
SERIE B – INFORMATIK

The moderate approach to integrating
concurrency and object-orientation

Thomas Wolff
wolff@inf.fu-berlin.de

B-95-07
May 1995

Keywords

language constructs, mixing paradigms, concurrency, objects

Abstract

Principles of integrating concurrent computation, objects, and inheritance are discussed.
The approach outlined here is guided by general considerations about the rôles of the two
paradigms being merged. We suggest our approach to some open design questions: the
relation of concurrency to inheritance and the thread and synchronisation concept among
objects. The question, where should the combination of concurrency and object-
orientation be settled between the paradigms, is analysed in different aspects. The
presented approach also avoids the inheritance anomaly.

Institut für Informatik
Freie Universität Berlin
Takustraße 9
D-14195 Berlin

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199424497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

0. Contents

As an extended introduction, the first three chapters of the paper, “Concurrency and
object-oriented programming”, “Concurrency and inheritance”, “Concurrent
computation models and distribution in the object context”, roughly present usual
models to approach these topics, as well as first hints on why our approach deviates from
them. The central chapter, “A moderate integration approach”, presents our model along
five basic criteria, again discussing its justification against other concepts. Finally, we
summarize our approach and outline some future directions for its development.

1. Concurrency and object-oriented programming

For placing concurrency and object structure together in one programming language, two
mainstream approaches can be separated by their motivations:

• The object-founded approach wants to enrich object-oriented programming with the
presence of concurrency. It often exhibits processes attached either to operation
invocations (as in the guardians of [LisSch]) or to the objects themselves (as in
[Emerald] or [Caromel]), or else very specialized objects evolve which combine
asynchronism with small scale behaviour (such as the actors of [Agha]). The object-
founded approach often takes it for granted that the object-oriented view conquers
the world of software and languages. In the overview article [Nelson] we find the
general remark “A process is essentially just another object ... Therefore, the class
mechanism ... provides a good starting point for creating processes.” But since “the world
is not all objects” ([Goguen]) our argument will be that this is not a good starting
point at all.

• The concurrency-founded approach wants to extend concurrent programming into
object-oriented environments. It is usually quite liberal with placing processes into
objects (for example [SR] or [Trellis]) and tends to make use of explicit, rather low-
level synchronization mechanisms such as semaphores and queues.

Concurrency as a property of problems and as a paradigm of program development is an
important aspect of language design. The concurrent structure of a problem or an
algorithm may in some cases depend on the structure of the data involved. In other cases
it may be inherent to the algorithm and independent of the data structures. Programmers
need the freedom of choice with respect to which approach or programming methodology
is most appropriate for their problem. For this reason, we claim that the integration of
concurrency with object-oriented languages should not be performed from the object-
centred point of view. Any model of “concurrent objects” which sets them up as
something new and special (the object-founded approach), imposing on the
programmers to permanently “think in terms of objects” when programming concurrent
algorithms, is too restricted to suit the requirements of concurrent programming. On the
other hand, a completely orthogonal model (the concurrency-founded approach) would
not be appropriate either, for the given object structure comprises a principle of
encapsulation and integrity that must be respected by other mechanisms present in the

3

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

language. We need to find a combined approach which is related to – but not focused on –
object structure, and also related to the idea of algorithmic concurrency, each in its
respective aspects.

2. Concurrency and inheritance

Potential problems with multiple inheritance1 strongly influence a group of design
decisions which we explain with the most basic one, the granularity of concurrency.

Our model of concurrency in objects will include multiple threads of control inside any
object (in contrast to just one). This is not only a design idea motivated by the
concurrency-related aspects of our approach (especially the thread concept, see below),
but it also respects best the inheritance structure of object systems, especially in the
presence of multiple inheritance. “Proof”: Suppose we had the restriction to at most one
activity thread in an object – this might be a process attached to (or even identified with)
the class as a source of algorithmic concurrency, or, like in [Caromel] or [POOL], a
specialized activity needed to express explicitly programmed concurrency control. In
most object-oriented languages, objects are instances of their static description, the
classes. So we would have to define the activity of the objects of a class within that class.
Now for multiple inheritance we would either have to exclude activity from being
inherited, which would appear somewhat artificial and would impose on the
programmers the need to renew any synchronization-related special code (the object
activity in the languages mentioned above) in inheriting classes. Or else, we would
immediately have a contradiction with our assumed single-thread restriction as suddenly
all inherited activity specifications would show up in our newly defined base class,
demanding that our concept provide some special rule to solve the conflict. Since such a
rule would not be introduced for its own quality but as a mere remedy for a problem, it
would be weakly motivated and probably rather arbitrary. In general, such non-
productive rules do not contribute to the quality of a language.

Basically the same sort of conflict would arise with any special property that classes might
have or not have, like e.g. the monitor property that disallows multiple simultaneous
activity in certain classes (if this rule is maintained for all classes, we have a “quasi-
concurrent” object language according to [Papathomas]). So all class-related behaviour

1 Since multiple inheritance is an elementary feature for structuring object-oriented programs we do
not consider the resort of restricting languages to single inheritance.

4

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

rules (especially those concerning concurrency) that might be thought of, would confront
us with semantic problems:

We do not think any solution constructed to remedy the conflict in this situation is
motivated other than for getting rid of the problem. Therefore, we prefer to avoid the
problem from the outset.

The answer how to achieve this is simple: No class-based special properties and no single-
activity restriction admitted! The latter implies that we have to design a concept to cope
with the problems of multiple simultaneous activities inside objects in a way respecting
the object structure. Especially, mutual activity exclusion properties have to be definable
on a more specific, operation-related basis.

This is also part of our answer to the inheritance anomaly. Using this notion, [MatsYone]
address the inheritance conflicts that arise with any means of synchronization attached
on the class level, e.g. explicit code for synchronization control or global synchronization
specifications like path expressions.2 [Papathomas] also points out the problem. We do not
only avoid synchronization control code at all but also the synchronization mechanism
that we suggest will be compatible with inheritance in that it cooperates symmetrically
within an inheritance hierarchy so that previous (i.e. inherited) synchronization
specifications can be referred to and combined with new ones without the need of
redefining them. This will be detailed below.

If we consider the mechanisms that lead to the inheritance anomaly, we find that
especially those approaches that strive for an object-founded integration of concurrency
give rise to the problem. In contrast, it is in the spirit of the concurrency-founded
approach to combine concurrency features with object structure more freely. So it is one
of the core concepts of object-orientation itself (i.e., inheritance) which leads the object-
founded approach to integrating concurrency to a dead end.

3. Concurrent computation models and distribution in the object context

A section about this topic is called for because often, the topics of concurrency and
distribution are treated in conjunction with each other. This is mainly because one of the

2 [Meseguer] presents a solution to the inheritance anomaly but resorts to a completely different
style of programming to achieve it.

op ... op ...

op ...

Figure 1: Incompatible class properties, and , are
attached to two superclasses of a multiple inheritance
hierarchy, yielding a conflict in the subclass if inherited: .

5

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

motivations for distribution, the increase of performance, only makes sense if it is
accompanied by concurrent computation. On the other hand, distribution and
concurrency can both live independently from each other; some classical RPC-based
(modular) distribution systems do not provide concurrency themselves (e.g. [BirNel]);
also our own distribution project [Heron] shows that an object distribution system
maintaining full concurrency compatibility can be established even with only marginally
taking account of specific concurrency details.

We’d rather separate these topics, and handle them as orthogonal issues, especially since,
in the author’s opinion, their respective relation to the task of programming and thus
their desirable degree of affecting the programming language model is completely
different. Whereas concurrency is basically a paradigm of expressing algorithms, and
should therefore be explicit, distribution is predominantly a paradigm of exploiting
resources, and should therefore be as implicit as possible.

Depending on the motivation of combining concurrency and object-oriented system
structure, and the degree of having distribution in mind, varying approaches to the
concurrent computation model can be identified:

• In a plain concurrency-founded approach, explicit concurrent computation is
orthogonal to the object structure. Additional features for distribution may be present
where distribution is handled explicitly. Synchronization of concurrent threads is
organized by conventional means independent of the object structure. Objects are
passive entities with respect to the concurrent thread system.

• In a distribution-founded approach, often the desire for increased computational
throughput calls for asynchronous remote operations. They may be explicit in a more
conventional RPC-like environment, or they may provide implicit concurrency. Either
way, concurrent computation comes onto the objects by invoking their operations
asynchronously, leaving the objects still passive.

• In an object-founded approach, if the idea is to attach concurrent computation to
objects, more probably some close connection between objects and processes would
result. All objects, or objects of certain classes, are active maintainers of concurrent
threads which in return usually do not leave the realm of their object. For the
communication between objects, messages or calls between threads may be part of
such a concept.

No matter which reason or motivation is prominent, computational concurrency models
for objects (which tend to correlate with the two opposite approaches) have so far seemed
to be basically one of two extreme point solutions:

• In the passive object model – predominant in the concurrency-founded approach –,
processes are independent entities which do not reside in but only pass through
objects.

• In the active object model – predominant in the object-founded approach –,
contiguous activity (called process or thread) is stuck in one object, employing
different means of interaction and communication between processes or objects.

6

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

This classification can also be found in Papathomas’ survey. In accordance with our
design principles outlined above we think that both ideas focus too much on the notion
of either object or process. The reservations against both sides can be identified more
clearly by separating details of the interplay of concurrent computation and object
structure as shown in the following chapter. We also show that a solution doing justice to
both programming paradigms need not be a mere compromise.

4. A moderate integration approach

As indicated, we do not favour one of the border solutions, dominating one programming
paradigm by the other. The author is especially convinced that it is a fashionable myth
to view object-orientation as a super-paradigm capable of subsuming all the others.

Instead, a middle course should be found which treats both paradigms as equal partners
and leaves the essentials of both in the result. With this in mind, we consider five basic
design questions for integrating concurrency and object-orientation and present the
answers that comply with our intent of a moderate approach:

(1) Where does concurrency occur?
Or: What is a thread? How is it related to objects?

(2) What are the sources of concurrency?
Or: What are the possible origins of threads? At which places in the program can
threads be created and by what means?

(3) Which methods of synchronization do we maintain?
(4) How do we schedule?
(5) Which special problems do arise combining concurrency and inheritance?

We will now discuss our concept’s approach to these design questions and contrast it with
more biased approaches where appropriate.

4.1. Where does concurrency occur?

Concerning the concurrency-founded approach, on the one hand, we are not going to
accept complete independence of threads from the object structure of programs –
interaction between threads must obey certain integrity rules attached to the objects. This
can be regarded as to only mean accepting an object’s integrity as a data encapsulation
unit such as a database record, a data structure, or an integer. This means that mutual
exclusion rules for concurrent threads must be specifiable and have to be realized on a
problem-specific basis (for example, exclusive vs. shared access for certain data or
operations). This leads us to question (3) below about synchronization but does not force
us to restrict the general concept of threads as such.

Concerning the object-founded approach, on the other hand, we are not going either to
stuff the complete concept of concurrency into single objects alone. That approach would
detract from the more general idea of concurrent computation: parts of a program being
formed by multiple threads of contiguous activity over a set of data and procedures.
Upholding this generality is motivated by the wish to supply the most suitable features

7

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

for problem-oriented programming: We do not want a new special concept of concurrent
objects but rather we want to supply concurrent programming capability in the object
environment.

As a result, in our model – the moderate approach – we will have both intra-object
concurrency (among operation invocations) and inter-object concurrency as a
consequence of concurrent activations of objects as well as autonomous creation of
activity (see below).

Moreover, to come to a clarification of the concept of a thread or process, we claim that
the prevailing restriction of threads in object systems – whether with or without intra-
object concurrency – to reside in one object only, while an invocation of another object
automatically means spawning of a new thread (and possibly suspending the calling
thread), serves no semantic purpose. This view is only taken to be object-oriented and
might be induced by the misleading notion of message passing3. We think our notion of
a thread is a more natural one: A thread is created by the start of the program or the
execution of any thread-originating language construct as listed under item (2) below;
apart from further new threads created by such constructs, it extends over all invocations
of operations caused by it, regardless of any object boundaries passed. This does not only
define a notion but also has semantic significance for synchronization as explained below.

Discussion: Some approaches reject intra-object concurrency or promote the implicit
serialization of concurrent uses of an object, making their behaviour similar to monitors.
This restriction might be influenced by viewing objects as elementary units of activity or
as implementations of automata. But it complies neither with a more general view of
objects as encapsulations of data and algorithms, nor with the principles mentioned
above, i.e. most general and unspecific integration of concepts. On the other hand, inter-
object concurrency is the basic expression of concurrency in an object environment since
it relates objects to each other concurrently. The concept presented here has room for
both.

4.2. What are the sources of concurrency?

Actually, our general attitude does not strongly bias any special choice in this respect
apart from a guideline: Thread creation is an original aspect of concurrent programming
and should therefore be organized from the concurrency point of view. Hiding it in the
object context, e.g. via asynchronous operation invocations, is not considered appropriate
as an implicit and sole source of concurrency; but it is alright as an optional alternative.

On the basis of our thread concept, conventional explicit thread creation is perfectly
compatible with object-orientation. Essentially, all of the thread creation mechanisms
listed below are acceptable in the object-oriented context. A choice among them (or even
the decision to admit them all) is basically a question of what forms of expressing
concurrency are desired, not how much concurrency is consistent with the object model.

3 usually meaning nothing more than procedure or function call

8

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

The list will be terminated by the mechanism that appears most special to object
orientation, the autonomous operation.4 But even this one has its analogy in static
process declarations in languages like Ada or SR ([SR]).

For notation, let us assume that the declaration of a normal object operation (i.e., a
procedure or function)5 looks like

op p (parameter specification) optional result specification is
do operation body od

Our concept has room for the following different methods of thread origination:

• Static declaration of concurrent threads:

conc thread1 || ... || threadn cnoc

runs n groups of statements as parallel threads, while the surrounding thread
waits for their termination.

• Dynamic creation of a concurrent thread:

fork thread krof

runs a group of statements as a new parallel thread, while the surrounding thread
continues.

• Static declaration of asynchronous operation invocation:

async op p (...) is
do ... od

declares the operation p to always be invoked asynchronously as a new thread.

• Dynamic asynchronous operation call:

spawn p (x) spawn objectx.p (x)

invokes an operation asynchronously as a new thread.

• Declaration of autonomous operation invocations:

auto op p is
do ... od

declares the operation p to be an autonomous operation. It gets invoked without
external cause. Its unsolicited invocation may be scheduled by the system at
arbitrary points of time during program execution unless restricted by further
mechanisms. (Restrictions will normally be added to yield more specific and thus
useful sets of invocation occasions, e.g. restricting p against multiple simultaneous
invocations of itself; see in 4.4, “How do we schedule?”.)

Why does this set of features, especially including autonomous operations, comply with
our integration philosophy while other mechanisms which might on the first sight only
have subtle differences do not?

4 With respect to thread origination, this construct is related to the similar basic construct in [Löhr].
5 We do not adopt the wide-spread but queer terminology speaking of methods where ordinary

procedures or functions are meant, and of messages where calling them is meant.

9

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

• There is no implicit concurrency semantics attached with the event of communication
between objects. Every concurrency-related semantic property is tied to single
operations instead.

• A thread of activity, even if originated by an autonomous operation invocation, is not
tied to the object that originated it. It can spread over all objects of the whole
program.

• Autonomous activity is not the activity of an object but an activity within an object.
There is no restriction of the number of autonomous operations any class of objects
can bear and the presence of autonomy within a class of objects does not mutate it
into another kind of class6. Also, there are no additional programmer-supplied
precautions necessary in objects equipped with autonomous operations.

4.3. Which methods of synchronization do we maintain?

The critical region, which provides for mutual exclusion, can be regarded as a basic
control structure for structured synchronization.

We do not think the use of more elementary synchronization elements (e.g. semaphores)
is appropriate in the context of high level languages supporting systematic program
development.

On the other side, even the free placement of critical region synchronization blocks in a
program still seems extremely liberal in a language structured by the object model.
Therefore, we will only admit specifying synchronization means in a restricted form: In
our concept, object operations can be annotated with entry conditions that include
exclusion specifications, and moreover these do not define synchronization on explicit
regions but exclusion against certain other operations as this operation’s exclusion goals:

op p (...) exclude q1, ..., qn is
do ... od

specifies that no simultaneous invocations of the operation p and any of the
operations qi by different threads will be allowed. qi = p is a legal and perfectly
reasonable special case. As opposed to some exclusion region which would have to
be declared seperately, the operations qi are exclusion goals of the exclusion
specification attached to the operation p. An exclusion goal qi is called open for the
current thread if the condition above holds for it, i.e. no other thread is currently
performing within the operation qi including any sub-computation.

In general, entry conditions might depend on exclusion goals, Boolean conditions
(guards), or communication availability. The latter does not apply to our concurrency
model since we do not have explicit message reception. The first two kinds of
synchronization conditions shall be permitted in free combination, i.e. multiple exclusion
goals (as shown above) and a Boolean expression, wherever synchronization may occur:

op p (...) exclude q1, ..., qn when B is
do ... od

6 We could call objects that have autonomous activity subjects so as to introduce a nice notion.

10

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

adds a Boolean expression B as a guard to the operation p. The guard B is another
kind of entry condition which is called open if B evaluates to true.

We can now summarize the effect that entry conditions have on a thread which wants to
perform an operation which has been called. Entry to the operation p is allowed only if
all entry conditions are open as defined above. Moreover, it is an important requirement
that the determination of the entry conditions must be atomic in effect, i.e. the system
has to guarantee that upon actual entry of the operation’s body all of the entry conditions
are still open (i.e., all exclusion goals qi are open for the current thread and B is true). At
this very moment, p itself stops being open as an exclusion goal for other operations.

We say an invocation of an operation is enabled if all its entry conditions are open.

4.3.1. Avoiding reflexive deadlock

As a special problem of mutual exclusion apparently not identified previously in the
literature, we consider the following situation:

Assume a thread of control acquires an item of exclusion, i.e. synchronizes on an
exclusion goal which thereby gets closed (e.g. enters a conventional exclusion region or
blocks a semaphore). During that time the same thread may request the same exclusion
goal again (this may well happen from another place of execution / another object; it may
as well be the result of recursion). Conventional exclusion mechanisms, working locally,
would just block the requesting process and thus cause a reflexive deadlock, i.e. the
thread would lock itself into a deadlock. This problem, though probably not occurring
naturally in specialized applications such as operating system related ones, must not
remain unconsidered for a general purpose language. We think it is not appropriate to
accept this sort of deadlock from a programming systematic point of view. We have
already included semantic precautions to avoid the problem. The observant reader will
have noticed that the attribute “by different threads” is attached to the requirement that
no simultaneous invocations of the operation to be synchronized and an operation of an
exclusion goal is allowed. This means that if that exclusion goal is being hold by the
current thread it will still be regarded open and the thread may pass into the operation
in question. (If the synchonization mechanism was an exclusion region, this would mean
the thread may enter the same region again.) This semantics is also the reason why a
concept of a global thread, spanning all cross-object (and also distributed) computations,
is important.

4.3.2. Considering alternative exclusion methods

— Releasing the exclusion during sub-computation.

In the case of the nested monitor discussion ([Haddon]), the concept of weak monitors
was proposed, which releases the exclusion during sub-computation outside of the
monitor. This did not aim at the reflexive deadlock problem but rather at the problem
of maximizing resource availability of the monitor module for any other client.
However, this answer would neither cover the case of direct recursion nor do we
consider it acceptable at all since it breaks the purpose of an exclusion goal, assuring

11

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

computational integrity of data at a fairly abstract level. Also, by our finer-grained
operation-related synchronization concept, the problem of resource availability is
much smaller than with the coarser monitor concept.

— Explicit synchronization control.

We have already pointed out (in chapter 2, “Concurrency and inheritance”) that this
mechanism belongs to those conflicting with multiple inheritance, this one even being
addressed by a special notion in the literature, “inheritance anomaly” ([MatsYone]).
We would consider anyway that active synchronization control which is placed apart
from the actual operations to be synchronized is a fairly technical mechanism and
thus rather confusing in the course of easy construction of software as the author
thinks should be assisted by language design. Therefore we are not at all unhappy
that this concept is already precluded by the “no class properties” principle set up
above.

— Specifying a unique exclusion semantics for operations.

This approach to avoid explicit synchronization would in effect result in something
similar to monitors. (Having to avoid class properties, it could still be defined as the
language-immanent exclusion property of all classes.) However, we think the monitor
concept is a very special solution especially suited for operating system related
programming tasks. It may often be a useful primitive there but does not provide the
desirable flexibility for a general purpose language. Concurrent programming needs
in objects with synchronization requisites would be arbitrarily constrained. Therefore
we do not approve of this alternative. After all, the author does not think that being
explicit would be a disadvantage in concurrent programming if only the language
features of explicit expression are sufficiently abstract.

— Automatic synchronization based on semantic requirements.

In order to exploit maximal parallelism while not having to care about
synchronization at all, we could try to derive the required synchronization measures
from the operations’ specifications and bodies (in Eiffel, e.g., the specification could
be taken from pre- and post-conditions). It would then be necessary to analyse the
interrelations between operations at compile-time and probably also to employ a
flexible synchronization concept such as transactions. It is unclear at the moment
what can be achieved by such analysis; moreover, the integration of transactions
would leave the imperative execution model underlying usual object-oriented
languages. Therefore we do not currently view this as a feasible and desirable
approach to combining concurrency with a normal object-oriented language.

4.4. How do we schedule?

4.4.1. Explicit scheduling on priority and conditions.

For many concurrent algorithms it is desirable to express operation entry conditions to
depend on a more global state of the computation, including not only variable contents
but also pending operation invocations. So some feature to take them into account must

12

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

be devised. Since we reject explicit separate control, this has to be integrated into the
entry conditions attached to the operations in a rather declarative way.

First, we allow the Boolean entry condition to refer to parameters of the operation
invocation. Second, we extend the entry conditions by two Boolean sub-expressions
which can refer to the state of other operation invocations waiting for their activation:

all p: B

is a Boolean expression with p being the name of an operation and B a Boolean
sub-expression in which for every formal parameter x of the operation p the
notation p.x may be used to refer to the actual parameter of an invocation of p.
The expression is true if for all pending invocations of p the sub-expression is true
with the respective values of parameters inserted.

some p: B

(Replace “all pending invocations” above with “some pending invocation”.)

Example:

op p (x: integer) when x < xx and all p: p.x >= x is
do ... od

As shown in the example, the all clause can be used to schedule among pending
invocations by comparing their parameter values against those of the current invocation.
In case direct scheduling by an integer expression is considered more useful, an
alternative or additional priority expression (like in [SR]) could be employed:

op p (...) by i is
do ... od

as a abbreviating equivalent of

op p (...) when all p: p.i >= i is
do ... od

4.4.2. Activation of autonomous operations.

The activation conditions for autonomous operations have been left rather unspecific so
far. Obviously, our definition that their invocation may be scheduled “at arbitrary points
of time” by the system will not be very useful in most practical cases. However, we
already have a good mechanism at hand to constrain this arbitray non-determinism.
Usually, the declaration of an autonomous operation will list a number of exclusion goals
including itself, thus relieving the scheduler from the burden of discretion about how
many and how frequent multiple invocations of an autonomous operation would be
appropriate.

In contemplating about further mechanisms for controlling autonomous operations, we
had best consider what purposes autonomous operations may serve:

13

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

• Cyclic autonomy

Regular behaviour of the object like pseudo-continuous change of state or repeated
activity could give rise to approximate real-time behaviour desired with autonomous
operations. Some time interval could be used to specify this with the declaration:

auto op p every n [milli]seconds is ...

specifies that regurlarly at the given time interval an invocation of the
autonomous operation will be issued. Its actual activation is still subject to
further synchronization specifications and general scheduling.

Example:

auto op movement every 10 milliseconds is
do distance := distance + speed / 100 od

• Tidying-up autonomy

Clearing up the local state triggered by the execution of certain other operations could
be achieved by various means. Explicit enabling of an autonomous operation (like the
enable / disable operators in [LOGLAN]) would be a weak non-determinate form of
triggering and can already be simulated by a simple flag anyway. Explicit launching
of an invocation would be more suitable to achieve a functionality similar to a
rendezvous ([Ada]) or a post-processing section ([POOL]), but would be covered by
a concept of asynchronous calls.

If we put it the other way round, having the autonomous operation specify which
other operation(s) it is a post-processing operation for, we have a new feature with
additional, advantageous functionality: An autonomous operation can be specified for
post-processing of an operation in a superclass in which this relation had not yet been
devised.

auto op p checking q1, ..., qn is ...

specifies that operation p gets enabled and subject to scheduling whenever an
invocation of one of the operations qn terminates.

• State-dependent autonomy

Tidying up or keeping the object in an approximate state of usability can sometimes
also be useful on a more sporadic basis, depending on changes in the object’s state.
This can already be expressed with the Boolean entry conditions.

Example 1:

class stack ...
auto op keepenoughbufferspace when remainingbufferspace < 15 is
do getsomemorebufferspace od

Example 2:

auto op garbagecollect is
do findsomegarbage; disposeit od

14

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

4.4.3. Underlying scheduling strategy.

With respect to the Boolean conditions and exclusion goals that define operation
invocations to be enabled or not, and regarding the fact that invocations of autonomous
operations can occur spontaneously, scheduling among all enabled operation invocations
should be fair (in an appropriate sense not defined exactly here, cf. [Francez]). Although
this may slightly complicate the system’s scheduling strategy, we approve of it because we
believe fairness is an important concept for realizing the programmers’ intention in
supplying several operations of equal rights. (We must admit, though, that we have not
solved the DWIM7 problem either.)

4.5. Which special problems do arise combining concurrency and inheritance?

Inheritance and class properties: This important question was already addressed above
in the chapter “Concurrency and inheritance”. Having argued that the only natural
solution to the problem of contradicting inherited properties is disallowing class
properties at all, we also laid the ground for certain other design decisions like the
unacceptability of a restriction to single-activity inside objects. This means we have
“concurrent process structure in objects” in terms of [Papathomas]. All concurrent activity
is simply inherited, just as other object components. So we also do not need to redefine
the object activity as must be done in [Caromel].

Inheritance and the synchronization mechanism is a more sophisticated topic.
Synchronization properties of superclasses are inherited. The exclusion goal mechanism
was designed such that its exclusion effect is symmetric in the sense that the exclusion
semantics of the following three pairs of declarations is exactly the same8:

op p exclude q is ... op p is ... op p exclude q is ...
op q is ... op q exclude p is ... op q exclude p is ...

The advantage of this is that exclusion goals can refer to operations of an inherited
superclass and can set up mutual exclusion properties even if this was not devised
previously in that superclass. So to apply our synchronization mechanism in its full

7 Do What I Mean.
8 Our implementation concept, which bases exclusion goals on implicit exclusion regions, shows that

this semantics is fairly simple and efficient to achieve; cf. remarks on it below.

auto op p, q, r, s, t

auto op p
auto op q

auto op r
auto op s

auto op t

Figure 2: (Example) With two autonomous operations in
each inherited class and another in the subclass itself, a total
of 5 autonomous operations shows up in the new class.

15

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

flexibility there is no need of redefining superclass synchronization. Thus we do not get
into trouble with the “inheritance anomaly”.

Inheritance and synchronization usage is primarily a programming problem. Suppose
two inherited classes use variables of a common superclass for which each of them did
not need to specify exclusion for itself. In a common subclass, this need may arise due to
increased degree of concurrency. In this case, the superclass supplying those variables, or
the intermediate classes using the variables, may have to be modified additionally.

However, this is not a special problem of synchronization. Modifications or extensions to
inherited code can never be precluded completely since there is no perfect universal
solution to the problems of the principle of reuse in software development. Therefore we
do not think special language provisions concerning synchronization in this case are
called for (i.e. the task of resolving the problem is left to the programmers).

5. Concept characteristics

We have considered which principles should be observed so that the language paradigms
concurrency and object-orientation get together in a harmonic manner. Further we have
outlined a model which does justice to both.

As a consequence of our moderate approach to finding integrating principles, the
resulting concept of language constructs and properties reveals, within its respective
parts, different degrees of connection of the concurrency and object concepts:

• The basic concept of the existence of activity of threads is object-independent. Once
created, a thread can cross object boundaries, keeping its identity. This is also an
important point in preventing reflexive deadlock.

• In addition to conventional means of thread creation (conc / fork) that could be
incorporated, our special means of thread origination, the autonomous operation, is
object-related. This does not mean, however, that it would dominate the object
structure or introduce a new kind of objects. As a language construct to specify
autonomous activity, a simple keyword attached to operations is sufficient.

var x

f (x) g (x)

Figure 3: Although in objects of each of the two middle classes
the use of the variable x may not require any synchronization
measures, this might be necessary in a further subclass which
combines these uses of x concurrently.

16

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

• Synchronization and mutual exclusion are operation-related. In restricting them to be
not finer grained than that, they are object-oriented. They also integrate well into the
inheritance structure. This way they can be employed to meet integrity-ensuring
requirements as needed in an object class and also they avoid the problems of the
“inheritance anomaly”.

Moreover, the concept includes answers to problems arising with multiple inheritance in
what the author considers to be the most natural way.

6. Further development

This paper has shown a concept of integrating two programming paradigms and has
presented a collection of language constructs suitable to extend a given object-oriented
language in a way consistent with our integration philosophy. The proposal does not
include a detailed realization but leaves open various detail decisions. Especially our
implementation concept for the rather complex synchronization mechanism was left out
in order to focus on the conceptual aspects.

Moreover, progress in language design has not yet produced a general agreement on
useful constructs for expressing concurrency even within the limits of any paradigmatic
approach (e.g., explicit concurrency as in our proposal).

To take this situation into account and to keep our concept open to all variations that
comply with its basic philosophy, we plan to pursue an open implementation by taking
the essentials of the concept and incorporating them into a set of intermediate language
extension constructs. The idea is that different high-level language approaches can then
quickly be implemented by defining and realizing transformations from their
concurrency constructs into our intermediate constructs.

Presentation of intermediate language details, including actual transformations
implementing the features presented here, would be beyond the scope of this paper so as
not to be confused with the higher-level concepts proposed and motivated here.

Practical considerations on realizing the our concept have been carried out in the context
of the object-oriented language Eiffel ([Eiffel]). This work was originally planned to be
a part of the Heron project ([Heron]) but then spread off as a separate work.

7. Conclusion

Our primary objection against too strong an adherence to the object structure when
integrating further concepts stems from the consideration that objects are not in general
a universal focus of programming. Object-orientation is a programming style equally
valuable as others on an application-related basis. The dogmatic restriction to object-
only languages (conceded, e.g., in [Meyer]) which has come into fashion, as well as its
exaggerated amalgamation with, and simultaneous justification by software development
methodologies, do not contribute to the unbiased progress in the development of modern
languages and should not prevail in the languages of the future. Instead, good concepts
like object-orientation, functional programming, data structures, a good concurrent

17

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

programming paradigm still to be agreed on, etc., shall persist, and there will be the need
to combine them in a compatible way, not to absorb one by the other.

On this conviction, our aim in integrating concurrency and object orientation is not to be
forced into decisions between extreme points like “active” or “passive” objects but to
follow a more liberal though still systematic way in the spirit of language design.

Moreover, in addition to considerations about concurrency in software construction, we
have also identified strong inherent reasons against a closely related, completely
unorthogonal integration model: It is the inheritance anomaly which gives us striking
arguments against a close connection of the process and object concepts.

The separation of concerns applied in the solution of the paradigm combination conflicts
in its different aspects is the primary exposal of the concept presented in this paper. There
is no need, just because there are objects, to restrict the threading concept to them. On
the other hand, there is no need, just because the thread concept is global and orthogonal,
to either synchronize only on low-level or, as an emergency resort, to close objects against
reasonable exploitment of concurrency.

We think the outlined approach would be an easier and more natural approach for both
the programmers’ views (when they want to implement some real-life modelling or some
concurrent algorithm) and the implementor’s task (not having the burden of frequent
thread switches).

We also think the global thread model is an appropriate approach to the question of
authorization of resource access by activities (concerning the reflexive deadlock
problem).

As a suggestion how to implement such a concept without restricting its design space
more than necessary, we have indicated the approach of intermediate constructs and
transformation.

8. References

[Ada] Ken Shumate: Understanding Concurrency in Ada. McGraw-Hill
1988.

[Agha] G A Agha: Actors: A Model of Concurrent Computation in Distributed
Systems. The MIT Press, Cambridge, MA, 1986.

[AWY] G Agha, P Wegner, A Yonezawa: Research Directions in Object-Based
Concurrency. MIT Press 1993.

[BirNel] Andrew D Birrell, Bruce Jay Nelson: Implementing Remote Procedure
Calls. ACM Transactions on Computer Systems 2, 1 (Feb 84), 39-59.

[Caromel] Denis Caromel: A solution to the explicit/implicit control dilemma.
OOPS messenger 2, 2 (April 1991).

[Eiffel] Bertrand Meyer: Eiffel: the language. Prentice Hall 1992.

18

The moderate approach to integrating concurrency and object-orientation 5.5.1995 14:58

[Emerald] A Black, N Hutchinson, E Jul, H Levy, L Carter: Distribution and
Abstract Types in Emerald. IEEE transactions on software engineering
SE-13, 1 (Jan 87).

[Francez] Nissim Francez: Fairness. Springer 1986.

[Goguen] Joseph Goguen: On notation. Keynote at TOOLS 10, Versailles 1993.

[Haddon] Bruce K Haddon: Nested monitor calls. ACM Operating Systems
Review 11, 4 (Oct 77), 18-23.

[Heron] S Finke, P Jahn, O Langmack, K-P Löhr, I Piens, Th Wolff:
Distribution and Inheritance in the HERON Approach to
Heterogeneous Computing. Proc. 13. Int. Conf. on Distributed
Computing Systems (ICDCS), Pittsburgh 1993.

[LisSch] B Liskov, R Scheifler: Guardians and Actions: Linguistic Support for
Robust, Distributed Systems. ACM transactions on programming
languages and systems 5,3 (1982), 381-404.

[Löhr] K-P Löhr: Concurrency annotations. Proc. 7. OOPSLA, Vancouver
1992.

[LOGLAN] Antoni Kreczmar, Andrzej Salwicki, Marek Warpechowski:
LOGLAN ’88 – Report on the Programming Language. LNCS 414,
Springer 1990.

[MatsYone] Satoshi Matsuoka, Akinori Yonezawa: Analysis of inheritance anomaly
in object-oriented concurrent programming languages. In [AWY].

[Meseguer] José Meseguer: Solving the Inheritance Anomaly in Concurrent Object-
Oriented Programming. Proc. ECOOP ’93, LNCS 707.

[Meyer] Bertrand Meyer: Eiffel: A Language and Environment for Software
Engineering. The Journal of Systems and Software 8 (1988), 199-246.

[Nelson] Michael L Nelson: Concurrency & object-oriented programming. ACM
SIGPLAN Notices 26, 10 (Oct 1991).

[Papathomas] M Papathomas: Concurrency Issues in Object-Oriented Programming
Languages. Object Oriented Development, Centre Universitaire
d’Informatique, Université de Genève, 1989.

[OOCP] Akinori Yonezawa, Mario Tokoro (eds): Object-Oriented Concurrent
Programming. MIT Press 1987.

[POOL] Pierre America: POOL-T: A Parallel Object-Oriented Language. In
[OOCP].

[SR] Gregory R Andrews, Ronald A Olsson, Michael Coffin, Irving Elshoff,
Kelvin Nilsen, Titus Purdin, Gregg Townsend: An Overview of the SR
Language and Implementation. ACM ToPLaS 10, 1 (Jan 1988), 51-86.

[Trellis] J E B Moss, W H Kohler: Concurrency Features for the Trellis/Owl
Language. BIGRE 54 (June 1987), 223-232.

