923 research outputs found

    LO-FAT: Low-Overhead Control Flow ATtestation in Hardware

    Full text link
    Attacks targeting software on embedded systems are becoming increasingly prevalent. Remote attestation is a mechanism that allows establishing trust in embedded devices. However, existing attestation schemes are either static and cannot detect control-flow attacks, or require instrumentation of software incurring high performance overheads. To overcome these limitations, we present LO-FAT, the first practical hardware-based approach to control-flow attestation. By leveraging existing processor hardware features and commonly-used IP blocks, our approach enables efficient control-flow attestation without requiring software instrumentation. We show that our proof-of-concept implementation based on a RISC-V SoC incurs no processor stalls and requires reasonable area overhead.Comment: Authors' pre-print version to appear in DAC 2017 proceeding

    Towards a Trustworthy Thin Terminal for Securing Enterprise Networks

    Get PDF
    Organizations have many employees that lack the technical knowledge to securely operate their machines. These users may open malicious email attachments/links or install unverified software such as P2P programs. These actions introduce significant risk to an organization\u27s network since they allow attackers to exploit the trust and access given to a client machine. However, system administrators currently lack the control of client machines needed to prevent these security risks. A possible solution to address this issue lies in attestation. With respect to computer science, attestation is the ability of a machine to prove its current state. This capability can be used by client machines to remotely attest to their state, which can be used by other machines in the network when making trust decisions. Previous research in this area has focused on the use of a static root of trust (RoT), requiring the use of a chain of trust over the entire software stack. We would argue this approach is limited in feasibility, because it requires an understanding and evaluation of the all the previous states of a machine. With the use of late launch, a dynamic root of trust introduced in the Trusted Platform Module (TPM) v1.2 specification, the required chain of trust is drastically shortened, minimizing the previous states of a machine that must be evaluated. This reduced chain of trust may allow a dynamic RoT to address the limitations of a static RoT. We are implementing a client terminal service that utilizes late launch to attest to its execution. Further, the minimal functional requirements of the service facilitate strong software verification. The goal in designing this service is not to increase the security of the network, but rather to push the functionality, and therefore the security risks and responsibilities, of client machines to the network€™s servers. In doing so, we create a platform that can more easily be administered by those individuals best equipped to do so with the expectation that this will lead to better security practices. Through the use of late launch and remote attestation in our terminal service, the system administrators have a strong guarantee the clients connecting to their system are secure and can therefore focus their efforts on securing the server architecture. This effectively addresses our motivating problem as it forces user actions to occur under the control of system administrators

    IELE: An Intermediate-Level Blockchain Language Designed and Implemented Using Formal Semantics

    Get PDF
    Most languages are given an informal semantics until they are implemented, so the formal semantics comes later. Consequently, there are usually inconsistencies among the informal semantics, the implementation, and the formal semantics. IELE is an LLVM-like language for the blockchain that was specified formally and its implementation, a virtual machine, generated from the formal specification. Moreover, its design was based on problems observed formalizing the semantics of the Ethereum Virtual Machine (EVM) and from formally specifying and verifying EVM programs (also called “smart contracts”), so even the design decisions made for IELE are based on formal specifications. A compiler from Solidity, the predominant high-level language for smart contracts, to IELE has also been implemented, so Ethereum contracts can now also be executed on IELE. The virtual machine automatically generated from the semantics of IELE is shown to be competitive in terms of performance with the state of the art and hence can stand as the de facto implementation of the language in a production setting. Indeed, IOHK, a major blockchain company, is currently experimenting with the IELE VM in order to deploy it as its computational layer in a few months. This makes IELE the first practical language that is designed and implemented as a formal specification. It took only 10 man-months to develop IELE, which demonstrates that the programming language semantics field has reached a level of maturity that makes it appealing over the traditional, adhoc approach even for pragmatic reasons.Ope

    A holistic approach examining RFID design for security and privacy

    Get PDF
    This paper adopts a holistic approach to Radio Frequency Identification (RFID) security that considers security and privacy under resource constraints concurrently. In this context, a practical realisation of a secure passive (battery-less) RFID tag is presented. The tag consists of an off the shelf front end combined with a bespoke 0.18 μm Application Specific Integrated Circuit (ASIC) assembled as a -sized prototype. The ASIC integrates the authors’ ultra low power novel Advanced Encryption Standard (AES) design together with a novel random number generator and a novel protocol, which provides both security and privacy. The analysis presented shows a security of 64-bits against many attack methods. Both modelled and measured power results are presented. The measured average core power consumed during continuous normal operation is 1.36 μW

    A hybrid and cross-protocol architecture with semantics and syntax awareness to improve intrusion detection efficiency in Voice over IP environments

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 134-140).Voice and data have been traditionally carried on different types of networks based on different technologies, namely, circuit switching and packet switching respectively. Convergence in networks enables carrying voice, video, and other data on the same packet-switched infrastructure, and provides various services related to these kinds of data in a unified way. Voice over Internet Protocol (VoIP) stands out as the standard that benefits from convergence by carrying voice calls over the packet-switched infrastructure of the Internet. Although sharing the same physical infrastructure with data networks makes convergence attractive in terms of cost and management, it also makes VoIP environments inherit all the security weaknesses of Internet Protocol (IP). In addition, VoIP networks come with their own set of security concerns. Voice traffic on converged networks is packet-switched and vulnerable to interception with the same techniques used to sniff other traffic on a Local Area Network (LAN) or Wide Area Network (WAN). Denial of Service attacks (DoS) are among the most critical threats to VoIP due to the disruption of service and loss of revenue they cause. VoIP systems are supposed to provide the same level of security provided by traditional Public Switched Telephone Networks (PSTNs), although more functionality and intelligence are distributed to the endpoints, and more protocols are involved to provide better service. A new design taking into consideration all the above factors with better techniques in Intrusion Detection are therefore needed. This thesis describes the design and implementation of a host-based Intrusion Detection System (IDS) that targets VoIP environments. Our intrusion detection system combines two types of modules for better detection capabilities, namely, a specification-based and a signaturebased module. Our specification-based module takes the specifications of VoIP applications and protocols as the detection baseline. Any deviation from the protocol’s proper behavior described by its specifications is considered anomaly. The Communicating Extended Finite State Machines model (CEFSMs) is used to trace the behavior of the protocols involved in VoIP, and to help exchange detection results among protocols in a stateful and cross-protocol manner. The signature-based module is built in part upon State Transition Analysis Techniques which are used to model and detect computer penetrations. Both detection modules allow for protocol-syntax and protocol-semantics awareness. Our intrusion detection uses the aforementioned techniques to cover the threats propagated via low-level protocols such as IP, ICMP, UDP, and TCP

    VLSI smart sensor-processor for fingerprint comparison

    Get PDF

    appXchain: Application-Level Interoperability for Blockchain Networks

    Get PDF
    Blockchain technology has the potential to revolutionize industries by offering decentralized, transparent, data provenance, auditable, reliable, and trustworthy features. However, cross-chain interoperability is one of the crucial challenges preventing widespread adoption of blockchain applications. Cross-chain interoperability represents the ability for one blockchain network to interact and share data with another blockchain network. Contemporary cross-chain interoperability solutions are centralized and require re-engineering of the core blockchain stack to enable inter-communication and data sharing among heterogeneous blockchain networks. In this paper, we propose an application-based cross-chain interoperability solution named appXchain which allows blockchain networks of any architecture type and industrial focus to inter-communicate, share data, and make requests. Our solution utilizes the decentralized applications as a distributed translation layer that is capable of communicating and understanding multiple blockchain networks, thereby delegating requests and parameters among them. The architecture uses incentivized verifier nodes that maintain the integrity of shared data facilitating them to be readable by the entities of their network. We define and describe the roles and requirements of major entities of inter-operating blockchain networks in the context of healthcare. We present a detailed explanation of the sequence of interactions needed to share an Electronic Medical Record (EMR) document from one blockchain network to another along with the required algorithms. We implement the appXchain solution with Ethereum-based smart contracts for two hospitals and also present its cost and security analysis. We have made our smart contracts code and testing scripts publicly available

    East Norfolk Sixth Form College: report from the Inspectorate (FEFC inspection report; 72/97 and 05/01)

    Get PDF
    Comprises two Further Education Funding Council (FEFC) inspection reports for the periods 1996-97 and 2000-0

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    • …
    corecore