434 research outputs found

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Preamble-Based Channel Estimation for CP-OFDM and OFDM/OQAM Systems: A Comparative Study

    Full text link
    In this paper, preamble-based least squares (LS) channel estimation in OFDM systems of the QAM and offset QAM (OQAM) types is considered, in both the frequency and the time domains. The construction of optimal (in the mean squared error (MSE) sense) preambles is investigated, for both the cases of full (all tones carrying pilot symbols) and sparse (a subset of pilot tones, surrounded by nulls or data) preambles. The two OFDM systems are compared for the same transmit power, which, for cyclic prefix (CP) based OFDM/QAM, also includes the power spent for CP transmission. OFDM/OQAM, with a sparse preamble consisting of equipowered and equispaced pilots embedded in zeros, turns out to perform at least as well as CP-OFDM. Simulations results are presented that verify the analysis

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Optimal pilot placement for frequency offset estimation and data detection in burst transmission systems

    Get PDF
    In this letter, we address the problem of pilot design for Carrier Frequency Offset (CFO) and data detection in digital burst transmission systems. We consider a quasi-static flat-fading channel. We find that placing half of the pilot symbols at the beginning of the burst and the other half at the end of the burst is optimal for both CFO estimation and data detection. Our findings are based on the Cram´er-Rao bound and on empirical evaluations of the bit error rate for different pilot designs. The equal-preamble-postamble pilot design is shown to provide a significant gain in performance over the conventional preambleonly pilot design

    Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication

    Get PDF
    High data rate communication is challenging in underwater acoustic (UA) communication as UA channels vary fast along with the environmental factors. A real-time Orthogonal frequency-division multiplexing (OFDM) based adaptive UA communication system is studied in this research employing the National Instruments (NI) LabVIEW software and NI CompactDAQ device. The developed adaptive modulation schemes enhance the reliability of communication, guarantee continuous connectivity, ensure maximum performance under a fixed BER at all times and boost data rate

    A Consistent OFDM Carrier Frequency Offset Estimator Based on Distinctively Spaced Pilot Tones

    Get PDF
    A pilot-tone-based maximum likelihood estimator (PBMLE) for carrier frequency offset (CFO) in orthogonal frequency-division multiplexing (OFDM) systems is proposed. To obtain a consistent estimate of the CFO over a frequency-selective fading channel, the proposed method employs a preamble comprising distinctively spaced pilot tones. As a result of this preamble configuration, a large estimation range equal to the bandwidth of the OFDM signal can be achieved. Different from previous ad hoc pilot-tone-based CFO estimators, the PBMLE exploits the relationship between the CFO and the periodogram of the preamble. Analysis shows that the proposed PBMLE is asymptotically unbiased and efficient. To realize this PBMLE in practice, a suboptimal estimator is also introduced, in which a zero-padded fast Fourier transform is invoked and the CFO estimation is split into two phases: coarse and fine estimation. Coarse estimation is obtained through the correlation between the received preamble and its original pattern, whereas fine estimation is obtained by exploiting the magnitude attenuation in the vicinities of those CFO-shifted pilot tones. Both analytical investigations and computer simulations indicate that the accuracy of this simplified suboptimal estimator is proportional to the oversize ratio of zero padding. When the oversize ratio is sufficiently high, the performance of the suboptimal estimator approaches that of the proposed PBMLE.published_or_final_versio
    • …
    corecore