13,863 research outputs found

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    RealTimeChess: Lessons from a Participatory Design Process for a Collaborative Multi-Touch, Multi-User Game

    Get PDF
    We report on a long-term participatory design process during which we designed and improved RealTimeChess, a collaborative but competitive game that is played using touch input by multiple people on a tabletop display. During the design process we integrated concurrent input from all players and pace control, allowing us to steer the interaction along a continuum between high-paced simultaneous and low-paced turn-based gameplay. In addition, we integrated tutorials for teaching interaction techniques, mechanisms to control territoriality, remote interaction, and alert feedback. Integrating these mechanism during the participatory design process allowed us to examine their effects in detail, revealing for instance effects of the competitive setting on the perception of awareness as well as territoriality. More generally, the resulting application provided us with a testbed to study interaction on shared tabletop surfaces and yielded insights important for other time-critical or attention-demanding applications.

    Online Spatio-Temporal Gaussian Process Experts with Application to Tactile Classification

    No full text

    Proximity sensor for thin wire recognition and manipulation

    Get PDF
    In robotic grasping and manipulation, the knowledge of a precise object pose represents a key issue. The point acquires even more importance when the objects and, then, the grasping areas become smaller. This is the case of Deformable Linear Object manipulation application where the robot shall autonomously work with thin wires which pose and shape estimation could become difficult given the limited object size and possible occlusion conditions. In such applications, a vision-based system could not be enough to obtain accurate pose and shape estimation. In this work the authors propose a Time-of-Flight pre-touch sensor, integrated with a previously designed tactile sensor, for an accurate estimation of thin wire pose and shape. The paper presents the design and the characterization of the proposed sensor. Moreover, a specific object scanning and shape detection algorithm is presented. Experimental results support the proposed methodology, showing good performance. Hardware design and software applications are freely accessible to the reader

    Force feedback pushing scheme for micromanipulation applications

    Get PDF
    Pushing micro-objects using point contact provides more flexibility and less complexity compared to pick and place operation. Due to the fact that in micro-world surface forces are much more dominant than inertial forces and these forces are distributed unevenly, pushing through the center of mass of the micro-object may not yield a pure translational motion. In order to translate a micro-object, the line of pushing should pass through the center of friction. In this paper, a semi-autonomous scheme based on hybrid vision/force feedback procedure is proposed to push micro-objects with human assistance using a custom built tele-micromanipulation setup to achieve translational motion. In the semi-autonomous pushing process, velocity controlled pushing with force feedback is realized along x-axis by the human operator while y-axis orientation is undertaken automatically using visual feedback. This way the desired line of pushing for the micro-object is controlled to pass through the varying center of friction. Experimental results are shown to prove nano-Newton range force sensing, scaled bilateral teleoperation with force feedback and snapshot of pushing operation
    corecore