681 research outputs found

    Path Following by a Quadrotor Using Virtual Target Pursuit Guidance

    Get PDF
    Quadrotors, being more agile than fixed-wing vehicles, are the ideal candidates for autonomous missions in small, compact spaces. The immense challenge to navigate such environments is fulfilled by the concept of path following. Path following is the method of tracking/tracing a fixed, pre-defined path with minimum position error while exerting the lowest possible control effort. In this work, the missile guidance technique of pure pursuit is adopted and modified for a 3D quadrotor model to follow fixed, compact trajectories. A specialized hardware testing platform is developed to test this algorithm. The results obtained from simulation and flight tests are compared to results from another technique called differential flatness. A small part of this thesis also deals with the stability analysis of the modified 3D pure pursuit algorithm to track trajectories expending lower control effort

    INFLUENCE OF COORDINATIVE MOTOR ABILITY ON LOWER LIMB KINEMATICS IN YOUNG FOOTBALL PLAYERS: INJURY PREVENTION THROUGH WEARABLE INERTIAL SENSORS

    Get PDF
    The aim of the present study was to evaluate, during ordinary training, the lower limb kinematics in young football players, and to verify if the kinematic patterns are influenced by coordinative motor abilities. Fourteen healthy players (10y ± 2m) were enrolled. Each player performed two activities: a pre-defined path with typical movements of football training and matches; the Harre test to evaluated children’s coordinative motor ability. Wearable inertial sensors were used to assess lower limb joint kinematics and accelerations. Based on Harre test, players were divided into two groups, more coordinated and less coordinated. During all tasks performed, less coordinated players showed stiffer kinematic strategies and greater limb asymmetry, which are potentially risky patterns for non-contact (e.g. Anterior Cruciate Ligament) injury. Quantitative analysis on the field could contribute to deepening the biomechanical understanding of players’ motion and injury risk

    Redundancy analysis of cooperative dual-arm manipulators

    Get PDF
    This paper presents the redundancy analysis of two cooperative manipulators, showing how they can be considered as a single redundant manipulator through the use of the relative Jacobian matrix. In this way, the kinematic redundancy can be resolved by applying the principal local optimization techniques used in the single manipulator case. We resolve the redundancy by using the Jacobian null space technique, which permits us to perform several tasks with different execution priority levels at the same time; this is a useful feature, especially when the manipulators are to be mounted on and cooperate with a mobile platform. As an illustrative example, we present a case study consisting of two planar manipulators mounted on a smart wheelchair, whose degrees of redundancy are employed to move an object along a pre-defined path, while avoiding an obstacle in the manipulator's workspace at the same time

    Dynamic self-assembly and self-organized transport of magnetic micro-swimmers

    Full text link
    We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field

    Improving Maximum Data Collection Based On Pre-Specified Path Using a Mobile Sink for WSN

    Get PDF
    Data aggregation is one of the challenging issues which are faced in the wireless sensor network by using Energy Harvesting Sensors. Data collection in a fixed pre-defined path with time varying characteristic forms a major problem in Energy Harvesting Sensor Networks. In the proposed work the Adjustment based allocation method is used to allocate fixed time slots to each sensor nodes in which the network throughput can be increased with less energy consumption. The mobile sink transmits the polling message to all the nodes within the transmission range and makes decision based on the profits gained by the sensor nodes in each timeslot. The NP-Hard problem is defined with the form of reducing the complexity of the sensor nodes where larger number of data can be collected from the environment. The data collection throughput is maximized with the use of optimized path for the mobile sink in the network. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Beyond the shortest path: the path length index as a distribution

    Full text link
    The traditional complex network approach considers only the shortest paths from one node to another, not taking into account several other possible paths. This limitation is significant, for example, in urban mobility studies. In this short report, as the first steps, we present an exhaustive approach to address that problem and show we can go beyond the shortest path, but we do not need to go so far: we present an interactive procedure and an early stop possibility. After presenting some fundamental concepts in graph theory, we presented an analytical solution for the problem of counting the number of possible paths between two nodes in complete graphs, and a depth-limited approach to get all possible paths between each pair of nodes in a general graph (an NP-hard problem). We do not collapse the distribution of path lengths between a pair of nodes into a scalar number, we look at the distribution itself - taking all paths up to a pre-defined path length (considering a truncated distribution), and show the impact of that approach on the most straightforward distance-based graph index: the walk/path length
    • …
    corecore