
DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

ONDERZOEKSRAPPORT NR 9629

A GENERAL FRAMEWORK FOR POSITIONING,

EVALUATING AND SELECTING THE NEW GENERATION OF

DEVELOPMENT TOOLS

by

J. Vanthienen

S. Poelmans

Katholieke Universiteit Leuven

Naamsestraat 69 t 8-3000 Leuven

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ONDERZOEKSRAPPORT NR 9629

A GENERAL FRAMEWORK FOR POSITIONING,

EVALUATING AND SELECTING THE NEW GENERATION OF

DEVELOPMENT TOOLS

0/1996/2376/29

by

J. Vanthienen

S. Poelmans

A General Framework for Positioning,
Evaluating and Selecting the New
Generation of Development Tools

Abstract

1. V ANTHIENEN & S. POELMANS
Katholieke Universiteit Leuven

Department of Applied Economic Sciences
Naamsestraat 69, B-3000 Leuven (Belgium)

E-mail: lan.Vanthienen@econ.kuleuven.ac.be
Stephan.Poelmans@econ.kuleuven.ac.be

This paper focuses on the evaluation and positioning of a new generation of development
tools containing subtools (report generators, browsers, debuggers, GUI-builders, ...) and
programming languages that are designed to work together and have a common graphical user
interface and are therefore called environments. Several trends in IT have led to a pluriform
range of development tools that can be classified in numerous categories. Examples are :
object-oriented tools, GUI-tools, upper- and lower CASE-tools, client/server tools and 4GL
environments. This classification does not sufficiently cover the tools subject in this paper for
the simple reason that only one criterion is used to distinguish them. Modern visual
development environments often fit in several categories because to a certain extent, several
criteria can be applied to evaluate them. In this study, we will offer a broad classification
scheme with which tools can be positioned and which can be refined through further research.

Keywords

visual development tools, programming environments, visual programming, object-oriented
programming, software engineering, client/server

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 2-

1. Introduction

This paper presents a broad classification-framework of development environments that are

characterised by graphical, user friendly interfaces and may be intended for robust industrial

strength code or for rapid prototypes or "one-off' applications that will be discarded after a

few users.

The success of these tools increased gradually and was encouraged by several tendencies.

First, with the trend of downsizing in the eighties and the backlog end-users already faced,

end-user computing became a vigorous trend and languages were needed that were easy to

use and if possible non-procedural (Martin, J. 85, p. 2). Basic fourth-generation languages

meet these requirements but are domain-specific and are mostly limited to be used in office

automation environments (Bodker, S. 91, p. 131; Beek, G.V. 1987, p. 889; Jande, H.J. and

Achterberg, J. 1988, p. 1006).

Together with this phenomenon, the object-oriented technology lifted out of research projects

and into real-life organisational surroundings. Numerous traditional (third generation)

languages transformed to the 00 paradigm and integrated 00 concepts, which resulted in

hybrid languages like Object Pascal, C++, Objective-C, OO-COBOL, (Winblad, A.L. 90, p.

59; Harmon, P. and Taylor, D.A. 93, p. 33; Hopkins, T. and Horan, B. 95, p. 7) On the other

hand, pure OO-languages were designed on the basis of OO-concepts and languages like

ADA, Eiffel, Small talk and CLOS emerged. The use of OO-classes led to the standardisation

of class-libraries that support the integration of distributed applications, are less platform

dependent and support to a certain extent language-independency (e.g. DCE, CORBA,

DSOM, ...).

In the beginning of the nineties, a new trend occurred as a lot of research was conducted on

the possibilities to program in a visual way. (Bumett, M. 95; Glinert, P.E. 90; Shu, N.C. 88)

Attempts were taken to present and manipulate program-structures using pictorial elements

and graphical interfaces.

The convergence of these tendencies led to the creation of visual development tools

containing subtools (report generators, browsers, debuggers, GUI-builders, ...) and

programming languages with a compiler or interpreter that are designed to work together and

have a common user interface and are therefore called environments. (Taylor, D.A. June 95,

p.47; Taylor, D.A. 92, p. 152) As a result, a pluriform range of development tools can be

classified in numerous categories such as object-oriented tools, GUI-tools, upper- and lower

CASE-tools, client/server tools and 4GL-environments (Verhoef, D. 95, p. 16). This

classification does not sufficiently cover the tools subject in this paper for the simple reason

that only one criterion is used to distinguish them. Modem visual development environments

often fit in several categories because to a certain extent, several criteria can be applied to

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 3 -

evaluate them. In this study, we will offer a broad classification scheme with which tools can

be positioned and which can be refined through further research.

Based on the idea of (Howatt, J. 95) a distinction is made between software-engineering

criteria, human-factor criteria and criteria that relate to consulting, support and other costs.

The former category consists of criteria that are inherent to the functionality of a tool as it is

presented by a vendor and concerns the object-orientedness, client/server support and

productivity of development environments. Human-factor criteria point to criteria that are

dependent on the way the tool is perceived and learned by the user. Finally, some attention is

paid to the way experience, consulting costs and vendor support may affect a selection. When

evaluating a tool, it should be assessed along these dimensions and then be selected to fit the

needs of the project at hand.

2. Software-engineering criteria

This paragraph focuses on three major criteria. Section 2.1 elaborates which elements are

decisive when regarding the object-orientedness of tools. Section 2.2. explores the purpose of

development environments, whereas section 2.3 indicates the issues that are related to the

client/server functionality of tools. Finally, performance and efficiency aspects are

highlighted in section 2.4.

2.1. object-based vs. object-oriented

Before comparing languages that meet certain features of the 00 paradigm, it is necessary to

clearly outline the cornerstones of object-oriented programming.

(Cardelli, L. and Wegner, P. 85, p. 481; and Booch 94 p., 38) state that a language is 00 if

and only if it satisfies the following requirements :

- the language should support data abstractions with an interface of named operations

and a hidden local state;

- objects should have an associated class;

- classes are members of a hierarchy, united via inheritance relationships.

These conditions are important because some programming tools claim to be 00 but only

refer to abstract data types or objects without classes or an inheritance structure and hence

lack the possibility of polymorphism. Such languages can not be considered 00 but are

usually referred to as being object-based. (Stroustrup 91; Booch 94; Agha, G. A. and Wegner,

P. 93)

In order to be able to classify tools according to the degree of object-orientedness, we call on

the object-model, elaborated by (Booch 94, pp. 27-81). Booch presents a model encompassing

all the elements necessary for a language to be considered truly 00. He makes a distinction

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 4-

between major factors (abstraction, encapsulation, modularity, hierarchy) and minor elements

(typing, concurrency and persistence). The model denotes that a language lacking any of the

four major factors cannot claim to be object-oriented and should therefore be regarded as

object-based. The minor elements can give an indication to which degree a development tool

is object-oriented

However, since modularity is not typical of OO-concepts (non OO-languages (such as C or

Pascal), may provide a modular structure (files and units respectively)) and is implicitly

present when the three other conditions are fulfilled, it will not be considered as a

distinguishing factor in the classification scheme of this paper. As a result, a language should

then provide the three remaining factors to be truly 00 : abstraction (class and/or instance

variable or methods), encapsulation (using private and public variables and methods) and

hierarchy (single or multiple inheritance and metaclasses l and/or generic classes2).

When further interpreting the model as presented by Booch, the relationship between typing

and dynamic binding should be considered. The way dynamic binding is implemented

depends on whether the language is statically or dynamically typed (the latter term is equally

referred to as being "untyped"). A distinction is made between statically-typed dynamic

binding and dynamically-typed dynamic binding. In the first form, it is not known which

function will be called for a virtual function at run-time because a derived class may override

the function, in which case the overriding function must be called. When the complete

program is compiled, virtual functions are resolved (statically) for actual objects. These

functions can be accessed (at run-time) by using virtual table function pointers in the actual

objects, thus providing statically-typed dynamic binding. When dynamically-typed dynamic

binding is provided, the lookup for methods is performed at run-time (dynamically). This

kind of binding not only increases flexibility and loose coupling but is often required in many

applications including databases, distributed programming and user interaction. (Garfinkel,

S.L. and Mahoney, M.K. 93 p.80)

Although an dynamically typed language beyond any doubt provides more flexibility and fits

better the OO-model, it is important to know that a number of important benefits can be

derived from using (statically) typed languages. (Tesler, L. ,Aug. 1981, p. 142) points out the

following considerations:

- "Without type checking, a program in most languages can 'crash' in mysterious ways at

runtime.

- In most systems, the edit-compile-debug cycle is so tedious that early error detection is

indispensable.

- Type declarations help to document programs.

I A metaclass is a class whose instances are classed themselves. (e.g. Smalltalk-tools and CLOS possess
metaclasses.)
2 A class that serves as a template class for other classes, in which the template may be parameterized
by other classes, objects, and/or operations. In this way, new classes at the same level of abstraction in
an inheritance hierarchy may be created by filling in parameters)

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 5-

- Most compilers can generate more efficient object code if types are declared."

Finally, the following scheme is presented to evaluate the scripting language of a

development environment:

necessary con d"ti (Ions major f t) ac ors

abstraction instance variables yes/no

instance methods yes/no

class variables yes/no

class methods yes/no

encapsulation of variables public/pri vate

of methods public/private

hierarchy inheritance single/multiple

metaclasses yes/no

generic classes yes/no

dT con I Ions t d t 0 e ermme th h td ew a " 00 (" f t) egree a anguage IS mmor ac ors

typing strongly typed yes/no

binding static/dynamic

polymorphism single/multiple

concurrency multitasking yes/no/indirectly

persistence I persistent objects yes/no

source: modification of (Booch, 94, pp. 473-488)

Given the fact that not all characteristics are interdependent, one can make several

subdivisions in OO-languages dependent upon the reason for the classification. If for instance

a software engineer is only interested in the fact whether or not the tool provides multiple

inheritance and polymorphism, without caring for flexibility arguments, a ranking might

result that does not take into account the typing of a programming environment, since single

and multiple inheritance and polymorphism can occur in static binded as well as in dynamic

binded languages. Another possibility consists in putting forward 00 functionality and

flexibility that is determined by the way of typing in a language. Features like static or

dynamic binding, single and multiple inheritance or polymorphism can be absent or present

regardless of the typing used in a language, but differ in the way they are implemented

according to the typing used.

In the ranking below, this approach is preferred and a ranking is presented that first makes a

distinction between conventional programming, object-based and object-oriented and further

distinguishes OO-languages on the basis of typing, binding and polymorphism, in this order

of importance.

I a means of maintaining the stat of an object across invocations

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 6 -

Th f 11 t e 0 owmg ca egones resu t :
conventional object-based object oriented

coding
limited 00 extended 00

no notion of lacking any of the features statically- features
abstraction, following features: strongly typed and typed dynamic dynamically-
encapsulation and - abstraction; static binding binding typed
hierarchy - encapsulation; +(no + polym dynamic

- hierarchy. polymorphism) + single or binding
+ single or mUltiple inher. + pol.
multiple + single or
inheritance mult. inher.

An example of an extended 00 language is CLOS, which originated from Lisp. CLOS fulfils

the three major factors, but does not possess generic units. It provides dynamically-typed

dynamic binding, mUltiple inheritance and polymorphism. Static typing can be used

optionally. Smalltalk-tools (e.g. Visualage) also support dynamically -typed dynamic

binding, but provide single inheritance and no generic units. C++ tools are hybrid tools that

offer statically typed dynamic binding and provide multiple inheritance as well as generic

units. ADA is an example of a pure but object-based language. It is strongly typed, but does

not allow inheritance or polymorphism (abstraction and encapsulation, but no hierarchy).

Delphi is a development environment with Object Pascal as its base code. It is object oriented

and provides statically typed dynamic binding with single inheritance. Tools like Visual

Basic, Access (Basic) or Prograph are not fully 00 (lack hierarchy and polymorphism) and

should be regarded as object based.

When interpreting this classification-scheme, one should keep in mind that there is no such

thing as a perfect classification. There are potentially at least as many ways of dividing the

world into object systems as there are scientists to undertake the task (Booch 94 p. 150) and

any classification is relative to the perspective of the observer doing the classification. This

certainly is true in this categorisation where some independent features are brought together

in one continuum. Each independent feature - static and both forms of dynamic binding and

single or multiple inheritance - can give rise to another subdivision or ranking if it is focused

and given a deterministic meaning. Moreover, several other features - pre- and postconditions,

the possibility of data-hiding, the fact that structural independent procedures or functions can

be programmed, etc.- are not considered but could be important depending on the project at

hand. Considering this argumentation, it is important to note that the above dimension should

not be seen as an ordinal ranking from "less capable" to "excellent". It only claims to

distinguish tools on certain 00 characteristics that can be useful but also hindering,

depending on the target project (e.g. a controversy exists on whether or not multiple

inheritance can be seen as an advantage or disadvantage of a language (TempI, J. April 1992).

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 7-

In this respect, (Harmon, P. 93) developed a comparable but less specific classification. In his

framework, he focused on the language in which the development it self is written:

text interface

Conventional
Language

conventional products

• Focus
'Sybase

U I in terface

Conv.libraries

Con v e n ti 0 n a I

Conventional
Language

object-enhanced products

• Prograph
• 0 bjectvisio n
• V isual basic

00 interface

00 u tiIi ties

object libraries

00 framework

00
Language

object-oriented products

• 0 bjectw orks
'Visualworks
·visualage
'GeOde
'F 0 rte

If the product claims to be purely object-oriented, it is likely being developed in an object

oriented environment. In this way, the tool becomes a kind of meta-tool of which the

developer can adapt the base-classes and structures of the kernel to result in a different tool

that better fits his needs. Most of the application generators on the market are developed in

non 00 languages like C and 00 characteristics have been added on top. Or, even if they are

written in an 00 environment, it is possible that the underlying classes and frameworks are

locked so that they cannot be accessed.

In this scheme, the two columns to the left correspond with the groups of conventional and

object-based tools. The third column is a generalisation of (00) tools that can be put in one of

the three right categories in the classification presented in this paper.

2.2. general vs. specific purpose

As tools become more sophisticated, they allow the developer to write less code that is

syntactically machine-dependent and more code that is related to the way humans think of

application logic. This means that they assume more about the nature of the application,

provide more built-in features, utilities and class libraries and in that way constraint the

developer to a greater degree.(Harmon, P. and Taylor, D.A. 94, p. 27) This has the advantage

that tools can be used by end-users who directly perceive the need of an information system.

General purpose tools often possess less semantic guidance or constraints and allow easier

manipulation of hardware functionalities

Basically, tools can be evaluated on the basis of their core programming language and the

presence and seamless integration of subtools. Subtools are specific-purpose and should be

checked whether their statements, functions or visual representations match sufficiently the

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 8-

semantic meanmg of the application-logic. Because every development environment

possesses a core scripting language that often is responsible for the co-ordination of the

subtools, it is of primordial importance though, to verify whether the code is flexible enough

to convert general and complex problem logic in an operational application. (e.g. a non

procedural4GL is generally speaking less flexible than a full 00 language).

Based on a literature study (Verhoef, D. 95; Collins, D. 95; Howatt, J. 95; Martin, J. 1985;

Booch 1994; Hopkins,T. and Horan, B.; Burnett, M., etc.) and practical descriptions and

manuals of development tools, several characteristics that determine the purpose of a tool can

be deducted:

the scripting-language of the tool

The scripting-language of a tool is responsible for the creation of source code and the

compilation or interpretation of source code into object code. In practice, the scripting

language of a tool can take several forms. According to the origin of the tool, OO-wrapped

3GLs as well as full-function 4GL or object-oriented programming languages can be used.

Hybrid (originally 3GLs, e.g. Object Pascal, C++, ...) and pure OO-languages (ADA, Eiffel,

CLOS, Smalltalk) are by definition procedural - in this paragraph "procedural" is used to

indicate the fact that a programmer has to outline how an algorithm should be executed (using

data-flows and user defined functions) and should not be confused with non-OO features -

and can generate complete applications, which cannot be stated to the same extent when 4GL

are considered. In fact, 4GL languages can vary from simple report generators to complete

full-function high-level languages and they can be procedural, non-procedural or both

(Martin, J. 85 p. 10)

E

M

a

0.

to a I A

/---tool B

size of the prohlem

source: Collins, D. 1995, p. 443: Comparison of two hypothetical tools A and B. B is a

general-purpose tool, and A is only efficient and usable in (relatively) small programs

A combination of both procedural and non-procedural statements may be desirable because

nonprocedural statements speed up development time and improve the ease-of-use of the

language, whereas procedural operations enhance performance and extend the range of

applications that can be tackled.(Martin, J. 85, p. 8).

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 9-

the degree to which visual programming is made possible

A lot of visual development environments as defined in this study, do not match (despite their

names) the definition of visual programming languages. Instead they are often textual

languages which use a visual environment where graphical tools (GUI-builders, report

generators, debuggers, browsers, ...) can make programming easier on the programmer. As

long as the syntax and semantics of elementary programming structures such as dataflows

(selection, sequences and iterations) and datatypes have to be coded in a one-dimensional

textual manner, no visual syntax is provided and the term visual programming language

(VPL) is not appropriate.

Languages with a visual syntax include diagrammatic languages (in which nodes and arcs are

the basic elements) and iconic languages, based on icons that are used to define the

composition of tokens or the pre- and postconditions of actions rules.(Burnett, M. & Baker,

M.J., June 1994; Burnett, M., Goldberg, A., Lewis, T., 95, p. 10-17)

Visual environments are tools that can possess a visual or a textual syntax and can therefore

be based on either a real VPL or a textual scripting code. In a visual environment (whether or

not a visual syntax is provided), graphical techniques are used to manipUlate pictorial

elements and display the structure of a program (that is originally expressed textually or

visually). Sample techniques for constructing programs include point-and-click for action,

invocation or selection and wiring for relating objects to another by drawing lines.(Burnett,

M., Goldberg, A., Lewis, T., 95, p. 10-17). Many visual environments also include methods

for displaying program information such as dataflow diagrams, dependency graphs and state

transition diagrams.

The distinction between real visual programming languages and visual development

environments that use graphical interfaces and techniques is fading though. Some tools such

as Visualage provide visual syntax features to generate application-logic code, but the user

still has the option to use textual formats as well.

Although visual programming may be appealing because it is eaSIer to understand and

memorise, provides more information in less space and makes structure more visible and

clearer (Petre, M. June 95 p. 39), visual programming languages often constraint the

programmer because visual representations are abstract concepts that represent a number of

sequential statements which cannot be accessed individually, and are therefore less flexible. It

can be stated that specific visual representations support the conventions that language

designers had in mind. VPL are therefore often less general-purpose and are directed towards

a certain range of applications. Or, as Marian Petre puts it : "Graphical representations appear

to offer potential for 'externalising the objects of thought' - for providing a more direct

mapping between internal and external representations by providing representations close to

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 10-

the domain level that make structures and relationships accessible."(Petre, M., June 95 nor. 6,

p.40).

If a tool limits the possibility of textual coding and offers visual representations instead, the

degree of visual programming becomes an important factor that should be considered when

determining the general-purpose character.

inteifaces to routines, procedures or utilities of other languages and/or the possibility to

export libraries or objects to other programming environments

It is obvious that a tool has a general-purpose character, if it is able to generate general

objects or procedures that can be imported by other tools (e.g. VBX-files can be written in

Visual C++ and imported in Visual Basic; C++ libraries can be exported to several

development tools). With the growth of 00- and client/server applications (cf. infra), object

libraries conforming to language-independent standards (like CORBA, DCE) are becoming

important when constructing applications in an object-oriented manner. As a result, tools can

upgrade their applicability when they provide interfaces to existing routines, modules or

standard object libraries.(Koelmer, R. 1995, p. 246) Since most development tools lack

CASE- features to support the inception and analysis phase in a phased project, it might be

important that a tool provides an interface to existing CASE-tools or techniques.

the presence of standard-functions (mathematical and statistical junctions, high-level

statements to improve structured programming ... (Benjamin, R.I. and Blunt, J., 1993, p. 12)

The presence of these functions can be seen as an enrichment of the programming

environment. It is however useful to check whether such functions are general applicable, or

limited to a certain range of applications.

other low-level functionality provided by the base language

With low-level functionality, we mean those functions that do not contribute to the semantic

logic of an application, but are necessary to make the application run on the hardware or

operating system. Such functions include the creation of autonomous executable-files, the

definition of own (error) messages, the possibility to manipulate dynamic memory allocation

and the access to or creation of platform-dependent APIs (e.g. DLLs in a Windows

environment).

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 11-

All these criteria are the basis of the following classification:

specific-purpose tools: non-procedural (mostly procedural general-purpose tools
- database tools full-function 4GLs) (full-function 4GL and procedural with extended
- internet tools OO-languages) low-level functionalities
- scientific visualisation (4GL or OO-languages)
languages
- GUI-builders

...

Examples of general purpose tools include C++-tools, Smalltalk tools and tools like Forte,

Delphi, Visualworks, etc. Tools such as Powerbuilder 4.0, Visual Basic 3.0 are illustrations of

general purpose tools that lack low level features like creating platform dependent API's or

memory allocation and cannot create objects or libraries that can be used by different

languages or tools ... In the category of database-tools, Access (Basic) (a "subset" of Visual

Basic), Visual Dbase, Visual Foxpro and Developer 2000 are representative examples. Most

of these tools lack the possibility to create autonomous executable files and/or possess

detailed functionalities that are intended to access data(bases). Some examples of widely used

tools intended to construct internet applications are Perl and Java (a modified "subset" of

C++). An example of a specific User Interface Builder is TAE-Plus (Szczur, M.R., Sheppard,

S.B. Jan. 1993, pp. 76-101). This development tool allows the user to prototype GUI's and

rehearse them, which helps the user to check and feel the look of various designs. Other

examples of GUI-builders are Serpent or Teleuse (Szczur, M.R., Sheppard, S.B. Jan. 1993,

pp. 76-101). It is important to state that most modern general purpose environments also

possess the necessary features to build user-friendly interfaces and access databases. These

tools mostly provide GUI subtools and/or database subtools that allows the construction of

user interfaces and interfaces to databases using visible components. The disadvantage of the

general-purpose tools is that they are more complex and hence demand more training time

(cf. infra).

When applying this scheme on a larger scale, it becomes clear that a dichotomy exists that

dis tincts the specific-purpose tools (left column of the classification) from the general

purpose tools (right three columns) (Collins, D. 95, p. 430). The differences between specific

and general-purpose tools are multiple and restricting factors can in most cases easily be

recognised (although it is difficult to construct metrics that quantitatively measure certain

features). The distinction between the two right categories though are more subtle and not

always clear. The possibility to produce standard libraries, the ability to develop and

manipulate low level functionality and the nature of the base-language (4GL, 00) can be

considered as being decisive.

As tools become more specialised and assume more about the nature of the resulting

application, selecting the right tool to fit the application is of primordial importance. The

difficulty in this approach is that each application domain has unique requirements and even

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 12 -

if a set of domain-specific criteria were developed, not all of the criteria would apply to the

same degree for each problem within the domain. (Howatt, J. 95 p. 38)

Although few research has been conducted to cover this category of criteria, some researchers

defined criteria based on the intended use of the language. (Alghamdi and Urban 93; Shaw,

M. et al. 81). Other references of more general criteria can be found in (KIerer, M. 1991;

Watt, D.A. 1990; Verhoef, D., 1995)

More recently, an extensive survey of the use of development tools in the Netherlands

(Verhoef, D., 1995) revealed several deterministic project-based factors to the choice of a tool

in practice :

• size of the project: (number of man-years, number of developers)

• complexity (function point analyses, number of nested iterations, ...)

• projectype: maintenance; created from scratch (tailor-made) or package-implementation

• design method: waterfall (phased) <> iterative (prototyping)

• nature of the application (real-time, business, scientific)

A '11 san 1 ustratlOn, some resu t are pre se d' h fi 11 nte m t e 0 t bl 1· owmg a e

% of all projects small medi- large newly mainte packages pha- itera-

of the survey urn built nance sed tive

SDW 7.9 14.7 14.9 8.8 21.2 13.7 15.9 5.4

MS Access 7.3 4.7 2.1 4.7 4.5 9.8 3.9 8.1

Oracie/CASE 5.3 4.7 2.1 5.2 1.5 2.0 3.9 6.7

Oracie Forms 6.0 5.3 0.0 4.7 6.0 2.0 3.4 7.4

Powerbuilder 4.0 4.7 4.3 6.7 1.5 2.0 3.9 5.2

Uniface 4.0 3.3 8.5 4.7 0.0 5.9 5.3 3.0

IEF 2.0 4.0 8.5 3.6 3.0 5.9 3.9 3.0

Visual Basic 3.3 2.0 4.3 3.1 1.5 2.0 1.9 3.7

CA-Clipper 4.6 1.3 0.0 4.1 0.0 0.0 3.4 1.5

rest 56.3 55.3 53.2 54.4 60.6 56.9 54.6 57.8

source: Verhoef, D., 95, p.94

The table indicates the number of projects (in %) that use a certain tool. When interpreting

this table, one should be aware that it does not claim to give any causal relationships. The

reason why this tools are used cannot be deducted (from the data above) and the percentages

only indicate and illustrate the actual use of tools in practical software-projects. The tools that

fit our definition are: Powerbuilder, MS Access, Uniface, Visual Basic and CA-Clipper.

I In this survey, no distinction is made between visual development tools (as defined in this text) and
other tools like CASE-tools, DBMSystems, etc ..

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 13 -

One can state that Powerbuilder and Visual Basic (general-purpose tools) are evenly used in

all kinds of projects. Both tools are use in 2 to 5% of almost each type of projecL). MS-access

(a database tool) and Uniface (general-purpose) are unequally distributed over several kinds

of projects. Access is relatively more used in small projects and package-implementation,

whereas Uniface is primarily employed in large and waterfall projects. Clipper (a database

tool) is primarily involved in small, newly-built and phased projects.

Further refined research is required to confirm the relationships as suggested in the Dutch

request and to obtain some causal correlations ...

2.3. client/server and application partitioning

2.3.1. client/server considerations

With the growth of client/server architectures and applications, it is useful to consider the way

development tools allow the construction of CIS applications and provide access to

databases, information files and object-servers. Although numerous definitions and

descriptions of client/server applications exist, the five-part model as proposed by the Gartner

Group is the most widely used basis for describing an enterprisewide client/server

application. With the rise of multiple databases, improved LAN-performance and distributed

object standards, the main criticism to the model is that the mainstream CIS systems decide

the partition of the applications on their hardware architecture, - a mainframe connected to

clients or clients and servers connected to a LAN - while it should be a business-function or

application-logic driven decision. (Semich, W. June 95, p. 41; Gartner Group). As a result, the

Gartner group has proposed a new multi-tier, object-based model that focuses on the

development of distributed applications who are not dependent on the underlying physical

location of data or application-logic.

1. Traditional

Server/Host

2.a. Two-tier
data passing

Server

source: Gartner Group

2.b. two-tier 3. three-tier 4. distributed objects
message passing message passing

Server Server Servers

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 14 -

According to the models (the previous and the modified model) of the Gartner Group, a CIS

application should meet two conditions: 1) the end-user should have a transparent access to

processing algorithms (applications, programs or processes) and datasources (databases and

files) (Low, G.c. , Henderson-Sellers, B. and Han, D., 1995, p. 328.) and 2) there should be a

split between client-functions and server-functions that both belong to the same application

logic (Kerkhof, G. 23 mart 1990, pp.37-39).1

In this view, the development environment should provide applications with sufficient

communications protocols to approach the servers by means of messages or RPC mechanisms

that can be controlled using middleware techniques. The increasing employment of separate

reusable modules of applications, goes beyond the three-tiered architecture - a split between

data, application logic and presentation logic so that existing or new application can be

provided with adapted and several user interfaces - and allows to develop a distributed and

multi-tiered architecture (Semich, W. June 15, 95, p. 41). In this context, client applications

can interface to a remote and reusable function or objectclass, bind to an instance of it and

issue remote object invocations using message passing or RPc. (Maffeis, S. June 95, p. 135).

As a result, time- and cost-savings are achieved not by programming faster but by consulting

existing and reusable object-libraries (Harmon, P. and Taylor, D.A. 94, p. 11).

In this way, libraries or containers of classes or functions representing interactive and

application-logic components can be divided in two categories : platform-dependent and

platform-independent objects (Collins, D. 95, p. 441). Tools that use platform-native classes

are limited to creating applications with the same look, feel and functionality as the platform

they depend upon. The achievement of portability when integrating platform-independent

libraries is then opposed to the loss of all the functionality and interface details of each

platform's style, but accommodates heterogeneity and autonomy.

Tool-builders and vendors have recognised this trend and increasingly focus in their

technological development on the usage of standard objects. A number of them have tried to

construct a standard binary object and architecture independent of the used scripting code,

and residing on servers that provide client access by inter-process communication (IPC)

mechanisms. IBM for instance based its object-development on the System Object Model

(SOM) and the distributed version DSOM. These models are based on binary objects that are

language-independent and can be imported in various development tools like C++ and

Smalltalk (Linthicum, October 95, p 52). In 1989, the OMG-group began with the

development of the CORBA standard that should improve the multi-platform and multi-tool

reusability of objects.(Benjamin, R.I. and Blunt, J., winter 93, p. 19; Harmon, P, Nov. 95 p.

85; Maffeis S. 95 p. 135). CORBA (Object management group: The common object request

1 Co-operative processing is made possible by letting different systems communicate via a sequence of
bits (low-level) or procedure calls (high level) in a connect-oriented or connectionless mode. (Lobelle,
M. The structure of client/server systems; Buug, Client/server event, 25 sept 1991, pp. 6-12;
Tanenbaum ,a.s., Computer networks, 1989, p.434)

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 15 -

broker : Architecture and specification, 1995) specifies a standard that allows different

Object Request Broker implementations to communicate over a network. The client holds an

object reference that points to the objects that resides on the server-side.

Also Microsoft is promoting the OLE-model (Microsoft corporation. OLE2 programmer's

reference, Microsoft press, 1994) which is based on OLE-objects that do not support

inheritance, but are usable in numerous Windows development environments and end-user

applications and seem to be gaining in importance. (Linthicum, Oct. 95, p. 52 ; Verhoef, D.

95, p. 61). A severe comparison of existing standards provides useful insights but is beyond

the scope of this paper.

The modularization in different layers stimulates multi-platform development and simplifies

maintenance and scalability on the condition that the distributed system can cope with

fundamental problems which occur in real-life, namely partial failures, consistent ordering of

events and asynchronous communication (Maffeis, S., June 95, p. 135). Development tools

that allow the construction of multi-tiered systems can be evaluated according to the degree to

which they can create, manipulate and/or access independent server functions or objects and

prevent the above mentioned problems. More specifically, (R. van der Lans, 1996, Software

Automation) compared tools that focus on application partitioning and the following table

resulted:

Composer Forte NatSTar NewEra Developer 2000 Unify

server modules outside x x x x - x

DBMS

server modules call server x x x x x x

modules on other servers

server modules call ? x x Partially - -
modules on client

moving server modules x x x - - x

dynamically

call to server module does x- x x x x x

not include a location

synchronous calls x x x x x x

asynchronous calls Partially x ? x - x

Source: modification of R. van der Lans, education seminar, Software Automation 1996.

The construction of enterprise-wide applications can only be accomplished in a shared

development environment, where a team of developers are able to access concurrently but

transparently repositories from heterogeneous servers. Distributed development includes

problems such as locking mechanisms for objects, keeping track of different versions, making

sure that only compatible versions are linked together, etc. (Taylor, D.A., 92, p. 240).

Although many of these functions are delegated to the servers or the underlying architecture

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 16 -

of available object models (such as CORBA), a client/server development tool should be

considered on its ability to give an overview of the shared development in progress, and

provide features that manage a project, compose the application, control version-management

and (if necessary) delegate responsibilities. These particular tasks, combined with the

possibility to seamlessly co-operate with distributed object-repositories will be referred to as

team development in the rest of this paper and will be a decisive feature in the client/server

dimension (cf. infra).

2.3.2. specific CIS features

In the above section, general requirements to implement application partitioning were

discussed. When evaluating CIS tools, two practical issues should be considerably focused:

data-access and portability.

2.3.2.1. Data-access

Although the modified Gartner model focuses on the distribution of object architectures and

middleware technologies, regardless of the server-function, the interaction with databases

dispersed across several servers still has a central meaning in a client/server environment. Not

only is it important that a client is able to access heterogeneous databases, but it is also

necessary that data can be transparently retrieved from different heterogeneous

databasemodels, in such a way that the user regards the databases as one logical

databasemodel. When SQL is used as a general database-request language, mUltiple joins and

the ability to construct complex queries are the most important practical issues. (Vogt, c.,
June 95, pp. 217-223)

In pure 00 development tools, database information has to be accessed through the use of

objects, with no regard to the underlying databasemodel. If e.g. data is stored in a relational

database, the relational databasemodel has to be translated in an object-model that can be

implemented by a tool. Some tools possess a mapping subtool that converts relational data

items in objects (e.g. the Data Modeller in Visualworks). Development environments that are

not purely 00, can access databases by way of native database API-calls or ODBC APIs that

give access to the relational model (tables, rows or columns) or the file I/O system (e.g.

IS AM-files and a number of desktop databases).

When evaluating development tools, they cannot be put in general categories on the basis of

their database-drivers and differ individually when SQL-links and native APIs are considered.

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 17 -

2.3.2.2. portability

server portability

In designing a client/server architecture, a trade-off has to be considered between the degree

of portability (enhanced by the use of for instance ODBC APIs or RDA (see Geiger, K. 1995,

p. 66)), and the degree to which an application makes use of special server-features (like

stored procedures, triggers, a particular SQL-syntax or business-logic wrapped in object

servers). Generally speaking, an increased employment of server-possibilities increases

performance but also enlarges the dependency on the server. (Borland International, 1995, p.

128).

In order to obtain the appropriate proportion of portability when designing an application, it is

unavoidable to control for each potential tool the access-possibilities and the way it is related

to a certain type of server.

client portability

Client portability points to the degree to which a tool can produce applications that can be

distributed on several different platforms. As with server portability, there is an inherent

trade-off between the range of an application (number of platforms that support the program)

and the potential to use particular characteristics of a certain platform.(Darling, c.B. august

95, p. 66).

There are a number of significant differences between platforms that can be rarely be

surmounted or fully utilised. A first feature that can not easily be resolved is the fact that an

application uses programming interfaces to operating systems that are platform-dependent

(e.g. Windows-APIs). Another significant trade-off in using a cross-platform tool comes from

the different interface-conventions generated in different platforms. The most evident

example is the fact that several GUI standards are used in platforms like UNIX, Windows or

OS/2. Finally, the communications modes managing the exchange of data between platforms

is another hindering issue to portability. In a Windows-environment for instance, OLE-files,

C++-calls and DLL-files are used, while a public-and-subscribe system is applied in a

Macintosh-environment. (Darling, C. B., Aug. 95, p. 66) Consequently, every additional

platform support means additional compromises that had to be foreseen when the tool was

being constructed.

Generally speaking, tools can be divided in the following clusters:

• tools that support only one platform;

• tools that support several platforms of the same vendor (e.g. Visual Basic can be executed

on Windows 3.1(1), Windows 95 and Windows NT);

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 18 -

• tools that possess several versions (and compilers) to be installed on several platforms

(e.g. Delphi-compilers for OS/2 and Windows);

• tools that support several platform of different vendors (e.g. Visual works supports

Windows, OS/2, Macintosh, Open Look or OSF Motif)

2.3.3. client/server dimension

The following classification results from the discussion above:

simple CIS tools limited CIS tools using CIS tools that are distributed CIS tools
repositories that are repository-driven

- native and integrated later - native and ODBC
ODBC drivers - native and ODBC drivers
-no team - native and ODBC drivers - generation of or
development drivers - access and addition to a access to cross-platform
features -access to and/or platform dependent distributed object
- single-vendor generation of certain shared repository out of standards like CORBA
platform platform dependent which the tool is built or DSOM

repositories (e.g. Uniface's - management of
(e.g. automated OLE, '00') repository) distributed development
-limited distr. - management of - extended cross-
development management distributed development platform features
- cross-platform facilities - cross-platform facilities

Not many tools can be found yet in the category of distributed CIS tools. Forte is the most

representative example, since it is compliant with CORBA standards, and provides excellent

functionalities to apply application partitioning on a large scale, In the class of repository

driven tools, recently build tools like NewEra 2.0, Unify vision, Natstar and Composer are

based on own platform dependent repositories and possess extended feature to distribute

client and server functions. Tools like Delphi II, Visual Basic 4 or Powerbuilder 5.0 can be

placed in the second column, because they possess team development features and object

repositories, that are attached on or integrated in previous versions. Earlier versions of these

tools should be categorised as simple CIS tools since they were not suitable for large team

development and did not allow concurrent or multiple access to central repositories.

In general, it can be stated that the environments in the left column lack the possibility to

construct multi-tiered systems. Basically, these tools are not suited to build independent

server functions and they do not possess a central repository that can be accessed by multi

users. They are often referred to as "first-generation CIS tools". The two columns to the right

refer to tools that are suitable to program the client and server side of an application that is

build with a team of developers. The tools are called "second-generation environments". The

second column represents tools that used to be "first-generation" but are upgraded by adding

repositories and team development features andlor linking them to existing object-libraries.

As already discussed when commenting the 00 classification, this subdivision is also based

on certain assumptions - the possession of a multi-user repository and team development

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 19 -

features are being considered decisive - and other classifications can exist when different

hypotheses and other accents are put forward. Besides, some characteristics (e.g. cross

platform facilities) may not be an advantage in certain projects (e.g. more cross-platform

possibilities means that less platform-specific features can be utilised).

2.4. productivity

The criteria that were treated above especially focus on the functional possibilities and

limitations of a tool, they do however not express the efficiency with which an environment

can execute an assignment or task. When measuring productivity of a tool, several issues and

attributes can be taken into account. Productivity is a general concept that can relate to the

design or coding process or the software in combination with the hardware. Improving or

testing the productivity during coding or designing is in fact also testing the productivity of

the personnel executing the task. (Fenton, N. E. 91 p. 262) Because this issue relates to

several factors outside the development tool (such as training, intellectual capabilities,

project-management, etc.), it will not be discussed in this section.

Only productivity measures concerning the tool in combination with hardware and software

attributes (the client/server architecture, the performance of the server, the platform used,

etc.) are regarded in this context. A critical issue in performance comparing lies in the fact

that performance and efficiency analysis of software is dependent on several factors outside

the programming environment - the speed and capacity of the servers, the network, the kind

of transactions, etc. - that cannot easily be controlled but considerably influence the

performance of the tool. Therefore, it is necessary to test performance in different modules or

surroundings with particular hypotheses which are equal for different tools, so that it becomes

clear which tool is most suitable in which environment.

As already stated when discussing the purpose of a tool, it is desirable to have a broad

classification of projecttypes and their requirements so that different performance measures

can be put forward in each project domain. Generally speaking, applications can be

subdivided according to their nature : scientific, business, real-time (Verhoef, D. 95).

Although each class can be further refined in subclasses (e.g. business-projects can be

categorised as transaction processing systems, office automation systems, management

information systems, decision support and executive information systems; real-time systems

can be divided in hard and soft or static and dynamic real-time systems (Bacon, J. 93 p. 2),

etc.), some frequently-used productivity measures can be applied in the three different

categories. l

Frequently used measures include the standard benchmarks (SPEC, TPC, ...). By running a

benchmark and comparing the results against a known configuration, one can potentially

1 It is not the intention of the authors to give an exhaustive list of every possible performance measure.
Only some general and frequently used measures will be shortly discussed ...

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 20 -

pinpoint the cause of poor performance.(Geiger, K., 95) The benchmark measure is closely

related to and based on response time (waiting time and processing time per service unit) and

throughput time (the number of service units per time unit). It is necessary to check which

measure is dominant in a target application. If for instance a database is measured that is

updated in batch format, throughput is dominant over response time, whereas response time is

clearly dominant in a trading system at the stock market where timing is more decisive than

the number of transactions. It is obvious that throughput and response times are not only

deterministic factors in database performance. They can also be applied to measure the way a

tool behaves in a more general multi-tiered distributed CIS environment. Since these measures

largely depend on the server and network capabilities, tools should only be compared

regarding the hardware capacities at hand in a concrete project...

A major element in measuring and comparing the performance of tools depends on whether

the source code is compiled or interpreted. The difference in performance between a compiled

and an interpreted application can be seen on two levels. Since a compiled program offers a

better run-time performance but compiling is more time-intensive than interpreting, it is

important to know in which development phase or in which environment a tool is to be

employed. If a distinction is made between prototyping and implementation during project

development and prototyping is used frequently on a small basis, it may be desirable to use an

interpreting tool (e.g. Visual basic, Smalltalk-tools, ...) in prototyping and other tools in the

final production phase. When compilers are tested, one should be aware that different

compilers can exist for the same source-code. Different platforms can be used for the same

source-code on the same or different platforms with a different productivity.

3. Human factors criteria

These criteria are used to assess the usability and ease-of-Iearning of a development

environment. Usability focuses on the efficiency, effectiveness and user-friendliness of the

interface. It helps answer questions such as : "To what degree does the environment allow a

competent developer to code algorithms, easily and correctly, so they can be understood and

easily adapted by other developers 7" A second question to be answered is : "Can the

environment be used by non-experienced developers and is it suitable for end-user computing

?" (Howatt, J., 95 p. 38)

(Buede, M. 1992) used several evaluation criteria to test (amongst other things) the usability

and performance of decision analytical software. A modification of the ideas of Buede, leads

to the following scheme:

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools

u ser-frien d lin ess

-[

occasional usel

docum entation

flequent lISel

in terface ease

installation

1 SUhllllliS

screen display

111 odifications

--r-hardware

L so ftw are

{
aulom uted tutorial

h clp-[u nclio ns

----r- com m and glossary

L quick reference guide

1
cia riLy

dutaentry

data protection

learning ease -{
orientation

program sim plicity

Definition of criteria :

Documentation

Occasional User:

automated tutorial: is the user taught how to use the software on-line?

help: are there context sensitive "help" screens throughout the software?

Is the developer provided with sufficient unambiguous error messages?

Frequent User:

Is there a quick reference summary or a detailed glossary of commands, their formats and implications?

Interface ease :

21 -

Subtools :are there subtools that can help the developer in particular application domains (e.g. query-builders)

Screen Display:

clarity: does the screen display promote understanding?

data entry: is data input enhanced and controlled by the screen display?

data protection: can the user protect his data from other users? Is data in database or files protected?

Modifications : can the interface be adapted to the needs of a particular developer?

Installation:

hardware: are there any special devices required? What are the RAM requirements of the tool, etc. ?

software: is the installation procedure automated and without errors?

Learning Ease :

Orientation: how easy is the graphical interface to learn ?

Program Simplicity: is the software designed so that most operations (of the interface) are obvious?

Are their powerful tools to help the structuring of programming (e.g. browsers, debuggers, ...)?

Are the error messages unambiguous and domain-relevant?

Although it is evident to state that not only the way of coding (visually, textually (Petre, M.

95), object-oriented or not) but also informative error messages, help functions, debug- and

browse tools and consistent interfaces are means to achieve usability, it is not easy to know

the explicit relationships between these internal attributes - attributes that can be measured in

terms of the product or resource itself (Fenton, N.E. 91 p. 42) - and the external concept of

usability - attributes that can only be measured with respect to their environment (Fenton,

N.E., 91 p. 43 and 249). Following the ideas of (Fenton, N.E. 1991), and (Gilb, T. 1987), the

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 22 -

actual measure has to be decided by a particular 'user' according to the particular type of

product and leads to the following measurable attributes:

Entry level: years of experience with similar class of applications

Learnability : speed of learning, e.g. hours of learning before independent use is possible

Handling ability: e.g. speed of working when trained and/or errors made when working at

normal speed

The usability dimension should be interpreted as a ranking that represents the external

concept of usability. As a result, the answers to questions about usability should be stated in

an open way and cannot be limited to a priori defined possibilities ...

4. Miscellaneous

According to (Howatt J. 95), software engineers often focus on the following features when

selecting tools :

- they choose the tool they have used in the past (or an upgraded version) and of which a huge

quantity of code is already available;

- they select the product that is wide-spread and possesses a large market-share (a lot of

experience is available and the tool can be considered as mature);

- Considerations of contractual nature can be decisive.

It is obvious that producers with a reliable and continuous service should be preferred when

critical or complex applications are to be built. In (Attachmate Corporation, April 95, p. s-23),

the latter issue is confirmed and it is argued that service- and consulting costs are the biggest

hidden costs in the management of a CIS project. Also in the Dutch survey (Verhoef, D., 95

pp. 68, 77 and 82), criteria such as the continuity, the growth potential of the tool and

installation and maintenance support of the vendor are indicated as criteria that can be used to

investigate the satisfaction of the interviewee. Among these, the continuity of the supplier

seemed to be allocated a lot of importance according to the interviewees. Consequently, it is

important to select a reliable producer that can support their clients in a technical,

economically and organisational way.

Other important aspects to consider relate to costs of purchase, installation, maintenance,

training and the effect the tool has on the organisational structure.

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 23 -

5. A general framework

In the following figure, several dimensions discussed above are brought together so that a

general basic framework results, in which developments tools can be positioned. In the

scheme below, the ordinal factors (CIS and purpose) are represented in two-dimensional

planes, and the nominal factor (object orientedness) is shown in depth. Usability, vendor

support and training (ordinal factors) are left out, because they depend on the users and

supplier and cannot be measured on a general reliable scale. Productivity measures can be

included when positioning particular tools.

General
purpose

Specific
Purpose

Simple CIS tools

D~tritlUte:d CIS

Distributed CIS

It is important to remark that the three global dimensions are independent variables which are

not per definition related to each other. In this respect it can e.g. not be stated that a tool is

well suited in a CIS environment, because it is object-oriented or general purpose or vice

versa. Another example relates to the usability of tools. Tools can offer general functionalities

and scalability opportunities, but demand extensive learning. Criteria may have different

importance to different projects, and aggregation of the dimensions should therefore be done

with caution.

Nevertheless, some general remarks and correlations can be put forward when applying the

model on a global basis. In general, it can be stated that tools with a general purpose allow re

use for additional projects, but demand more training. A very specific tool can save initial

investments but decreases re-use opportunities. The decision maker has to decide whether

there are trade-offs to be made. Moreover, it can be concluded that the characteristics of the

object-oriented paradigm lend themselves to the purpose and requirements of application

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 24 -

partitioning and are also suited to model complex enterprise-wide applications in a diversity

of environments. It is then not surprising to note that second generation CIS tools, which are

the cornerstones of a growing market segment are more likely to possess object-oriented

features. Compared to first generation CIS tools, these environments can tackle a large range

of enterprise-wide applications, but the complexity and thus the training cost and entry level

can also be expected to grow. Re-use of component and class repositories, the integration of

graphical (specific-purpose) subtools, visual coding and standard user interfaces are currently

the solution to counterbalance the growing demands of complexity that constructors of tools

are faced with.

By way of illustration, three development tools will be roughly positioned in the framework

above: Visualage Team 2.0 for Smalltalk, Visual Basic 4.0 and Delphi II.

Starting with the object-oriented dimension, it can be concluded that Delphi and Visualage

are the only true OO-tools. Visualage for Smalltalk supports dynamically-typed dynamic

binding, whereas Delphi provides statically-typed dynamic binding. Both tools are provided

with single inheritance but no generic classes. Visual basic is clearly object based (it lacks

inheritance and polymorphism).

All three tools are general purpose, but Visual Basic is less generally applicable. Delphi is

fully 00 and offers possibilities to create DLL-files and extended memory allocation

functions and Smalltalk (also fully 00) offers extensions to COBOL and C and can (amongst

other reasons) therefore be considered more general-purpose than Visual Basic.

Contrary to Visual Basic and Delphi, Visual age (Team) is a truly distributed CIS tool that

supports concurrent team programming based on a LAN repository and allows version

management, source and object code tracking and configuration management. Visual age 2.0

for Smalltalk is not (yet) CORBA compliant but supports the DSOM architecture. Delphi II

and Visual Basic 4.0 should be placed in the second column of the CIS dimension (cf. supra)

since they support the creation of and access to automated OLE objects (limited to Windows

platforms) and have added team development features. (Both issues were not present in their

previous versions). Visual Basic is only portable in Windows platforms, whereas Delphi

possesses compilers to port code to Windows and OS/2 systems. Visualage is more portable

and can be ported to OS/2, Windows and Motif platforms. The three tools possess several

relational database drivers. Delphi possesses native drivers to access Paradox and Dbase

databases and it can access SQL server databases (like Oracle, Informix, ...), whereas Visual

Basic offers native drivers to Microsoft databases (especially MS-Access). Both tools provide

access to other databases using ODBC drivers. Visualage can interface to DB/2, Sybase SQL

servers, Microsoft SQL servers and Oracle databases.

As far as productivity is concerned, Delphi is the only tool that provides a compiler and has

therefore relatively more performance at run-time. Considering the learning curve, Object

Pascal (Delphi) and Smalltalk (Visualage) are truly object-oriented and demand in general a

larger learning period than Visual Basic. One should always keep in mind though that the

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 25 -

learning curve is dependent on the experience of the target developers-group, In the three

tools, graphical subtools (GUI-builders, browsers, debuggers and database tools) are

integrated with the underlying scripting language. Visualage has adopted techniques from

visual programming and allows developers to construct application logic by wiring icons and

other graphical representations. Furthermore, the three tools are supported by three large and

reliable constructors - IBM, Microsoft and Borland - and experience by other user-groups is

present. (Although Visual Basic seems to be the most used tool).

The table below can be used as a general guide to examine certain tools in more detail.

Depending on the target application, some features will have more or less weight, and

additional requirements may have to be added. After the following requirements have been

pin-pointed though, the tools can be positioned in the dimensions presented in this paper and

more detailed requirements can be put forward ...

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 26 -

OBJECT-ORIENTEDNESS
Is abstraction possible in the language? instance variables

instance methods
class variables
class methods

Is encapsulation possible? of variables(publiclprivate)
of methods(publiclprivate)

Is a hierarchy of classes possible? inheri tance(single/multiple)
metaclasses
J.!;eneric units

Is it a typed language? strongly typed (yes/no)
binding (static/dynamic)
polymorphism(single/multiple)

concurrency multitasking (yes, no, indirectly)
persistence persistent objects
PURPOSE
What is the scripting language of the tool? specific-purpose 4GL

non-procedural 4GL
procedural 4GL or 3GL

To what degree is visual programming possible? is it optional ?
is it constraining the developer to certain areas?

Can standard-code be generated that can be used by exportable libraries
other tools? standard-objects

links to libraries of other languages
links to CASE tools or methodologies?

Are subtools available that are necessary for the target database-tools
project? report-generators

expertsystems
browsers
debuggers

."
Are their basic functions that can be used in the mathematical functions
application logic ? Are these functions limited to a statistical functions
certain application-domain? functions to improve structured programming (e.g.

case-structures)

".
Can functions be generated that do not contribute to the autonomous executable-files
application logic, but make the application run on the the definition of own messages
hardware? creation of platform-dependent APls

dynamic memory manipulation
CLIENT/SERVER
data-access
databases drivers? native APls

ODBC drivers
other SQL-links

Is it possible to connect to middleware tools embedded middleware
links to autonomous middleware packages

application partitioning
can server functions be generated or manipulated? stored procedures or triggers can be manipulated

server modules outside DBMS are possible
server modules call server modules on other servers
server modules call modules on client
moving server modules dynamically
call to server module does not include a location
synchronous calls
and/or asynchronous calls

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 27 -

team-development
remotely accessible object repositories? platform-dependent

platform-independent
concurrency control ? two-phase locking

other mechanisms
version-control ?
Is there any co-operation between different
development sites (of one project) and common
repositories?
project-management? ~a tool that indicates which sub-application is

responsible for integrating the whole; a tool that
compares differences in time-budgets, etc.

portability
standalone or server-based?
cross-platform? the same vendor

compilers of different vendors
portable to different vendors (by using adapted tools
and compilers)

PERFORMANCE
Does the tool meet benchmarks for the target CIS e.g. the TPC-B benchmark, the SPEC benchmarks
configuration?
Is response time or throughput time dominant in the
target project?
Is the tool interpreted compiled or are both possibilities
optional?
Is an optimised compiler used? compile time

compile and link time
execution time
object code size
execution size

HUMAN FACTORS CRITERIA
Are the subtools user-friendly and usable in a handling ability, reliability and entry level for
consistent and graphical way? browsers

debuggers
text editors

....

Is there sufficient context-sensitive help?
Can errors be easily detected?
What is the learning period for the tool? entry level

learnability
MISCELLANEOUS
Is there any experience present in the organisation ?
Do bodies of users exist (elsewhere) ?
Is the supplier reliable? Can the supplier guaranty continuity in service and

material?
Is the constructor's organisation stable?
installation support ?
implementation support ?

Is the product manageable? is the software readily available?
growth potentials?
scaleable?
Is there a possibility to obtain training and education?

various costs software and additional hardware
maintenance
education and training
consultancy support
organisational modifications

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 28 -

Conclusion

The proliferation of client/server architectures, object-oriented system development and

visual, user-friendly programming, has resulted in an increasing involvement of PC's and

workstations in traditional data processing and automation areas. Therefore, more and more

professional development products appear on the market to develop application that can make

optimal use of the graphical user interface and access remote databases or object repositories

via a network. The differences and potentials of this new generation of products is unclear

and changing rapidly. Therefore, it is necessary to present a general framework to make the

companson of existing tools and even the construction of future tools a more informed

decision.

Since numerous criteria exist that can be taken into account, the criteria have a divergent

nature (technical, as well as human and economic factors should be considered), and the

importance of the criteria is dependent on the application at hand, it is a complex problem to

find generally applicable dimensions that allow to set up an all-embracing classification.

Nevertheless, we have given a scheme that offers a usable and clear positioning-framework

that integrates ordinal with nominal measures in a multi-dimensional whole, on the basis of

which development environments can be selected. Moreover, it is a solid basis that can be

refined and completed through further research.

Different sets of criteria were developed. They relate to software-engineering, human factors

and cost and training issues. When discussing software-engineering factors, the degree of

object-orientedness, the purpose, the client/server capabilities and the performance of tools

were put forward. Human factors criteria are important elements that can give an answer to

questions like "How user-friendly is the tool" and "How easily can it be learned ?". Mostly,

these issues depend on the training and motivation of the developers using the tool and can

only be answered by particular usergroups using a particular product. Criteria that focus on

the consultancy, training and installation costs of a tool are to a strong degree dependent on

the supplier, who should be chosen with care so that a continuous and stable support is

assured.

However, the selection of an environment should also be accompanied by an accurate

problem description from which the required characteristics of a tool can be derived. By

choosing general purpose tools with many possibilities, a re-use of the tool for additional

development projects is possible, but software training is more demanding. By choosing a

tool which is very specific for the target application, initial investments can be saved, but it is

not sure that the tool will be re-usable. A detailed survey of different tools using the proposed

criteria and the requirements of the application to be developed will finally lead to the best

choice.

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 29 -

References

Agha, G.A. and Wegner, P., Research directions in object-oriented programming. MIT Press
Cambridge, Mass., 1993,532 pp.

Alghandi, J. and Urban, J., Comparing and assessing programming languages : Basis for a qualitative
methodology. In Proc. 1993 Software Applications Conference, ACM Inc. 1993, pp.1222-229.

Attachmate Corporation, How to revitalize host systems for client/server computing today & tomorrow,
in Datamation, April 1, 1995, pp. s-2- s-24.

Beek v.d. G. , Het gebruik van een vierde generatietaal, in Informatie, jg 29 nr. 10, pp. 861-956.

Benjamin, R.I. and Blunt, J., Critical IT issues: The next then Years, In Sloan Management Review,
winter 1993 , pp.7-19.

Bodker S., Through the interface: A human activity approach to user interface design, Lawrence
Erlbaum Associates, Inc., 1991.

Booch, G., Object-oriented analysis and design. The Benjamin/coummings publishing company, Inc.,
California, Massachusetts, ... , 1994.

Borland International, Inc., Databases Application Developer's Guide, Borland International, Inc.,
1995,200 pp.

Burnett, M. , Visual object-oriented programming : concepts and environments, Prentice-hall
Englewood Cliffs, 1995,274 pp.

Cardelli, L. and Wegner, P. On understanding Types, Data Abstraction and Polymorphism. in ACM
Computing Surveys vol. 174(4), 1985.

Collins, D., Designing of object-oriented user interfaces. The benjamin/cummings company, INc.,New
YorkiAmsterdamlBonn/ ... , 1995.

Daring, C.B., Immortalize your apps, in Datamation, august 1, 1995, pp. 65-74.

Garfinkel, S.L. and Mahoney, M.K., Nextstep programming. Step one: object-oriented applications.,
Springer New York, New York, 1993, 631 pp.

Geiger, K., Inside ODBC, Microsoft Press, Washington, 1995,482 pp.

Gilb, T., Principles of Software Engineering Management, Addison Wesley, 1987.

Glinert, P.E., Visual Programming Environments, IEEE Computer Society Los Alamitas, California,
1990.

Harmon, P., Object-oriented AI: A commercial Perspective, in Communications of the ACM, 1995, vol.
38 no. 11, pp. 80-86.

Harmon, P., and Taylor, D.A., Objects in action, Commercial applications of object-oriented
technologies. Addison-Wesley publishing company, Massachusetts, California, ... , 1993.

Hopkins, T. and Horan, B., Smallltalk : an introduction to application development using visualworks,
Prentice-Hall Englewood Cliff, 1995,408 pp.

Howatt, J., A project-based approach to programming language evaluation. in ACM SIGPLAn Notices,
30(nor. 7), 1995, pp.37-40.

Janse, H. J. and Achterberg, J., Invloed van vierde generatie software op ontwikkelingsfuncties, In
1nformatie, jg 29 nor 11, pp. 957 -1044.

Kerkhof, G., Van master/slave naar client/server model, In Computable, 23 mart 1990,23 (12), pp. 37-
39.

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 30 -

Khoshafian, S., e.al., Intelligent offices : object-oriented multi-media information management in
client/server architectures, John Wiley & Sons, Inc., New York/Chichester, 1992.

Klerer, M., Design of Very High-level computer languages: A User-Oriented Approach, McGrw-Hill,
2nd edition, 1991.

Linthicum, D.S., The Object Revolution, in DBMS, Oct. 1995, pp. 46-52.

Low, G.c., Henderson-Sellers, B. and Han, D., Comparison of object-oriented and traditional systems
development issues in distributed environments, in Information & management, Elsevier Science B.B.,
28(1995), pp. 327-340.

Maffeis, S., Adding Group Communication and Fault-Tolerance to CORBA, in Coots, Monterey,
California, June 26-29, 1995, pp.135-146.

Szczur, M.R. and Sheppard, S.B., TAE-Plus: Trasportable Applications Environment Plus: A User
Inerface Development Environment, in Acm Transcations on Information Systems

Shaw, M., Almes G.T., Newcomer, J.M., Reid, B.K. and Wulf, W.A., A comparison of programming
languages for software engineering, Software-Practice and experience, 11, 1981, pp. 1-52 ..

Shu, P.C., Visual Programming. Van Nostrand Reinhold, New York, 1988,315 pp.

Semich, J.W., Client/server unchained: Finally, Hardware Independence, in Datamation, june 15,
1995, pp. 40-45.

Stroustrup, B. The C++ programming language. Addison-Wesley Reading, s.p., 1991,680 pp.

Taylor, D.A., Object-Oriented information systems. Planning and implementation, John Wiley and
Sohns, Inc., New York/ChichesterlBrisbane, 1992,357 pp.

TempI, J., A systematic approach to muliple Inheritance Implementation, In ACM SIGPLAN Notices,
april 4, 1993, pp. 61-66.

Urlock, Z., An overview of the Delphi 2.0 Optimizing Native Code Compiler for Windows 95 and NT,
Borland International, S.L., 1996,28 pp.

Verhoef,D., Toolvision: Nationaal onderzoek naar het g

Vogt, c., Simple SQL, in Byte, June 1995, pp. 217-223.

Watt, D.A., Programming Language Concepts and Paradigms, Prentice-hall Inernational, 1990.

Welke, R.J., The shifting software development paradigm. In Database, vol. 25 nor. 4, 1994.

Winblad, A.L., Samuel D. Edwards and King, D.R., object-oriented software. Addison Wesley
publishing company, inc., Massachusetts, California, new York, 1990.

A General Framework for Positioning, Evaluating and Selecting the New Generation of Development Tools 31 -

Abstract ___________________________ 1

Keywords ____________________________ 1

1. Introduction __________________________ 2

2. Software-engineering criteria 3

2.1. object-based vs. object-oriented 3

2.2. general vs. specific purpose 7

2.3. client/server and application partitioning 13
2.3.1. client/server considerations 13

2.3.2. client/server dimension 18

2.4. productivity ________________________ 19

3. Humanfactors criteria 20

4. Miscellaneous 22

5. A general framework 23

Conclusion 28

References 29

