4 research outputs found

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    LightSkin: Globale Echtzeitbeleuchtung für Virtual und Augmented Reality

    Get PDF
    In nature, each interaction of light is bound to a global context. Thus, each observable natural light phenomenon is the result of global illumination. It is based on manifold laws of absorption, reflection, and refraction, which are mostly too complex to simulate given the real-time constraints of interactive applications. Therefore, many interactive applications do not support the simulation of those global illumination phenomena yet, which results in unrealistic and synthetic-looking renderings. This unrealistic rendering becomes especially a problem in the context of virtual reality and augmented reality applications, where the user should experience the simulation as realistic as possible. In this thesis we present a novel approach called LightSkin that calculates global illumination phenomena in real-time. The approach was especially developed for virtual reality and augmented reality applications satisfying several constraints coming along with those applications. As part of the approach we introduce a novel interpolation scheme, which is capable to calculate realistic indirect illumination results based on a few number of supporting points, distributed on model surfaces. Each supporting point creates its own proxy light sources, which are used to represent the whole indirect illumination for this point in a compact manner. These proxy light sources are then linearly interpolated to obtain dense results for the entire visible scene. Due to an efficient implementation on GPU, the method is very fast supporting complex and dynamic scenes. Based on the approach, it is possible to simulate diffuse and glossy indirect reflections, soft shadows, and multiple subsurface scattering phenomena without neglecting filigree surface details. Furthermore, the method can be adapted to augmented reality applications providing mutual global illumination effects between dynamic real and virtual objects using an active RGB-D sensor device. In contrast to existing interactive global illumination approaches, our approach supports all kinds of animations, handling them more efficient, not requiring extra calculations or leading to disturbing temporal artifacts. This thesis contains all information needed to understand, implement, and evaluate the novel LightSkin approach and also provides a comprehensive overview of the related field of research.In der Natur ist jede Interaktion des Lichts mit Materie in einen globalen Kontext eingebunden, weswegen alle natürlichen Beleuchtungsphänomene in unserer Umwelt das Resultat globaler Beleuchtung sind. Diese basiert auf der Anwendung mannigfaltiger Absorptions-, Reflexions- und Brechungsgesetze, deren Simulation so komplex ist, dass interaktive Anwendungen diese nicht in wenigen Millisekunden berechnen können. Deshalb wurde bisher in vielen interaktiven Systemen auf die Abbildung von solchen globalen Beleuchtungsphänomenen verzichtet, was jedoch zu einer unrealistischen und synthetisch-wirkenden Darstellung führte. Diese unrealistische Darstellung ist besonders für die Anwendungsfelder Virtual Reality und Augmented Reality, bei denen der Nutzer eine möglichst realitätsnahe Simulation erfahren soll, ein gewichtiger Nachteil. In dieser Arbeit wird das LightSkin-Verfahren vorgestellt, das es erlaubt, globale Beleuchtungsphänomene in einer Echtzeitanwendung darzustellen. Das Verfahren wurde speziell für die Anwendungsfelder Virtual Reality und Augmented Reality entwickelt und erfüllt spezifische Anforderungen, die diese an eine Echtzeitanwendung stellen. Bei dem Verfahren wird das indirekte Licht durch eine geringe Anzahl von Punktlichtquellen (Proxy-Lichtquellen) repräsentiert, die für eine lose Menge von Oberflächenpunkten (Caches) berechnet und anschließend über die komplette sichtbare Szene interpoliert werden. Diese neue Form der Repräsentation der indirekten Beleuchtung erlaubt eine effiziente Berechnung von diffusen und glänzenden indirekten Reflexionen, die Abbildung von weichen Schatten und die Simulation von Multiple-Subsurface-Scattering-Effekten in Echtzeit für komplexe und voll dynamische Szenen. Ferner wird gezeigt, wie das Verfahren modifiziert werden kann, um globale Lichtwechselwirkungen zwischen realen und virtuellen Objekten in einer Augmented-Reality-Anwendung zu simulieren. Im Gegensatz zu den meisten existierenden Echtzeitverfahren zur Simulation von globalen Beleuchtungseffekten benötigt der hier vorgestellte Ansatz keine aufwändigen zusätzlichen Berechnungen bei Animationen und erzeugt darüber hinaus für diese keine visuellen Artefakte. Diese Arbeit enthält alle Informationen, die zum Verständnis, zur Implementierung und zur Evaluation des LightSkin-Verfahrens benötigt werden und gibt darüber hinaus einen umfassenden Über- blick über das Forschungsfeld

    High-fidelity graphics using unconventional distributed rendering approaches

    Get PDF
    High-fidelity rendering requires a substantial amount of computational resources to accurately simulate lighting in virtual environments. While desktop computing, with the aid of modern graphics hardware, has shown promise in delivering realistic rendering at interactive rates, real-time rendering of moderately complex scenes is still unachievable on the majority of desktop machines and the vast plethora of mobile computing devices that have recently become commonplace. This work provides a wide range of computing devices with high-fidelity rendering capabilities via oft-unused distributed computing paradigms. It speeds up the rendering process on formerly capable devices and provides full functionality to incapable devices. Novel scheduling and rendering algorithms have been designed to best take advantage of the characteristics of these systems and demonstrate the efficacy of such distributed methods. The first is a novel system that provides multiple clients with parallel resources for rendering a single task, and adapts in real-time to the number of concurrent requests. The second is a distributed algorithm for the remote asynchronous computation of the indirect diffuse component, which is merged with locally-computed direct lighting for a full global illumination solution. The third is a method for precomputing indirect lighting information for dynamically-generated multi-user environments by using the aggregated resources of the clients themselves. The fourth is a novel peer-to-peer system for improving the rendering performance in multi-user environments through the sharing of computation results, propagated via a mechanism based on epidemiology. The results demonstrate that the boundaries of the distributed computing typically used for computer graphics can be significantly and successfully expanded by adapting alternative distributed methods
    corecore