44 research outputs found

    A new adaptive edge enhancement algorithm for color laser printers

    Get PDF
    This thesis presents a novel algorithm for improving quality of edges in printed text. The algorithm is designed to add pixels at selected edge locations after halftoning. The extent of the correction is proportional to the “strength” of the edge, as determined by comparing the local differences in a four-pixel neighborhood to a dynamically generated threshold. The process is computationally efficient and requires minimal memory resources. The performance of our proposed algorithm is clearly demonstrated on several characters and lines. While the algorithm aims to improve the quality of printed text (edges), it is possible to extend its application to improvement of any edge identifiable in an image document

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    High efficiency dynamic pressure based flow measurement

    Get PDF
    Over the past few decades considerable attention have been directed towards the development of different types of flow-metering techniques. High pressure drop after passing the metering device and partial obstruction of the flow represent the two most common problems for the majority of the existing flow-metering devices. The main intention of the current study was to overcome or minimize these two issues. The principle objectives were developing a low-cost measurement system and setup to measure the flow in pipes of small diameters (0.5” to 4”), and performing an analytical / numerical model that enables to extract the distinction of the dynamic pressure throughout the flow. Both analytical and numerical solutions of the fluid flow inside the pipe indicate forming of a parabolic velocity profile across the pipe in the fully developed flow region. Dynamic pressure variation due to velocity change across the pipe is used as the fundamental measurement principle in this work. The equipped cantilever beams with piezo-resistive materials are used as sensor for detecting the induced signals in three different levels across the pipe. The collected signals are used to reconstruct the parabolic velocity profile. Further, the integration of the parabolic profile in the cross-section area of the pipe will yield to the flow value. The constructed sensors with strain gages are connected to a Wheatstone-Bridge. The resistance variation due to the strain changing in cantilever platform converts to voltage variation by the Wheatstone-Bridge. Signal amplification and filtering are carried out by a dedicated circuit board. The work was extended to inkjet-printing of the conductive ink which is introduced as an alternative method for piezoresistive sensor fabrication. Easiness and fast-fabrication process are two important factors which give ability to mass production of low-cost piezoresistive sensors

    Accurate and Computational: A review of color reproduction in Full-color 3D printing

    Get PDF
    As functional 3D printing becomes more popular with industrial manufacturing applications, it is time to start discussing high-fidelity appearance reproduction of 3D objects, particularly in faithful colors. To date, there is only limited research on accurate color reproduction and on universal color reproduction method for different color 3D printing materials. To systematically understand colorization principles and color transmission in color 3D printing, an exhaustive literature review is stated to show the state of the art of color reproduction methods for full-color 3D printing, such as optical parameter modeling, colorimetric difference evaluation, computer aided colorization and voxel droplet jetting. Meanwhile, the challenges in developing an accurate color reproduction framework suitable for different printing materials are fully analyzed in this literature review. In full-color 3D printing, coloring, rendering and acquisition constitute the core issues for accurate color reproduction, and their specific concepts are explained in concrete examples. Finally, the future perspectives of a universal color reproduction framework for accurate full-color 3D printing are discussed, which can overcome the limitations of printing materials, combined with computational boundary contoning

    Modeling and Halftoning for Multichannel Printers: A Spectral Approach

    Get PDF
    Printing has been has been the major communication medium for many centuries. In the last twenty years, multichannel printing has brought new opportunities and challenges. Beside of extended colour gamut of the multichannel printer, the opportunity was presented to use a multichannel printer for ‘spectral printing’. The aim of spectral printing is typically the same as for colour printing; that is, to match input signal with printing specific ink combinations. In order to control printers so that the combination or mixture of inks results in specific colour or spectra requires a spectral reflectance printer model that estimates reflectance spectra from nominal dot coverage. The printer models have one of the key roles in accurate communication of colour to the printed media. Accordingly, this has been one of the most active research areas in printing. The research direction was toward improvement of the model accuracy, model simplicity and toward minimal resources used by the model in terms of computational power and usage of material. The contribution of the work included in the thesis is also directed toward improvement of the printer models but for the multichannel printing. The thesis is focused primarily on improving existing spectral printer models and developing a new model. In addition, the aim was to develop and implement a multichannel halftoning method which should provide with high image quality. Therefore, the research goals of the thesis were: maximal accuracy of printer models, optimal resource usage and maximal image quality of halftoning and whole spectral reproduction system. Maximal colour accuracy of a model but with the least resources used is achieved by optimizing printer model calibration process. First, estimation of the physical and optical dot gain is performed with newly proposed method and model. Second, a custom training target is estimated using the proposed new method. These two proposed methods and one proposed model were at the same time the means of optimal resource usage, both in computational time and material. The third goal was satisfied with newly proposed halftoning method for multichannel printing. This method also satisfies the goal of optimal computational time but with maintaining high image quality. When applied in spectral reproduction workflow, this halftoning reduces noise induced in an inversion of the printer model. Finally, a case study was conducted on the practical use of multichannel printers and spectral reproduction workflow. In addition to a gamut comparison in colour space, it is shown that otherwise limited reach of spectral printing could potentially be used to simulate spectra and colour of textile fabrics

    The development of multi-channel inkjet printing methodologies for fine art applications

    Get PDF
    This thesis contributes to the defence of the practitioner perspective as a means of undertaking problems addressed predominantly in the field of colour science. Whilst artists have been exploring the use of colour for centuries through their personal practice and education, the rise of industrialised printing processes has generated a shift in focus away from these creative pursuits and into the computational field of colour research. It is argued here that the disposition and knowledge generated by creative practice has significant value to offer developing technologies. While creative practice has limited influence in the development of colour printing, practitioners and users of technology actively engage with the process in ways that extend beyond its intended uses in order to overcome recognised shortcomings. Here consideration is given to this creative engagement as motivation to develop bespoke printing parameters that demonstrate the effects of colour mixing through methods alternative to standard workflows. The research is undertaken incorporating both qualitative and quantitative analysis, collecting data from visual assessments and by examining spectral measurements taken from printed output. Action research is employed to directly access and act upon the constant developments in the art and science disciplines related to inkjet printing, observing and engaging with current methods and techniques employed by practitioners and developers. This method of research has strongly informed the empirical testing that has formed this thesis’s contribution to fine art inkjet printing practice. The research follows a practitioner led approach to designing and testing alternative printing methods and is aimed at expanding the number of discernible colours an inkjet printer can reproduce. The application of this methodology is evidenced through demonstrative prints and a reproduction study undertaken at the National Gallery, London. The experimentation undertaken in partnership with the National Gallery has proven the ability to increase accuracy between colour measured from the original target and reproduction, beyond the capabilities of current inkjet printing workflows

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMSÂź, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique

    Halftoning for Multi-Channel Printing : Algorithm Development, Implementation and Verification

    Full text link

    Modélisation probabiliste d'impression à l'échelle micrométrique

    Get PDF
    We develop the probabilistic models of the print at the microscopic scale. We study the shape randomness of the dots that originates the prints, and the new models could improve many applications such as the authentication. An analysis was conducted on various papers, printers. The study shows a large variety of shape that depends on the printing technology and paper. The digital scan of the microscopic print is modeled in: the gray scale distribution, and the spatial binary process modeling the printed/blank spatial distribution. We seek the best parametric distribution that takes account of the distributions of the blank and printed areas. Parametric distributions are selected from a set of distributions with shapes close to the histograms and with the Kolmogorov-Smirnov divergence. The spatial binary model handles the wide diversity of dot shape and the range of variation of spatial density of inked particles. At first, we propose a field of independent and non-stationary Bernoulli variables whose parameters form a Gaussian power. The second spatial binary model encompasses, in addition to the first model, the spatial dependence of the inked area through an inhomogeneous Markov model. Two iterative estimation methods are developed; a quasi-Newton algorithm which approaches the maximum likelihood and the Metropolis-Hasting within Gibbs algorithm that approximates the minimum mean square error estimator. The performances of the algorithms are evaluated and compared on simulated images. The accuracy of the models is analyzed on the microscopic scale printings coming from various printers. Results show the good behavior of the estimators and the consistency of the models.Nous dĂ©veloppons des modĂšles probabilistes pour l’impression Ă  l’échelle micromĂ©trique. Tenant compte de l’alĂ©a de la forme des points qui composent les impressions, les modĂšles proposĂ©s pourront ĂȘtre ultĂ©rieurement exploitĂ©s dans diffĂ©rentes applications dont l’authentification de documents imprimĂ©s. Une analyse de l’impression sur diffĂ©rents supports papier et par diffĂ©rentes imprimantes a Ă©tĂ© effectuĂ©e. Cette Ă©tude montre que la grande variĂ©tĂ© de forme dĂ©pend de la technologie et du papier. Le modĂšle proposĂ© tient compte Ă  la fois de la distribution du niveau de gris et de la rĂ©partition spatiale de l’encre sur le papier. Concernant le niveau de gris, les modĂšles des surfaces encrĂ©es/vierges sont obtenues en sĂ©lectionnant les distributions dans un ensemble de lois de forme similaire aux histogrammes et Ă  l’aide de K-S critĂšre. Le modĂšle de rĂ©partition spatiale de l’encre est binaire. Le premier modĂšle consiste en un champ de variables indĂ©pendantes de Bernoulli non-stationnaire dont les paramĂštres forment un noyau gaussien gĂ©nĂ©ralisĂ©. Un second modĂšle de rĂ©partition spatiale des particules d’encre est proposĂ©, il tient compte de la dĂ©pendance des pixels Ă  l’aide d’un modĂšle de Markov non stationnaire. Deux mĂ©thodes d’estimation ont Ă©tĂ© dĂ©veloppĂ©es, l’une approchant le maximum de vraisemblance par un algorithme de Quasi Newton, la seconde approchant le critĂšre de l’erreur quadratique moyenne minimale par l’algorithme de Metropolis within Gibbs. Les performances des estimateurs sont Ă©valuĂ©es et comparĂ©es sur des images simulĂ©es. La prĂ©cision des modĂ©lisations est analysĂ©e sur des jeux d’images d’impression Ă  l’échelle micromĂ©trique obtenues par diffĂ©rentes imprimantes
    corecore