neutralize, mesomerize and tautomerize 

In order to generate a complete dataset across the different sources, only compounds that 

overlapped between the Tox21 data and GHS classification were used for analysis. Further, the 

compound set was curated in order to exclude compound mixtures and compounds including 

heavy metals. The overall integration of the dataset resulted in 2000 compounds, 993 toxic 

compounds and 1007 non-toxic. Only features which are present in 5 or more compounds were 

used. The total number of features used was 3732 representing 1789 predicted targets, 440 

Tox21 assay activities, 1259 ToxAlert toxicophores and 242 MoSS derived substructures. 

5.2.2 Emerging patterns generation 

Emerging patterns (rules) were generated using CPAR algorithm developed by LUCS-KDD 

(Liverpool University Computer Science – Knowledge Discovery in DATAS). The CPAR 
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algorithm is explained in Chapter 2 section 2.2.2.2. All parameters were set as default (decay 

factor of 2/3 and similarity ratio of 1:0.99) except for the minimum gain by the split which was 

adjusted to 2.5. In order to generate meaningful and biologically interpretable emerging 

patterns, we applied data space pruning. The search within the descriptors space was restricted 

so as to align with causal or correlation links between these features and in vivo toxicity. The 

emerging pattern algorithm CPAR takes the input data in for of transaction, which are lists of 

features (see section 2.2). Hence each binary feature is described using two labels, i.e. the 

presence and the absence of that feature. To constrain the directional association for in vitro 

data, only the presence of an activity (and the presence of substructures) are included in the 

input set to generate toxic describing patterns. Similarly, patterns describing absence of toxicity 

used input data of variables describing absence of in vitro activity, and the presence of the 

substructure. 

The training set used was randomly sampled to create 70% subsets on which the algorithm was 

run with 50 repeats. Emerging patterns performance was calculated as confidence and coverage 

using the all training set. Unique patterns were then selected according to a minimum of 70% 

confidence and minimum Fisher test p-value of 0.01 to exclude insignificant correlations. This 

process resulted in 7381 patterns describing toxicity and 3866 patterns describing absence of 

toxicity. In this study, terms emerging patterns and rules are used exchangeably.  

5.2.3 Rule network analysis 

Rules were visualized as networks. Feature conditions in rules are represented as nodes, 

whereas, edges connecte node features that co-occurred in the same rule at least once. Figure 

(5-1) demonstrates how groups of rules were converted into network representations. First, 

rules were represented as feature lists describing either toxicity or absence of toxicity, labelled 

as 1 or 0 in Figure (5-1), respectively. For each class label, the list representation is converted 

into a binary matrix where each row is equivalent to a rule and columns are the unique feature 

set. Next, the binary matrix was converted into an adjacency matrix to describe feature pairs 

that co-occurred in at least one rule. The numeric value in the adjacency matrix reflected the 

frequency of observing feature pairs in unique rule sets. Finally, this adjacency matrix was 

used to construct a network of features as nodes and adjacency as edges.  

Visualization and analysis were conducted in Cytoscape software.277 Cytoscape allows to 

perform number of analytical measures on networks to extract the topological properties. These 

properties include three key components which are i) network as whole, ii) nodes and iii) edges. 
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Networks can be described by their size, degree of saturation and betweenness (average 

shortest path to go from a node to another in the network through connected edges). Nodes are 

often described by centrality measures such as the degree, which describes the number of 

unique first neighbours. Edges can be directional or undirectional, and can be weighted.   

 

 

Figure (5-1) Workflow for generating rule networks. The generated rules are represented as lists of 
feature conditions describing presence or absence of acute toxicity. The list representation of rules was 
converted into a binary matrix of rule input in rows and feature set in columns, in which (0,1) reflect 
whether the feature is used or not used in a rule, respectively. The binary representation was then 
converted into an adjacency table, where the digits represented how many times feature pairs co-
occurred in a unique set of rules. The adjacency table was used to generate a network of features as 
nodes and adjacency as edges. Networks were then generated for each class, i.e. presence and absence 
of toxicity. 

 

5.2.4 Synergy measures 

One way to analyse rules of multiple conditions is to measure the interactions between these 

conditions. Analysing these interactions is useful to understand how combining multiple 

features at a time would affect the odds for observing the outcome. For example, it is possible 

to detect synergy between features, where their combination acts beyond the additive effect. It 

should be noted, however, that the synergy in this context represents the improvement in 

probability or likelihood of observing toxicity not the increase in toxic intensity.  

We measured synergy between all feature pairs co-occurred in rules. For rules composing of 

more than two features, all possible combination pairs were investigated. For example, in a 

rule of three conditions {a, b and c}, the investigated pairs are a-b, a-c and b-c.  Two measures 
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were used. One is based on the normalized mutual information as described by Fang et al 278 

and the second measure is based on odds ratios as reported by Cortina-Borja.279 In both cases, 

the association statistic is measured for individual features in a rule as well as for feature pairs, 

and relative to the toxicity outcome.  

I) Synergy using mutual information 

For ci ={a,b} pair in Rule i against toxicity label Z, where ci Í Rule i, and a, b are feature 

conditions. 

Synergy	 = 	MI(ci, Z)	–	[MI(ai, Z) 	+ 	MI(bi, Z)]                [10] 

Improvement	 = 	MI(ci, Z)	– 		max[MI(ai, Z)	, MI(bi, Z)]                [11] 

Where MI is the normalized mutual information278 calculated for a, b and their combination ci. 

II) Synergy Factor from odd ratios (equivalent to interaction weight in the regression equation) 

Synergy	Factor	 = 	ORci	/	(ORa	�	ORb)						              [12] 

Where OR is the odds ratio279 calculated for a, b and their combination ci. The criteria used to 

label a feature pair as synergistic are magnitudes greater than 0.001, using the MI statistic, and 

values greater than 1 for the OR-based synergy scores.  The relationship between the two 

synergy measures is represented in Appendix C, Figure (C-1). 
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5.3  Results and Discussions 

5.3.1 Univariate associations between biological and chemical properties and acute 

toxicity 

First, in order to understand which classes of features are being captured, as single variables, 

the highest associations with acute toxicity, we examined the normalized mutual information 

(NMI) between all feature-toxicity label pairs. The distribution of NMI is visualized in Figure 

(5-2). The maximum possible NMI value for a perfect correlation is 1 (0 in log10 scale) 

 

Figure (5-2) Distribution of the normalized mutual information (NMI) for each feature class against 
acute toxicity in log10 scale. The dashed line represents the median value of the overall NMI (-2.7). The 
majority of cell viability and substructure features show NMI values above median, which mean these 
features, as single variables, have the strongest association with acute toxicity. Except for nuclear 
receptor activity, target specific features, namely enzymes, ion channels and GPCR show average NMI 
values below median. 

 

Features were grouped into 8 classes, namely substructures, cell viability, nuclear receptors, 

enzymes, kinases, ion channels, G protein-coupled receptors (GPCR) and ‘other’ targets, which 

include transporters. The median value of NMI as shown in Figure (5-2) is around -2.7 and a 

maximum of -1.5 in log10 scale. The difference between these values and the maximum 

possible value for NMI means that acute toxicity cannot be captured by a single variable. Figure 

(5-2) also shows that substructural and cell viability features had the top values for log10 NMI 
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of at an average of -2.3 (equivalent to NMI of 0.005). Cell viability had also shown the least 

spread in values compared to all other features. Following in the rank of the association strength 

were activity against nuclear receptors and ion channels, with log10 NMI of -2.6 and -2.9 

respectively. Other features, including enzymes, kinases and GPCR, had an average log10 NMI 

values less than -3 (less than 0.001 NMI). Overall, cell viability and structural properties have 

stronger associations with acute toxicity than target-specific bioactivities.  

5.3.2 Performance and structure of toxic and non-toxic rules 

To unravel complex associations between acute toxicity and chemical and biological 

properties, emerging patterns were generated to capture these associations. Emerging patterns 

follow conventional rule measures of coverage and accuracy, and here the terms rules and 

emerging patterns were used exchangeably.  

The first set of generated rules were filtered according to accuracy and significance in the 

Fischer test (see Methods). The characteristics of selected rules are shown in Table (5-1) with 

regards to counts, performance, average number of conditions in rules describing presence and 

absence of acute toxicity.  

Table (5-1) Characteristics and performance of rules describing toxicity and rules describing non-
toxicity. The average accuracy (confidence) of rules used in the analysis was above 80 % for both labels. 
Non-toxic rules described, in general, had more number of compounds per rule and more number of 
conditions per rule compared to toxic rules. 

     * Number of unique rules between parentheses 
     ** Values represent mean and standard deviation 
     à   Number of conditions in rules excluding single condition rules 
 
The average confidence as in Table (5-1) was above 80%. Overall, non-toxic rules covered 

more number of compounds per rule, i.e. 34 compounds by non-toxic rule compared to 26 

compounds by a toxic rule (Table (5-1)). The complexity of the rules can be estimated from 

the average number of conditions used per rule. The simplest rules consisted of one condition, 

however, these approximately constituted 8% and 4% of overall unique toxic and non-toxic 

 
N# of all 

rules* 

Single 
condition 

rules 

Multiple 
condition 

rules 
Accuracy** 

Compound 
coverage 
per rule 

N# of 
conditions 

per ruleà 

Toxic rules  
9165 
(7381) 

1267 
(566) 

7898 
(6815) 0.85 ± 0.083 26.3 ± 12.8 2.6 ± 0.83 

Non-toxic 
rules 

4613 
(3866) 

410 
(155) 

4203 
(3711) 0.82  ± 0.082 34.1 ± 20.8 3.3 ± 1.3 
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describing rules, respectively (Table (5-1)). Also, the overall number of conditions in rules 

describing non-toxicity was more than 3 which is greater than that observed in toxicity 

describing rules.  

 

Figure (5-3) Percentages of feature classes used in toxic and non-toxic describing rules. Rules for 
toxicity use diverse set of features, whereas, rules capturing non-toxicity are mainly described by cell 
viability and structural features.  

 

Next, we examined the distribution of feature classes in rules for the two toxicity levels 

represented in Figure (5-3).  The unique features used by toxic and non-toxic rules intersect to 

a great extent, i.e. 512, which represent around 50% and 70% of all features used by toxic and 

non-toxic rules, respectively. However, the variability in feature frequency between rules 

resulted in the distribution seen in Figure (5-3). Toxic rules showed 3-fold higher proportions 

of specific effects such as activity against enzymes, kinases and ion channel receptors. Non-

toxic rules, on the other hand, had higher abundance of substructure- and cytotoxicity- 

describing features than toxic rules, which together represented over 70% of features in the 

former compared to less than half in the later. This pattern can be explained by the relatively 

high NMI magnitudes of these two feature classes with acute toxicity. This means they have 

higher generalizability to describe the presence or absence of in vivo acute toxic effects. 

Nuclear receptors and GPCR activity appeared in two rule classes at almost equal fractions. 

Overall, both rule types showed acceptable performance and share large proportions of unique 

features, however, the frequency at which these features were used by each rule class varied 

significantly. 
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5.3.3 Single condition rules capture known features of acute toxicity 

Although the majority of rules had more than one condition, fewer than 10% were represented 

by single conditions (Table (5-1)). Single condition rules were described mainly by 

substructural features and potent cytotoxicity to a combined percentage of 75% (Appendix C, 

Figure (C-2). Examples of single feature rule with confidence higher than 80%, compound 

coverage greater than 15 and frequency equal to or higher than 2 are represented in Table (5-

2). Substructure conditions such as sulfenic acid derivatives and organophosphates, observed 

in Table (5-2), are known structural alerts for potent toxicants.280–282 These features also 

showed strong associations as estimated by log10 NMI at levels less than -2. Halogenated 

ketones, shown in Table (5-2) are examples of Michael acceptors, which is a known mechanism 

for chemical induced toxicity.6,281 Single feature rules, in general, had an overall log10 NMI 

among the highest in comparison to average values of features in all rules (Figure (5-2)). 

Cytotoxicity is also a key endpoint in assessing the potential acute toxicity6,19 which is used to 

estimate the starting dose in animal tests.125 Therefore, we can conclude that features with 

strong univariate associations and features captured in single condition rules represent known 

structural alerts and biological properties of compounds inducing acute toxicity.  
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Table (5-2) Selected examples of single condition rules and the corresponding normalized mutual 
information (NMI). The selection was based on confidence higher than 80%, compound coverage 
greater than 15 and frequency equal to or higher than 2. Majority of single condition features were 
described by potent cytotoxicity or substructure features, which also show relevant high NMI values 
with reference to Figure (5-2). 

 

 

 

Features Chemical Structure NMI  

 
Cytotoxicity (>60%) 
 

- -2.04 
 

Sulfenic acid derivatives 
 

-1.66  

Organophosphorothionate 
esters, Thiophosphoric acid 
esters 

 

-1.76 

 

Vinyl chlorides 
 

 

-2.02 

 

Haloethyl amines (N-
mustard) 

 

-2.03 

 

Allylic halides and alkoxides  

 

-2.07 

b-Haloamines 
 

-2.22 

Dinitroarenes 

 

-2.35 

Monohalogen substituted 
ketones 

 

-2.50 

Nitroso compounds  -2.50 
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5.3.4 Networks of multi-condition rules demonstrate complex feature-toxicity 

associations 

To investigate rules of more than one condition, networks were generated to describe complex 

patterns in each class, i.e. toxic and non-toxic labels. The characteristic elements in the network 

structure are nodes and edges. Nodes in rule networks represent individual features, whereas, 

edges connect feature pairs co-occurred in one rule. Rule networks can help examine complex 

toxicity associations using network measures of connectivity as well as algorithms for detecting 

communities within the network. The aim is to get insights about important features related to 

acute toxicity which are beyond univariate associations.  

Two rule networks were generated describing the presence and absence of toxicity. The 

characteristics of these networks are presented in Table (5-3), including number of nodes and 

edges, and network density. Network density is the proportion of edges counts present in the 

network to the edge counts of a saturated network. Toxic network consisted of 937 unique 

nodes and 8280 edges, and had a density of 0.019 (Table (5-3)). The non-toxic network 

involved 737 nodes connected via 7500 edges with a density of 0.028. The density is slightly 

higher in non- toxic network, reflecting rule complexity (number of conditions per rule) (Table 

(5-1)) and higher cross connections between the nodes (Table (5-3)).  

Table (5-3) Topology characteristics of toxic and non-toxic networks. The first two clusters in both 
network classes had the largest number of unique features. Despite the similarity in size seen in cluster 
1 and 2, the latter has double number of edges, and hence, double network density. Cluster 2 is 
dominated by target specific features in the toxic network and mixed feature classes in the non-toxic 
network. Cluster, 1 on the other hand, is mainly characterized by cell viability and nuclear receptor 
activity in toxic and non-toxic network alike (Figures (5-4) and (5-5)). Hence, target-specific features 
are involved in more complex associations with acute toxicity.  

 Toxic network 

Clusters Overall 1 2 3 
N# nodes 937 376 328 184 
N# edges 8280 1748 3047 476 

N# synergy connections 1460 258 637 104 
Density 0.019 0.025 0.057 0.028 

 Non-toxic network 

Clusters Overall 1 2 3 4 
N# nodes 737 279 230 132 48 
N# edges 7500 1535 2356 269 63 

N# synergy connections 336 64 93 31 4 
Density 0.028 0.04 0.09 0.031 0.056 
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To detect groups characterized by similar features adjacency, community clustering was 

applied, based on Girvan-Newman method.283 The algorithm finds communities of similar 

neighbours by cutting edges between node pairs exhibiting the highest betweenness (shortest 

path between a nodes pair in the network). Figures (5-4) and (5-5) show toxic and non-toxic 

networks, respectively. Clustering of toxic rule network resulted in 3 large clusters, with nodes 

sizes of 376, 328 and 184, and 9 clusters each has less than 20 nodes. Via applying community 

clustering to the non-toxic network, 15 groups were observed, the first 4 clusters involved 279, 

230, 132 and 48 nodes, whereas each of the remaining clusters included less than 10 nodes. In 

further analysis, we will focus on the first three clusters in rule networks as they capture the 

majority of features.  

The distribution of feature types varied between toxic and non-toxic networks. The content of 

clusters in toxic network showed specificity in the distribution of feature classes, whereas non-

toxic clusters are more consistent in feature class distribution. Almost all clusters in both toxic 

and non-toxic networks included structural features. Cluster 1 in the toxic network is dominated 

by nodes describing cytotoxicity in Tox21 assays and nuclear receptor activity. Both cluster 2 

and 3 have high proportions of specific biological targets under the enzyme and kinase classes. 

In addition, cluster 2 and 3 also include nodes describing activity against kinases, ion channels 

and GPCR. We can conclude two key points, firstly, there is a separation in toxicity induced 

by specific mechanisms and non-specific cell stress mechanisms. This aligns with previous 

reports that in vivo toxicity occurs as a result of either unspecific cytotoxicity and cell stress, 

or perturbation of specific pathways.85 Secondly, the unspecific cytotoxic effect can be 

captured by the combination of cell viability assays and nuclear receptor disruption. This 

combination has previously been observed in ToxCast cluster analysis in Chapter 3 and in the 

nuclear disruption cluster of hepatotoxicity in Chapter 4.  

Moreover, cytotoxicity and nuclear receptors occupied central positions in the first three 

clusters of non-toxic network, indicating critical roles in predicting acute toxicity. In other 

words, in order to ensure lack of acute toxicity, absence of cytotoxicity has to be ensured, as 

the absence of target specific perturbation may not be sufficient.  
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Figure (5-4) Toxic rule network clustered via Girvan-Newman algorithm. Nodes represent features and 
edges connect features co-occurred in a single rule. Nodes are coloured by feature class where the node 
size is proportional to the magnitude of mutual information with acute toxicity. Blue edges connect 
synergistic pairs calculated via normalized mutual information (NMI) (see Methods). The majority of 
features are captured in the first three clusters. Substructures occupy conserved spaces in each cluster. 
The dominant bioactivity classes in cluster 1 are cell viability and nuclear receptor activity, whereas, 
cluster 2 and 3 are dominated with target based features including enzymes and kinases. This means 
that the majority of rules capturing cytotoxicity, as predictors for acute toxicity, are independent of rules 
capturing specific target activity. 
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Figure (5-5)    Non-toxic rule network clustered via Girvan-Newman algorithm. Nodes represent 
features and edges connect features co-occurred in a single rule. Nodes are coloured by feature class. 
Fewer synergistic connections (blue edges) are seen in non-toxic network in comparison to toxic 
network (figure (5-4)). Majority of features are captured in the first four clusters. Substructure features 
are scattered in each cluster. The dominant bioactivity classes in cluster 1 are cell viability and nuclear 
receptor activity, cluster 2 show mixed bioactivity types, whereas, clusters 3 and 4 are mainly described 
by substructure features. This means that absence of toxicity is conditional in most cases by absence of 
cytotoxicity. Even when target specific activity is absent, this must be combined with absence of 
cytotoxicity as seen in cluster 2. 

 

In order to examine the complexity of associations between the various feature classes with 

acute toxicity, densities of individual clusters were investigated. The level of edge density 

varied between clusters in both toxic and non-toxic networks (Table (5-3)). This variability, 

however, does not follow the cluster size. For example, cluster 1 had as double the number of 

nodes as cluster 3 in the toxic network. Yet, they had a similar level of density of 0.025 and 

0.028, respectively. Cluster 2, however, which is similar in size to cluster 1 in toxic network 

has shown almost double number of edges and density, as well as, 2.5 folds more of synergistic 

connections. Hence, more dense clusters involve more complex associations between features 

used and in vivo toxicity. Therefore, the complexity in Cluster 2, which is dominated by target-

specific features, indicates the need to address the effect of multiple perturbations for a proper 

extrapolation into in vivo toxicity. In other words, whereas, cytotoxicity and structural features 
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have direct univariate associations with toxicity, target specific features demand understanding 

the compounds’ polypharmacology to predict toxicity.   

Additionally, to investigate how different levels of potency in Tox21 assays behave in the toxic 

network, potency thresholds in assays were plotted against degree connectivity in the toxic 

network. Figure (5-6) shows that the most connected Tox21 assays in the toxic network were 

describing low potency thresholds. As the potency level increases, the number of connected 

nodes decreases. This means that when compounds show high potency in an assay fewer 

number of other conditions is required to translate into in vivo toxicity. However, in order to 

inform whether weak activity in an assay can lead to toxicity, more features are to be combined 

and considered. This observation is important because it indicates the significance of 

polypharmacology analysis for activities at low potency. Whereas the state of art for the study 

of off-target activity utilizes safety margin calculations using maximum plasma concentrations 

(Cmax),48 this approach fails to consider how combining multiple weak activities would 

translate into clinical effects.  

 
Figure (5-6)    Change in degree connectivity in the toxic network as a function of potency cutoff in 
Tox21 assays. As the potency level decreases, the number of associated conditions increases. Hence, to 
translate into in vivo toxicity, low potency in assays require a larger number of other conditions, and 
vice versa.  
 
 
5.3.5 Important features in toxic and non-toxic networks 

We next investigated the most important features deriving the associations in each cluster. 

These are represented by the nodes showing the highest number of unique connections (highest 

degree) as well as the highest mutual information values (Tables (5-4) and (5-5)). The features 

were selected for both structural and bioactivity properties.  
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5.3.5.1 Known mechanisms and key events in acute toxicity  

Some trends in bioactivities in networks clusters reflect known mechanisms of acute toxicity 

such as cytotoxicity in cluster 1 of toxic networks. Cytotoxicity is a classical in vitro test for 

acute toxicity using neutral red dye uptake (NRU) which is conducted to determine the starting 

doses for in vivo oral acute toxicity tests.125  

Other activities that are highly connected in one or both networks include glutamate receptors, 

disruptors of mitochondrial membrane potential and acetylcholinesterase (AChE) (Tables (5-

4) and (5-5)). Glutamate is an excitatory neurotransmitter of which both overactivation and 

inhibition of its receptors are associated with neurotoxicity.284,285 Impairment of mitochondrial 

membrane potential is a known biomarker for cytotoxicity286 as well as in vivo acute toxicity.287 

Acetylcholine (ACh) is a carbamate derivative which is cleaved and deactivated by AChE into 

acetic acid and choline. The toxic effects of inhibiting AChE are initiated by the accumulation 

of ACh in neuromuscular junction leading to initial overstimulation followed by 

desensitization and ultimately muscle paralysis.288 Cholinergic crisis can be a lethal result of 

the exposure to potent AChE inhibitors. It is also a classic mechanism in acute toxicity, mainly 

manifested as respiratory failure.289 The inhibition of ionotropic glutamate receptors, AChE 

and disruption of mitochondrial membrane potential are known molecular initiating events 

(MIE) in acute mortality.6 Therefore, the most connected target-specific activities in networks 

overlap with key events known to associate with acute toxicity. 

5.3.1.1 Substructural features 

The patterns in substructural features in the toxic and non-toxic networks showed generic and 

specific properties. Example of generic properties, in the toxic network, is the dominance of N 

and O atoms, and aromatic amines in cluster 2,  and P and S in cluster 3, evident by their high 

connectivity. A possible explanation for the connectivity of aromatic amines and N and O 

atoms is the association of these features with compound promiscuity. It has been reported that 

compounds with basic centres and aromatic rings are promiscuous.43 Additionally, promiscuity 

is negatively associated with the count of oxygen atoms.42 Interestingly, these features are 

present in the most dense cluster in the toxic network, cluster 2, which describes target-specific 

activites. Additionally, in the non-toxic network, alcohols, unsaturated groups and carbonyl 

functionalities dominated clusters 1,2 and 3, respectively. 
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Specific substructural features were also seen. For example, carbon chain linked to a polar 

group such as oxygen and nitrogen has been observed as highly correlating with acute toxicity 

in cluster 1 in the toxic network as well as clusters 1 and 2 in the non-toxic network (Tables 

(5-4) and (5-5)). It was also seen as highly connected in toxic network in cluster 1. This feature 

resembles the structural backbone of surfactants, which constitute of a hydrophobic carbon 

chain linked to an ionic or non-ionic polarized functional group.290 Surfactants are known to 

exert skin irritability as a function of solubility and level of organization in micellar 

structures.291 Another feature, which had both high association with toxicity as well as 

connectivity to other conditions, was halogen functional groups, in cluster 2 of toxic network 

and cluster 3 of non-toxic network. Haloalkanes are liable to form free radicals292 and hence 

exert toxic effects via binding and interfering with cellular molecules.293 Heterocyclic 

substructural conditions were highly connected in cluster 1 in toxic network and cluster 3 in 

non-toxic network. The toxicity of heterocyclic compounds can vary according to adjacent 

functional groups and biological properties.294 For example, heterocyclic aromatic amines in 

food contaminants can cause DNA damage which can result in apoptosis.295 Nitrogen and 

sulfur mustard in cluster 2 of the toxic network represent a known cytotoxic substructures 

which are associated with gastrointestinal tract and kidney toxicity.296 Michael reaction 

acceptors6 in cluster 1, urethane derivatives and thiophosphoric acid derivatives281 in cluster 3 

in the toxic network represent classical alerts for acute toxicity. Urethane pesticides can induce 

toxicity by inhibiting acetylcholinesterase, a classic mechanism for systemic acute toxicity.297 

Therefore, the most important chemical features in the networks may represent either specific 

structural alerts/molecular initiating events or generic functionalities and compound 

promiscuity. 

5.3.1.1 Modulatory nuclear receptors 

The most connected nodes in both toxic network and non-toxic describing networks do not 

always represent statistically the most associated features with acute toxicity (Tables (5-4) and 

(5-5)). For example, thyroid hormone receptor (TR) signalling pathway, vitamin D receptor 

(VDR) and arylhydrocarbon receptor (AhR), which have significantly high connectivity in rule 

networks, regulate homeostasis and defence against xenobiotic. These nuclear receptors are 

also common in regulating cellular oxidative stress. TR had shown connectivity of  216 in toxic 

network, which is 10 fold higher than the majority of features used in the toxic network. TR is 

involved in energy regulation, metabolism298 and maintaining cardiac function.299 Studies have 

shown that both hyperthyroidism and hypothyroidism are associated with oxidative stress.300  
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Table (5-4) Important substructural and bioactivity features in toxic network clusters selected the by normalized mutual information (NMI) and degree connectivity. Highly 

connected features in the network means that they are used frequently as conditions in the rules. It can be seen that most connected features in the network do not always 

represent features with the strongest associations with acute toxicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Highlighted features in the table had 150 or higher values for degree centrality in toxic networks. The median value of degree in network is 7. Features with the top mutual 

information had values higher than -2.2 (see figure 2 for overall distributions). 

 

 Structural alerts Bioactivity features 
 Top degree Top NMI Top degree Top NMI 

Custer 1 

- six membered heterocyclic 
compounds 

- C=O 
- C=N 
- halogen derivatives 
- nitrile 
- saturated heterocycles 
- nitrogen linked to saturated 

carbon chain 
- α,β-unsaturated bond linked to 

oxygen atom (Michael reaction 
acceptor) 

- oxygen- linked to 
aliphatic carbon chain 
(variable length) 

- nitrogen linked to 
saturated carbon 
chain (variable 
length) 

 

- TR (antagonist) 
- Nrf2 
- CAR (antagonist) 
- Glutamate receptor (ion channel) 
- Disruptors of mitochondrial 

membrane potential 
- SIR2  
- Cell viability  

- ARE (agonist) 
- CAR (antagonist) 
- ER (antagonist) 
- AR (antagonist) 
- Cell viability 

Custer 2 

- Halogens 
- Aromatic amines 
- N 
- Amines 
- Oxygen group (O,S,SE)  

- Halogenated alkyls 
and allyls 

- N and S mustard 
- O 

- AhR  
- Troponin T cardiac  
- VDR( antagonists) 
- NOS 
- AMPK 
- AChE  
- MAP kinase kinase 

- DAO 
- Neuronal Ach 
- Tyrosine kinase 

TYRO3 
- AChE 
- Serine threonine 

protein kinase 
- NOS 

Custer 3 

- Pnictogen (N group) 
- Carboxylic acid derivatives 
- Tertiary amine 
- P or S 
- Derivatives of urethane 

(carbamates) 

- Thiophsophoric acid 
derivatives 

- P 
- N-substituted anilines 
- Pnictogens (N-group) 
- Benzyl amine  

- Ephrine type A receptor 
- Ca calmodulin protein kinase 
- Cyclic phosphodiesterase 
- AhR (activator) 
- AChE 
- PIPK 

- Cyclic 
phosphodiesterase 

- Carboxic acid ester 
hydrolase 
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Table (5-5)  Important substructural and bioactivity features in non-toxic network clusters selected by the normalized mutual information (NMI) and degree connectivity. It can 

be seen that the most connected structural features in cluster represent distinct functional groups. Also, an overlap in the most important bioactivity features can be observed 

with toxic network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Highlighted features in the table show 150 or higher values for degree centrality in non-toxic networks. 

 

 
Structural alerts Bioactivity features 

 Top degree Top NMI Top degree Top NMI 

Custer 1 

- Alcohols (aliphatic and 
phenolic) 

- aromatic amines 
- S 

-  

- oxy- linked to aliphatic carbon 
chain 

- keto-linked to aliphatic chain 
- phenyl sulphonyl 

-  

- Cell viability 
- ER (antagonist) 
- P53 (agonist) 
- Nrf2 
- AhR  
- AMPK 
- Neuronal Ach ion 

channel 

- CAR (antagonist) 
- ER (antagonist) 
 

Custer 2 

- O 
- Aromatic compounds 
- Alkyl aryl ethers 
- Arenes 
- Benzoyl 

-   

- oxy- linked to aliphatic carbon 
chain 

- ethyl phenyl ether 

-  

-       
 

- AhR (activators) 
- Troponin T cardiac  
- Disruptors of 

mitochondrial 
membrane potential 

- Glutamate receptor 
- Alpha-adrenergic 

receptor 

- ER (antagonist) 
- ARE (antagonist) 
- Aldo-keto reductase 
- Carboxylic 

esterhydrolase 
- PPAR gamma 

Custer 3 

- Carbonyl compounds 
- Phenyl ketone 
- Amides 
- Five-member ring 

heterocycles 

- oxy- linked to aliphatic carbon 
chain 

- alkyl halide 
- aliphatic amine 
- aliphatic amide 

- TR (antagonist) 
- Cell viability 
- Alpha-adrenergic 
- NLRP3 inflammasome 

- Cyclic 
phosphodiesterase 

- ARE (agonist) 
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While hyperthyroidism activates reactive oxygen species (ROS) production, hypothyroidism 

is linked to the deficiency in antioxidant responses and altered lipid metabolism.300 TRa-

deficient mice have also shown higher apoptosis in pancreatic cells when stress in endoplasmic 

reticulum is induced.301 AhR, which is a nuclear receptor activated by polycyclic hydrocarbons, 

regulates the expression of phase I and phase II metabolizing enzymes. AhR activation can 

either mediate oxidation or activates antioxidant responses, via Nuclear factor (erythroid-

derived 2)-like 2 (Nrf2), depending on cell type or organ.302 VDR is also known to maintain 

oxidative responses by inhibiting superoxide anion generation and regulating mitochondrial 

functions.303 Therefore, the most connected nuclear receptors in both toxic and non-toxic 

network have high modulatory functions regulating oxidative stress. 

Tables (5-4) and (5-5) also show estrogen (ER) and androgen (AR) receptors, which are related 

to chronic effects304 as highly correlating with acute toxicity. These receptors as well as the 

nuclear receptors above, may not explain on their own how acute toxicity is triggered. As will 

be discussed later, nuclear receptors are involved in several synergistic interactions with other 

features leading to acute toxicity. 

5.3.1.2 Antioxidant pathway 

Our results highlighted three bioactivities involved in the antioxidant responsive element 

(ARE) pathway. These are ARE, Nuclear factor erythroid-derived 2 (Nrf2) and PPARg in 

cluster 1 of toxic network and 1-3 clusters on non-toxic network (Tables (5-4) and (5-5)). ARE 

pathway is one of the first defence lines to protect the cell from ROS-induced DNA damage.193 

ROS activate the translocation if Nrf2 to the nucleus so as to bind to the ARE, resulting in the 

expression of detoxifying genes. It was also found that Nrf2 binds in the PPARg promotor 

regions of ARE.305 PPARg regulates glucose metabolism and adepogenesis, and its disruption 

results in oxidative stress via an increase in lipid peroxidation.193 Hence, targets of the 

antioxidant response pathway are key points in capturing the presence or absence of toxicity.  

 

5.3.1.3 Kinase disruption 

Kinase activity, which contributed mainly to cluster 2 and 3 in the toxic networks, as observed 

in Table (5-4), is associated with a number of adverse effects including cardiovascular, dermal 

and hepatotoxicities.306,307 The well-studied drug doxorubicin is known for its severe 

cardiovascular effects which are attributed to the impairment of energy haemostasis, regulated 
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by kinases including AMPK (AMP-activated protein kinase) .308 Doxorubicin was found to 

decrease AMPK levels, AMPK phosphorylation as well as the phosphorylation of its target 

Acetyl-CoA-carboxylase. 308 Another kinase was Ephrin receptor (EPHA2), which had the 

highest connectivity in the toxic network among kinases (187 node degree), is a subfamily of 

tyrosine kinases (Table (5-4)). Upon activation, EPHA2 inhibits neuronal repair after nervous 

system injury.309 Ephrin receptors are overexpressed in a number of cancer cell lines, and 

responsible for cell adhesion and differentiation.310 Chemical modulators of EPHA2 are 

cytotoxic and induce apoptosis in a number of cancer cell lines, attracting attention as a 

potential anticancer target.310,311 The stress-activated protein kinase, JNK(c-Jun N-terminal 

kinase), which is activated by MAPK (mitogen-activated protein kinase), can mediate 

hepatotoxicity through impairing mitochondrial respiratory and increasing ROS release.312 

This, in turn, activates MAPK leading to further activate and sustain JNK pathway, which 

eventually leads to amplifying the toxic effects.313 Inhibitors of tyrosine kinases, which were 

also observed in toxic networks, exert variable cardiovascular effects306 such as ischemic heart 

diseases and vascular toxicity.314 Phosphatidylinositol phosphate kinase (PIPK)  contributed to 

cluster 3 in the toxic network, of which inhibitors are known to induce dermal and liver 

toxicities.307 Calmodulin kinase (CaMK) is a multifunctional serine-threonine kinase which is 

activated when intracellular concentration of Ca ions increases.315,316 The activation of CaMK 

induces myocardial dysfunction such as arrhythmias, which explains the toxic effects of 

cardiac glycosides.317 The inhibition of CaMK is linked to neurotoxicity which was found to 

induce apoptosis in neurons and control neuronal structure and excitability.315 Overall, kinase 

activity disruption plays a key role in describing acute toxicity. 

5.3.1.4 Other targets 

Toxic and non-toxic rule networks have shown significant connectivity of troponins, nitric 

oxide synthase (NOS) and NLRP3 inflammasome. Cardiac troponins are myofilament proteins 

that regulate cardiac muscle contraction and relaxation via binding to calcium ions.318 

Chemical compounds that increase or decrease calcium sensitization of myofilaments, via 

binding to troponins, can lead to changes in cardiac contractility.319,320 Also mutation in cardiac 

troponin T was associated with a number of cardiomyopathies.318,321 NOS is an enzyme that 

produces the vasodilator nitric oxide (NO), which is protective in ischemic events.322  Activity 

against NOS is linked to cardiotoxicity as well as  ROS production.323 NLRP3 is a protein 

complex which activates a highly inflammatory cell death pathway, in response to non-

microbial damage signals.324 NLRP3 activates caspase 1, which is an IL-1b converting 
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enzymes, resulting in the release of a potent pro-inflammatory cytokine. This pathway is 

induced by reactive oxygen species (ROS) and environmental irritants. IL-1b  mediates 

inflammatory responses that induce cardiac cell death linked to atherosclerosis, myocardial 

infarction and cardiac fibrosis.324 

Other significant features in the networks include diamine oxidase (DAO), sirtulin-2 (SIR2) 

and tumor protein (p53). DAO is responsible for the degradation of a number of substances 

mainly histamine. The impaired breakdown of histamine can result in histamine accumulation 

which is itself cause acute toxicity at abnormal levels.325 Symptoms of histamine toxicity 

include rash and hypotension.326 SIR2 is a NAD-dependant deacetylase enzyme, a tumor 

suppressor which regulates DNA repair, apoptosis, neuroprotection and inflammation.327 SIR2 

deficiency is linked to mitotic cell death and gender-specific tumors.328 P53 protein is a known 

biomarker in cancer 329 as it mediates several pathological pathways including doxorubicin-

induced cardiotoxicity.330 These findings, in general, demonstrate the high diversity in 

biological processes associated with acute toxicity. 

Overall, the most important features captured in networks, which either have strong 

associations or high connectivity, may not explain alone the mechanisms initiating acute 

toxicity. Therefore, in order to further understand modes of action in acute toxicity, interactions 

between features should be analysed including the synergistic connections.   

5.3.2 Novel insights into polypharmacology in acute toxicity through synergy 
interactions 

High connectivity of some features discussed above demonstrates the importance of 

understanding toxicity with regards to compound polypharmacology. In order to determine 

which feature combinations are more important in acerbating toxic effects, we examined the 

statistical synergy of features pairs. This was performed using mutual information statistic and 

odds ratios on single features and compared with the pair combined (see Methods). A 

synergistic feature pair implies that the association of that pair with toxicity is significantly 

greater than individual features and their additive effect. 

First, to understand why some feature pairs show synergistic interactions, we examined the 

similarity between connected pairs in terms of chemical profiles and biological functions, 

presented in Figure (5-6). As can be seen in Figure (5-6, A), synergy always occurred between 

features dissimilar in compound profiles, i.e. less than 0.2 and peak at 0.05. In other words, the 
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synergistic features often share small proportions of compounds in which both features are 

present. However, it is critical to note that not all dissimilar features, connected in the network, 

are synergistic (Figure (5-6, A)). Additionally, the similarity between target-based feature pairs 

was tested over KEGG biological pathways in Figure (5-6, B) as well as Gene Ontology (GO) 

molecular functions and GO biological processes (Appendix C, Figure (C-3)). It can be seen 

that the inverse relationship was reproduced, as highly synergistic bioactivity pairs had almost 

zero similarity in biological functions and pathways. This means that synergy resulted from 

combining biologically diverse activities, but not all biologically dissimilar activities are 

synergistic.  

Figure (5-6) Similarity of connected feature pairs (co-occurred in rules) in compound profiles (A), and 
KEGG pathways of targets (B) against their corresponding synergy factor score (see methods). it can 
be seen that synergistic feature pairs (of which the synergy factor scores are higher than 1) are dissimilar 
in chemical profiles and biological function represented by pathways. However, not all dissimilar 
features are synergistic. 

 

Next, we selected and analysed synergistic pairs in toxic networks which were present in two 

or more different rules, and summarized in Table (5-6).  

5.3.2.1 Nuclear receptor disruption 

Our results have shown co-clustering of cell viability assays with the disruption of number of 

nuclear receptors regulating proliferation such as estrogen and androgen receptors, in addition 

to nuclear receptors regulating expression of metabolizing enzymes. Proliferation and cell 

death is regulated, in general, by a network of nuclear receptors331,332, which explain the 

observed co-clustering of these two classes. This combination was reproduced in assays 

predictive of hepatotoxicity, in Chapter 4. Although endocrine disruption is more associated 

with chronic effects such as carcinogenicity304, the centrality of these effects in the network, 

A B 
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besides the relatively strong associations, indicate that compounds trigger acute toxicity are 

likely to produce chronic effects.  

The antagonism of AR and ER were synergistic with the presence of six-member heterocycle 

substructures (Table (5-6)). Heterocycles steroids were reported to have an enhanced activity333 

and in some cases produce neurotoxicity and convulsions.334 Synergy was observed between 

metabolizing enzyme Cytochrome 2C19 (CYP2C19) and a number of xenobiotic-sensing 

nuclear receptors such as VDR, constitutive androstane receptor (CAR) and AhR. In Chapter 

4, rules describing hepatotoxicity combined the activity against CYP enzymes with VDR 

activity, an observation which was reproduced in rules describing acute toxicity. This synergy 

can be attributed to inhibiting clearance of toxic compounds via inhibiting the expression of 

xenobiotic metabolizing enzymes.220,252,335  While AhR activation correlates with acute 

toxicity132, the mechanism of AhR mediated acute toxicity was hypothesized to multiple routes. 

One study has demonstrated that AhR activation mediates the catabolism of vitamin D3 via 

inducing Cytochrome P enzymes which may alter the protective effect of VDR signalling 

pathway.336 This can be supported by the observed synergy between CYP enzymes, VDR and 

AhR in our study. Other studies have linked AhR activation with triggering inflammatory 

responses via inducing multiple cytokines337, and promoting cellular morphological changes 

which correlate with activating JNK.338 While specific synergies were observed for endocrine 

and xenobiotic-sensing receptors, nuclear receptors such as TR and VDR are involved in 

diverse synergistic interactions including neurotransmission and cholinergic toxidrome 

discussed below. 

5.3.1.1 Neurosignalling disruption 

Synergistic interactions were seen for the activity of two neuronal receptors, namely, glutamate 

and GABA receptors. The disruption of these receptors represents known key events in the 

AOP of acute toxicity.128,129 However, when these stressors are combined with other specific 

bioactivities, the likelihood for in vivo toxicity is potentiated. Glutamate is an excitatory 

neurotransmitter and its activity is linked to neuronal damage in excessive excitation as well 

as inhibition.284,285 There were multiple synergistic connections of glutamate receptor activity 

with TR, cytotoxicity and mitochondrial membrane potential. Studies have shown that toxicity 

is observed in chemicals which are characterized by mitochondrial toxicity and glutamate 

receptor activity.339,340  
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Table (5-6) Examples of important synergistic pairs in toxic network which occurred more than once in rules. Some of  synergistic interactions in the table correspond 
to known key events (KE) in adverse outcome pathways (AOPs) of acute mortality, stored in the AOP wiki, namely Acetylcholinesterase (AOP ID 16), glutamate 
receptors (AOP ID 113 and 161) and GABA (AOP ID 10).  

Key Event Significantly associated Key Events  
Odd 
Ratio 
comb 

Synergy 
factor 

N# toxic compounds Comments 

Cell 
viability 
(general) 

Nuclear receptor activity (general) 2.8 ± 
1.4 
(Avr) 

0.94 0 ± .32 
(Avr) 58 ± 28 (Avr) Cell proliferation and apoptosis are directly regulated by 

nuclear receptors331,332 

AR  
antagonism 
ER 
antagonism 

Six-member ring heterocycles 6.5 
2.9 

3.8 
1.5 

37 
47 

Heterocycles steroids have enhanced activity333 and can 
produce neurotoxicity and convulsions334 

Glutamate 
receptor 

TR antagonism 
Cell viability 
Disruption of mitomembrane potential  

3.7 
3.9 
2.4 

2.2 
2.0 
1.5 

46 
37 
68 

Thyroid hormone (T3) activates glutamic neuronal reuptake. 
Mitochondrial toxicity potential toxicity of glutamate 
disruptors.339,340 

GABA 
receptor 

ARE agonist 
TR antagonism 
Disruption of mitomembrane potential  
HIF2 
VDR  

21.7 
22.8 
23.8 
5.8 
2.4 

6.8 
5.4 
6.1  
2.5 
1.4 

21 
21 
22 
23 
62 

TR and ROS control GABA reuptake.341,342343 Vitamin D3 
via VDR regulate GABA expression.344 

Cyp2C19 CAR antagonism 
VDR antagonism 
AhR activation 

1.4 
1.5 
1.5 

1.0 
1.1 
0.9 

327 
308 
326 

CAR, VDR and AhR regulate the expression of Cytochrome 
P enzymes.220,252,335 

AChE Derivatives of carbamates 
Phophstidyl inositol 5 phosphate kinase 
VDR antagonism 
AhR activation 
Troponin T cardiac 
NLRP3 

17.4 
6.4 
1.8 
1.8 
1.6 
1.7 

4.9 
2.6 
1.2 
1.1 
1.0 
1.0 

17 
37 
164 
141 
243 
233 

Cholinergic toxidrome involve Ca ion dysregulation and 
inflammation.268 Interference  with calcium sensitization of 
troponin319,320 and inflammatory responses of NLRP3324 are 
associated with cardiovascular effects. 
Depletion of PIP2 mediated the inhibition of ACh K+ ion 
channels345 via PI5P4K inhibition. 

NOS Retinal dehydrogenase 
VDR  
Alkyl halides 

2.1 
2.0 
3.2 

1.3 
1.2 
1.2 

99 
160 
61 

VDR346  and retinal dehydrogenase347  activities can induce 
NOS expression. 

a-
adrenergic 
 

Cell viability 
Aromatic primary and secondary amine 
Protein kinase C (Tyrosine kinase) 
AhR activator 

9.2 
4.3 
4.1 
2.8 

3.8 
3.2 
2.7 
1.4 

18 
25 
16 
40 

PKC contribute in the a-adrenergic mediated contraction of 
vascular smooth muscles.348,349 
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Additionally, thyroid hormone (T3) activates glutamate neuronal reuptake which results in 

protecting against toxicity triggered by glutamate excessive stimulation.350 Therefore, we can 

conclude that glutamate receptor-mediated toxicity should not only be tested via activity 

against this receptor, but also combined with mitochondrial disruption, cytotoxicity as well as 

thyroid receptor disruption.  

The excitatory neurotransmitter Glutamate is a precursor of the inhibitory transmitter 

GABA.351 The activity against GABA had multiple synergistic links in the toxic network 

including TR antagonism, ARE, VDR and hypoxia-inducible factor-2 (HIF2). Similar to 

glutamate, TR regulates the synthesis, degradation, release and expression of GABA.343  

There is clinical evidence that GABA related nervous disorders are linked to thyroid 

dysfunction.343,352,353 Therefore, TR is highly connected because it regulates neurosignalling, 

including serotonergic, dopaminergic, glutamatergic and GABAergic networks,350 in addition 

to oxidative stress and inflammatory processes.300 Cellular oxidative stress,  which induces the 

antioxidant response element pathway, reduces GABA reuptake and hence increases its 

levels,341,342 which consequently interfere with normal neurotransmitter signalling. This 

explains the synergy between GABA modulators and activators of ARE. It was also reported 

that mitochondrial-derived ROS regulate postsynaptic GABA receptors in cerebral stellar 

cells.354 Additionally, the deficiency of vitamin D3, the endogenous ligand of VDR, lowers the 

expression of genes regulating GABA neurotransmission,344 and hence, explains the detected 

synergy between VDR and GABA activities. Hypoxia inducible factors (HIF-1 and HIF-2) are 

transcription factors that regulate haemostasis in response to low oxygen levels.355 A possible 

association between HIF and GABA can be explained by the induction of GABA catabolism 

(GABA shunt) in hypoxic environment, which is an anaerobic route for energy production 

when the Krebs cycle is compensated.356 The activation of the GABA catabolism produces 

succinate as a metabolite which activates HIF-1 and induces the inflammatory cytokine IL-

1b.357  HIFs also regulates glutamate signalling via upregulating glutamate transporters.358 

Overall, in order to capture neurotoxicity, a network of biological effects should be considered.  

5.3.1.2 Cholinergic toxidrome 

Cholinergic toxidrome represents a set of effects associated with AChE inhibition and linked 

with Ca ions dysregulation, immune and inflammatory responses and cytotoxicity.268 The 

current analysis has shown that AChE involved in a diverse set of synergies (Table (5-6)) and 

was also ranked as one of the most connected nodes in toxic networks (Table (5-4)). AChE 
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have shown synergies with cardiac troponin, NLRP3 inflammasome and VDR, which are all 

involved in cardiovascular functions. AChE inhibitors also increase serum troponin359,360, 

which is the most sensitive biomarker for myocardial infarction.361 Although, levels of serum 

troponin may not be an indication for direct bioactivity against the protein362,363, our study has 

shown synergy between AChE and troponin bioactivities. These findings support the possible 

cardiotoxic effect having these properties combined in compounds. Another bioactivity that 

synergistically connected to AChE and troponin was NLRP3 inflammasome (NACHT, LRR 

and PYD domains-containing protein 3). Inhibition of NLRP3 in models of ischemic injury 

reduces myocardial infarction and serum troponin.364 The severity of toxification by 

organophosphates, which are potent AChE inhibitors, correlated with electrocardiogram 

(ECG) grading and cardiovascular effects such as ischemic changes and arrhythmias.365 

Therefore, combining activities against cardiac troponin, AChE and NLRP3 can induce 

cardiotoxic effects as well as potentiate the signs of cholinergic toxidrome. Another synergy 

interactions was observed between AChE activity and carbamate derivatives. The data has 

shown that around 50% of compounds possessing the carbamate substructure are toxic. 

Whereas, over 90% of carbamate derivatives in the dataset, and also are predicted to be AChE 

inhibitors, are toxic. Moreover, AChE has shown synergy with phosphatidylinositol-5-

phosphate-4-kinase (PI5P4K), which participate in the synthesis of the second messenger 

phosphatidylinositol-4,5-diphosphate (PIP2).366 It was reported that the depletion of PIP2 

inhibits ACh K+ ion channels.345 Therefore, the observed synergy can result from the 

aggregated sensitization by ACh accumulation and PIP2 depletion leading to rapid onset of 

muscle paralysis and respiratory failure. Additionally, this study has shown synergy between 

AhR and AChE. A study has shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) a potent 

AhR activator suppresses the activity of AChE through transcriptional down-regulation.367 

Overall, AChE is a key event in acute toxicity, which when present relevant bioactivity profiles 

should be screened so as to evaluate the possible in vivo effects. 

5.3.1.3 Nitric oxide synthase activity 

The rules have picked multiple isoforms of this enzyme, most notably the inducible and 

endothelial isoforms, iNOS and eNOS, respectively. NOS bioactivity was frequently and 

synergistically connected with VDR antagonism in rules for acute toxicity. VDR induces the 

expression of  NOS via Vitamin D3.346 This is supported by a study on VDR mutant mice, 

which had shown low levels of NO, reduced NOS expression, and associated with atrial 

stiffness and impaired heart function.368 Our study has shown that VDR antagonism on its own 
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does not exert high mutual information with acute toxicity, however, it was one of the top 

bioactivities linked synergistically with diverse biological properties. This is likely due to the 

high regulatory function of VDR in haemostasis and cardiovascular function.369 Moreover, 

NOS has shown synergy with alkyl halides and retinal dehydrogenase. Studies have reported 

that organochlorides induce the expression of NOS as well as ROS production in endothelial 

cells while decreasing NO levels.370 Retinal dehydrogenase-1 (ALDH1)  is an enzyme that 

oxidizes retinal into retinoic acid, and hence, regulating the metabolism of vitamin A.371 

ALDH1 metabolite, retinoic acid, increases the expression of NOS and suppresses T 

lymphocytes proliferation in liver dendritic cells to revert pathological activation of immune 

responses.347 Also, ALDH1 is involved in the defence against oxidative stress.372 Therefore, 

inhibiting ALDH1 may interfere with NOS-mediated immunological response. 

5.3.1.4 a-Adrenergic receptor activity 

Inhibition of a-adrenergic receptors can cause hypotension via decreasing constriction of 

vascular smooth muscles.373 Synergy was observed between a-adrenergic receptors and protein 

kinase C (PKC), AhR and cytotoxicity (Table (5-6)). PKC contribute in the a-adrenergic 

mediated contraction of vascular smooth muscles.348,349 a-adrenergic receptors also control the 

expression of PKC via the accumulation of downstream second messenger diacylglycerol 

(DAG).374 Blocking PKC activity via gene deletion results in hypotension and decreased 

vascular contractility.375 Therefore, the simultaneous blocking of a-adrenergic receptors and 

PKC can manifest in severe hypotension. Additionally, studies in AhR (-,-) mice have shown 

a higher expression of a1D-adrenergic receptors and an increase in the maximal effect in aorta 

contraction by a-receptors agonists; noradrenaline and phenylephrine.133 Therefore, it is 

possible that AhR modulator would modulate basal a-adrenergic effects, which may explain 

the synergy between Ahr and a-receptors. Cytotoxicity also has shown synergy with a-

adrenergic receptors, which may be a direct or an independent phenotype. The stimulation of 

a1A-receptors is associated with proliferative as well as antiproliferative effects.376 

Additionally, the analysis has demonstrated synergy between the presence of an aromatic 

amine substructure and a-adrenergic activity. 

For the mechanistic interpretation of acute toxicity, our results indicate the importance of 

considering multiple bioactivities at a time. Single features on their own may not be strong 
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alerts for toxicity. Given the pairwise analysis conducted, the interpretation here may miss 

important interactions resulted from more than two properties at a time. 

 

5.4  Conclusions  

In this study, we investigated mechanistic interactions in acute toxicity from a feature space 

collected from structural properties, Tox21 assays and predicted targets. In order to understand 

complex interactions, we used emerging patterns which are generated for both the presence 

and absence of in vivo toxicity.  

Rule patterns held associations of variable complexities as captured by single and multiple 

conditions, respectively. Chemical features had simpler and less complex interactions with 

acute toxicity. In contrast, target specific features involved complex and diverse connected 

conditions. The implications of complex bioactivity associations, observed in this study, may 

translate into complex predictive models for toxicity using bioactivity data. Hence, we 

anticipate that this complexity can explain the  low performance of bioactivity-based models 

reported in the literature.98,99,146 Also, understanding possible interactions, and hence 

significant polypharmacology is particularly important for weak assay activities. 

Via rules, we gained novel insights into how specific polypharmacology profiles have higher 

odds of acute toxicity. For example, disruption of neurosignalling by GABA and glutamine 

receptors are more likely to trigger neurotoxicity when combined with thyroid receptor 

disruption. Another example is the cholinergic toxidrome which is characterized by inhibiting 

acetylcholinesterase AChE, and downstream effects including inflammation and Ca ion 

dysregulation. 268 we demonstrated that the likelihood of acute toxicity incidences is 

significantly greater when compounds inhibit with AChE also interfere with the calcium 

sensitization of troponin319,320 and inflammatory responses of NLRP3324, which are associated 

with cardiovascular effects. 

In conclusion, the framework described in this study can be used to generate hypotheses about 

interacting key events in the adverse outcome pathway.
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6      UNDERSTANDING PROMISCUITY BIAS OF IN 

SILICO MODELS PREDICTING ACUTE TOXICITY  

6.1  Introduction 

As discussed in earlier chapters, understanding the confounders and biases in in vitro data is 

essential for interpreting in vitro measurements. For example, overly activated pathways as a 

result of the cytotoxicity burst phenomenon can result in compounds inaccurately flagged as 

positives, i.e. false positives.85 Consequently in these cases, and without consideration of 

factors deriving compounds’ promiscuity, rationalization of in vitro measurements can be 

inaccurate.  Additionally, it is likely that such confounders can result in spurious associations 

derived by statistical predictive models. It has been debated whether incorporating in vitro 

assay measurements as descriptors to predict toxicity is beneficial.100 Mixed outcomes were 

observed as such leading to improving performance in some cases146 and deteriorating in 

others.99 This mean care should be taken when using bioactivity data to train statistical models 

for toxicity. 

The aim of this study is to examine biases in predictive models that occur as a result of using 

bioactivity data. In a conformal prediction framework (see section 2.3), the predictivity of rule 

models, described in Chapter 5, will be investigated against Random Forest models trained on 

chemical descriptors (without bioactivity data). The distribution of predictions made by the 

models in the chemical space are compared with experimental toxicity labels to explore 

possible biases. 
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6.2  Materials and Methods 
 

6.2.1 Datasets 
 

The dataset used in this chapter was adapted from Chapter 5, including Tox21 assays, predicted 

targets, substructures and GHS acute toxicity labels (see section 5.1.1). The data represents 

2000 compounds, 993 toxic compounds and 1007 non-toxic, against 3732 features. These 

represent 1789 predicted targets, 440 Tox21 assay activities, 1259 ToxAlert toxicophores and 

242 MoSS derived substructures. Additionally, using the chemical structures of the 2000 

compounds, chemical descriptors were calculated using RDKit199 node in KNIME200 to 

generate 117 physicochemical properties as well as circular fingerprints with a radius of 2 and 

2048-bit length.  

6.2.2 Emerging patterns generation  

Emerging patterns were generated using CPAR algorithms following the data and specification 

described in Chapter 5 (see section 5.1.2).  

6.2.3 Random Forest models 

Classification models were built based on Random Forest algorithm, which was trained on 

chemical descriptors (physicochemical properties and circular fingerprints) for 2000 

compounds. The model was generated in R (version 3.3.3) using the package ‘RandomForest’ 

setting the number of trees to 500, while all other parameters are set to default. 

 

6.2.4 Conformal prediction 

A conformal prediction framework (Chapter 2, section 2.3) was applied to evaluate the 

reliability of predictions made by rules and represented in Figure (6-1). In the conformal 

prediction framework, the data are split into proper training and test sets in a 4: 1 ratio (see 

Figure (6-1)). The proper training set is then split into training and calibration sets at a 4:1 ratio. 

The training set is used to train the models, whereas predictions are made for calibration and 

test sets. A key component of the conformal framework is the non-conformity measure (a), 

which is used to estimate how a test set compares to an independent set, i.e. the calibration set. 
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With regards to emerging patterns, each test (or calibration) compound can satisfy i number of 

toxic describing emerging patterns, where i Î{0, 1, 2, 3 ,…. , m}, and m is the total number of 

toxic describing patterns. Similarly, compounds can satisfy j number of non-toxic describing 

emerging patterns, where j Î{0, 1, 2, 3 ,…. , n}, and n is the total number of non-toxic 

describing patterns. The non-conformity score is the difference in compound promiscuity over 

emerging patterns describing toxicity and non- toxicity, called the rule promiscuity score (see 

equation below). 

Rule	promiscuity	score	
= 	N#	satisfied	toxicity	describing	patterns	– 	N#	satisfied	non_toxicity	describing	patterns	 

     = ; − =                        [13] 
 
In order to examine if promiscuity over rules outperform promiscuity over important features, 

we also used promiscuity over significant features as a non conformity score. Significant 

features were determined through univariate associations with acute toxicity (Fischer test p-

value < 0.01 on features used to train rule models). 

As for Random Forest models, the probability values were used as the non-conformity score 

(see Figure (6-1)). The non-conformity score is calculated for the calibration set and test sets. 

Then the rank of the test set among the calibration set determines the significance (p-value). In 

a Mondrian conformal models, non-conformity scores are calculated for both labels (atoxic and 

bnon-toxic), and hence, two independent ranks are produced for each test set in a two-class label 

setup. The non-conformity scores for the non-toxic label were obtained as follows for the 

emerging patterns models: 

b	>?>_@?A;B = 	−[DEFG	HI?J;KBE;@L	KB?IG] = 	−[a]           [14] 

And for the Random forest model: 

b	>?>_@?A;B = 	1 − [O] = 	1 − [a]           [15] 

According to the p-values obtained from non-conformity score rankings and a predefined 

confidence levels, four labels can be assigned by the conformal models, namely, ‘Toxic’, ‘Non-

toxic’, Both’ or ‘None’. The process to derive these predictions is explained in section 2.3.  

Conformal models generation and predictions were conducted in R176 environment (version 

3.3.2). 
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6.2.5 Model validation  

We applied 5-fold cross-validation for both models (see data split in Figure (6-1). Within each 

fold, another 5-fold cross conformal was applied on the training set as described by Sun et 

al.377 The training data were split randomly into proper training and calibration sets in a 4:1 

ratio 5 times against one test set. Therefore, each test instance had 5 P-value scores, which 

were then averaged. The averaged P-value was used to make predictions with respect to the 

confidence level used. 

6.2.6 Chemical space analysis 

In order to compare the distribution of experimental toxicity labels against predicted labels, the 

compounds were visualized in chemical space and labelled accordingly. Circular fingerprints 

of compounds were and plotted into two dimensions using multidimensional scaling analysis 

(MDS). MDS was conducted in R using ‘cmdscale’ function on the Euclidean distances of 

fingerprint matrix. The generated weights (eigenvalues) for each compound against the two 

compressed dimensions represented the scales in the 2D plot. 

6.2.7 Cluster analysis 

To detect which chemical and biological properties were driving the coefficients in the MDS 

2D plot, hierarchical clustering was applied to these coefficients against physicochemical 

properties and compounds promiscuity. The similarity was calculated using the Pearson 

correlation statistic and the similarity matrix was visualized in heatmaps using ‘heatmap.2’ 

function  of ‘ggplot2’205 package in R176 environment (version 3.3.3) at default settings.
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Figure (6-1) Cross-conformal workflow for chemical fingerprint (FP) models and emerging patterns 
(EP) model. FP model used circular descriptors and physicochemical properties as input, whereas, rule 
models use bioactivities from Tox21 measurements, predicted targets in addition to chemical 
substructures. The toxicity label was generated from GHS classification grading for acute toxicity. The 
data split involved 5-fold cross-validation of training and test set. At each fold, the training data were 
partitioned into calibration and proper training sets in 5 random repeats of 1:4 splits. The proper training 
was used to build the predicted models via random forest in the FP model and CPAR-based emerging 
patterns for EP model. The nonconformity scores (NMC) used to rank compounds were label 
probability and rule promiscuity score for FP and EP models, respectively (see Methods). According to 
the descending ranks of test data points in the calibration sets for each label class, the significant level 
(p-value) is computed of which confidence is estimated. 
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6.3 Results and Discussions 

6.3.1 Conformal Predictions 

Three measures were used to examine the performance of the conformal model, namely, 

validity and efficiency (see Section 2.3) and correct classification rate. Firstly, the validity was 

tested across multiple confidence thresholds. We compared three sets of models generated from 

i) conventional Random Forest model using calculated circular fingerprints and 

physiochemical properties, ii) emerging patterns model and iii) model using the promiscuity 

over statistically significant features. Figures (6-2) shows that the error rates align with the 

corresponding confidence levels for all models. This means that the models were capable of 

producing valid predictions (‘Toxic’, ‘Non-toxic’ and ‘Both’). While the overall validity trends 

aligned well with the identity line, a slight fluctuation can be seen for the validity of individual 

class labels due to statistical noise.378 

 

 

Figure (6-2) Validity of conformal models. The validity (conformal accuracy) reflects the percentage 
of valid predictions (‘toxic’, ‘non-toxic’ and ‘both’) to all predictions. A correct prediction in the 
conformal model setting is given to classes where the label is classified correctly as well as points 
predicted to satisfy both classes. The plots show that all models generated valid predictions at the given 
confidence levels (percentage of valid predictions is equal to the predefined confidence level). 
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The second step in assessing the performance of conformal models is to examine the 

percentages of single predictions made by each model in a given confidence level, which 

reflects the models’ efficiency. Table (6-1) represents the percentages of single predictions 

made by each model at three confidence thresholds, namely 90%, 80% and 70%. As a general 

trend, the percentage of single predictions increased as the confidence level decreased. This 

means that the model was allowed to assign more single labels to new instances when the 

expected error rate was higher. In other words, at higher degrees of confidence, the model can 

only assign single labels to fewer instances. The higher the number of single predictions, the 

more efficient the model. Chemical descriptors and rule promiscuity models had shown the 

highest efficiency up to around 90% and 82% at 70% compared to significant feature 

promiscuity with 64% efficiency at the same level. At the higher levels of confidence, namely 

80% and 90%, the difference in efficiency by chemical descriptors was about 2 folds higher 

compared to feature promiscuity (absolute differences of 24% and 21%, respectively) , whereas 

rule promiscuity is 50% higher than feature promiscuity (absolute differences of 7% and 11%, 

respectively).  

Table (6-1) Percentages of single class predictions, namely ‘toxic’ and ‘non-toxic’ labels. 

 
 

Confidence level 
90% 80% 70% 

Calculated Descriptors 42.75 67.1 90.4 

Rule Promiscuity 31.55 60.35 81.85 

Feature Promiscuity 21.5 43.3 64.3 
 

Next, the distribution of predicted labels generated by the models across the three confidence 

levels are presented in Figure (6-3). It can be observed that feature promiscuity-based models 

produced the highest proportion of instances predicted as ‘Both’. This means that the latter had 

the least ability to discriminate between classes as compared to the other two. Moreover, 

chemical descriptors and rule promiscuity models were almost similar in the percentages of 

Toxic class predictions especially at 80 and 70% confidence, which was equivalent to above 

30% and 40%, respectively, of all predictions. Given that rule and feature promiscuity-based 

models arise from similar concepts, the former significantly outperformed the latter in 

efficiency.  
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Figure (6-3) The percentage of predicted/assigned class labels at confidence levels of 90%, 80% and 
70%. At the level of 90% confidence, the majority of predictions were classified as ‘both’. As the 
threshold for confidence decreases, the models produce more single prediction labels, namely ‘toxic’ 
and ‘non-toxic’. In general, chemical descriptor models (FP) always generated higher numbers of single 
label predictions, whereas models based on feature promiscuity had the least number of single class 
predictions across the confidence levels. 

 

The third step in performance is measuring the correct classification rate of the single 

predictions, which are reported in Table (6-2). The table shows that both chemical descriptors 

and rule promiscuity, at 90% confidence had an overall accuracy higher than 70%.  However, 

the correct classification rate of feature promiscuity models was almost random. This means 

that using the absolute promiscuity over significant features was less useful in discriminating 

between toxic and non-toxic compounds. Overall, the accuracy deteriorated as the confidence 

level decreases, where higher error rates are expected. This decrease was steeper for chemical 

descriptors models and rule-based models. The accuracy was also higher in predicting the toxic 

compounds across all models, especially at higher confidence. For example, at 90% 

confidence, the accuracies of the toxic class predictions by chemical descriptors and rule 

models were around 80% and 73%, respectively. Lower accuracy can be seen for classifying 

non-toxic compounds at the same threshold to around 75% and 69% for chemical descriptor 

and rule-based models, respectively. The class-wise variability in performance diminished as 

the confidence decrease, so that the accuracy of predicting both classes is almost the same at 

70% confidence for chemical descriptor models and in favour of non-toxic compounds using 

rule models. In average and across all threshold levels, rule models are only 5% less accurate 

than chemical descriptor models. In further analysis, only rule and Random Forest models are 

examined due to the low performance of feature promiscuity models. 
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Table (6-2) Correct classification rate of single predictions (FP: chemical descriptors, EP: emerging 
patterns/ rule models, SP: promiscuity over significant features). As the confidence level decreases, the 
accuracy of single class predictions decreases. Overall, FP models had shown the highest accuracies. 
The difference between the EP model and FP model accuracies was consistent around 5%. Using target 
promiscuity as a nonconformity sore in the models had almost random performance. 

 

6.3.2 Distribution of model predictions across chemical space 

 

In order to visualize predictions made by Random Forest (FP) and rule models in chemical 

space, 2D multidimensional scaling analysis (MDS) plots were generated using circular 

fingerprint descriptors. As a reference, the toxicity labels from the GHS classification were 

also visualized in Figure (6-4). As can be observed in Figure (6-4, a), the distribution of toxic 

and non-toxic labels, from GHS data, in the chemical space is almost random especially across 

the second dimension in the MDS plot (D2). At the negative scale of the horizontal D1 axis, 

the ratio of two labels is in favour of toxic compounds, which is also captured in the 

corresponding density plot. With regards to predictive models (Figure (6-4, b and c)), a clear 

pattern can be seen in the distribution of predicted toxic and non-toxic classes in the chemical 

space. For example, across the negative scale of D1, the imbalance between the two labels is 

greater than GHS toxicity labels. Also, along D2, there is higher density of toxic compounds 

at the positive scale (precisely at ranges higher than 0.5). The majority of compounds at the 

negative scale of D2 were predicted as non-toxic. The imbalance in distribution and segregation 

in predicted labels across D2 is more pronounced in rule models (Figure (6-4, c)). Therefore, 

models tend to amplify trends observed in the original data at variable extremes and depending 

on the accuracy of the model. 

 

 Confidence level 

 90%  80%  70% 

 FP EP SP  FP EP SP  FP EP SP 

Overall 77.07 70.99 54.65  71.31 66.86 53.46  68.03 63.89 53.26 

Toxic 79.64 72.92 56.62  72.76 67.34 53.96  68.05 62.79 55.13 

Non toxic 74.84 68.95 51.93  69.97 66.31 52.94  68.01 65.09 51.51 
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Figure (6-4) Visualization of the chemical space labelled by toxicity classes (a), chemical descriptors 
(FP) model predictions (b) and emerging patterns (EP) model predictions (c) in multidimensional 
scaling (MDS) plot using circular fingerprints. Toxicity labels are red and non-toxicity labels are blue. 
Compounds predicted to be either ‘both’ or ‘none’ are labelled black. The density plot at each axis 
shows the distribution of toxic and non-toxic label with regards to dimension 1 in the x-axis of the MDS 
and dimension 2 in the y-axis. Toxicity labels in the data had random distribution in the chemical space 
(a), however, both models, FP and EP, had unbalance distributions of the predicted labels, especially 
across the y-axis (D2) in b and c. Compounds predicted as toxic populated more at the positive scale of 
the y-axis whereas non-toxic predictions were denser at scales <0.5 in the y-axis. This is also reflected 
in the density plots of the y-axes, as the distributions of predicted classes are more separated than the 
actual toxicity labels. Abbreviations: MDS D1, dimension 1 in chemical space plot; MDS D2, 
dimension 2 in chemical space plot.  
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In order to interpret the features deriving the bias in the model, we investigated how the 

coefficients of D1 and D2 correlate with physicochemical properties as well as promiscuity 

over bioactivity and structural features. The pairwise Pearson correlations were calculated and 

visualized as a square hierarchical clustering heatmap in Figure (6-5). D1 in chemical space is 

highly correlated with the number of aromatic rings (0.75 Pearson coefficient). The majority 

of compounds clustered at the negative range of D1 have no rings (results not shown). D2, on 

the other hand, had shown correlations with promiscuity over significant bioactivity features 

at 0.65 Pearson coefficient. Also, D2 had negative correlations with the number of atoms and 

promiscuity over structural features at -0.67 and -0.6 correlation magnitudes, respectively. This 

means that compounds of high D2 coefficients are associated with high promiscuity over 

targets whereas low D2 coefficients indicate that compounds have a higher number of atoms 

as well as high diversity over structural alerts. SLogP lipophilicity is a property frequently 

linked with promiscuity over targets. However, this was not observed in our study, nor with 

D2 coefficients. One interpretation for this is that the bioactivity in our dataset was derived 

from cell-based assays and hence permeability can be a key condition for intracellular activity. 

We found that SLogP values of the most promiscuous compound peaked around 3 (results not 

shown), which was reported for good permeability.195  

D2 coefficients, as well as promiscuity over bioactivities, also negatively correlated with the 

number of saturated carbons and number of oxygen atoms (-0.69 and -0.62, respectively). The 

trends seen here aligns with previous studies that reported an association between compound 

promiscuity and the fraction of sp3 hybridised carbons to the total number of carbons.379 

Promiscuity also negatively correlated with the number of oxygen atoms.42 Although the 

presence of aromatic amines in the chemical structure is associated with promiscuity43, the 

number of rings and number of nitrogen atoms, on their own, did not show here significant 

correlations with promiscuity here. Promiscuity over significant bioactivities had shown a 

negative correlation with molecular weight and promiscuity over alerts at –0.51 and –0.37 

Pearson coefficients, respectively. The low promiscuity of structurally complex compounds 

was previously reported380 and  can be attributed to the higher specificity in interactions with 

biological targets.381 Overall, we can conclude that the observed bias in the predicted labels 

across chemical space (in Figure (6-4)) is greatly associated with compounds promiscuity over 

bioactivities as well as chemical features driving this promiscuity. 
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Figure (6-5) Heatmap plot for the cluster analysis of the MDS weights from Figure (6-4) against 
compounds promiscuity and physicochemical properties. Pairwise Pearson correlation was calculated 
between variables, and used as distances to perform hierarchical clustering.  The second dimension D2 
positively correlated with promiscuity over bioactivities but negatively correlated with the count of 
unique substructures. Promiscuity over bioactivity features negatively correlated with the number of 
saturated carbons and number of atoms, reproducing findings in literature.379  Abbreviations: 
D1_Chemical_Space, dimension 1 in chemical space plot; D2_Chemical_Space, dimension 2 in 
chemical space plot; FP_density, Count of present bits in chemical fingerprint; Mwt, molecular weight; 
Num_N_atoms, number of nitrogen atoms; Num_O_atoms, number of oxygen atoms; 
Num_saturated_carbons, number of saturated carbons; NumAromaticRings, number of aromatic rings; 
NumAtoms,total  number of atoms; NumHBA, number of hydrogen bond acceptors; NumHBD, number 
of hydrogen bond donors; NumRings, number of rings; NumRotatableBonds, number of rotatable 
bonds; NumSaturatedRings, number of saturated rings; Promiscuity_Alerts, total number of 
substructural features; Promiscuity_Bioactivity, total number of positive activities in Tox21 assays and 
predicted targets; Promiscuity_significant_Alerts, total number of significant substructural features 
(Fischer < 0.05 with acute toxicity label); Promiscuity_significant_bioactivity,  total number of positive 
activities in significant Tox21 assays and predicted targets (Fischer < 0.05 with acute toxicity label); 
Promiscuity_targets total number of positive activities in predicted targets. 
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6.3.3 Promiscuity biased predictions 

The models’ bias over promiscuity was assessed by measuring the performance (the number 

of single predictions and accuracy) across three promiscuity intervals, namely high, moderate 

and low. The boundaries of these intervals were determined by discretising the ranked 

promiscuity values into equal sized groups. Figure (6-6) compares the number of single label 

predictions with the distribution of GHS toxicity classes across promiscuity intervals. Both 

Random Forest (FP) and rule-based models produced significantly higher fractions of toxic 

predictions compared to non-toxic predictions for highly promiscuous compounds. The 

differences in prediction labels were 7 fold and 2 fold difference for rule and FP models 

respectively. Yet, only 15% difference in the distribution was observed for GHS toxicity labels 

at the high promiscuity level. In contrast, at low promiscuity, there were significantly larger 

numbers of non-toxic predictions produced by rule and FP models to almost 6 and 2 folds, 

respectively, compared to toxic label predictions. This means that both models over-predicted 

high promiscuous compounds as toxic and low promiscuous compounds as non-toxic, although 

the maximum variability in class proportions is not exceeding 30%, at any promiscuity level. 

At the moderate promiscuity level, both models produced balanced counts of predicted toxic 

and non-toxic labels. FP models, however, generated around 55 more single predictions for 

each class than rule models at the same promiscuity level. 

 

Figure (6-6) The distribution of toxicity labels (a) and single class predictions by FP model (b) and EP 
model (c) against three levels of promiscuity. The variability in toxicity label proportions in the data 
did not exceed 30% at any promiscuity level. With regards to predictions, the imbalance in class labels 
was in favour of non-toxic at low promiscuity levels and toxic at high promiscuity levels. EP models 
showed the highest bias to the level of compound promiscuity, as this model used predicted targets as 
input data and promiscuity score as the predicting function. 

Next, we quantified the ability of the models to generate correct predictions for toxic and 

nontoxic labels across promiscuity levels, which is presented in Figure (6-7).  We found that 
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the promiscuity level has also reflected on the true positives rates (TPR) and true negatives 

rates (TNR). For low promiscuity compounds, FP model gave the most accurate single labels 

predictions at an average of 75%. Rules also correctly assigned 77% of predicted toxic labels 

for low promiscuity compounds, and below 65% correct predictions of single non-toxic labels. 

Whereas, for high promiscuity compounds, FP model had over 70% TPR but less than 65% 

TNR. Rules had shown higher TNR for high promiscuous compounds than FP models, 

exceeding 70%. At moderate promiscuity levels, both models had similar rates of correct 

classification of almost 70% for both classes wherever a single class prediction was made.  

 

 

 

Figure (6-7) Accuracy of single class predictions across different levels of D2 in chemical space and 
promiscuity, measured as the true positive rate (TPR), true negative rate (TNR) and correct 
classification rate (CCR). FP model generated the most accurate single class prediction for low 
promiscuous compounds. The accuracy of single class predictions of both models was almost similar 
for compounds of moderate promiscuity ranging between 65% and 70%. However, whenever a non-
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toxic label was generated by EP model for a high promiscuous compound, there are greater chances of 
correct predictions compared to FP models, with a difference of TNR of about 6%.  

The factors deriving this promiscuity based biased can be attributed to the nature of the model 

and data used. Rule models used predicted target annotations, and hence, the bioactivity 

profiles of compounds may not be 100% accurate. Also, rules models predicted toxicity labels 

as a function of promiscuity over rules. For example, compounds that satisfy a higher number 

of rules describing toxicity are likely to be predicted as toxic. Hence, it is likely that 

promiscuous compounds will satisfy a greater number of rules even if they were non-toxic. 

Another factor that can affect performance is the lack of physicochemical properties in the data 

used to generate the rules. While perturbing multiple pathways has a greater likelihood of 

observing in vivo toxicity compared to no perturbation, rapid onset is also a key factor. Cell 

permeability and bioavailability, which are governed by physicochemical properties, 

contribute to whether an acute effect will be observed.  

FP models, on the other hand, did not use target-based features but still showed bias over 

promiscuity. Chemical features can be associated with compound promiscuity over targets if 

the features represent a pharmacophore for target binding. Hence the chemical feature, in this 

case, substituted target activity. Additionally, the bias of FP models was greater over specific 

chemical features (captured by D2 in chemical space) than target promiscuity. The FP models 

performed overall better for compounds with low (negative) coefficients in D2 of chemical 

space (Figure (6-7)). D2 in chemical space also strongly correlated with fingerprint density, 

i.e. 0.7 Pearson coefficient (see Figure (6-5)). Since the model learning is affected by data 

sparsity, complex compounds are denser in the fingerprint space allowing for better 

predictivity.  

6.4 Conclusions 

Conformal prediction models provide an assessment of confidence for a given prediction. We 

used the conformal prediction framework to evaluate the performance of rules used in Chapter 

5, given their interpretability. For a reference, we compared the performance of these rules with 

two models i) Random Forest algorithm on circular fingerprints and physicochemical 

properties, and ii) models based on promiscuity over statistically significant features.  The 

overall performance of rule models outperformed promiscuity over features and showed an 

average accuracy 5% lower than the benchmark Random Forest model. Given the 

interpretability of rule models in comparison to Random Forest, rules can aid data-based 
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decision making by providing mechanistic insights about predicted toxicity. The results also 

show that the mere application of promiscuity in toxicity assessment should be interpreted with 

caution, aligning with previous reports.382 Specific feature combinations capturing synergistic 

interactions, as shown in Chapter 5, explain why promiscuity over rules outperforms 

promiscuity over significant features. 

Upon investigating the models’ performances with regards to the chemical space, we found a 

clear bias in performance and in association with compound promiscuity. Rule models 

displayed larger biases due to two key factors. First, the promiscuity is part of the prediction 

formula, and hence the higher the promiscuity, the higher the likelihood that a compound will 

be classified as toxic. Second, unlike chemical descriptor models, physicochemical properties 

were not used, resulting in missing kinetics-based factors. Nonetheless, the Random Forest 

model on chemical descriptors has also shown the promiscuity bias trend. We anticipate that 

the promiscuity bias, in this case, is indirect and captured by the structural complexity, a 

property directly linked to promiscuity. Overall, in order to improve the predictive performance 

of rules, it is recommended to incorporate physicochemical properties, and also to optimize the 

prediction algorithm. For example, as an alternative for rule promiscuity, predictions can be 

made using the best rule or averaging the performances of the best k-number of rules for each 

class label. 

Variability was seen between the true positive rates and true negative at the same space of 

chemistry or promiscuity.  Therefore, assigning a correct prediction within a given chemical 

space is influenced by the class type. We, hence, recommend that measures of confidence and 

applicability domain should be class specific. 

The results here report compounds promiscuity as a confounding factor for classifying in vivo 

toxicity. Irrespective to data type used, models often predict promiscuous compounds as toxic. 

This promiscuity is governed by the chemical structure and physicochemical properties, such 

as number of oxygen atoms and number of saturated carbons. Therefore, we recommend that 

compounds’ intrinsic promiscuity should be considered when rationalizing outcomes from 

statistical models as well as from in vitro assays. 
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CONCLUSION 
 

Toxicity mode of action analysis is a key component of the integrated approaches in testing 

and assessment (IATA). Repositories of in vitro bioactivity measurements such as Tox2153 and 

ToxCast52 , combined with advancement in computational power allowed for the generation of  

statistical models for in vivo toxicity52,53, as well as the derivation of hypotheses on possible 

modes of action. However, perturbation mechanisms at the molecular level can be highly 

complex due to multiple routes for downstream effects as a result of interfering with a single 

pathway. Additionally, compounds rarely have a single biological action and are rather 

characterized by polypharmacology profiles rendering the task even harder. The adverse 

outcome pathway (AOP) framework describes adverse events as directional series of key 

events across the biological systems. This directional association is widely held when 

interpreting mechanisms of toxicity, however,  its application in modeling toxicological data 

is rare.144 To tackle this, we used rule-based models which allow mining associations between 

bioactivity and chemical conditions against toxicity. In order to improve the interpretability of 

rules, we applied constraints on the direction of the expected associations between in vitro 

activity and in vivo toxicity. First, rules were used to prioritize assays for hepatotoxicity in vitro 

models using ToxCast and data from animal studies (Chapter 4). We detected known endpoints 

such as activity against Cytochrome P, immunological responses and mitochondrial toxicity. 

Further, we found that endocrine disruption, such as modulation of estrogen and androgen 

receptors, are key bioactivities in hepatotoxicity. These were missed from four commercial in 

vitro models for hepatotoxicity. Second, we explored the role of chemical properties in the 

improving the translatability of in vitro readouts into in vivo hepatotoxicity. A specific set of 

physicochemical properties, such as number of rotatable bonds showed improved odds of 

hepatotoxicity when combined with in vitro endocrine disruption (Chapter 4). These 

physicochemical conditions are related to kinetic parameters such permeability,196 and hence 

can act as proxies for in vivo exposure measures. Despite endocrine disruption being commonly 

associated with chronic effects such as reproductive toxicity, we showed that endocrine 

disrupting compounds bearing a heterocycle ring can trigger acute toxicity (Chapter 5). Third, 

rules also facilitate gaining novel insights into the influence of polypharmacology on toxicity. 

We found that not mere promiscuity is triggering toxicity, but specific combinations of 

activities which can be synergistic and lead to toxicity. For example, thyroid hormone receptor 

modulation, when combined with the disruption of ionotropic GABA and glutamate receptors, 
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increases the odds of acute toxicity significantly (Chapter 5). Also, we provided novel insights 

into the cholinergic toxidrome which is characterized by inhibiting acetylcholinesterase AChE, 

and downstream effects including inflammation and calcium ion dysregulation. 268 The 

probability of acute toxicity is significantly higher when AChE inhibitors also interfere with 

the calcium sensitization of troponin319,320 and inflammatory responses of NLRP3324, resulting 

in cardiovascular effects. 

Finally, we tested the predictive power of rules for acute toxicity, in a conformal prediction 

framework, against Random Forest as a benchmark model using chemical descriptors (Chapter 

6). The performance of rule models was comparable with Random Forest at 80% confidence 

with an overall accuracy of 66.86% and 71.31%, respectively for. Additionally, we observed 

that both models exerted a bias over compound promiscuity. Despite the even distribution of 

toxicity classes across different levels of compound promiscuity, promiscuous compounds 

were frequently predicted as toxic, whereas low promiscuous compounds were often predicted 

as non-toxic.  

Overall, our findings provide novel insights into the molecular mechanisms of toxicity and 

polypharmacology. The workflows proposed in this work can be generally used to improve the 

utility and design of alternative methods for toxicity. For example, assays predictive of toxicity 

can be prioritized so as to sufficiently cover the biological space of toxic compounds. Also, via 

understanding the synergistic interactions between key events, cost and time effective iterative 

screening protocols can be developed. In this way, initial screening of major bioactivity classes 

is followed up by screening relevant endpoints where interactions are expected to trigger 

toxicity. 

  Nonetheless, in order to accelerate regulatory acceptance of alternative methods for toxicity, 

interpretable and robust models should be developed which consider a number of factors 

including chemical reactivity, polypharmacology, bioavailability and exposure. Further 

analysis is to be conducted to understand complex mechanisms of toxicity and how 

perturbation of a pathway can progress into in vivo effect. Uncertainty of prediction should be 

assessed with care, and with regards to chemical space and compound promiscuity. Above all, 

collaboration and harmonization across the academic, governmental and private sectors is 

needed to accelerate the acceptance of alternative methods in regulatory toxicology. 
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APPENDIX A 
 

 

 
Figure (A-1) Distribution of AC50 values in target-based assays 

 

 
Figure (A-2) Distribution of AC50 values in phenotypic-based assays 
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Table (A-1) Description of some assays, their source, class and target type. Further information on 
full assays annotations can be found in the ToxCast project website.  

 

Assay abbreviation Platform 
source 

Assay class Target 
type 

Description reference 

PXR/PXRE Attagene Target-based Nuclear 
receptor 

Pregnane X receptor/ 
pregnane X receptor 
element: involved in the 
regulation and expression 
of detoxification proteins 

1 

DR5 Attagene Target-based Nuclear 
receptor 

Response element of the 
retinoid acid 
receptor(ARE) that play 
an important role in the 
proliferation and 
differentiation of cells 

2 

PPARγ Attagene Target-based Nuclear 
receptor 

Peroxisome proliferator-
activated receptor gamma 
is responsible for lipid 
metabolism/storage and 
adipocyte differentiation 

3 

NRF2/ARE Attagene Target-based DNA 
binding 

Nuclear factor erythroid 
2-related factor 2 (Nrf2)-
antioxidant response 
element (ARE): plays a 
key role in sensing and 
regulating oxidative stress 
by activating the 
expression of hundreds of 
antioxidant and 
detoxifying genes 

4 

AP-1 Attagene Target-based DNA 
binding 

Activator protein-1 is a 
DNA binding protein that 
regulate the transcription 
of many proteins and it is 
involved in some disease 
pathways such as 
inflammatory responses 

5 

Eselectin Bioseek Target-based 
Cell 
adhesion 
molecule 

Selectin E protein plays a 
role in the adhesion of 
leukocytes at the site of 
injury as in inflammatory 
response 

6 

hLADR Bioseek Target-based 
Cell 
adhesion 
molecule 

Histocompatibility 
complex, class II, DR 
alpha protein involved in 
cell adhesion in immune 
response 

7 
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Continue Table (A-1)      

IL-8 Bioseek Target-based cytokine 

Chemokine (C-X-C 
motif) ligand 8 protein 
that promotes 
angiogenesis 

8 

MCP-1 Bioseek Target-based cytokine 

Chemokine (C-C motif) 
ligand 2 protein that is 
involved in 
neuroinflammatory 
response 

9 

uPAR Bioseek Target-based cytokine 

Plasminogen activator, 
urokinase receptor protein 
that regulate the activation 
of plasminogen system 

10 

VCAM-1 Bioseek Target-based 
Cell 
adhesion 
molecule 

Vascular cell adhesion 
molecule 1 protein that 
induce endothelial 
adhesion 

11 

IP-10 Bioseek Target-based Cytokine 

Chemokine (C-X-C 
motif) ligand 10 protein 
that activate T cell –
endothelial adhesion and 
angiogenesis inhibition 

12,13 

CollagenIII  Bioseek Target-based 
Cell 
adhesion 
molecule 

Collagen, type III, alpha 1 
protein is a structural 
protein in connective 
tissues 

14 

SRB Bioseek Phenotypic-
based 

Not 
applicable 

Quantification of  the total 
protein levels in the 
system 

15 
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APPENDIX B 
 

 

Figure (B-1) Distribution of rule model accuracy based on 5-fold repeated cross-validation 
performed in 100 trials. The average accuracy of models at 15mg/kg/day and 500mg/kg/day 
are 87% and 82%, respectively. Potent toxic compounds were detected at higher accuracy than 
less potent toxic compounds. 

 

  
 
Figure (B-2) Distribution of rule accuracy (left) and coverage (right). The average accuracy of 
original models is higher than the corresponding modified rule set at both thresholds. Modified 
rules set at toxicity threshold of 15mg/kg/day have higher accuracy (~75%).  Coverage here 
represents the number of compounds comply with the rule and correctly classified as toxic. At 
toxicity threshold of 500mg/kg/day, the overall coverage increased in the modified rule to 
around two folds in comparison to the original rule set. The average of coverage at 
15mg/kg/day is not significantly different from the original set, however, it is more dispersed.
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Bioactivity cutoffs of assays in selected rules 

Bioactivity cutoffs are points in the continuous variables of assay measurements were split 
during the rule search process. These splitting points reflects the potency level in an assay that 
can best discriminate between toxic and non-toxic compounds. As the cutoff level varied by 
assay type, it can be inappropriate to set an arbitrary bioactivity cutoff to discretize assay 
measurements when analyzing in vitro–in vivo associations. For example, according to Figure 
B-3, compounds that are active in Cytochrome P assays at AC50 values of 50µM can be non-
toxic, whereas, compounds possessing the same potency level against phenotypic or nuclear 
receptor assays can be toxic. 
Additionally, potency cutoffs in assays differ with the potency of in vivo toxicity. Overall, the 
potent toxicants, i.e. at 15mg/kg/day, required higher potencies in vitro. The difference was 
most significant for phenotypic assays, as low potent toxicants exerted as double overall AC50 
cutoffs as potent toxins.    
 

 

 

Figure (B-3) The distribution of split points of bioactivity conditions in prioritized rules. As 
the in vitro measurements were taken from half maximal activity concentrations (AC50) of 
dose-response curves, the split point of a bioactivity condition represents the potency cutoff 
that discriminates between toxic and non-toxic compounds. This bioactivity cutoff is lowest 
for cytochrome activity and highest for nuclear receptors and phenotypic activities. 
Consequently, hepatotoxic compounds exert high potency against Cytochrome P enzymes and 
moderate activities in nuclear receptor and phenotypic bioassays. This cutoff is also slightly 
lower among potent toxicants (LEL level of 15mg/kg/day). 
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Figure (B-4) Number of rules matched by toxic and non-toxic compounds at levels of 
15mg/kg/day (A) and 500mg/kg/day (B). Toxic compounds match significantly more rules 
than non-toxic compounds at both levels. Troglitazone (C), an antidiabetic drug withdrawn 
from the market, had matched two rules at 15mg/kg/day and 10 rules at 500mg/kg/day (Red 
dashed line).  This is equivalent to average liability of toxic compounds at 15mg/kg/day level 
and higher than average at 500mg/kg/day, which indicate the likelihood of troglitazone to be 
hepatotoxic (see Table S9 for detailed rules). 

 

 

 
Figure (B-5) Change in error rates (accuracy deterioration) in percentage as a result of 
removing physicochemical properties from prioritized rules, at each toxicity threshold. Rules 
at threshold of 15mg/kg/day had a greater overall deterioration in accuracy from removing 
physicochemical properties than rules at 500mg/kg/day. 

A) B

) 

C) 
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Table (B-1) Histopathology endpoints on liver from ToxRefDB 

(CHR=chronic/cancer; MGR=multigenerational reproductive; DEV=Prenatal developmental; 
SUB=Subchronic; SAC=Subacute; REP=reproductive fertility) 

 

CHR_rat_SystemicCarcinogenic_adult_PathologyNonProliferative_AccessoryDigestive_Liver 
CHR_rat_SystemicCarcinogenic_adult_PathologyProliferative_AccessoryDigestive_Liver 
CHR_rat_SystemicCarcinogenic_adult_PathologyGross_AccessoryDigestive_Liver 
CHR_rat_SystemicCarcinogenic_adult_PathologyNeoplastic_AccessoryDigestive_Liver 
SUB_rat_SystemicCarcinogenic_adult_PathologyNonProliferative_AccessoryDigestive_Liver 
SUB_rat_SystemicCarcinogenic_adult_PathologyGross_AccessoryDigestive_Liver 
SUB_rat_SystemicCarcinogenic_adult_OrganWeight_AccessoryDigestive_Liver 
SUB_rat_SystemicCarcinogenic_adult_PathologyProliferative_AccessoryDigestive_Liver 
DEV_rat_SystemicCarcinogenic_adult_PathologyGross_AccessoryDigestive_Liver 
MGR_rat_SystemicCarcinogenic_adult_PathologyNonProliferative_AccessoryDigestive_Liver 
MGR_rat_SystemicCarcinogenic_adult_PathologyGross_AccessoryDigestive_Liver 
MGR_rat_SystemicCarcinogenic_juvenile_PathologyNonProliferative_AccessoryDigestive_Liver 
CHR_rat_SystemicCarcinogenic_adult_AccessoryDigestive_Liver 
SUB_rat_SystemicCarcinogenic_adult_AccessoryDigestive_Liver 
DEV_rat_SystemicCarcinogenic_adult_AccessoryDigestive_Liver 
MGR_rat_SystemicCarcinogenic_adult_AccessoryDigestive_Liver 
MGR_rat_SystemicCarcinogenic_juvenile_AccessoryDigestive_Liver 

 

 

Table (B-2) List of assays used in analysis 

ACEA_T47D_80hr_Negative BSK_LPS_PGE2_up 
ACEA_T47D_80hr_Positive BSK_LPS_SRB_down 
APR_HepG2_CellCycleArrest_1h_up BSK_LPS_TissueFactor_down 
APR_HepG2_CellCycleArrest_24h_dn BSK_LPS_TNFa_down 
APR_HepG2_CellCycleArrest_24h_up BSK_LPS_VCAM1_down 
APR_HepG2_CellCycleArrest_72h_dn BSK_SAg_CD38_down 
APR_HepG2_CellCycleArrest_72h_up BSK_SAg_CD40_down 
APR_HepG2_CellLoss_24h_dn BSK_SAg_CD69_down 
APR_HepG2_CellLoss_72h_dn BSK_SAg_Eselectin_down 
APR_HepG2_MicrotubuleCSK_1h_dn BSK_SAg_IL8_down 
APR_HepG2_MicrotubuleCSK_24h_dn BSK_SAg_MCP1_down 
APR_HepG2_MicrotubuleCSK_24h_up BSK_SAg_MIG_down 
APR_HepG2_MicrotubuleCSK_72h_dn BSK_SAg_PBMCCytotoxicity_down 
APR_HepG2_MicrotubuleCSK_72h_up BSK_SAg_PBMCCytotoxicity_up 
APR_HepG2_MitoMass_1h_dn BSK_SAg_Proliferation_down 
APR_HepG2_MitoMass_1h_up BSK_SAg_SRB_down 
APR_HepG2_MitoMass_24h_dn NVS_ADME_hCYP19A1 
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APR_HepG2_MitoMass_24h_up NVS_ADME_hCYP1A1 
APR_HepG2_MitoMass_72h_dn NVS_ADME_hCYP1A2 
APR_HepG2_MitoMass_72h_up NVS_ADME_hCYP2B6 
APR_HepG2_MitoMembPot_1h_dn NVS_ADME_hCYP2C18 
APR_HepG2_MitoMembPot_24h_dn NVS_ADME_hCYP2C19 
APR_HepG2_MitoMembPot_72h_dn NVS_ADME_hCYP2C9 
APR_HepG2_MitoMembPot_72h_up NVS_ADME_hCYP2D6 
APR_HepG2_MitoticArrest_1h_up NVS_ADME_hCYP2J2 
APR_HepG2_MitoticArrest_24h_up NVS_ADME_hCYP3A4 
APR_HepG2_MitoticArrest_72h_up NVS_ADME_rCYP2A1 
APR_HepG2_NuclearSize_1h_dn NVS_ADME_rCYP2A2 
APR_HepG2_NuclearSize_24h_dn NVS_ADME_rCYP2B1 
APR_HepG2_NuclearSize_24h_up NVS_ADME_rCYP2C11 
APR_HepG2_NuclearSize_72h_dn NVS_ADME_rCYP2C12 
APR_HepG2_NuclearSize_72h_up NVS_ADME_rCYP2C13 
APR_HepG2_OxidativeStress_1h_up NVS_ADME_rCYP2C6 
APR_HepG2_OxidativeStress_24h_up NVS_ADME_rCYP2D1 
APR_HepG2_OxidativeStress_72h_up NVS_ADME_rCYP2D2 
APR_HepG2_p53Act_24h_up NVS_ADME_rCYP3A1 
APR_HepG2_p53Act_72h_up NVS_ADME_rCYP3A2 
APR_HepG2_StressKinase_1h_up NVS_ENZ_hAChE 
APR_HepG2_StressKinase_24h_dn NVS_ENZ_hBACE 
APR_HepG2_StressKinase_24h_up NVS_ENZ_hDUSP3 
APR_HepG2_StressKinase_72h_dn NVS_ENZ_hES 
APR_HepG2_StressKinase_72h_up NVS_ENZ_hGSK3b 
ATG_Ahr_CIS_up NVS_ENZ_hMMP7 
ATG_AP_1_CIS_up NVS_ENZ_hPDE4A1 
ATG_BRE_CIS_up NVS_ENZ_hPDE5 
ATG_CAR_TRANS_up NVS_ENZ_oCOX1 
ATG_C_EBP_CIS_up NVS_ENZ_oCOX2 
ATG_CMV_CIS_up NVS_ENZ_rabI2C 
ATG_CRE_CIS_up NVS_ENZ_rAChE 
ATG_DR4_LXR_CIS_up NVS_ENZ_rMAOAC 
ATG_DR5_CIS_up NVS_ENZ_rMAOAP 
ATG_E2F_CIS_up NVS_ENZ_rMAOBC 
ATG_E_Box_CIS_up NVS_ENZ_rMAOBP 
ATG_EGR_CIS_up NVS_GPCR_g5HT4 
ATG_ERa_TRANS_up NVS_GPCR_gH2 
ATG_ERE_CIS_up NVS_GPCR_gMPeripheral_NonSelective 
ATG_FoxA2_CIS_up NVS_GPCR_gOpiateK 
ATG_FXR_TRANS_up NVS_GPCR_h5HT5A 
ATG_GLI_CIS_up NVS_GPCR_h5HT6 
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ATG_HIF1a_CIS_up NVS_GPCR_h5HT7 
ATG_HSE_CIS_up NVS_GPCR_hAdoRA1 
ATG_IR1_CIS_up NVS_GPCR_hAdoRA2a 
ATG_LXRa_TRANS_up NVS_GPCR_hAdra2C 
ATG_LXRb_TRANS_up NVS_GPCR_hDRD1 
ATG_M_06_CIS_up NVS_GPCR_hDRD2s 
ATG_M_19_CIS_up NVS_GPCR_hM1 
ATG_M_19_TRANS_up NVS_GPCR_hM2 
ATG_M_32_CIS_up NVS_GPCR_hM3 
ATG_M_32_TRANS_up NVS_GPCR_hM4 
ATG_M_61_CIS_up NVS_GPCR_hNK2 
ATG_MRE_CIS_up NVS_GPCR_hOpiate_mu 
ATG_Myc_CIS_up NVS_GPCR_p5HT2C 
ATG_NFI_CIS_up NVS_GPCR_rabPAF 
ATG_NF_kB_CIS_up NVS_GPCR_rmAdra2B 
ATG_NRF1_CIS_up NVS_GPCR_rOpiate_NonSelective 
ATG_NRF2_ARE_CIS_up NVS_IC_rCaBTZCHL 
ATG_NURR1_TRANS_up NVS_IC_rCaDHPRCh_L 
ATG_Oct_MLP_CIS_up NVS_IC_rNaCh_site2 
ATG_p53_CIS_up NVS_MP_hPBR 
ATG_Pax6_CIS_up NVS_MP_rPBR 
ATG_PBREM_CIS_up NVS_NR_bER 
ATG_PPARa_TRANS_up NVS_NR_bPR 
ATG_PPARg_TRANS_up NVS_NR_cAR 
ATG_PPRE_CIS_up NVS_NR_hAR 
ATG_PXRE_CIS_up NVS_NR_hCAR_Antagonist 
ATG_PXR_TRANS_up NVS_NR_hER 
ATG_RARa_TRANS_up NVS_NR_hFXR_Antagonist 
ATG_RARb_TRANS_up NVS_NR_hGR 
ATG_RARg_TRANS_up NVS_NR_hPPARa 
ATG_RORE_CIS_up NVS_NR_hPPARg 
ATG_RXRb_TRANS_up NVS_NR_hPR 
ATG_Sox_CIS_up NVS_NR_hPXR 
ATG_Sp1_CIS_up NVS_NR_hTRa 
ATG_SREBP_CIS_up NVS_NR_mERa 
ATG_STAT3_CIS_up NVS_NR_rAR 
ATG_TA_CIS_up NVS_OR_gSIGMA_NonSelective 
ATG_TAL_CIS_up NVS_TR_gDAT 
ATG_TGFb_CIS_up NVS_TR_hDAT 
ATG_THRa1_TRANS_up NVS_TR_hNET 
ATG_VDRE_CIS_up NVS_TR_hSERT 
ATG_Xbp1_CIS_up NVS_TR_rSERT 
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BSK_3C_Eselectin_down NVS_TR_rVMAT2 
BSK_3C_HLADR_down OT_AR_ARELUC_AG_1440 
BSK_3C_ICAM1_down OT_AR_ARSRC1_0480 
BSK_3C_IL8_down OT_AR_ARSRC1_0960 
BSK_3C_MCP1_down OT_ERa_EREGFP_0120 
BSK_3C_MIG_down OT_ERa_EREGFP_0480 
BSK_3C_Proliferation_down OT_ER_ERaERa_0480 
BSK_3C_SRB_down OT_ER_ERaERa_1440 
BSK_3C_Thrombomodulin_up OT_ER_ERaERb_0480 
BSK_3C_TissueFactor_down OT_ER_ERaERb_1440 
BSK_3C_uPAR_down OT_ER_ERbERb_0480 
BSK_3C_VCAM1_down OT_ER_ERbERb_1440 
BSK_3C_Vis_down OT_FXR_FXRSRC1_0480 
BSK_4H_Eotaxin3_down OT_FXR_FXRSRC1_1440 
BSK_4H_MCP1_down OT_NURR1_NURR1RXRa_0480 
BSK_4H_Pselectin_down OT_PPARg_PPARgSRC1_1440 
BSK_4H_SRB_down Tox21_AhR 
BSK_4H_uPAR_down Tox21_AR_BLA_Agonist_ratio 
BSK_4H_VCAM1_down Tox21_AR_BLA_Antagonist_ratio 
BSK_4H_VEGFRII_down Tox21_AR_BLA_Antagonist_viability 
BSK_BE3C_HLADR_down Tox21_ARE_BLA_agonist_ratio 
BSK_BE3C_IL1a_down Tox21_AR_LUC_MDAKB2_Agonist 
BSK_BE3C_IP10_down Tox21_AR_LUC_MDAKB2_Antagonist 
BSK_BE3C_MIG_down Tox21_Aromatase_Inhibition 
BSK_BE3C_MMP1_down Tox21_AutoFluor_HEK293_Cell_blue 
BSK_BE3C_MMP1_up Tox21_AutoFluor_HEK293_Cell_green 
BSK_BE3C_PAI1_down Tox21_AutoFluor_HEK293_Cell_red 
BSK_BE3C_SRB_down Tox21_AutoFluor_HEK293_Media_blue 
BSK_BE3C_SRB_up Tox21_AutoFluor_HEK293_Media_green 
BSK_BE3C_TGFb1_down Tox21_AutoFluor_HEK293_Media_red 
BSK_BE3C_tPA_down Tox21_AutoFluor_HEPG2_Cell_blue 
BSK_BE3C_uPA_down Tox21_AutoFluor_HEPG2_Cell_green 
BSK_BE3C_uPAR_down Tox21_AutoFluor_HEPG2_Media_blue 
BSK_BE3C_uPAR_up Tox21_AutoFluor_HEPG2_Media_green 
BSK_CASM3C_HLADR_down Tox21_AutoFluor_HEPG2_Media_red 
BSK_CASM3C_IL6_down Tox21_ELG1_LUC_Agonist 
BSK_CASM3C_IL6_up Tox21_ERa_BLA_Agonist_ratio 
BSK_CASM3C_IL8_down Tox21_ERa_BLA_Antagonist_ratio 
BSK_CASM3C_IL8_up Tox21_ERa_BLA_Antagonist_viability 
BSK_CASM3C_LDLR_down Tox21_ERa_LUC_BG1_Agonist 
BSK_CASM3C_LDLR_up Tox21_ERa_LUC_BG1_Antagonist 
BSK_CASM3C_MCP1_down Tox21_ESRE_BLA_ratio 
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BSK_CASM3C_MCSF_down Tox21_ESRE_BLA_viability 
BSK_CASM3C_MIG_down Tox21_FXR_BLA_agonist_ratio 
BSK_CASM3C_Proliferation_down Tox21_FXR_BLA_agonist_viability 
BSK_CASM3C_SAA_down Tox21_FXR_BLA_antagonist_ratio 
BSK_CASM3C_SRB_down Tox21_FXR_BLA_antagonist_viability 
BSK_CASM3C_Thrombomodulin_up Tox21_GR_BLA_Agonist_ratio 
BSK_CASM3C_uPAR_down Tox21_GR_BLA_Antagonist_ratio 
BSK_CASM3C_VCAM1_down Tox21_GR_BLA_Antagonist_viability 
BSK_hDFCGF_CollagenIII_down Tox21_HSE_BLA_agonist_ratio 
BSK_hDFCGF_EGFR_down Tox21_HSE_BLA_agonist_viability 
BSK_hDFCGF_IL8_down Tox21_MitochondrialToxicity_ratio 
BSK_hDFCGF_IP10_down Tox21_MitochondrialToxicity_viability 
BSK_hDFCGF_MCSF_down Tox21_NFkB_BLA_agonist_ratio 
BSK_hDFCGF_MIG_down Tox21_NFkB_BLA_agonist_viability 
BSK_hDFCGF_MMP1_down Tox21_p53_BLA_p1_ratio 
BSK_hDFCGF_MMP1_up Tox21_p53_BLA_p1_viability 
BSK_hDFCGF_PAI1_down Tox21_p53_BLA_p2_ratio 
BSK_hDFCGF_Proliferation_down Tox21_p53_BLA_p2_viability 
BSK_hDFCGF_SRB_down Tox21_p53_BLA_p3_ratio 
BSK_hDFCGF_TIMP1_down Tox21_p53_BLA_p3_viability 
BSK_hDFCGF_VCAM1_down Tox21_p53_BLA_p4_ratio 
BSK_KF3CT_ICAM1_down Tox21_p53_BLA_p4_viability 
BSK_KF3CT_IL1a_down Tox21_p53_BLA_p5_ratio 
BSK_KF3CT_IP10_down Tox21_p53_BLA_p5_viability 
BSK_KF3CT_MCP1_down Tox21_PPARd_BLA_agonist_ratio 
BSK_KF3CT_MMP9_down Tox21_PPARd_BLA_Agonist_viability 
BSK_KF3CT_SRB_down Tox21_PPARd_BLA_antagonist_ratio 
BSK_KF3CT_SRB_up Tox21_PPARd_BLA_antagonist_viability 
BSK_KF3CT_TGFb1_down Tox21_PPARg_BLA_Agonist_ratio 
BSK_KF3CT_TIMP2_down Tox21_PPARg_BLA_antagonist_ratio 
BSK_KF3CT_uPA_down Tox21_PPARg_BLA_antagonist_viability 
BSK_LPS_CD40_down Tox21_TR_LUC_GH3_Agonist 
BSK_LPS_Eselectin_down Tox21_TR_LUC_GH3_Antagonist 
BSK_LPS_IL1a_down Tox21_VDR_BLA_agonist_ratio 
BSK_LPS_IL8_down Tox21_VDR_BLA_Agonist_viability 
BSK_LPS_MCP1_down Tox21_VDR_BLA_antagonist_ratio 
BSK_LPS_MCSF_down Tox21_VDR_BLA_antagonist_viability 
BSK_LPS_PGE2_down  
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Table (B-3) List of physicochemical used in analysis 

Physicochemical property Source 
SlogP RDKit 
SMR RDKit 
LabuteASA RDKit 
TPSA RDKit 
AMW RDKit 
ExactMW RDKit 
NumLipinskiHBA RDKit 
NumLipinskiHBD RDKit 
NumRotatableBonds RDKit 
NumHBD RDKit 
NumHBA RDKit 
NumAmideBonds RDKit 
NumHeteroAtoms RDKit 
NumHeavyAtoms RDKit 
NumAtoms RDKit 
NumRings RDKit 
NumAromaticRings RDKit 
NumSaturatedRings RDKit 
NumAliphaticRings RDKit 
NumAromaticHeterocycles RDKit 
NumSaturatedHeterocycles RDKit 
NumAliphaticHeterocycles RDKit 
NumAromaticCarbocycles RDKit 
NumSaturatedCarbocycles RDKit 
NumAliphaticCarbocycles RDKit 
FractionCSP3 RDKit 
HallKierAlpha RDKit 
Strongest.acidic.pKa ChemAxon 
Strongest.basic.pKa ChemAxon 
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Table (B-4) Rules matching Troglitazone describing toxicity at level of 500mg/kg/day 

Rules Condition 1 Condition 2 Condition 3 Rule 
accuracy 

Compound 
coverage 

1 ATG_p53_CIS_up <= 2.122144 Tox21_MitochondrialToxicity_viability 
<= 2.5 - 0.95 51 

2 APR_HepG2_MitoMass_24h_up <= 
2.319333 OT_AR_ARSRC1_0480 <= 2.5 NumLipinskiHBA > 1 0.92 66 

3 ATG_PPARg_TRANS_up <= 
1.694441 OT_AR_ARSRC1_0480 <= 2.5 NumRings > 0 0.87 78 

4 OT_AR_ARSRC1_0480 <= 1.806514 NumHeavyAtoms <= 33 NumAromaticCarbocycles 
> 0 0.86 83 

5 BSK_SAg_SRB_down <= 2.10206 NumHeavyAtoms <= 33 NumAromaticCarbocycles 
> 0 0.81 100 

6 BSK_BE3C_uPA_down <= 2.06236 NumHeavyAtoms <= 33 NumAromaticHeterocycles 
<= 0 0.79 53 

7 BSK_SAg_CD40_down <= 1.341604 NumHeteroAtoms > 1 NumHeavyAtoms <= 32 0.77 90 

8 BSK_3C_IL8_down <= 1.336627 BSK_LPS_CD40_down <= 1.572855 - 0.75 56 

9 APR_HepG2_CellCycleArrest_72h_dn 
<= 2.791415 

Tox21_FXR_BLA_antagonist_ratio <= 
2.40309 - 0.75 96 

10 OT_FXR_FXRSRC1_0480 <= 
2.073822 NumHeavyAtoms <= 33 NumAromaticCarbocycles 

> 0 0.75 113 
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Table (B-5) Rules matching Troglitazone describing toxicity at level of 15mg/kg/day 

Rules Condition 1 Condition 2 Condition 3 Rule 
accuracy 

Compound 
coverage 

1 BSK_4H_MCP1_down <= 1.422321 NumRotatableBonds <= 6 NumAliphaticCarbocycles 
<=0 

0.81 40 

2 BSK_hDFCGF_IP10_down <= 
1.726166 

Tox21_MitochondrialToxicity_viability 
<= 1.581255 

 0.89 25 
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APPENDIX C 
 
Table (C-1) Tox21 assays used in emerging patterns in Chapter 5 and 6.  
 

Assay description Uniprot Pubchem 
Assay ID 

1. qHTS assay for small molecule agonists of the p53 signaling pathway P04637 651631 
2. qHTS assay for small molecule agonists of the p53 signaling pathway 
- cell viability 

NA 651633 

3. qHTS assay for small molecule agonists of the p53 signaling pathway: 
Summary 

P04637 720552 

4. qHTS assay for small molecules that induce genotoxicity in human 
embryonic kidney cells expressing luciferase-tagged ATAD5 

Q96QE3 651632 

5. qHTS assay for small molecules that induce genotoxicity in human 
embryonic kidney cells expressing luciferase-tagged ATAD5 - cell 
viability 

NA 651634 

6. qHTS assay for small molecules that induce genotoxicity in human 
embryonic kidney cells expressing luciferase-tagged ATAD5: Summary 

Q96QE3 720516 

7. qHTS assay for small molecule disruptors of the mitochondrial 
membrane potential - cell viability 

NA 720634 

8. qHTS assay for small molecule disruptors of the mitochondrial 
membrane potential 

NA 720635 

9. qHTS assay for small molecule disruptors of the mitochondrial 
membrane potential: Summary 

NA 720637 

10. qHTS assay to test for compound auto fluorescence at 460 nm (blue) 
in HEK293 cells 

NA 720678 

11. qHTS assay to test for compound auto fluorescence at 460 nm (blue) 
in HEK293 cell free culture 

NA 720681 

12. qHTS assay to test for compound auto fluorescence at 460 nm (blue) 
in HepG2 cell free culture 

NA 720685 

13. qHTS assay to test for compound auto fluorescence at 460 nm (blue) 
in HepG2 cells 

NA 720687 

14. qHTS assay to identify small molecule agonists of the glucocorticoid 
receptor (GR) signaling pathway 

P04150 720691 

15. qHTS assay to identify small molecule antagonists of the 
glucocorticoid receptor (GR) signaling pathway 

P04150 720692 

16. qHTS assay to identify small molecule antagonists of the 
glucocorticoid receptor (GR) signaling pathway - cell viability counter 
screen 

NA 720693 

17. qHTS assay to identify small molecule agonists of the glucocorticoid 
receptor (GR) signaling pathway: Summary 

P04150 720719 

18. qHTS assay to identify small molecule antagonists of the 
glucocorticoid receptor (GR) signaling pathway: Summary 

P04150 720725 

19. qHTS assay to identify small molecule antagonists of the androgen  
receptor (AR) signaling pathway - cell viability counter screen 

NA 743033 

20. qHTS assay to identify small molecule antagonists of the androgen 
receptor (AR) signaling pathway 

P10275 743035 

21. qHTS assay to identify small molecule agonists of the androgen 
receptor (AR) signaling pathway 

P10275 743036 
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22. qHTS assay to identify small molecule antagonists of the androgen  
receptor (AR) signaling pathway using the MDA cell line - cell viability 
counter screen 

NA 743041 

23. qHTS assay to identify small molecule antagonists of the androgen  
receptor (AR) signaling pathway using the MDA cell line 

P10275 743042 

24. qHTS assay to identify small molecule agonists of the androgen 
receptor (AR) signaling pathway: Summary 

P10275 743053 

25. qHTS assay to identify small molecule antagonists of the androgen 
receptor (AR) signaling pathway using the MDA cell line: Summary 

P10275 743054 

26. qHTS assay to identify small molecule antagonists of the androgen 
receptor (AR) signaling pathway: Summary 

P10275 743063 

27. qHTS assay to identify small molecule antagonists of the thyroid 
receptor (TR) signaling pathway - cell viability counter screen 

NA 743064 

28. qHTS assay to identify small molecule antagonists of the thyroid 
receptor (TR) signaling pathway 

NA 743065 

29. qHTS assay to identify small molecule antagonists of the thyroid 
receptor (TR) signaling pathway: Summary 

NA 743067 

30. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway 

P03372 743069 

31. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway - cell viability counter 
screen 

NA 743074 

32. qHTS assay to identify small molecule agonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway 

P03372 743075 

33. qHTS assay to identify small molecule agonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway: Summary 

P03372 743077 

34. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway: Summary 

P03372 743078 

35. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway using the BG1 cell line 

P03372 743080 

36. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway using the BG1 cell line - 
cell viability counter screen 

NA 743081 

37. qHTS assay to identify aromatase inhibitors P11511 743083 
38. qHTS assay to identify aromatase inhibitors - cell viability counter 
screen 

NA 743084 

39. qHTS assay to identify small molecule that activate the aryl 
hydrocarbon receptor (AhR) signaling pathway 

P35869 743085 

40. qHTS assay to identify small molecule that activate the aryl 
hydrocarbon receptor (AhR) signaling pathway - cell viability counter 
screen 

NA 743086 

41. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway using the BG1 cell line: 
Summary 

P03372 743091 

42. qHTS assay to identify small molecule agonists of the peroxisome 
proliferator-activated receptor gamma (PPARg) signaling pathway 

P37231 743094 

43. qHTS assay to identify small molecule that activate the aryl 
hydrocarbon receptor (AhR) signaling pathway: Summary 

P35869 743122 

44. qHTS assay to identify aromatase inhibitors: Summary P11511 743139 
45. qHTS assay to identify small molecule agonists of the peroxisome 
proliferator-activated receptor gamma (PPARg) signaling pathway: 
Summary 

P37231 743140 
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46. qHTS assay to identify small molecule antagonists of the retinoid-
related orphan receptor gamma (ROR-gamma) signaling pathway - cell 
viability counter screen 

NA 1159520 

47. qHTS assay to identify small molecule antagonists of the retinoid-
related orphan receptor gamma (ROR-gamma) signaling pathway 

P51450 1159521 

48. qHTS assay to identify small molecule antagonists of the retinoid-
related orphan receptor gamma (ROR-gamma) signaling pathway: 
Summary 

P51450 1159523 

49. qHTS assay to identify small molecule agonists of the AP-1 
signaling pathway - cell viability counter screen 

NA 1159525 

50. qHTS assay to identify small molecule agonists of the AP-1 
signaling pathway 

P05412 1159526 

51. qHTS assay to identify small molecule agonists of the RXR 
signaling pathway 

P19793 1159527 

52. qHTS assay to identify small molecule agonists of the AP-1 
signaling pathway: Summary 

P05412 1159528 

53. qHTS assay to identify small molecule agonists of the RXR 
signaling pathway - cell viability counter screen 

NA 1159529 

54. qHTS assay to identify small molecule agonists of the RXR 
signaling pathway: Summary 

P19793 1159531 

55. qHTS assay to identify small molecule antagonists of the retinoid 
acid receptor (RAR) signaling pathway - cell viability counter screen 

NA 1159551 

56. qHTS assay to identify small molecule antagonists of the retinoic 
acid receptor (RAR) signaling pathway 

P10276 1159552 

57. qHTS assay to identify small molecule antagonists of the retinoic 
acid receptor (RAR) signaling pathway: Summary 

P10276 1159555 

58. qHTS assay to identify small molecule agonists of the constitutive 
androstane receptor (CAR) signaling pathway - cell viability counter 
screen 

NA 1224836 

59. qHTS assay to identify small molecule antagonists of the constitutive 
androstane receptor (CAR) signaling pathway - cell viability counter 
screen 

NA 1224837 

60. qHTS assay to identify small molecule antagonists of the constitutive 
androstane receptor (CAR) signaling pathway 

Q14994 1224838 

61. qHTS assay to identify small molecule agonists of the constitutive 
androstane receptor (CAR) signaling pathway 

Q14994 1224839 

62. qHTS assay to identify small molecule agonists of the thyroid 
stimulating hormone receptor (TSHR) signaling pathway 

P16473 1224843 

63. qHTS assay to identify small molecule agonists of the hypoxia (HIF-
1) signaling pathway - cell viability counter screen 

NA 1224844 

64. qHTS assay to identify small molecule agonists of H2AX NA 1224845 
65. qHTS assay to identify small molecule agonists of the hypoxia (HIF-
1) signaling pathway 

Q16665 1224846 

66. qHTS assay to identify small molecule agonists of H2AX - cell 
viability counter screen 

NA 1224847 

67. qHTS assay to identify small molecule agonists of the constitutive 
androstane receptor (CAR) signaling pathway: Summary 

Q14994 1224892 

68. qHTS assay to identify small molecule antagonists of the constitutive 
androstane receptor (CAR) signaling pathway: Summary 

Q14994 1224893 

69. qHTS assay to identify small molecule agonists of the hypoxia (HIF-
1) signaling pathway: Summary 

Q16665 1224894 

70. qHTS assay to identify small molecule agonists of the thyroid 
stimulating hormone receptor (TSHR) signaling pathway: Summary 

P16473 1224895 
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71. qHTS assay to identify small molecule agonists of H2AX: Summary NA 1224896 
72. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway using the BG1 cell line in 
the presence of 0.1 nM 17-beta-estradiol - cell viability counter screen 

NA 1259241 

73. qHTS assay to identify small molecule antagonists of the androgen 
receptor (AR) signaling pathway using the MDA cell line in the 
presence of 0.5 nM R1881 - cell viability counter screen 

NA 1259242 

74. qHTS assay to identify small molecule antagonists of the androgen 
receptor (AR) signaling pathway using the MDA cell line in the 
presence of 0.5 nM R1881 

P10275 1259243 

75. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway using the BG1 cell line in 
the presence of 0.1 nM 17-beta-estradiol 

P03372 1259244 

76. qHTS assay to identify small molecule antagonists of the androgen 
receptor (AR) signaling pathway using the MDA cell line in the 
presence of 0.5 nM R1881: Summary 

P10275 1259247 

77. qHTS assay to identify small molecule antagonists of the estrogen 
receptor alpha (ER-alpha) signaling pathway using the BG1 cell line in 
the presence of 0.1 nM 17-beta-estradiol: Summary 

P03372 1259248 

78. qHTS assay to identify small molecule agonists of the NFkB 
signaling pathway 

P19838 1159509 

79. qHTS assay to identify small molecule agonists of the NFkB 
signaling pathway - cell viability counter screen 

NA 1159515 

80. qHTS assay to identify small molecule agonists of the endoplasmic 
reticulum stress response signaling pathway 

P18850 1159516 

81. qHTS assay to identify small molecule agonists of the endoplasmic 
reticulum stress response signaling pathway - cell viability counter 
screen 

NA 1159517 

82. qHTS assay to identify small molecule agonists of the NFkB 
signaling pathway: Summary 

P19838 1159518 

83. qHTS assay to identify small molecule agonists of the endoplasmic 
reticulum stress response signaling pathway: Summary 

P18850 1159519 

84. qHTS assay to identify small molecule antagonists of the peroxisome 
proliferator-activated receptor gamma (PPARg) signaling pathway 

P37231 743191 

85. qHTS assay to identify small molecule antagonists of the peroxisome 
proliferator-activated receptor gamma (PPARg) signaling pathway - cell 
viability counter screen 

NA 743194 

86. qHTS assay to identify small molecule antagonists of the peroxisome 
proliferator-activated receptor gamma (PPARg) signaling pathway: 
Summary 

P37231 743199 

87. qHTS assay for small molecule agonists of the antioxidant response 
element (ARE) signaling pathway 

Q16236 743202 

88. qHTS assay for small molecule agonists of the antioxidant response 
element (ARE) signaling pathway - cell viability counter screen 

NA 743203 

89. qHTS assay for small molecule activators of the heat shock response 
signaling pathway - cell viability counter screen 

NA 743209 

90. qHTS assay for small molecule activators of the heat shock response 
signaling pathway 

P04792 743210 

91. qHTS assay to identify small molecule agonists of the peroxisome 
proliferator-activated receptor delta (PPARd) signaling pathway - cell 
viability counter screen 

NA 743211 

92. qHTS assay to identify small molecule agonists of the peroxisome 
proliferator-activated receptor delta (PPARd) signaling pathway 

Q03181 743212 



 172 

93. qHTS assay to identify small molecule antagonists of the peroxisome 
proliferator-activated receptor delta (PPARd) signaling pathway - cell 
viability counter screen 

NA 743213 

94. qHTS assay to identify small molecule antagonists of the peroxisome 
proliferator-activated receptor delta (PPARd) signaling pathway 

Q03181 743215 

95. qHTS assay to identify small molecule antagonists of the farnesoid-
X-receptor (FXR) signaling pathway 

Q96RI1 743217 

96. qHTS assay to identify small molecule agonists of the farnesoid-X-
receptor (FXR) signaling pathway - cell viability counter screen 

NA 743218 

97. qHTS assay for small molecule agonists of the antioxidant response 
element (ARE) signaling pathway: Summary 

Q16236 743219 

98. qHTS assay to identify small molecule agonists of the farnesoid-X-
receptor (FXR) signaling pathway 

Q96RI1 743220 

99. qHTS assay to identify small molecule antagonists of the farnesoid-
X-receptor (FXR) signaling pathway - cell viability counter screen 

NA 743221 

100. qHTS assay to identify small molecule agonists of the vitamin D 
receptor (VDR) signaling pathway 

P11473 743222 

101. qHTS assay to identify small molecule antagonists of the vitamin D 
receptor (VDR) signaling pathway 

P11473 743223 

102. qHTS assay to identify small molecule agonists of the vitamin D 
receptor (VDR) signaling pathway - cell viability counter screen 

NA 743224 

103. qHTS assay to identify small molecule antagonists of the vitamin D 
receptor (VDR) signaling pathway - cell viability counter screen 

NA 743225 

104. qHTS assay to identify small molecule antagonists of the 
peroxisome proliferator-activated receptor delta (PPARd) signaling 
pathway: Summary 

Q03181 743226 

105. qHTS assay to identify small molecule agonists of the peroxisome 
proliferator-activated receptor delta (PPARd) signaling pathway: 
Summary 

Q03181 743227 

106. qHTS assay for small molecule activators of the heat shock 
response signaling pathway: Summary 

P04792 743228 

107. qHTS assay to identify small molecule agonists of the farnesoid-X-
receptor (FXR) signaling pathway: Summary 

Q96RI1 743239 

108. qHTS assay to identify small molecule antagonists of the farnesoid-
X-receptor (FXR) signaling pathway: Summary 

Q96RI1 743240 

109. qHTS assay to identify small molecule agonists of the vitamin D 
receptor (VDR) signaling pathway: Summary 

P11473 743241 

110. qHTS assay to identify small molecule antagonists of the vitamin D 
receptor (VDR) signaling pathway: Summary 

P11473 743242 
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Figure (C-1) The correlation between the two synergy measures used in the study, mutual 
information (MI) and synergy factor. Threshold for MI-based synergy was set to 0.001 value. 
Pairs which did not exert MI synergy has shown synergy factor values less than 1.5.  
 
 
 
 

 
Figure (C-2) Percentage distribution of feature classes in each cluster as well as single 
condition feature rules in toxic (a) and non-toxic (b) networks. In toxic network, single feature 
rules and cluster 1, were more occupied by cell viability, nuclear receptor activity and structural 
features. The remaining clusters had mainly target-specific features such as enzymes, kinases, 
ion channels and GPCR. Clusters of non-toxic network had more diverse distribution of classes 
compared to toxic network.  
 
 
 
 
 
 
 
 

a) b) 
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Figure (C-3) Similarity between target-specific pairs using Gene Ontology (GO) (a) molecular 
functions and (b) biological processes with respect to the synergy of the pair. Synergistic pairs 
show almost zero similarity in function and biological processes. However, not all dissimilar 
pair are synergistic.  
 
 

 
 
 
 
 

 

a) b) 
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