
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2016

Path Following by a Quadrotor Using Virtual Target Pursuit Path Following by a Quadrotor Using Virtual Target Pursuit

Guidance Guidance

Abhishek Manjunath
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Manjunath, Abhishek, "Path Following by a Quadrotor Using Virtual Target Pursuit Guidance" (2016). All
Graduate Theses and Dissertations. 4990.
https://digitalcommons.usu.edu/etd/4990

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.usu.edu%2Fetd%2F4990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F4990&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4990?utm_source=digitalcommons.usu.edu%2Fetd%2F4990&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

PATH FOLLOWING BY A QUADROTOR USING VIRTUAL TARGET PURSUIT

GUIDANCE

by

Abhishek Manjunath

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Mechanical Engineering

Approved:

Rajnikant Sharma, Ph.D. Rees Fullmer, Ph.D.
Major Professor Committee Member

David Geller, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2016

ii

Copyright c© Abhishek Manjunath 2016

All Rights Reserved

iii

ABSTRACT

Path Following by a Quadrotor using Virtual Target Pursuit Guidance

by

Abhishek Manjunath, Master of Science

Utah State University, 2016

Major Professor: Rajnikant Sharma, Ph.D.
Department: Mechanical and Aerospace Engineering

Quadrotors, being more agile than fixed-wing vehicles, are the ideal candidates for

autonomous missions in small, compact spaces. The immense challenge to navigate such

environments is fulfilled by the concept of path following. Path following is the method

of tracking/tracing a fixed, pre-defined path with minimum position error while exerting

the lowest possible control effort.

In this work, the missile guidance technique of pure pursuit is adopted and modified

for a 3D quadrotor model to follow fixed, compact trajectories. A specialized hardware

testing platform is developed to test this algorithm. The results obtained from simulation

and flight tests are compared to results from another technique called differential flatness. A

small part of this thesis also deals with the stability analysis of the modified 3D pure pursuit

algorithm to track trajectories expending lower control effort.

(53 pages)

iv

PUBLIC ABSTRACT

Path Following by a Quadrotor using Virtual Target Pursuit Guidance

Abhishek Manjunath

Missile guidance laws have been solely developed to follow and intercept a target

thereby destroying or damaging it. In this research, the primary objective is to modify and

adopt a missile guidance law to be used on a quadrotor to follow a virtual target. The

target is termed ’virtual’ as it only exists mathematically in the form of equations. The

goal is to have the quadrotor successfully following the predefined path (described by the

target) while maintaining a fixed distance from the virtual target. To ensure viability and

assess performance, a detailed comparison with another path following law is made.

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Rajnikant Sharma, for

his insightful advice and patient guidance. Without his motivation and insights this work

would have never been complete. Also, I would like to express my appreciation towards

my committee members: Dr. Rees Fullmer and Dr. Geller, for their valuable comments

and inputs which helped me tremendously in framing this work. I would like to thank

various student members of RISC Lab for their constant support, encouragement, as well

as making it such a pleasant and rewarding place to work. Specifically, I would like to

thank Parwinder and Anusna for their constant support. I also wish to acknowledge the

help provided by Ishmaal, Soodeh and Sohum.

I also take this opportunity to acknowledge the conceptual ideas and help provided by

Dr. Ashwini Ratnoo, Assistant Professor, Dept. of Aerospace Engineering, IISc, Bangalore.

Saurabh and Vinay, members of AVL, IISc also require a special mention here for their

theoretical insights on this work.

I would like to express my gratitude to Dr. Catalin Buhusi and Dr. Mona Buhusi,

Department of Psychology, USU for their timely advice and support. I would also like to

thank Daniel Koch and Gary Ellingson, MAGICC Lab, BYU for their technical guidance

with respect to the PX4 autopilot firmware.

I have the highest regards for the MAE department and all of the staff members, for

offering me this opportunity of Masters research, as well as the financial assistance towards

my tuition. I am particularly grateful for all the assistance provided by Christine Spall,

who has helped me immensely through numerous paper works and formatting of the

dissertation.

Last but not least, special thanks to my parents and roommates Rajesh and Niranjan

for their constant support, encouragement and guidance throughout my study.

Abhishek Manjunath

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACRONYMS . xi

1 INTRODUCTION . 1
1.1 Background . 1
1.2 Contribution . 3
1.3 Thesis Organization . 4

2 PURE PURSUIT ALGORITHM WITH VIRTUAL TARGET GUIDANCE 5
2.1 Overview and Trajectory generation . 5

2.1.1 Equations of motion of the virtual target 6
2.1.2 Equations of motion of the quadrotor 7

2.2 Pure Pursuit Implementation . 7
2.2.1 Mapping to quadrotor commands . 9
2.2.2 Inverse Mapping . 9

2.3 Stability Analysis . 11

3 ROBUST, INTELLIGENT SENSING AND CONTROL-ROS-PIXHAWK TESTING
PLATFORM (RISC-RPTP) . 15

3.1 Components of the testing platform . 15
3.2 Setup . 16

3.2.1 Motion Capture System . 16
3.2.2 Aerial Platform . 16
3.2.3 Odroid XU4 . 19
3.2.4 Pixhawk and PX4 firmware . 21
3.2.5 Ground Control Station . 23

4 IMPLEMENTATION AND RESULTS . 24
4.1 Simulation . 24

4.1.1 Results . 24
4.2 Flight Test . 30

5 CONCLUSION AND FUTURE WORK . 37
5.1 Future Work . 37

vii

REFERENCES . 39

APPENDICES . 41
A ROS framework . 42

A.1 ROS nodes: Information/data flow 42

viii

LIST OF TABLES

Table Page

3.1 Processor: AR Drone v2.0 vs Pixhawk . 18

4.1 Circle (Simulation): Root Mean Square (RMS) error values (Convergence at
6 seconds) . 36

4.2 Inclined figure eight (Simulation): Root Mean Square (RMS) error values
(Convergence at 5 seconds) . 36

4.3 Circle (Flight test): Root Mean Square (RMS) error values (Convergence at
20 seconds) . 36

4.4 Inclined figure eight (Flight test): Root Mean Square (RMS) error values
(Convergence at 15 seconds) . 36

ix

LIST OF FIGURES

Figure Page

2.1 Relative geometry between virtual target moving on a pre-defined trajectory
and the UAV . 5

2.2 3D Geometry for Pursuit Guidance . 8

3.1 Components of RISC-RPTP . 15

3.2 Motion Capture setup at RISC Lab . 17

3.3 Cortex visualization of the capture volume with the quadrotor template . . 17

3.4 Osprey IR camera from Motion Analysis Corporation 18

3.5 Custom built quadrotor platform with Odroid and Pixhawk on-board . . . 19

3.6 Odroid XU4 . 20

3.7 Pixhawk-Odroid-ROS communication . 21

3.8 Pixhawk autopilot by 3D Robotics . 22

3.9 Pixhawk hardware-software interfacing . 22

4.1 Screen grab of the SIMULINK model depicting the flow of data 24

4.2 Circle: 3D trajectory with 0.5m/s velocity, 0.8m radius, 0.27m initial separation 25

4.3 Circle: Control effort plot with 0.5m/s velocity, 0.8m radius, 0.27m initial
separation . 25

4.4 Circle: Velocity plot with 0.5m/s velocity, 0.8m radius, 0.27m initial separation 26

4.5 Circle: Position error plot with 0.5m/s velocity, 0.8m radius, 0.27m initial
separation . 26

4.6 Figure eight: 3D trajectory with 0.16m/s velocity, 0.8m in the major axis,
1.2m in the minor axis, 0.18m initial separation 27

4.7 Figure eight: Control effort plot with 00.16m/s velocity, 0.8m in the major
axis, 1.2m in the minor axis, 0.18m initial separation 27

x

4.8 Figure eight: Velocity plot with 0.16m/s velocity, 0.8m in the major axis,
1.2m in the minor axis, 0.18m initial separation 28

4.9 Figure eight: 3D position error with 0.16m/s velocity, 0.8m in the major axis,
1.2m in the minor axis, 0.18m initial separation 28

4.10 Time lapse image of the quadrotor moving on the circular trajectory 31

4.11 Circle: 3D trajectory with 0.4 m/s velocity, 0.7 m radius, 0.15 m initial sepa-
ration . 32

4.12 Circle: Control effort plot with 0.4 m/s velocity, 0.7 m radius, 0.15 m initial
separation . 32

4.13 Circle: Velocity plot with 0.4 m/s velocity, 0.7 m radius, 0.15 m initial sepa-
ration . 33

4.14 Circle: Position error plot with 0.4 m/s velocity, 0.7 m radius, 0.15 m initial
separation . 33

4.15 Inclined figure eight: 3D trajectory with 0.23 m/s velocity, 0.7 m minor axis
and 1.35 m major axis, 0.36 m initial separation 34

4.16 Inclined figure eight: Control effort plot with 0.23 m/s velocity, 0.7 m minor
axis and 1.35 m major axis, 0.36 m initial separation 34

4.17 Inclined figure eight: Velocity plot with 0.23 m/s velocity, 0.7 m minor axis
and 1.35 m major axis, 0.36 m initial separation 35

4.18 Inclined figure eight: Position error plot with 0.23 m/s velocity, 0.7 m minor
axis and 1.35 m major axis, 0.36 m initial separation 35

A.1 ROS node flowchart . 42

xi

ACRONYMS

RISC Robust Intelligent Sensing and Control

DF Differential Flatness

TS Trajectory Shaping

PP Pure Pursuit

PN Proportional Navigation

RPTP ROS-Pixhawk Testing Platform

RTOS Real Time Operating System

UAV Unmanned Aerial Vehicle

PWM Pulse Width Modulation

ROS Robot Operating System

GPS Global Positioning System

RAM Random Access Memory

LQR Linear Quadratic Regulator

PID Proportional, Integral and Derivative

VT Virtual Target

MoCap Motion Capture

Hz Hertz

m/s meter per second

m meter

RPC Remote Procedure Call

MBps Megabyte per second

CHAPTER 1

INTRODUCTION

Fixed pitch quadrotors are aerial platforms, highly preferred for their mechanical sim-

plicity over other types of unmanned aerial platforms that can take-off and land vertically.

Unlike traditional, fixed-wing platforms, quadrotors have the ability to hover for a pro-

longed period of time, as well as to perform complex maneuvers like flips and pirouettes.

This unique property is what makes quadrotors to be highly desirable for navigating small,

tight indoor spaces which may also include plenty of obstacles [1]. Additionally, quadro-

tors are also being employed to perform dangerous and tedious tasks like power line in-

spection, mining and even agriculture [2].

In order to achieve autonomous flight in a small, constrained environment, there is

a need for robust and reliable path planning and following algorithms. Path planning

is the concept of deciding on how to get from present location to the desired location in

minimum time and exerting the least control effort possible. Path following is the concept

of following an already preset path with minimum errors in position and velocity. In this

thesis, we propose to adopt and run a 3D algorithm of pure pursuit concept (which was

only for 2D fixed wing aircraft [3]) developed in this research on an agile quadrotor. A

major part of this thesis also deals with the setup of the testing platform that was built for

the purpose of conducting flight tests on the quadrotor.

1.1 Background

Path following techniques are conceptualized based on the required resultant flight

characteristics and vehicle being used. Performance results vary depending on how a path

following algorithm is tuned. For example, if the goal is to achieve quick convergence to

the path, greater control effort is exerted and depending on the vehicle used with actuator

lag, there might be a large overshoot in position of the vehicle.

2

Several researchers have developed path following algorithms for quadrotors depend-

ing on the required output behavior/result [4] [5] [6]. Out of the several path following

techniques, Differential Flatness (DF) based path following approach has been shown to

be advantageous for aggressive path following [5] [6]. The flip side of DF is that the noise

in quadrotor states may lead to large position errors and hence, larger control effort is

exerted. The reason for this behavior is that the primary objective of DF concept is to

minimize the error between the states of the quadrotor and the virtual target.

There are several missile guidance laws that can be effectively used for path follow-

ing using a virtual target moving on the desired path [7]. These guidance algorithms are

anticipatory in nature and require small control effort in comparison to PID control and

DF based path following control, as the objective is to follow the path accurately and to

not intercept the virtual target. Also these techniques do not require all the vehicle states

as they need only the relative position and velocity and hence can be used in GPS-denied

environments as well. Park et al. [9] have used the well-known proportional navigation (PN)

guidance law to track a virtual target moving at a constant velocity. It was shown that the

fixed-wing UAV maintains a constant distance from the virtual target which controlled the

Unmanned Aerial Vehicle (UAV) to be on a curved path. In another work [10], trajectory

shaping (TS) technique has been used on a ground vehicle for virtual target following on a

generalized curvature path.

Pure pursuit has been demonstrated to work successfully in simulation, on ground

robots and even on full scale agricultural machinery to follow a desired trajectory [11] [12]

[13] [14]. Pursuit guidance law combined with virtual target concept has been used for

path following of fixed wing UAVs with a good degree of success for trajectories with large

radius by Medagoda et al. [3]. It was shown that a path defined using a set of waypoints

can be followed by pursuing a virtual target on the path where the velocity of the virtual

target is a function of the vehicle’s velocity and the distance between the virtual target

and the UAV. We extend this concept by adapting it to work on a quadrotor for smaller,

compact trajectories in order to asses its performance and the control effort involved to

3

quantitatively assess it against the concept of DF.

1.2 Contribution

The concept of Pure Pursuit used in this research has been extensively discussed in

Chapter 2. Contributions made through the research work in the thesis are as listed below;

• The missile guidance concept of Pure Pursuit (PP) used by Medagoda et al. [3] for

fixed-wing aircraft was modeled in 3D and adopted for a quadcopter including the

concept of virtual target guidance. This technique was modified primarily for small,

compact and curved trajectories.

• The pure pursuit guidance (PP) concept was simulated for a real-world quadcopter

model in SIMULINK and the performance was compared with both DF and TS al-

gorithms. This work titled ’Application of Virtual Target based Guidance Laws to Path

Following of a Quadrotor UAV’ was accepted in the International Conference on Un-

manned Aircraft Systems (ICUAS) 2016 [15].

• A stability analysis was performed to mathematically prove that the vehicle con-

verges to the desired trajectory using the PP guidance concept. This was also proved

by the simulation and hardware results.

• A robust ROS1-Pixhawk Testing Platform (RPTP) was developed in collaboration

with Parwinder Mehrok, using which this algorithm was tested. This testing plat-

form was developed in such a way that both ground and aerial vehicles can be uti-

lized in the future for hardware implementation of any control algorithm. Personal

responsibilities in developing this platform included;

– On-board computer (Odroid XU4) setup.

– Changes made to the PX4 Flight Stack firmware,2 running on the Pixhawk au-

topilot, to accept commands from the on-board computer.

1Robot Operating System
2The PX4 firmware was provided by the generous members of MAGICC LAB, Brigham Young University.

4

– Development of the communication bridge and ROS nodes between the Ground

Control Station (GCS), on-board computer and the Pixhawk autopilot.

• All of this work, including the hardware results is due for submission to the Un-

manned Systems Journal titled Advances in Unmanned Aircraft Systems3, published by

World Scientific.

1.3 Thesis Organization

The thesis is organized in the following way.

• Chapter 2 deals with the objective, implementation and stability analysis of the PP

algorithm used in this work.

• Chapter 3 provides details about the hardware testing platform setup and includes

specifications of the components involved.

• Chapter 4 lists out the results obtained both from simulations and flight tests while

comparing them with the results obtained using DF for similar parameters.

• Chapter 5 concludes this thesis by highlighting my contribution and its significance

for all future experiments conducted at RISC Lab.

3Special Issues - ICUAS 2016

5

CHAPTER 2

PURE PURSUIT ALGORITHM WITH VIRTUAL TARGET GUIDANCE

In the following section, the method involved in generating the desired trajectory and

the equations of motion of the quadrotor model is presented.

2.1 Overview and Trajectory generation

Fig. 2.1: Relative geometry between virtual target moving on a pre-defined trajectory and
the UAV

The primary objective of the vehicle is to follow a virtual target moving along a fixed,

pre-defined, compact trajectory separated by Line of Sight (LOS) distance R. Fig. 2.1 de-

scribes the relative motion between the vehicle and the virtual target moving on a prede-

fined path where Vt is the target velocity, Vv is the vehicle velocity, (xt, yt, zt) are virtual

6

target position co-ordinates, (xv, yv, zv) are vehicle position co-ordinates, ψt is the head-

ing angle of the target velocity vector w.r.t x-axis while θt is the pitch angle of the target

velocity vector w.r.t x-y plane, ψv is the heading angle of the vehicle velocity vector w.r.t

x-axis while θv is the pitch angle of the vehicle velocity vector w.r.t x-y plane, ψl is the LOS

heading angle measured w.r.t x-axis while θl is the LOS pitch angle of the target velocity

vector w.r.t x-y plane, R is the LOS vector, Vv is the velocity vector of the vehicle while Vt is

the velocity vector of the target, av
h and av

v are components of vehicle accelerations in hori-

zontal and vertical plane and acmd is the commanded lateral acceleration perpendicular to

Vv.

2.1.1 Equations of motion of the virtual target

The following equations are utilized to generate the required trajectory using the vir-

tual target concept.

For a curved trajectory, the tangential velocity is a product of the angular velocity

and radius of the desired curved trajectory. Knowing this, the equations of motion of the

virtual target are

ω = Vt/r, (2.1)

xt = r cos ωt, (2.2)

yt = r sin ωt, (2.3)

zt = n, (2.4)

ẋt = −rω sin ωt, (2.5)

ẏt = rω cos ωt, (2.6)

żt = 0, (2.7)

ẍt = −rω2 cos ωt, (2.8)

ÿt = −rω2 sin ωt, (2.9)

z̈t = 0, labeltgtw p (2.10)

7

where radius r and velocity Vt is chosen to generate the desired trajectory for DF while

Vt = Vv
R∗
R for PP, ω is the angular velocity and n is a constant that is chosen to set the

height of the trajectory. R is the LOS distance between the target and vehicle while R∗ is

the minimum value of the LOS distance R∗ and is a user defined parameter.

2.1.2 Equations of motion of the quadrotor

We now define the equations of motion of the unmanned aerial vehicle as the follow-

ing,

ẋv = Vv cos θv cos ψv, (2.11)

ẏv = Vv cos θv sin ψv, (2.12)

żv = −Vv sin θv, (2.13)

ψ̇v =
ah

v
Vv cos θv

, (2.14)

θ̇v =
av

v
Vv

, (2.15)

where, Vv is the velocity of the vehicle, av
v is the vertical acceleration of the vehicle and ah

v

is the horizontal velocity of the vehicle, ψ̇v is the yaw rate of the vehicle and θ̇v is the rate

of pitch of the vehicle. When the quadrotor is considered as a point mass, θv is the flight

path angle while ψv is the course angle.

2.2 Pure Pursuit Implementation

This section concentrates on the equations involved in setting up the PP algorithm

using the quadrotor model described previously.

The Pursuit Guidance approach by Medagoda et al. [3] involves following a virtual

target using the law of pure pursuit (PP) derived from the principles of missile guidance.

This approach aims to maintain its heading towards the target by driving the respective

errors in azimuth (ψ) and elevation (θ) angles to zero. The quadrotor does not intercept the

8

Fig. 2.2: 3D Geometry for Pursuit Guidance

target and maintains a minimum distance (R∗) between itself and the virtual target. This is

a highly simplified approach as only two angles are needed to be commanded in order to

keep the quadrotor on the correct path. The velocities of the vehicle in x (ẋv), y (ẏv) and z

(żv) directions are used to compute the azimuth (ψv) and elevation angles (θv) represented

in Fig. 2.2 which is given by,

ψv = tan−1
(

ẏv

ẋv

)
,

θv = tan−1

(
żv√

ẋ2
v + ẏ2

v

)
.

The commanded azimuth angle (ψc) and elevation angle (θc) are given by,

ψc = tan−1
(

yt − yv

xt − xv

)
,

θc = tan−1
(

zt − zv

Rxy

)
,

where range in x− y plane is given by,

Rxy =

√
(xv − xt)

2 + (yv − yt)
2.

9

We now compute the horizontal and vertical acceleration commands which is given by,

ah
v = Kψ (ψc − ψv) ,

av
v = Kθ (θc − θv) .

2.2.1 Mapping to quadrotor commands

We map the acceleration components obtained from the PP algorithm in the steps

above to quadrotor commands that include thrust (T), roll (φ), pitch (θ) and yaw rate (r)

in accordance with the work from Ferrin et al. [6].

We obtain the following accelerations in 3D by differentiating equations (2.11), (2.12)

and (2.13),

ẍv = V̇vcθv cψv − θ̇vVvsθv cψv − ψ̇vVvcθv sψv ,

ÿv = V̇vcθv sψv − θ̇vVvsθv sψv + ψ̇vVvcθv cψv ,

z̈v = −θ̇vVvcθv − V̇vsθv ,

V̇v = kv(Vd −Vv),

where kv is the proportional gain for the velocity controller, Vd is the desired speed of the

quad-rotor, ψ̇v and θ̇v can be computed from the guidance law which are represented in

equations 2.15 and 2.14. The input acceleration vector is given by,

up =


p̈nv

p̈ev

p̈dv − g

 .

2.2.2 Inverse Mapping

Inverse mapping is the method used to obtain the four inputs of throttle (T), roll angle

(φ), pitch angle (θ) and yaw rate (r) to be provided to the quadrotor. From Ferrin et al. [6]

we have u and the attitude control input vector (ν) can be computed for inverse map-

10

ping. This is very useful in the comparison as the control input vector of the two different

techniques can be obtained in the exact same way.

ν =



T

φ

θ

r


=

 f̂−1
p (x, u)

f̂−1
ψ (x, u)

 .

To compute thrust,

up = R(φ)R(θ)R(ψ)


0

0

−1

 T
m

,

where R(φ)R(θ)R(ψ) is the rotation matrix of the quadrotor denoted by,

R(φ)R(θ)R(ψ) =


c(φ)c(ψ)− c(θ)s(φ)s(ψ) −c(ψ)s(φ)− c(φ)c(θ)s(ψ) s(θ)s(ψ)

c(θ)c(ψ)s(φ) + c(φ)s(ψ) c(φ)c(θ)c(ψ)− s(ψ)s(ψ) −c(ψ)s(θ)

s(φ)s(θ) c(φ)s(θ) c(θ)


(2.16)

Normalizing the thrust, we obtain,

T = m
√

uT
p .up.

To compute the desired roll (φd) and pitch angles (θd), we define an array Z as,

Z =


Z1

Z2

Z3

 = R(ψ)up

[
m
−T

]
= RT(θ)RT(φ)


0

0

1

 .

11

Solving for φ and θ in the above equation, we have,

φd = sin−1(−Z2),

θd = tan−1
(

Z1

Z3

)
.

Similarly the last input rd is equal to f−1
ψ can solved as

rd = f−1
ψ = uψ cos(θ) cos(φ)− θ̇ sin(φ),

where θ̇ = q can be computed by differentiating θ.

2.3 Stability Analysis

In this section, we attempt to prove that the system is locally stable i.e., stable at the

equilibrium point using the same technique used in [16]. The equilibrium achieved is

characterized by vehicle settling down at a constant altitude and moving on a horizontal

circular trajectory of fixed radius.

Using relative coordinate system, we have Ṙ, ˙ψLOS and ˙θLOS given by,

Ṙ = Vv cosθv cosθLOS cos(ψv − ψLOS) + Vv sinθv sinθLOS

− Vt cosθt cosθLOS cos(ψv − ψLOS) − Vt sinθt sinθLOS

ψ̇LOS =
Vv cosθv sin(ψv − ψLOS) − Vt cosθt sin(ψt − ψLOS)

R cosθLOS

θ̇LOS =
−Vv cosθv sinθLOS cos(ψv − ψLOS) −Vv sinθt cosθLOS

R

+
−Vt cosθt sinθLOS cos(ψt − ψLOS) −Vt sinθv cosθLOS

R

12

ψ̇t = −
K(ψt − ψLOS)

Vt cos θt

θ̇t = −
K(θt − θLOS)

Vt

ψ̇v =
K(π − (ψv − ψLOS))

Vv cos θv

θ̇t =
K(−θv − θLOS)

Vv

The Jacobian matrix is defined by,

J =
δ f
δx

=



Ṙ

δψ̇t

δψ̇v

θ̇LOS

θ̇t

θ̇v


=



0 −Vt −Vv 0 0 0

Vt + Vv
R2

−K
Vt

0 0 0 0

Vt + Vv
R2 0 −K

Vv
0 0 0

0 0 0 0 −Vt
R

−Vv
R

0 0 0 −K
Vt

−K
Vt

0

0 0 0 −K
Vv

0 −K
Vv





R

δψt

δψv

θLOS

θt

θv


where,

δψt = ψt − ψLOS

δψv = ψv − ψLOS

The average values chosen for the states are R0 = 4V2

Kπ , δψt0 = 0, δψv0 = π
4 , θLOS0 = 0,

θt0 = 0 and θv0 = 0.

At equilibrium, Vt = Vv = V. Assuming a1 = V, a2 = 2V
R2 , a3 = K

V and a4 = V
R .

13

The Jacobian matrix can now be written as,

J =



0 −a1 −a1 0 0 0

a2 −a3 0 0 0 0

a2 0 −a3 0 0 0

0 0 0 0 −a4 −a4

0 0 0 −a3 −a3 0

0 0 0 −a3 0 −a3


The characteristic equation is given by,

det(sI − A) = 0

where, I is a 6x6 identity matrix and A is the Jacobian matrix.

The determinant of the equation was calculated using Matlab and is given by,

det(sI − A) = (a3 + s)2(s2 + a3s + 2a1a2)(s2 + a3s − 2a3a4) = 0

The roots of the characteristic equation are the eigenvalues which were obtained by solving

it. The eigenvalues are,

eigenvalues =



− a3
2 −

√
a23 − 8a3a4

2

− a3
2 +

√
a23 − 8a3a4

2

− a3
2 −

√
a23 − 8a1a2

2

− a3
2 +

√
a23 − 8a1a2

2

−a3

−a3


Now to check if the eigenvalues are truly negative, we substitute the flight test values

of V = 0.4m/s, K = 0.1 and R = 0.25m in the above equation. The resultant eigenvalues

14

are,

eigenvalues =



−0.125 + 3.198 i

−0.125− 3.198 i

−0.125 + 0.225 i

−0.125− 0.225 i

−0.25

−0.25


Since the eigenvalues are negative, this proves that the system is stable at the equilib-

rium point.

15

CHAPTER 3

ROBUST, INTELLIGENT SENSING AND CONTROL-ROS-PIXHAWK TESTING

PLATFORM (RISC-RPTP)

The testing platform was developed from the ground-up in collaboration with Par-

winder Mehrok. The components of the setup and personal contributions made in this

regard are detailed out in this chapter.

3.1 Components of the testing platform

Fig. 3.1: Components of RISC-RPTP

A major part of this work was the development of the testing platform that was used

to validate the PP algorithm in hardware. The Robust, Intelligent Sensing and Control

ROS-Pixhawk Testing Platform (RISC-RPTP) that was systematically developed, consists

of the following components;

• Motion Capture System

– 16 Infrared (IR) camera grid

– Cortex Software by Motion Analysis Corporation

• Ground Control Station

16

– Estimation algorithm

– ROS-Master

• Quadrotor

– Pixhawk with modified PX4 Flight Stack

– Odroid XU4

∗ MavROS

∗ MavLINK

∗ Control Algorithm

3.2 Setup

This section provides in-depth details about each component of the testing platform.

3.2.1 Motion Capture System

A well planned grid of 16 Osprey IR cameras have been used to cover the entire cap-

ture volume spanning 13 feet in length, 16 feet in width and 13 feet high. The volume as

visualized in the Cortex software GUI is depicted in Fig. 3.3. The layout and position of

each camera in the grid as shown in Fig. 3.2 as well as the mounting structure made up

of 2 inch by 4 inch wooden beams was carried out by Parwinder Mehrok. Further details

about the MoCap setup can be found in [17]. The vehicle to be tracked inside the volume

have a unique marker template positioned on it and the 3D position data of each marker

is available to the end user at ∼200 Hz in the form of Ethernet packets.

3.2.2 Aerial Platform

All the initial experiments conducted at the Robust, Intelligent Sensing and Control

(RISC) Lab were on an AR Drone quadrotor manufactured by Parrot SA [18]. The AR

Drone is a small, off-the-shelf quadrotor which connects to the user’s phone/tablet over

WiFi in order to be controlled. Even though the AR Drone was capable of stable flight

17

Fig. 3.2: Motion Capture setup at RISC Lab

Fig. 3.3: Cortex visualization of the capture volume with the quadrotor template

18

Fig. 3.4: Osprey IR camera from Motion Analysis Corporation

using the bottom camera for optical flow, sluggish response and latency in WiFi commu-

nication was the primary motivation to explore more agile and powerful aerial platforms.

Furthermore, the proprietary firmware on the AR Drone’s autopilot prevented any useful

modifications to enable on-board processing.

All the above objectives were satisfied by the 32-bit ARM based Pixhawk autopilot

which originally evolved from the PX4 autopilot project, ETH, Zurich [19] [20]. A fast

processor in combination with open source firmware was the ideal controller to test our al-

gorithm at the RISC Lab. Table. 4.1 provides a side by side comparison of the processor

specifications of the AR Drone and Pixhawk.

Table 3.1: Processor: AR Drone v2.0 vs Pixhawk

Specifications Ar Drone v2.0 Pixhawk

Processor 32-bit ARM Cortex A8

32-bit ARM STM32F427

Cortex M4 and 32-bit

STM32F103 failsafe

co-processor

A small fixed pitch quadrotor was custom built out of high strength carbon fiber, for

the purpose of developing a faster, more powerful aerial platform as represented in Fig.

19

Fig. 3.5: Custom built quadrotor platform with Odroid and Pixhawk on-board

3.5. The detailed design, selection of the power system and testing of the quadrotor was

performed by Parwinder Mehrok and can be found in [17]. The new platform enabled us

to run smaller, aggressive trajectories as described in Chapter 4.

3.2.3 Odroid XU4

The Beaglebone Black was the initial choice made to do all the required computations

on-board in order to reduce the latency due to WiFi as experienced in the AR Drone [21].

However, due to the limited processing power of its single core 1 GHz ARM Cortex A8

processor and 512 MB of RAM, the Beaglebone Black would run hot and slow despite the

fact that high efficiency copper heat sinks were installed. Additionally, the ARM versions

of ROS and Linux installed caused compatibility issues with some of the python libraries

that were used.

To mitigate these problems, the Odroid XU4 was the single board computer (SBC) of

20

Fig. 3.6: Odroid XU4

choice. With a dual processor setup combining a Samsung Exynos5422 Cortex A15 (2 GHz)

processor and a Cortex A7 Octa core CPU (1.4 Ghz), coupled with 2 GB of RAM. This deci-

sion was further re-enforced by the fact that the members of the Advanced Robotic Systems

Engineering Laboratory (ARSENL) from the Naval Postgraduate School, Monterey, Cali-

fornia were able to fly 50 fixed-wing UAVs simultaneously using Pixhawk coupled with

an Odroid U31 for more than 45 minutes in harsh, hot weather [22]. In other words, this

experiment proved that the Odroid was capable of handling intensive flight codes without

running out of processing power even in extreme conditions of heat.

Odroid XU4 setup

The Odroid XU4 computer was setup with the following steps;

• A lite version on Ubuntu (LUbuntu) was loaded on the Odroid XU4 using a micro SD

(Secure Digital) card and the necessary swap space was set up that was equivalent to

the size of the RAM (∼2 GB).

• Bare bones version of the ROS-Indigo was installed and the workspace was config-

ured to accept the GCS as the master.

1Predecessor to the Odroid XU4

21

Fig. 3.7: Pixhawk-Odroid-ROS communication

• Using a UART1 (FTDI2) converter, the telemetry port of the Pixhawk was connected

to one of the USB 3.0 ports on the Odroid XU4 as in Fig. 3.7.

• MavROS and MAVLink packages were setup to enable communication from the

Odroid XU4 to the Pixhawk autopilot using the mav pix bridge node. The mav pix bridge

node was coded in C++ in such a way that it would run at the same rate as the con-

troller node on the Odroid XU4 so as to be in sync.

3.2.4 Pixhawk and PX4 firmware

The Pixhawk pictured in Fig. 3.8 is a 32-bit ARM based autopilot which runs a Real

Time Operating System (RTOS) called NuttX. The PX4 middleware runs on top of the op-

erating system and provides device drivers and a micro object request broker (uORB) for

asynchronous communication between the individual tasks running on the autopilot. The

middle-ware employs a set of standard interfaces to read radio inputs, to output control

commands and then to control the actuators. The PX4 firmware runs on top of this middle-

ware and consists of a collection of guidance, navigation and control algorithms for fixed

wing, multirotor, ground vehicle and aquatic vehicles as depicted in Fig. 3.9. It also con-

tains estimators and filters for attitude and position. The PX4 v2 firmware was provided

1Universal Asynchronous Receiver Transmitter
2Future Technology Devices International

22

Fig. 3.8: Pixhawk autopilot by 3D Robotics

Fig. 3.9: Pixhawk hardware-software interfacing

to us by the members of MAGICC Lab, Brigham Young University and it was built and

compiled using the ARM Tool Chain provided by the developers of the PX4 firmware [23].

The changes made to the Pixhawk and PX4 firmware are as follows,

• The Pixhawk was modified to accept control commands from the Odroid through

one of the inbuilt telemetry ports. The data rate link speed was set to an optimum

value of about 0.92 MBps3 (921600 baud rate).

3Mega Byte per second

23

• The PX4 firmware was modified through commands to accept values of roll, pitch,

throttle and yaw rate from the Odroid XU4.

• With the safety pilot on standby, the hierarchy for the command signals had to be

set. The pilot’s radio transmitter was made the master and he was in full control

of the aerial vehicle at all times. By moving the radio sticks past the set deadband

PWM4 value for roll, pitch or yaw, the autopilot would override any autonomous

commands and accept the manual control values. This was very useful as the pilot

was able to prevent damage to the aerial vehicle every time there was an error with

the control commands being sent from the on-board computer. This also eliminated

the need for a dedicated radio switch to be assigned for off-board control mode.

• To further enhance safety during flight tests, the PX4 firmware was modified in such

a way as to only accept the lowest throttle value being commanded. For example, if

the Odroid was to command 70 percent throttle and the pilot had the throttle stick at

50 percent, then the accepted throttle value would be the lowest of the two i.e., the

pilot’s throttle value.

3.2.5 Ground Control Station

The Ground Control Station (GCS) is a computer running Ubuntu 14.04 and ROS-

Indigo on board. This computer receives the 3D marker position data over Ethernet from

the Cortex Software at about 200 Hz. The individual marker data is used to estimate the

vehicle position, velocity, attitude and angular rates using the estimation package on the

GCS computer. These 12 states of the vehicle are sent to the on-board computer which

uses them as feedback for the control loop running on it. The GCS computer is also used

to control the on-board Odroid XU4 and to make changes to the control algorithm or flight

parameters instantly over SSH (Secure Shell).

4Pulse Width Modulation

24

CHAPTER 4

IMPLEMENTATION AND RESULTS

This chapter deals with how the algorithm was implemented both in simulation and

on hardware and details out the observations from the results obtained. The first section

deals with the implementation of the algorithm on SIMULINK.

4.1 Simulation

The quadrotor was modeled using the actual mass of 0.786 kg and real inertial data in

SIMULINK and the PP algorithm was implemented as depicted in the figure below. For

Fig. 4.1: Screen grab of the SIMULINK model depicting the flow of data

a realistic comparison so that the calculations were done at the same time-step, both the

algorithms of PP and DF were run from the same SIMULINK file. This approach also made

it easier to collect all the required data for plotting.

4.1.1 Results

A flat circular trajectory with radius of 0.8m and a figure eight trajectory with 1.2m in

the major axis and 0.8m as the minor axis had been chosen as the reference trajectory.

25

Fig. 4.2: Circle: 3D trajectory with 0.5m/s velocity, 0.8m radius, 0.27m initial separation

Fig. 4.3: Circle: Control effort plot with 0.5m/s velocity, 0.8m radius, 0.27m initial separa-
tion

26

Fig. 4.4: Circle: Velocity plot with 0.5m/s velocity, 0.8m radius, 0.27m initial separation

Fig. 4.5: Circle: Position error plot with 0.5m/s velocity, 0.8m radius, 0.27m initial separa-
tion

27

Fig. 4.6: Figure eight: 3D trajectory with 0.16m/s velocity, 0.8m in the major axis, 1.2m in
the minor axis, 0.18m initial separation

Fig. 4.7: Figure eight: Control effort plot with 00.16m/s velocity, 0.8m in the major axis,
1.2m in the minor axis, 0.18m initial separation

28

Fig. 4.8: Figure eight: Velocity plot with 0.16m/s velocity, 0.8m in the major axis, 1.2m in
the minor axis, 0.18m initial separation

Fig. 4.9: Figure eight: 3D position error with 0.16m/s velocity, 0.8m in the major axis, 1.2m
in the minor axis, 0.18m initial separation

29

A constant velocity of 0.5m/s was chosen which provides the required angular velocity

depending on the radius of the circle and a velocity of 0.16 m/s for the figure eight trajec-

tory had been chosen. Using sampling time, angular velocity and equations of motion of

the virtual target, the required waypoints for the circular and figure eight trajectories were

generated. The convergence time of the PP technique depends greatly on the initial con-

ditions of position and velocity. It was observed that the initial position of vehicle should

always be behind the starting point of the virtual target with a LOS separation greater than

R∗. It is important to note that the selected value of R∗ should never exceed 1.5 times the

radius of the circle or the minor axis of the figure eight, as the algorithm is sensitive to

initial conditions. Also, the initial velocity vector should always point towards the initial

target position in order to get the vehicle to converge faster. The concept of Differential

Flatness does not necessitate such kind of initial conditions for quicker convergence.

From Fig. 4.2 and Fig. 4.6, it is clear that both PP and DF algorithms perform well for

both the trajectories and the vehicle stays on the trajectory. The assumption made here is

that there is no noise in any of the states being used to compute the control commands.

Fig. 4.3 and Fig. 4.7 represents the control inputs to the quadrotor generated from the

respective guidance algorithms where it is seen that for DF, the initial roll and pitch angles

are higher as the DF algorithm tends to intercept the target in the quickest possible time.

Fig. 4.5 and Fig. 4.9 represents the errors in position of the quadrotor with respect to

the commanded trajectory position. For the circular trajectory, the error for PP is a lot

less than the error obtained for the DF approach. For the figure eight trajectory, the DF

algorithm produces an overshoot that is a little more than the overshoots produced by

PP technique. Fig. 4.4 and Fig. 4.8 depicts the velocities attained in order to follow the

generated trajectory. It is observed that DF has a high initial velocity with the others being

almost the same for the circular trajectory while there is a substantial difference in the

commanded and velocity attained by the DF algorithm while following the figure eight

trajectory as it seems to attain a maximum value of about 0.3 m/s from Fig. 4.8. Since

only a proportional gain is used for velocity control, this phenomenon is observed. The PP

30

algorithm almost remains stable at the commanded velocity with 0.02 m/s magnitude.

In the next section, the hardware results were obtained using the RISC-RPTP and the

resultant flight data was bagged in real-time. We also discuss the observations from the

plots obtained.

4.2 Flight Test

In this section, we describe how the flight tests were carried out, the difficulties we

faced and deduce our observations from the results obtained. The algorithm of PP was

tested on a custom 300 mm quadrotor with a Pixhawk on board. The controls node was

run from the on-board computer at 100 Hz. The controls node would be launched only

after the vehicle was armed manually using the radio failing which the Pixhawk would

display an error message of way-point timing out. The challenges we experienced while

running our algorithm on hardware was that,

• Since the quadrotor was powered by Lithium-Polymer batteries, voltage sag after

the battery reached a voltage below 11.8v, greatly affected throttle behavior during

autonomous flights.

• Coupled with voltage sag was the fact that the control in z-direction was very slug-

gish. This greatly affected the accuracy of the data being recorded.

• The MoCap software node would shut down erratically leading to unwanted vehi-

cle behavior eventually leading to damage to the quadrotor. To prevent this from

occurring again, the accelerations were limited to a preset value in the code and the

volume was re-calibrated after every 4 hours of flight.

• The Pixhawk accelerometer would develop offset/drift after running flight tests for

an extended period of time leading to a bias when following the trajectory. Fortu-

nately, this was a one-off incident and was rectified by swapping it with a newer

board.

31

• Since the virtual target depended on the range being sent using the vehicle states,

the trajectory data was riddled with noise. This was countered by using a low-pass

filter (LPF) on the vehicle states being used to compute range. Also the virtual target

was bounded to not produce any negative velocities that were being cause by noisy

vehicle data.

A circular trajectory of 0.7 m radius and an inclined figure eight trajectory with 0.7 m

in the minor axis and 1.35 m in the major axis, was chosen to replicate flying in a compact

environment. The velocity of the vehicle was chosen to be 0.4 m/s and 0.23 m/s for the

circular and figure eight trajectory respectively while the initial separation between the ve-

hicle and the virtual target was set to be 0.15 m for the circular trajectory and 0.36 m for the

figure eight trajectory. From successive experiments, it was observed that the pure pursuit

algorithm performed well when the initial position of the vehicle was set to be outside the

required trajectory apart from the other mandatory requirements of initial conditions as

listed in the simulation section.

Fig. 4.10: Time lapse image of the quadrotor moving on the circular trajectory

32

Fig. 4.11: Circle: 3D trajectory with 0.4 m/s velocity, 0.7 m radius, 0.15 m initial separation

Fig. 4.12: Circle: Control effort plot with 0.4 m/s velocity, 0.7 m radius, 0.15 m initial
separation

From Fig. 4.11 and Fig. 4.15, it is observed that the vehicle does converge to the

trajectory using technique of PP. The vehicle takes some time to converge on to the tra-

jectory unlike the technique of DF which intercepts the target in the minimum possible

time. This re-enforces the observations made from the plots Fig. 4.5 and Fig. 4.9 obtained

33

Fig. 4.13: Circle: Velocity plot with 0.4 m/s velocity, 0.7 m radius, 0.15 m initial separation

Fig. 4.14: Circle: Position error plot with 0.4 m/s velocity, 0.7 m radius, 0.15 m initial
separation

from simulations. Fig. 4.12 and Fig. 4.16 represents the control inputs to the quadrotor

from their respective techniques. Surprisingly, the quadrotor is observed to exert greater

control effort in comparison to DF algorithm. However, the initial overshoot from DF can

still be observed quite distinctively in both the figures. This initial overshoot using DF can

34

Fig. 4.15: Inclined figure eight: 3D trajectory with 0.23 m/s velocity, 0.7 m minor axis and
1.35 m major axis, 0.36 m initial separation

Fig. 4.16: Inclined figure eight: Control effort plot with 0.23 m/s velocity, 0.7 m minor axis
and 1.35 m major axis, 0.36 m initial separation

again be seen in Fig. 4.13 and Fig. 4.17 where the magnitude is as high as 1 m/s while

the commanded being 0.4 m/s. This aggressive behavior is noticeable when the trajectory

switches from a way-point to a circle. Fig. 4.14 and Fig. 4.18 paints a clear picture about the

35

Fig. 4.17: Inclined figure eight: Velocity plot with 0.23 m/s velocity, 0.7 m minor axis and
1.35 m major axis, 0.36 m initial separation

Fig. 4.18: Inclined figure eight: Position error plot with 0.23 m/s velocity, 0.7 m minor axis
and 1.35 m major axis, 0.36 m initial separation

position errors obtained from both the algorithms. For such a compact trajectory of radius

0.7 m, the PP approach does perform better for the chosen set of conditions discounting

the magnitude of error observed at about 14 seconds due to the switch from way-point to

36

trajectory when the PP technique drives the quadrotor into tail-chase mode.

From the results obtained from both simulations and flight test data, it is distinct that

the concept of PP produces lower RMS values of position errors, except for the inclined

circle trajectory in hardware, as depicted in Table 4.1, 4.2, 4.3 and 4.4.

Table 4.1: Circle (Simulation): Root Mean Square (RMS) error values (Convergence at 6
seconds)

Concept Complete Data
Convergence

Data

PP 0.0299 m 0.0134 m
DF 0.0378 m 0.0197 m

Table 4.2: Inclined figure eight (Simulation): Root Mean Square (RMS) error values (Con-
vergence at 5 seconds)

Concept Complete Data
Convergence

Data

PP 0.1427 m 0.0160 m
DF 0.0288 m 0.0293 m

Table 4.3: Circle (Flight test): Root Mean Square (RMS) error values (Convergence at 20
seconds)

Concept Complete Data
Convergence

Data

PP 0.1173 m 0.1078 m
DF 0.1446 m 0.1095 m

Table 4.4: Inclined figure eight (Flight test): Root Mean Square (RMS) error values (Con-
vergence at 15 seconds)

Concept Complete Data
Convergence

Data

PP 0.1154 m 0.0870 m
DF 0.0754 m 0.0752 m

37

CHAPTER 5

CONCLUSION AND FUTURE WORK

This research explored the possibility of using the pure pursuit missile guidance law

on a quadrotor to follow a virtual target moving on a desired compact trajectory. Through

this work the following objectives were fulfilled,

• The modified 3D algorithm of PP was successfully simulated using a real world

quadrotor model and demonstrated the ability to follow compact paths while ex-

erting minimum control effort (in comparison to DF). This was also proved mathe-

matically by the stability analysis in Chapter 2.

• To validate the results obtained from simulation, the algorithm was successfully im-

plemented on hardware.

• The systematic development of the RISC-RPTP was instrumental in realizing the PP

algorithm in hardware involving the lowest possible latency in communication. Ad-

ditionally, the testing platform was developed in such a way that any control al-

gorithm including PP can be set up and tested with minimal time. Also, the same

platform can be utilized to test fixed wing aerial vehicles as well as ground robots.

• The results obtained both from simulation and flight tests clearly show that the con-

cept of pure pursuit does a good job of following the trajectory better than the DF

concept for all cases except the figure eight trajectory. The position error for DF is

marginally higher than the errors obtained for the PP concept. The PP technique

was found to be highly sensitive to the initial condition parameters as well the user

defined values of vehicle velocity and initial line of sight separation.

5.1 Future Work

Work in the near future could involve,

38

• Improving the reliability of the PP algorithm to perform better for a wider range of

conditions.

• Testing the algorithm on variable pitch aerial platforms to assess changes in behavior

and performance.

• Extensively testing the RPTP using GPS feedback at slower rates instead of the cur-

rent MoCap feedback (200 Hz).

• Adapting the changes made to PX4 v2 firmware to newer releases in order to avail

full functionality of the hardware package on Pixhawk.

39

REFERENCES

[1] Bouabdallah, S. and Siegwart, R., Field and Service Robotics: Results of the 5th Interna-
tional Conference, chap. Towards Intelligent Miniature Flying Robots, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 429–440.

[2] Golightly, I. and Jones, D., “Visual control of an unmanned aerial vehicle for power
line inspection,” Advanced Robotics, 2005. ICAR ’05. Proceedings., 12th International Con-
ference on, July 2005, pp. 288–295.

[3] B. Medagoda, E. D. and Gibbens, P. W., “Synthetic-waypoint guidance algorithm for
following a desired flight trajectory,” Journal of guidance, control, and dynamics, Vol. 33,
No. 2, 2010, pp. 601–606.

[4] Mellinger, D., Michael, N., and Kumar, V., “Trajectory generation and control for pre-
cise aggressive maneuvers with quadrotors,” The International Journal of Robotics Re-
search, 2012, pp. 0278364911434236.

[5] Mellinger, D. and Kumar, V., “Minimum snap trajectory generation and control for
quadrotors,” Robotics and Automation (ICRA), 2011 IEEE International Conference on,
IEEE, 2011, pp. 2520–2525.

[6] Ferrin, J., Leishman, R., Beard, R., and McLain, T., “Differential flatness based control
of a rotorcraft for aggressive maneuvers,” Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, 2011, pp. 2688–2693.

[7] Kain, J. and Yost, D., “Command to line-of-sight guidance: a stochastic optimal con-
trol problem,” Journal of Spacecraft and Rockets, Vol. 14, No. 7, 1977, pp. 438–444.

[8] Blakelock, J. H., Automatic control of aircraft and missiles, John Wiley & Sons, 1991.

[9] Park, S., Deyst, J., and How, J. P., “A new nonlinear guidance logic for trajectory
tracking,” AIAA guidance, navigation, and control conference and exhibit, 2004, pp. 1–16.

[10] Ratnoo, A., Hayoun, S. Y., Granot, A., and Shima, T., “Path following using trajectory
shaping guidance,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 1, 2014,
pp. 106–116.

[11] Morales, J., Martı́nez, J. L., Martı́nez, M. A., and Mandow, A., “Pure-Pursuit Reactive
Path Tracking for Nonholonomic Mobile Robots with a 2D Laser Scanner,” EURASIP
J. Adv. Sig. Proc., Vol. 2009, 2009.

[12] Szepe, T. and Assal, S. F. M., “Pure Pursuit trajectory Tracking Approach: Comparison
and Experimental Validation,” I. J. Robotics and Automation, Vol. 27, No. 4, 2012.

[13] Giesbrecht, J., Mackay, D., Collier, J., and Verret, S., “Path tracking for unmanned
ground vehicle navigation: Implementation and adaptation of the pure pursuit algo-
rithm,” Tech. rep., DTIC Document, 2005.

40

[14] Huang, P., Luo, X., and Zhang, Z., “Headland Turning Control Method Simulation of
Autonomous Agricultural Machine Based on Improved Pure Pursuit Model,” Com-
puter and Computing Technologies in Agriculture III, Third IFIP TC 12 International Con-
ference, CCTA 2009, Beijing, China, October 14-17, 2009, Revised Selected Papers, 2009, pp.
176–184.

[15] A. Manjunath, P. Mehrok, R. S. and Ratnoo, A., “Application of Virtual Target based
Guidance Laws to Path Following of a Quadrotor UAV,” International Conference on
Unmanned Aircraft Systems, 2016.

[16] Sharma, R. and Ghose, D., “Collision avoidance between UAV clusters using swarm
intelligence techniques,” International Journal of Systems Science, Vol. 40, No. 5, 2009,
pp. 521–538.

[17] Mehrok, P., Quadrotor UAV path following using Trajectory Shaping, Master’s thesis,
Utah State University, April 2016.

[18] “AR Drone specifications,” http:http://ardrone2.parrot.com/ardrone-2/

specifications/.

[19] Meier, L., Honegger, D., and Pollefeys, M., “PX4: A node-based multithreaded open
source robotics framework for deeply embedded platforms,” IEEE International Con-
ference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015, 2015,
pp. 6235–6240.

[20] Meier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F., and Pollefeys, M., “PIX-
HAWK: A micro aerial vehicle design for autonomous flight using onboard computer
vision,” Auton. Robots, Vol. 33, No. 1-2, 2012, pp. 21–39.

[21] Kjærgaard, M. B., Krarup, M. V., Stisen, A., Prentow, T. S., Blunck, H., Grønbæk, K.,
and Jensen, C. S., “Indoor positioning using wi-fi–how well is the problem under-
stood?” Proceedings of the 4th International Conference on Indoor Positioning and Indoor
Navigation, 2013.

[22] “ARSENL 50 UAV autonomous flight,” https://wiki.nps.edu/display/~thchung/

ARSENL.

[23] “ARM toolchain compile and build,” http://dev.px4.io/starting-building.

html.

http:http://ardrone2.parrot.com/ardrone-2/specifications/
http:http://ardrone2.parrot.com/ardrone-2/specifications/
https://wiki.nps.edu/display/~thchung/ARSENL
https://wiki.nps.edu/display/~thchung/ARSENL
http://dev.px4.io/starting-building.html
http://dev.px4.io/starting-building.html

41

APPENDICES

42

Appendix A

ROS framework

A.1 ROS nodes: Information/data flow

The Robot Operating System (ROS) framework for the ROS-Pixhawk Testing Platform

(RPTP) is composed of several nodes that communicate with each other through stream-

ing topics, Remote Procedure Call (RPC) services and the Parameter Server. A node is

process that performs computation. The use of nodes in ROS provides several benefits to

the overall system. There is additional fault tolerance as crashes are isolated to individual

nodes. Code complexity is reduced in comparison to monolithic systems. ROS supports

nodes developed both in C++ and Python environments.

Fig. A.1: ROS node flowchart

Fig. A.1 represents the nodes through which information/data flows using the ROS

network. The /stream markers topic publishes the 3D individual marker data which is

then subscribed by the estimation package to publish the vehicle states in the /cortex raw

topic. This topic is then subscribed by both the controller and trajectory generation pack-

age on the Odroid XU4 which is used to generate the required trajectory and control com-

mands that are sent to the Pixhawk using the mav pix bridge node.

http://wiki.ros.org/Topics
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://goo.gl/76dkWU

	Path Following by a Quadrotor Using Virtual Target Pursuit Guidance
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Background
	Contribution
	Thesis Organization

	PURE PURSUIT ALGORITHM WITH VIRTUAL TARGET GUIDANCE
	Overview and Trajectory generation
	Equations of motion of the virtual target
	Equations of motion of the quadrotor

	Pure Pursuit Implementation
	Mapping to quadrotor commands
	Inverse Mapping

	Stability Analysis

	ROBUST, INTELLIGENT SENSING AND CONTROL-ROS-PIXHAWK TESTING PLATFORM (RISC-RPTP)
	Components of the testing platform
	Setup
	Motion Capture System
	Aerial Platform
	Odroid XU4
	Pixhawk and PX4 firmware
	Ground Control Station

	IMPLEMENTATION AND RESULTS
	Simulation
	Results

	Flight Test

	CONCLUSION AND FUTURE WORK
	Future Work

	REFERENCES
	APPENDICES
	A ROS framework
	ROS nodes: Information/data flow

