2,645 research outputs found

    A general framework for positioning, evaluating and selecting the new generation of development tools.

    Get PDF
    This paper focuses on the evaluation and positioning of a new generation of development tools containing subtools (report generators, browsers, debuggers, GUI-builders, ...) and programming languages that are designed to work together and have a common graphical user interface and are therefore called environments. Several trends in IT have led to a pluriform range of developments tools that can be classified in numerous categories. Examples are: object-oriented tools, GUI-tools, upper- and lower CASE-tools, client/server tools and 4GL environments. This classification does not sufficiently cover the tools subject in this paper for the simple reason that only one criterion is used to distinguish them. Modern visual development environments often fit in several categories because to a certain extent, several criteria can be applied to evaluate them. In this study, we will offer a broad classification scheme with which tools can be positioned and which can be refined through further research.

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    Get PDF
    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing

    Architecture independent environment for developing engineering software on MIMD computers

    Get PDF
    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management

    Overview of Hydra: a concurrent language for synchronous digital circuit design

    Get PDF
    Hydra is a computer hardware description language that integrates several kinds of software tool (simulation, netlist generation and timing analysis) within a single circuit specification. The design language is inherently concurrent, and it offers black box abstraction and general design patterns that simplify the design of circuits with regular structure. Hydra specifications are concise, allowing the complete design of a computer system as a digital circuit within a few pages. This paper discusses the motivations behind Hydra, and illustrates the system with a significant portion of the design of a basic RISC processor

    Safe programming Languages for ABB Automation System 800xA

    Get PDF
    More than 90 % of all computers are embedded in different types of systems, for example mobile phones and industrial robots. Some of these systems are real-time systems; they have to produce their output within certain time constraints. They can also be safety critical; if something goes wrong, there is a risk that a great deal of damage is caused. Industrial Extended Automation System 800xA, developed by ABB, is a realtime control system intended for industrial use within a wide variety of applications where a certain focus on safety is required, for example power plants and oil platforms. The software is currently written in C and C++, languages that are not optimal from a safety point of view. In this master's thesis, it is investigated whether there are any plausible alternatives to using C/C++ for safety critical real-time systems. A number of requirements that programming languages used in this area have to fulfill are stated and it is evaluated if some candidate languages fulfill these requirements. The candidate languages, Java and Ada, are compared to C and C++. It is determined that the Java-to-C compiler LJRT (Lund Java-based Real Time) is a suitable alternative. The practical part of this thesis is concerned with the introduction of Java in 800xA. A module of the system is ported to Java and executed together with the original C/C++ solution. The functionality of the system is tested using a formal test suite and the performance and memory footprint of our solution is measured. The results show that it is possible to gradually introduce Java in 800xA using LJRT, which is the main contribution of this thesis

    The moderate approach to integrating concurrency and object orientation

    Get PDF
    Principles of integrating concurrent computation, objects, and inheritance are discussed. The approach outlined here is guided by general considerations about the rôles of the two paradigms being merged. We suggest our approach to some open design questions: the relation of concurrency to inheritance and the thread and synchronisation concept among objects. The question, where should the combination of concurrency and objectorientation be settled between the paradigms, is analysed in different aspects. The presented approach also avoids the inheritance anomaly
    corecore