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Abstract of Thesis 

Image processing techniques are increasingly being applied to new applications 

beyond their traditional uses for remote sensing image data enhancement. These new 

areas, such as machine vision for automated production line monitoring and control and 

financial transaction security, require low-cost compact but highly reliable systems. 

This thesis discusses some of the problems in achieving this goal and presents a novel 

approach to the implementation of low-cost real-time image processing systems. 

The method presented in this thesis utilises the usual system design leverage 

offered by VLSI of reduced cost, power, size and weight; achieved as a result of the 

freedom to efficiently map algorithms to hardware. In addition, substantial further 

advantages are obtained by integrating the image sensor and preprocessing interface 

circuits onto the same silicon substrate. 

During the course of this work three custom integrated circuits for real-time image 

processing were designed, simulated, fabricated and tested. Two of the devices form the 

image processing core of an entirely new, working, fingerprint based access control 

system. These designs then led to the development of the third device and the main 

focus of this thesis, a highly integrated sensor-processor for fingerprint comparison. 

This device has applications in many fields where personal identification is vital such 

as physical access control, financial transactions and health care. The architecture can 

also be adapted to address more general pattern recognition tasks. It is shown that 

through architectural enhancement of the fingerprint comparison system increased 

processing performance is obtained. Efficient integration of the sensing, processing and 

memory elements also provides the potential for reduced manufacturing costs. 
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Chapter 1. INTRODUCTION 

1.1 	MOTIVATIONS 

The use of image processing techniques to solve monitoring and control problems 

has, until recently, been restricted to military, space and a few hazardous industrial 

applications where low-cost solutions were of secondary importance to system 

performance. The main problem has not been one of algorithmic development but the 

cost of the processing hardware necessary to cope with the inherently high 

computational requirements of image processing. 

With the advances in implementation technologies over the last two decades, 

providing ever greater levels of processing power per pound, many new application 

areas, especially in manufacturing situations, can now be addressed. The continuing 

development of ever lower cost computing platforms, with increased processing 

capability, has reached the point where commercial and domestic image processing 

systems are becoming economically viable. The possible applications for low-cost 

image processors cover a wide range of products and functions such as traffic speed 

control, video-telephones, identity verification and production-line monitoring. 

Hardware solutions to these types of image processing problems are normally 

achieved in one of two ways. The first makes use of general purpose image processors, 

or function specific integrated circuits, with additional glue-logic and high-level control 

circuitry to perform the desired function. Problems associated with this approach are 

numerous. They include difficulty in finding suitable devices to implement the given 
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algorithm, or inefficient implementation due to circuit redundancy, performance 

bottlenecks and accuracy considerations given the limited set of available functions. 

The other approach is to produce a custom solution in one or more VLSI devices 

using appropriate functional modules to implement the required processes. The use of 

custom ASICs helps to reduce the problems associated with the former approach and 

can produce an efficient mapping of the algorithm to an architecture optimized for area, 

algorithmic accuracy or speed and also has weight and cost advantages. One perceived 

disadvantage of the ASIC based approach is the algorithm is essentially frozen at the 

time of implementation and cannot be enhanced without a hardware redesign. 

Typically, VLSI design methodologies have only been used to integrate the 

computationally intensive digital elements of image processing systems such as 

correlators, array operators, and data compressors. These devices only provide the data 

processing component of a complete image processing system. 

Figure 1.1 Generic Image Processing System 
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A generic image processing system for the analysis and recognition of images, see 

figure 1. 1, presently consists of five main elements:- an image sensor; a data 

preprocessor; image analysis hardware; memory; and a microprocessor. 

The input medium to this class of system is visible electromagnetic radiation which 

is sensed and converted into an analogue electrical representation of the image. The 

sensor is usually based on vidicon or solid-state CCD or MOS technology. The 

electrical signal often corresponds to some standard format, such as CCIR or NTSC 

video, in order to simplify the interfacing to various systems, or it may simply be a 

raster scan read-out. A preprocessor stage then performs global functions such as 

spatial noise filtering, analogue-to-digital conversion and image normalisation before 

the main image processing task is carried out. The core of the system can be either a 

high-performance, single-chip DSP or, for real-time operation, an array of general 

purpose processors or dedicated image array-processors. Memory is required to buffer 

images, and to store reference data and results for post-analysis. The final component 

of a generic image processing system is a low-bandwidth (when compared with the 

capability of the image processor) microprocessor which is needed to perform system 

control functions and analysis of results. An inherent performance bottleneck exists 

with systems of this type due to the serial nature of the transfer of the data from the 

sensor to the data processing system. The emergence a new type of VLSI device, called 

a smart sensor-processor, provides a possible solution to this problem and other 

limitations of existing image processing hardware such as cost, power consumption and 

size. 

It is proposed that, through integration of image sensing and signal conditioning 

elements with the core digital processing greater architectural performance can be 
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achieved without detriment to the usual design leverage offered by VLSI. The available 

architectural flexibility can be used to efficiently match the hardware to the required 

function. The economic and performance pay-off of this approach will provide an 

commercially viable method for the development of powerful, compact and reliable 

solutions to machine vision problems in manufacturing and enable a wide range of new 

consumer products based on the smart-sensor concept to be created. 

1.2 OBJECTIVES 

The objectives of this thesis are firstly to investigate and develop architectures for 

application specific image processing, including the integration of image sensors to 

create smart sensor-processors. Secondly, to design a hardware solution for a real-world 

application which will be used as a vehicle to demonstrate the technical and economic 

practicality of the proposed implementation technique. The design example will also 

highlight the degree of system integration which can be achieved with currently 

available VLSI technologies and integrated circuit design software. Engineering trade-

off decisions covering design time, algorithmic mapping and implementation 

architecture will be combined to form a measure of the efficiency of a particular design 

approach. These elements, along with the obvious physical and performance 

characteristics of the integrated device, will be compared with examples of the 

traditional system implementation approach described earlier. 

The practical work presented in this thesis will describe the design and 

implementation of a fingerprint comparison system for automated personal identity 
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verification as a single chip smart sensor-processor. The choice of this application to 

demonstrate the viability of the proposed implementation method has been made for a 

number of reasons. Firstly, the system is commercially relevant. With the explosion in 

electronic financial transaction systems available for use by the general public, the need 

for secure and accurate identity verification has become vital to minimise fraud. The use 

of human biometrics such as handwriting, fingerprints and voice patterns are 

considered as potential solutions to this problem. Unfortunately, many of the algorithms 

which have been developed with sufficient discriminatory accuracy have had their 

practical use limited by hardware implementation costs. 

Secondly, the algorithm forming the core of the proposed system has been well 

defined and a detailed description is available. Although the algorithm has been tuned 

for fingerprint comparison, the basic functional blocks implementing the algorithm can 

easily be adapted to other image processing tasks of a similar nature. An example of the 

algorithm's flexibility is its proposed use for fertility screening by matching ferning 

patterns in smear samples. This application is briefly described in chapter 8 

Finally, a real-time prototype access control system based on the same algorithm 

has been developed which contains all the basic elements of a generic image processing 

system as described earlier, i.e. sensor, signal preprocessor, and a computationally 

intensive image processor. The prototype system provides a set of physical, 

performance and economic measurements which can be compared with those of the 

proposed integrated sensor-processor. This makes the fingerprint comparison 

application a particularly suitable demonstrator for the smart sensor-processor 

implementation approach. 
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13 THESIS SUMMARY 

Chapter 2 briefly reviews the history of implementation methods and technologies 

for image processing systems highlighting the limitations of each type. Examples of 

current progress in the development of VLSI circuits for image processing are 

presented. These include general purpose image processors, function specific and 

application specific circuits, and smart sensors. 

Chapter 3 provides an overview of the application area of the demonstration 

system, personal identity verification using human biometrics. A variety of different 

commonly used biometric features are described, comparing their usefulness for 

automated identity verification. A summary of commercially available identity verifiers 

is also provided, giving details of performance and system cost where possible. 

Chapter 4 presents a brief description of the prototype fingerprint based identity 

verifier system and the fingerprint comparison algorithm it implements. At the core of 

the system are two high performance image processing ASICs. The architectures used 

to implement the preprocessing and comparison algorithms are given, along with 

details of their physical and performance characteristics. 

Chapter 5 describes the architectures used to implement the functional elements of 

the prototype fingerprint comparison system to a single-chip smart sensor-processor. A 

sensor technology using standard low-cost digital ASIC processing has enabled the 

integrated sensor-processor design approach to be considered. The background to the 

development of this technology and its main design characteristics are also presented 

in this chapter. At the end of Chapter 5 the architectural advantages, such as increased 

performance and reduced memory requirements, of the single-chip design approach are 



-7- 

discussed. 

Chapter 6 briefly describes the two different VLSI design methods, full custom and 

silicon compilation, that have been used to implement the fingerprint comparison 

architecture presented in the previous chapter. The rest of the chapter details the 

implementation and simulation of each of the functional blocks, and their integration to 

form a single-chip smart sensor-processor. 

Chapter 7 describes the post-fabrication test procedures used to verify circuit 

operation and presents the results of these initial tests on a prototype batch of integrated 

sensor-processors. 

Finally, Chapter 8 provides a discussion of the successes and failures of the design 

approach as a solution to the economic implementation of real-time image processing 

systems using VLSI in the form of smart sensor-processors. 
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Chapter 2. VLSI FOR IMAGE PROCESSING 

In order to set the scene for the work presented in this thesis it is necessary to 

review the available hardware implementation alternatives for image processing 

systems. This chapter provides a very brief review of hardware architectures used to 

implement image processing functions and surveys a range of VLSI devices designed 

specifically for use in image processing systems. Chapter 3 reviews biometric 

techniques and applications, justifying the choice of a fingerprint comparison based 

identity verifier as a technically and commercially relevant demonstration vehicle for 

the VLSI smart sensor-processor design approach. 

2.1 	IMAGE PROCESSING 

Image processing is principally the interpretation of pictorial information for 

autonomous system control or the improvement of image quality. One early form of 

image processing involved the Trans-Atlantic transmission of coded newspaper 

pictures by submarine cable and their subsequent reconstruction using a special 

telegraph printer. This system, known as the Bartlane cable picture system, was 

introduced in the early 1920s. The real stimulus to the development of image processing 

techniques came with the space programme in the 1960s. The requirements of space 

exploration produced technologies enabling the construction of powerful digital 

computers for control systems and data analysis. Work at the Jet Propulsion Laboratory 

to enhance pictures returned from early missions to the moon formed the starting point 

of the rapid development of image processing techniques and application areas which 

continues today. Looking back to the Bartlane picture transmission system of the 1920s 
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it is interesting to note that, today, one of the fastest expanding application areas for 

image processing is multi-media information technology i.e. the transmission of 

information and pictures. Other fields where image processing algorithms are used to 

enhance picture quality, or facilitate understanding of the information contained within 

the image include biology, archeology, geography, physics, medicine and law 

enforcement. 

Increasingly, image processing techniques and technologies are being applied to 

the automatic interpretation analysis of the data within a scene, not just image 

enhancement for human analysis. This type of image processing technique is widely 

used in field of medicine where automated systems are being developed to aid the 

analysis of cervical smears', blood samples 1  and to automatically classify 

ciiromosomes 401 . Other areas where automated image analysis techniques are being 

utilised include military applications such as reconnaissance, weapons guidance 

systems, and law enforcement for automatic fingerprint comparison 11  and car 

registration plate recognition 32 . A further area where image processing is beginning 

to make an impact is in production line monitoring and quality control applications, 

commonly known as machine vision341' C31 , E371 

The continued expansion of image processing into higher volume commercial and 

domestic systems is currently limited by the cost of the processing power required to 

implement reliable solutions to real-world image processing problems. This situation 

can only be addressed by the development of appropriate architectures and technologies 

to allow the efficient implementation of image processing algorithms. A brief review of 

the computer architectures which have been used to implement image processing 

algorithms is presented in the next section. 
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2.2  ARCHITECTURES 

It is has been widely 	 that no single processing architecture is 

capable of efficiently handling all types of image processing function. Before deciding 

whether or not to concur with this view it is necessary to look at some of the possible 

implementation methods for image processing algorithms. 

2.2.1 	Software 

The development of software to implement image processing algorithms is the 

traditional method used to solve vision applications. This approach is particularly 

flexible, allowing modifications and enhancement of the algorithm to be made quickly 

and inexpensively. The major drawback of this implementation approach is the inability 

of general purpose, von Neumann type, computing platforms to deliver the necessary 

processing power to cope with the huge quantities of data generated by image 

processing tasks. A further penalty of such vision processing systems is that they are 

not capable of real-time operation, severely limiting their usefulness for practical vision 

applications. 

One solution to the processing bottleneck of von Neumann based computer 

architectures is to introduce parallelism in various forms to increase data throughput. 

Parallel architectures are particularly useful for the implementation of low-level, pixel-

oriented, image processing functions such as neighbourhood processing, edge detection 

and convolution functions. Classification and comparison of the vast number of 

different parallel computing architectures is not easy. One taxonomy which is widely 

used for general purpose parallel computing architectures, proposed by Flynn 271 , 

classifies systems by the relationships between the data and instruction streams within 
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the system. The Flynn taxonomy is also used to classify image processing system 

architectures. The four classifications established by Flynn are SISD - Single 

Instruction Single Data, SIMD - Single Instruction Multiple Data, MISD - Multiple 

Instruction Single Data and MIMD - Multiple Instruction Multiple Data. 

2.2.2 	SISD 

The SISD class of machine is the conventional von Neumann type of architecture 

in which a single processor executes instructions on a single data set. This architecture 

is widely used and can be found in a large variety of computing platforms from a 

desktop P.C. to supercomputers like the Cray-x series. The SISD model as been 

extended to include pipelined processor architectures where individual processes were 

implemented as separate functional units. As a data set passes from one serial processor 

to the next, a new data set is consumed by the previous processor. 

2.2.3 SIMD 

The SIMD type of parallel processing architecture is particularly appropriate for 

implementing low-level image processing functions such as neighbourhood 

processing, convolution, thresholding, and edge-detection. SIMD processors are 

formed by constructing an array of identical processors controlled by a master. The 

controlling processor transmits an instruction to each processor in the array which 

performs the instruction on its local data. Processor to processor communication 

depends on the particular system but is typically nearest neighbour only. Unfortunately, 

SIMD systems are not particularly suitable for higher level image processing functions 

such as histograniming, ranking, feature extraction, or object matching. 
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2.2.4 MISD 

Although there is little evidence of current processing systems which can be 

classified as MISD, architectures of this type may still be of use in image processing 

systems. An architecture where the incoming data stream is processed in a parallel 

manner by independent processors, each performing a unique function, can be 

envisaged. For example, this type of system could be used to extract edge, texture, 

shape, and image difference information simultaneously from a single input data 

stream. 

2.2.5 MIMD 

MIMI) systems have an array of processors often arranged in a similar manner to 

those in SIMD machines, but with the ability for each processor to be executing 

different instructions on its local data set. MIMD systems are capable of implementing 

a wide range of image processing functions but with varying degrees of efficiency. 

Unfortunately, the effort required to write and debug programs for this class of machine 

and the interprocessor communication overhead limit the usefulness of current MItvID 

architectures according to Cypher 4 . The application independent design emphasis 

adopted by all these parallel processing architectures is a limitation to their economic 

practicality. Inherent in their generality is the inefficient mapping of specific image 

processing algorithms to the available processing resources. As HurnmelE 411  has stated 

in a discussion on the topic of parallel architectures for vision algorithms, "It is a shame 

to pay for 64,000 processors and then at any given time only use a fraction of the 

processors to do useful work". This observation applies to any processor whose 

function is linked to a specific pixel or group of pixels. This suggests that for an efficient 

implementation of an image processing algorithm a multi-level processing architecture 
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is  the most suitable. This type of system could include processor architectures from any 

of the Flynn classifications. For this reason an extension to the taxonomy is required to 

accommodate these multi-architectural processing systems. 

2.2.6 	Hybrid 

Hybrid systems combine parallel array processors for low level pixel-oriented 

functions, special purpose devices for feature based functions (e.g. edge detection, 

object matching) and general purpose microprocessors for high level analysis and 

decision making. Examples of this type of hybrid multiprocessor system have been 

described by Sousa [421,  Kio 801  and Vellacott 451 . 

Although the hybrid processor architecture is seen as a solution to the efficient 

implementation of general purpose image processing systems, it does not provide a 

complete technology for the production of low-cost systems suitable for high-volume 

commercial or domestic image processing based products. However, when combined 

with cost, size, and power leverage of VLSI design techniques it could provide a 

method of implementing low-cost image processing solutions. 

2.3 VLSI FOR IMAGE PROCESSING 

The concept of multi-architectural hybrid image processing systems, combined 

with the design leverage afforded by the latest generation of VLSI CAD software, 

offers the possibility a low-cost, real-time solution to the implementation of image 

processing algorithms. This section reviews existing VLSI devices which have been 

designed for use in image processing systems. There are four main categories of VLSI 
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image  processing chips: 

General Purpose - these devices implement several processing elements (PEs) and, 

when cascaded, form the cores of massively parallel processing systems. The 

PE structure can be of various types but generally consists of an ALU, 

datapath, registers, and possibly some distributed data memory. 

Function Specific - This class of device typically implements a single general purpose 

image processing function such as correlation, image warping or 

convolution. 

Application Specific - For this taxonomy, application specific devices are those which 

have been optimised for one particular application area such as character 

recognition or fingerprint comparison. The complete algorithm required to 

process and analyse the image data for the application is implemented as one 

or more custom VLSI devices. 

Smart Sensor-Processors - This class of device not only includes the digital 

processing elements of the application specific devices but also the image 

sensor itself, and associated image pre-processing such as signal 

conditioning and digitisation. 

2.3.1 	General Purpose 

MasPar Corporation's MP-1 31 ' is a typical example of a general purpose 

massively parallel processing architecture. The core of this system is formed from an 
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array of processor elements (PEs) configured for SIMD operation. This architecture is 

typical of other, earlier, SIMD machines such as University College of London's CLIP4 

(Cellular Logic Image Processor), Goodyear's MPP 381  (Massively Parallel Processor) 

and AMT's DAP (Distributed Array Processor) except that the MP-1 has distributed 

memory allowing the PEs to simultaneously access different memory locations. The 

MP-1 processor array contains from 1,024 to 16,384 separate units, giving the system 

a claimed performance of up to 26,000 million instructions per second (MIPS) and 

1,300 floating-point operations per second (MFLOPS). Each of the processor elements 

(PEs) consists of a datapath, arithmetic logic unit, registers and in the case of MP- 1, 16 

kilobytes of local data memory. The array has been formed from full-custom CMOS 

VLSI devices, each implementing 32 PEs, and their dedicated memory. 

The cost for this level of performance is in the region of £140,000 to £500,000 

depending on the system configuration. Other examples of VLSI being used to 

implement the custom PEs for massively parallel cores of real-time image processing 

systems include GRID', SCAPE 591 , DSA- 1 1601  and ISMP 1 . 

Pipeline architectures are a form of SISD processor where the successive steps of 

the algorithm are distributed over a number of cascaded processors. The image data is 

fed (usually in raster-scan format) sequentially into the pipeline to be processed. 

Another architecture used for general purpose image processing is known as a 

dataflow architecture. Here the sequence of operations is defined by the data being 

processed. Examples of processor elements designed using the dataflow type of 

architecture have been described by QuenotE 641  and Kurokawa35. 
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23.2 	Function Specific 

Function specific integrated circuit architectures implement particular image 

processing operations. Devices have been fabricated for a number of functions 

including segmentation 52 , motion estimation 531 , image compression 701 , contour line 

fi1tering 54 , edge detection 50 , thinning', convolution 561 ' 5811671 , template 

matching 251, and correlation 55 '. A good example of function specific VLSI is the 

set of eight devices from Ruetz and Brodersen which implement a variety of image 

processing algorithms. Specifically, they implement a 3 x 3 linear convolver, a 3 x 3 

sorting filter, a 7 x 7 logical convolver, a contour tracer, a look-up-table ROM, and two 

post processors for the linear convolver. The complete system is controlled by a SUN 

workstation and can work at frame rates of up to 15 per second on 512 x 512-pixels. 

More recent work by Reutz 69' has produced a set of function specific devices with the 

design emphasis on producing architectures with a high degree of programmability, to 

allow them to be used over a wide range of applications. 

Beyond these function specific devices, increased levels of integration produce 

chips which contain several image processing functions, and are optimised for a 

particular class of image processing application. An example of this type of device is 

the OPTIC image processor 62 . Although described as a processor for use in general 

purpose real-time vision systems, its functionality makes it particularly appropriate for 

production line inspection and robotic control. The device implements filter functions 

(typically used for 'salt and pepper' noise suppression), dynamic thresholding and 

correlation with a binary template and grey-level image data. The resulting VLSI 

device contains 80k transistors and has been fabricated using a 1 .5jLm CMOS process. 
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23.3 	Application Specific 

Although VLSI has been used to implement particular image processing functions 

or groups of functions, little evidence exists of the generation of application specific 

image processing chips where the complete algorithm for an image processing problem 

is implemented as one or more custom integrated circuits. This seems to be due to the 

fact that most research has concentrated on developing architectures for general 

purpose image processing systems. As stated earlier, to enable image processing 

techniques to be used in consumer products, system size and cost have to fall 

dramatically without loss of processing performance. Only through the use of VLSI 

technology can all of these goals be achieved. An example of application specific VLSI 

devices for image processing is the two device chipset, developed by the author, 

implementing the core functions of the prototype fingerprint comparison identity 

verification system described in chapter 4 The first device performs various real-time 

image preprocessing and data analysis functions such as image smoothing, dynamic 

thresholding, and rank-value filtering while the second device implements a high 

throughput two-dimensional binary correlation array. Other application specific 

devices have been reported recently, but they integrate an image sensor as well as image 

processing functions and are therefore included in the following section. 

23.4 Smart Sensor-Processors 

This final classification of this brief review of VLSI image processing devices is an 

area in which there is rapidly increasing activity design activity. In general terms a 

smart sensor-processor is some form of sensor (optical, heat, pressure) integrated onto 

the same substrate as the data processing hardware. This review will concentrate on 

devices with sensors working in the visible part of the electromagnetic spectrum. An 



.18. 

overview  of smart sensor technology can be found elsewhere 82 . Integrating the image 

sensor with the processing functions allows the designer a great deal more flexibility in 

the design of efficient solutions to image processing problems. In particular it 

eliminates the design constraint of raster-scan data transfer between the sensor and the 

processor, which often results in the need for buffering of image data before 

consumption by the data processor. The integration of the sensor allows the designer a 

choice in the pixel array size, pixel aspect ratios, and sensor data read-out methods. All 

of these help to optimise the performance of the image processing system. Further 

architectural optimization opportunities exist in such systems with the removal the 

architectural partition between the image sensor and image processor. In sensor-

processor architectures the image data pre-processing functions of the system can be 

more closely coupled with the image sensor. 

A major barrier to the production of practical integrated sensor-processors is the 

incompatibility of the implementation technologies. Conventional VLSI image sensors 

are typically fabricated using CCD processing technology 511  while low-cost CMOS 

processes have been developed for the design of low-power digital processing circuits. 

Although it is possible to implement logic using CCD processes, the performance, 

complexity and cost of such circuits is not economic when compared with CMOS based 

logic. An example of this design approach is the CCD sensor produced by Kemeny, et 

al):79] which includes image reformatting circuitry for some basic neighbourhood 

processing on the output image data. The additional circuitry occupies 2% of the active 

chip area. An example of device combining the qualities of CCD and CMOS 

technologies on the same substrate has been reported by Hakkarainen and Lee 77 . 

Another smart sensor-processor has been described by Kioi, em al) 801  which uses a 

novel three-dimensional processing technology, SOI (Silicon On Insulator), to create a 
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4-level image processing chip for character recognition. The top layer is a 5040 pixel 

image sensor, the next layer down implements digitisation and magnitude comparison 

functions, the third layer contains data buffering and mask registers, and the final layer 

contains template information. The device contains 0.22 million transistors on a 14.3 

mm square die. Although this type of device has potential for the efficient 

implementation of hybrid image processors the current device densities and the high 

cost of the unique processing technology limit its usefulness as a low-cost image 

processing hardware solution. 

Work in the 1980s by Lyon 811 , Mead 83 , and Renshaw 871 ' 851 , among others, in 

developing photo-receptors and on-chip amplification circuits suitable for 

implementation using standard CMOS processes, has lead to the development of image 

sensors that are nearing the quality and performance of CCD devices. This technology 

has enabled the development of an increasing number of CMOS based sensor-processor 

devices. One of the earliest was a simple correlating optical motion detector designed 

by Tanner and Mead 88 . This device integrates a linear 16-pixel sensor and analogue 

and digital processing on the same substrate to perform correlation between successive 

image frames. An optical mouse was the proposed application for this chip. Another 

CMOS linear sensor array with processing logic fabricated on the same substrate is the 

LAPP 761  designed by a group at Linkoping University. 

Recent work at the University of Edinburgh has resulted in highly integrated image 

sensors with two-dimensional photodiode arrays of up to 312 x 287 pixels 

incorporating on-chip sense-amplification and electronic exposure control logic by 

Wang, et ai) 911 . it is particularly interesting to note that these devices are fabricated 

using a standard low-cost digital CMOS ASIC process. This technology is described in 
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further  detail in Section 5.2. The PASIC sensor and bit-slice processor reported by 

Chen, et al)74' in 1990, and the MAPP2200 256 x 256 pixel sensor with on-chip A/D 

conversion reported by Jansson, et al. 781  in 1992 are further examples of the 

development of CMOS based sensor-processors. Other recent VLSI sensor-processors 

developments include the 65 x 75 pixel NCP Retinat73 , a 32 x 32 pixel resistive-fuse 

processor and a 53 x 52 pixel image contrast enhancement sensor-processor 

reported by Shimmi, et al. 1891,  and a neural network based cheque reader manufactured 

by Synaptics 431 . This final group of devices are good examples of the type 

architectures that can be created when implementing image processing functions as 

integrated mixed signal (analogue and digital) sensor-processors. 

VLSI smart sensor-processors provide a flexible design technology for the 

implementation of hybrid processor architectures. Through the efficient mapping of 

image processing algorithms to silicon architectures, low-cost application specific 

image processing systems are now possible. The next chapter provides a review of 

biometric techniques and applications, justifying the choice of a fingerprint comparison 

based identity verifier as a technically and commercially relevant demonstration 

vehicle for the VLSI smart sensor-processor design approach. 
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Chapter 3. BIOMETRICS 

3.1 	INTRODUCTION 

The requirement for reliable identification of individuals has grown with the rapid 

expansion of information technology based financial transaction services. The 

proliferation of automated teller machines (ATMs), glectronic funds transfer at point of 

sale (EFTPOS) systems, home banking facilities, and telephone calling cards are 

examples of systems which have the need for secure identification. International travel, 

secure industrial and governmental facilities, sport centres, vehicle security, and logical 

access points (computer terminals and databases) are further areas where personal 

identity verification is required. 

This chapter will outline a class of solution to these security problems known as 

automated biometric verification, and review its techniques, application areas and 

implementation technologies. The review will also provide an application context for 

the practical implementation of the architectural studies presented in this Thesis. 

3.2 RECOGNITION AND VERIFICATION 

Biometrics, in this context, can be defined as the use of any measurable human 

physiological or behavioural characteristic to reliably confirm a person's identity. 

Through the comparison of biometric descriptors identification can be achieved by 

either recognition or verification. When a feature is used to determine an individual's 

identity from a group of known references the process is called recognition. Human 

interaction relies on this type of identification, most commonly using face and voice 
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characteristics  to determine identity and relationships. Law enforcement agencies have 

utilized the uniqueness of human fingerprints in solving crime for over a hundred years. 

Historically, this form of recognition was achieved by experts manually comparing the 

print recovered from the scene of the crime with those of suspects stored as a file of 

inked fingerprint reference cards. Today, powerful, and expensive automated 

fingerprint identification systems (AFIS) can compare a print with tens of thousands of 

references per second in order to determine the probable identity of the criminal. 

The second way in which biometrics can be used to identify people is where it is 

necessary to verify an individual's claimed identity. Here the individual's characteristic 

is compared only with the reference template of the person he claims to be. The 

reference can be either selected from a database by some form of identifier such as a 

PIN, or provided by the claimant and encoded electronically on a smart card. 

Verification has an advantage over recognition approaches, in that the claimant has to 

make a conscious identity claim before verification. In certain applications (such as 

point of sale) this is seen as a useful additional imposter deterrent. The verification 

approach also has the added benefit of substantially reducing the computation required 

to determine identity. 

The target identification application areas for automated biometric verifiers are 

physical access control, logical access control, personal verification. A partial list of 

possible applications is provided in table 3.1. All of these applications require biometric 

verifiers which are compact, functionally reliable, user friendly and, most of all, 

inexpensive. 
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Physical  Access Control Logical Access Control Personal Verification 

• Factories, industrial sites Computers . Prisoner release 

• Government facilities • Databases . Health care 
- offices 

• Home banking - medication control 
- embassies - infant identification 

Pay TV 
• consulates EPOS 

• International travel 
. j'rpos 

• Sports facilities 
• Border control 

• Vehicle security 
• Telephone charge cards 

• Military sites 

• Hotels 

• Leisure parks 

• Clubs 

Table 3.1 Typical Verification Applications 

3.3 AUTOMATED VERIFICATION 

Before looking in more detail at specific biometric techniques and applications it 

is worth differentiating between manual and automated forms of identity verification. 

In this context manual methods typically involve the comparison of features by human 

visual inspection or aural comparison. In automated biometric systems feature 

comparison is automatically performed by electronic systems utilizing custom image 

processing hardware and software. 

For centuries, access control and identity verification methods have relied on the 

allocation of a portable device or token whose ownership is verified by a secret key or 

password. A classic example of this token and password approach to security is 

handwriting, in the form of a personal signature or mark. Here, identity is verified by 

manually comparing the example signature on the token (e.g. cheque card, credit card, 
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membership card, driving licence) with a live signature provided by the claimant. Photo 

identity cards and passports are another common form of manual verification device. 

These manual forms of personal verification are particularly prone to error or abuse, 

since the comparison is often performed by relatively unskilled and poorly paid 

personnel. Tedium is another factor which leads to higher error rates. 

With the increasing use of ATMs and other unmanned self-service transaction 

systems, the requirement for reliable remote verification has become much more 

important. In this type of application magnetic strip cards combined with personal 

identification numbers (PINs) are the most widely accepted method of access control. 

The existing approaches to identification all have their weak points; cards can be 

stolen; signatures easily forged; and passwords and PINs forgotten. For these reasons 

present methods are deemed inadequate. Automated biometric verification 

technologies are an attempt to create a reliable solution which can easily be tailored to 

fit a wide variety of security applications. 

Biometric systems can additionally provide an audit trail through data logging, of 

both genuine and imposter access attempts. In the case of fingerprint systems, the 

captured fingerprint can be used in subsequent criminal investigations (although this 

feature is not normally advertised to users, legally they must be told). 

3.4 BIOMETRIC VERIFIERS 

Having outlined the need for low cost, automated biometric verifiers some of the 

typical features of such systems can be described. Automated biometric identification 

systems, in general, consist of a mechanism which allows for the sensing and capture 
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of a particular feature, and a processor which compares the 'live' image with a 

previously stored reference in order to verify a user's identity (see figure 3.1). The 

reference is selected from a database by a PIN, or can be provided encoded on a smart 

card. The comparison is performed by the processor and an authentication decision is 

made. The claimant is then granted or denied access, as appropriate. 

Figure 3.1 Generalized Biometric Verifier 

Enrolment is the procedure performed to register or validate a new user on a 

system. It involves the repeated capture (typically 2 - 5 times) of a particular biometric 

characteristic, in the presence of a trained enroller. The captured feature is processed to 
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create a reference template for the user, which is either stored in a database or encoded 

on a smart card. 

A powerful feature used in some biometric systems is the ability to automatically 

update the reference template for a user, without having to repeat the enrolment process. 

This adaptive update of references is particularly useful for accommodating minor 

biometric variations in voice and signature based systems. The update procedure works 

by tracking the changes between the reference template and the presented live feature. 

Assuming access is granted, the template can then be modified to more closely match 

the user's characteristic. The configuration of the main elements of a biometric verifier; 

the sensor, comparator, controller, and database, is dependent on the needs of the 

application and available implementation technologies. 

Historically, according to Driscoll 21 , biometric systems were designed round a 

centralized architecture, due to the magnitude of the processing task in comparing a 

biometric sample and reference. In this configuration, the reference template database, 

comparison processor, and application controller are all part of a central computing 

resource with only the biometric sensors located at the various access or verification 

points. With the development of more sophisticated image processing algorithms and 

new implementation technologies like VLSI, a distributed architecture can now be 

created. Here, each access point has a dedicated sensor, database, comparator and 

controller which can operate in isolation, or can be networked to allow data logging or 

global data updates. 

Another feature incorporated into some systems is the ability to determine whether 

or not the presented biometric characteristic is live. For fingerprints, a simple skin 
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temperature and non-intrusive blood oxygen test is used in one system 41  to reject 

severed fingers or latex prostheses. 

3.5 PERFORMANCE MEASURES 

The performance and comparison of biometric devices is normally based on two 

measures, the false rejection rate (FRR) and the false accept rate (FAR). 

The FRR (also described as a Type 1 error, or insult factor) is the ratio of valid 

attempts (or bids) to the total number of bids. While the FAR (or Type 2 error) is the 

ratio of successful imposter attempts to the total number of imposter attempts. Most 

systems allow for the adjustment of the balance between FRR and FAR. If the security 

against illegal acceptance is increased the likelihood of a genuine user being rejected is 

also increased. The converse is also true. 

Another measure of comparative performance often quoted is the equal error rate 

(EER), which is the point in a biometric verifier's error curves where FRR = FAR. 

Unfortunately, the measurement of these ratios and their relationships are not very well 

defined, which makes for unreliable system comparison based on manufacturers' 

claimed performance. Directly comparable trials on identical bench marks are very 

costly. Trials by the Sandia National Laboratories 51 ' 101 ' 91 , a U.S. government 

sponsored agency, provide most of the reliable published performance information on 

existing, commercially available, biometric systems. 

The FRR for a particular system can be improved through a combination of careful 

enrolment, user training, and the use of adaptive template updating. The elimination of 

errors due to the mistyping of PINs can be achieved by using magnetic or smart cards. 



COMPANY PRODUCT BIOMETRIC TYPE PERFORMANCE VERIFI TEMPLATE UNIT COMMENTS 
EER% FRR% FAR% sees. 

Fingermatrix Mint 21 Fingerprint P - 0.5 0.001 <3 400 bytes/finger $3,500 Error rate source 
Mint il L - 0.5 0.001 <3 400 bytes/finger $3,500 

Identix Touchiock Fingerprint P - 1.8c ()C  1-2 1 kbytes/finger $3,500 Error rate source 
Touchsafe L - 1.8c 0C  1-2 1 kbytes/finger $1,895 

Thumbscan 301 Fingerprint L 0.5 0.01 6-10 - $1,195 Error rate source 

TMS Eagle, Hawk, Fingerprint V - - - 3 24 bytes $2,000 No live capture 
Falcon Inked cards 

Alpha TIS Voice L,C 6•5A 51C 28C 
- —8 kbyte/user $20,000 Error rate source 

Microsystems RACS P,C 6•5A 51C 2.8c -  8 kbyte/user $20,000 

VoiceTek Alpha V Voice P,C - - - - - $19,500 8 doors 
Alpha VI P,C - - - - $70,000 >500 doors 

International 
Electronics VoiceKey Voice P,V 82A 43C 09A 2 160 bytes/word $1,190 Error rate source 

Eydentify Model 8.5 Eye - Retina PL 13A 04C 0C 1.5 40 bytes $4,995 Error rate source 

Pideac MarkIV Hand Geometry P - - - - 2 kbytes $3,500 

Recognition 
Systems ID-31) Hand Geometry P 0•2A <0.1C 0.1C 2 9 bytes $2,000 Error rate source 

Hand Scan 
Technologies PG2000 Hand Print P - - - - 10,000 points $9,750 

Digital From 
Signatures Sign/On Dyn. Signature P,L,V - 2.1c 0.7c 3 84 bytes/sig. $640 Error rate source 

Cheque Alert DigiScan Static Signature V - 10 1-15 - 18 bytes $995 Error rate source 

Key: 	 P - Physical access control, L - Logical access control, V - Personal %iification, C - Centralized verification processor and database 
EER - Equal Error Rate, FRR - False Reject Rate, FAR - False Accept Rate, A - 1 try, 	B - 2 try, 	C - 3 try 
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The  FAR is influenced by the particular biometric descriptor being used, and the 

ability of the verifier to extract and compare its inherent discriminating characteristics. 

Examples of the performance measures (EER, FAR, FRR, verification times) for 

several commercial verifiers are given in table 3.2. The most secure systems are based 

on fingerprint and retina scan. Both return FARs approaching zero under trial 

conditions. The FRR for the same systems is in the region of 0.5% to 2%. In contrast 

the worst scores are for a signature geometry based verification system from Cheque 

Alert Inc) 1 ' with a FRR = 10% and FAR = 1%-15%. The human voice is a difficult 

biometric to discriminate accurately and consistently, and this is reflected in typical 

system FARs of 1%-2% and ERRs of around 5%. 

3.6 BIOMETRIC DESCRIPTORS 

A wide range of biometric features are utilized in such systems which can be 

classed as either physiological, or behavioural characteristics (see figure 3.2). 

pi1.J-.IcIJ-Lwt, 
	

BEHAVIOURAL 

FINGERPRINT aw SIGNATURE 
- DYNAMICS 

EYE - RETINA - STAI1C 

-IRIS 	 / 

FACE 	 VOICE 	
ji,III 

HJ&S4D 	 I 
- PRINTS 	 KEYSTROFE  
-GEOMETRY 	 DYNAMICS 
- VEIN PATFERNS 

Figure 3.2 Common Biometric Descriptors 
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Commonly used physiological descriptors include fingerprints, hand geometry, 

faces and eyes. These features are basically invariant over time, except through 

accidental damage. 

Behavioural characteristics, such as speech and handwriting, are a combination of 

physiological and psychological influences. The characteristics of a voice are not only 

dependent on a person's size, sex and heredity, but also on their accent, emotional state, 

and even on their state of health e.g. whether or not they have a cold. The remainder of 

this section will briefly survey the biometric descriptors which are presently used in 

commercial standard verifiers. Most of the information given below regarding 

commercial biometric verification systems has been reported by Miller in personal 

Identification News and in papers by Parks 41115 . 

3.6.1 	Eye - Retina 

The blood vessel pattern on the retina and the iris pattern of the human eye are both 

used as biometric descriptors. Eydentify inc) manufactures products based on the 

retina pattern for both logical and physical access control applications. To gain access, 

the user positions his head over the unit, focuses on an alignment target consisting of a 

series of concentric circles, then presses a button to trigger the scan sequence. A low-

intensity infrared light source is directed in a circular scan centred on the back of the 

retina. The reflected light is then sampled, and processed to produce a unique 40 byte 

template. The sensed pattern relies on the differences in reflectivity of the retinal blood 

vessels and surrounding tissue. The matching process is performed by an algorithm 

based on Fourier cross-correlation with phase matching (to compensate for rotation of 

the user's head) running on a Motorola 32-bit microprocessor. 
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3.6.2 	Eye - Iris 

A variation on the retina scan system is being developed by Eye-DE 111  which uses 

the iris pattern of the eye, as opposed to the retina. A feed-back system of lights is used 

to adjust the pupil size before scanning. This type of system is only likely to be used in 

high security sites, since the quality of the optics and engineering required precludes 

low production costs. 

3.6.3 	Face 

The use of the face as a biometric identifier is an obvious one since this is how 

humans perform recognition of individuals. Neural networks are viewed as the most 

effective method of comparing faces. Research work on a pattern recognition 

techniques at the Paul cherrer Institute in Zurich (PSIZ) 1 , using edge direction 

vectors, has been applied to face recognition with some success. The problem of 

impersonation by the use of photographs is one which will have to be addressed before 

face recognition will be acceptable for unmanned access applications. There has been 

much research into face recognition but, as yet, there has been no 

commercial exploitation. A system designed to detect potential bank robbers as they 

enter a bank branch, developed by NeuroMetric Systems 12 , is likely to be the first 

commercial use of face recognition. 

3.6.4 	Fingerprint 

The uniqueness and stability of fingerprints is the longest established biometric, 

making them particularly appropriate for identity verification. Traditional non-

automated methods of fingerprint comparison have been based on the classification of 

minutiae. Minutiae are the small characteristic whorls (spirals), bifurcations (forks) and 
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loops, which form a unique fingerprint pattern. This technique has been adapted for use 

in fingerprint-based, automated identity verifiers from Identix inc. and Fin germatrix 

Inc. Other methods which have been applied to fingerprint verification include the use 

of Fourier analysis (France Telecom 11  in Caen), spatial correlation (University of 

Edinburgh') and neural pattern matching (Net-ID Inc. 131  and University of Essex). 

Novel approaches to the capture of fingerprint images through the use of tactile sensors 

(Tactile Technologies 11 ) and high-frequency ultrasound (Niagra Technology 

Labs - J 133 ) are also being investigated. 

3.6.5 	Hand 

The first commercially available, automated biometric device was installed at 

Shearson Hamil on Wall Street in 1973. The device, called Identimat, used the lengths 

of four fingers as a means of discrimination. Although no longer available in its original 

form, the principle has been developed into a three-dimensional system marketed by 

Recognition Systems Inc. Another product, from Pideac Inc., also utilizes hand 

measurement as the basis of identification. This product differs from Recognition 

Systems' by using software, rather than guide posts or stops, to compensate for 

variation in hand placement and finger spread. 

Creases on finger joints and palms are also used as physiological biometrics. A 

system from Biometrics Inc. uses infrared sensors to detect the pattern of creases on the 

underside of finger joints to form a 'human bar code'. The creases and lines in a area 

1.5" x 1.5" on the palm of the hand is used by a biometric identifier marketed by Hand 

Scan Technologies. 

An algorithm, called Veincheck which is based on the blood vessel pattern on the 
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back  of the hand has been developed by Cambridge Consultants Ltd) 71 . The hand is 

illuminated by a tungsten light source, and an image is captured using a CCD camera 

fitted with an infrared filter. A hexagonal grid is superimposed on the vein pattern and 

a connectivity matrix is produced. The comparison is performed by analysing matrices 

for like connections. Hand-feature based approaches are claimed to be particularly 

appropriate for high throughput access control applications. 

	

3.6.6 	Keystroke Dynamics 

This behavioural descriptor is based on the unique rhythm with which typists enter 

certain groups of characters. It is claimed that as few as a dozen keystrokes are 

sufficient to identify a user. The principle is not new; in the days of telegraph using 

Morse code, operators could identify each other from their typing idiosyncrasies. 

The principle of keystroke dynamics has been specifically developed for signing 

on and off procedures in logical access control applications. It is also the only biometric 

(with the possible exception of face recognition) which has the potential for continuous 

assessment of the operators identity. This is achieved by monitoring for frequently 

entered sequences of characters, and prompting the typist to re-enter a password if the 

system suspects a change of user. Although appropriate for database protection, 

keystroke dynamics does not provide a suitable solution for physical access control or 

ATM security. 

	

3.6.7 	Signature Dynamics 

In business and financial transactions, personal signatures are by far the most 

widely used method of identity verification, so it is natural that they should be exploited 

in automated verification systems. Static signature verification is where only the 



- 34. 

graphical  information contained in the signature is used for comparison. It is interesting 

to note that the error rate performance is the worst of all biometric systems and is only 

commonly found as part of bank automated credit and cheque clearing operations. 

These systems are similar to AFIS systems where the emphasis is on high throughput 

(tens of thousands of comparisons per second) rather than on accuracy and low cost. 

One company, Cheque Alert Inc. produce a signature geometry based system, but with 

a FAR of between 1% - 15%, depending on the skill of the forger, it is unlikely to 

provide a successful solution for point of sale applications. 

Signature dynamics provide a more robust form of biometric identifier as they are 

much more difficult to forge and, hence, many companies have developed systems 

based on this biometric. As well as graphical information comparison, signature 

dynamics use behavioural spatial and timing information captured while the signature 

is being written. These systems typically require some form of sensitive writing surface 

and/or a special hardwired pen to detect the accelerations, directions and forces 

generated while the signature is being written 211 . The use of custom pens render them 

susceptible to malicious damage, making them suitable only for monitored applications 

such as point of sale or bank teller transactions. 

3.6.8 	Voice 

Voice based verification is particularly attractive because of its acceptability to a 

wide range of users. Peckam classifies voice analysis systems as either text-

dependent or text-independent. Text-dependent systems require a previously specified 

word to be spoken which is then matched with stored samples of the same word through 

non-linear time alignment. In text-independent verification, acoustic measurements are 

taken from a characterization template for an individual speaker. These descriptors 
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include pitch, formant frequencies, linear prediction coefficients, energy measurements 

and Fourier Transforms. 

Voice verification systems are usually configured in one of two ways. They can 

employ custom voice sensor hardware (a telephone!) and a speech analyser at each 

point of access, stand-alone or networked. Alternatively they may use a centralized 

voice processor and with a reference database accessed via the existing telephone 

networks. Tape fraud is a recognized problem with voice verifiers. A partial solution for 

text-dependent systems is to use random word selection from a fixed library, but this 

has a penalty of increased enrolment times which may not be acceptable. Voice-based 

systems do have the potential for hands-off operation which could be useful for access 

control applications. Companies currently marketing voice based products include 

Electronic Warfare Associates, Voice Sciences, Alpha Microsystems, International 

Electronics (formerly Ecco), VoiceTek (formerly Voice Control Systems). 

3.7 FUTURE DIRECTIONS 

The cost of biometric verifiers in the eighties have fallen from around £7,000 per 

unit in 1985 to around £1,500 in 1989. According to data published in PIN', this 

rapid decline in system prices has stabilized over the last two years with the average 

price dropping by only £300 during 1990. At this level biometric verifiers are only 

suitable for higher value industrial, military, and government applications. To expand 

the use of biometric products into new markets, such as personal verification for 

EFTPOS, and domestic applications like vehicle and home security, the unit price will 

need to fall to the region of £l00-200. This price reduction will be met by a number 

of improvements to current technology. 

One change, applicable to systems targeted at EFTPOS applications, will be the 

elimination of the requirement for either a local or centralized database, and 



consequently the need for a PIN, through the use of smart card technologies. The 

simplest form of smart card or IC card contains some nonvolatile memory which can 

be accessed by an external reader. Rather than storing a reference in a local database for 

each valid user, it is encoded on a smart card which is issued to the user. To gain access 

the user no longer needs a PIN but simply inserts the smart card into the verifier and, 

when prompted, provides his biometric feature for verification against the smart card 

reference. This is particularly useful for remote applications like credit card 

verification, and unmanned situations like ATMs. More sophisticated cards 171 ' 8  

incorporate microprocessors and memory which can perform, on a single card, the 

functions of several credit cards, debit cards, or cheque guarantee cards, and can also 

act as an electronic purse. 

The error rate performance requirements for the target applications are already 

being met by most of the existing commercial systems with average FRRs near 1% and 

near zero FARs for fingerprint, retina scan and hand geometry based systems. The 

average verification time is currently around 2 secs. In future systems a comparison 

time of around 0.5 secs. will be perceived by the user as almost instantaneous. 

The required system cost reduction and increased performance for the next 

generation of biometric verifiers will be achieved through the use of application specific 

VLSI technology. This chapter has described some of the wide range of applications for 

automated identity verification systems. It has also shown that fingerprints are a 

particularly useful biometric feature for identity verification, providing a high level of 

discrimination and, therefore, security. For these reasons the choice of an automated 

fingerprint comparator provides a practical, commercially relevant demonstrator for the 

image processing system implementation approach presented in this Thesis. The next 

chapter describes the fingerprint comparison algorithm and a prototype identity verifier 

system based on it. 
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Chapter 4. FINGERPRINT VERIFICATION 

4.1 	INTRODUCTION 

In order to set the scene and provide a framework for the image processing case 

study presented in the remainder of the thesis, this chapter will outline the algorithm 

which has been developed at Edinburgh University for capturing and comparing 

fingerprint patterns. A full and detailed description of the algorithm and its 

development is available elsewhere 2422 ' 1 . A prototype fingerprint verification 

unit (FVU) for physical access control has been developed. This system was chosen 

because it represented a practical, complex, and industrially relevant example, for 

which all the details of function and structure were available and well understood. 

At the heart of the unit is an ASIC-based subsystem which implements the 

Edinburgh fingerprint comparison algorithm. This ASIC chipset [471,[481  was the 

precursor to the highly integrated image sensor-processor presented later in this thesis. 

A brief description of the ASIC architectures and the chip performances will be 

presented in section 4.4. 

4.2 FINGERPRINT VERIFICATION UNIT 

The FVu'461  is divided into several functional areas as illustrated in figure 4.1. The 

video processing system consists of a CCD camera module, a CCD to ASIC interface 

board, black level clamp circuitry and a 7-bit A/D convertor. 
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Figure 4.1 FVU Functional Schematic 

The interface board generates signals which are used to sample a particular 

window within the complete image produced by the camera module. The black level 

clamp circuitry is used to scale the signal for input to the A/D convertor. The output 

from the A/D is then buffered using a 128 byte FIFO. This is required to even out the 

'bursts' of pixel data generated by the camera module. 

The delay between image lines is used by the first of the two custom ASICs, 

Parcorl, to empty the FIFO before the next line is digitized. Parcorl preprocesses the 

grey-level data, performing filtering and thresholding functions, to produce a 
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normalized  black and white representation of the fingerprint image. The binary image 

is then compared with a pre-stored reference image using an algorithm based upon a 

modified correlation process. The comparison process is controlled by Parcorl which 

sequences the flow of image and reference data to the second ASIC, Parcor2, which 

performs the correlation function. 

Figure 4.2 FV I General External View 

Based on the results of this comparison, a decision is made as to whether or not the 

captured image sufficiently matches the reference template to allow access. Parcorl 

also has an interface which allows communication with an 8-bit microcontroller. The 

microcontroller provides high-level system control functions linking the ASIC image 

processing subsystem to the peripheral human interface circuitry (e.g. LCD display, 

keypad, magnetic card reader). The main processor board also contains 128kbytes of 

RAM for storing reference fingerprint data (signatures) and other system variables. The 

system control software, for the embedded microcontroller, is stored in a 32kbyte 

EPROM. 
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The  user interface consists of keypad which allows a user to enter a PIN code, a 

magnetic card reader giving an alternative means by which a user can be identified and 

a LCD display for the presentation of system status messages and user instructions. 

There is also a finger guide to help position a finger on the fingerprint sensing platen. 

Figure 4.2 shows the general external make-up of the prototype FVU. Other peripheral 

circuitry includes a serial communications port (for networking several FVU systems), 

a real time clock, power fail detection and 8-bit parallel input and output ports. 

Table 4.1 provides a summary of some of the physical and performance 

characteristics of the prototype FVU. This data provides a benchmark to compare the 

performance of the FVU with the integrated sensor-processor ASIC described in 

chapters 5 and 6. 

FINGERPRINT VERIFICATION UNIT 

No. of ICs (VLSI, LSI) 16 

No. of ICs (MSI) 37 

No. of discxetes 400 (approx.) 

Power 6W 

Weight 2kg 

Clock frequency 12MHz 

Size (wxhxd) 26x18x12cm 

Template size 512bytes/finger 

User database 96 

Match time 1.5s (typical) 

Table 4.1 FVU Physical and Performance Characteristics 
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43 EDINBURGH ALGORITHM 

The Edinburgh skin pattern recognition method is intended for applications where 

personal verification is required, such as in physical access control, credit card 

transactions, computer security etc. It is not intended for forensic work, where a sample 

print is used to search a database for identification of an individual. In our system, a 

person is identified by comparing his captured fingerprint with a previously stored 

reference print. This reference fingerprint signature can be accessed by the use of a PIN 

number from an on-line database or downloaded from a personal smart card (figure 

4.3). 

I 	SMART CARD 
READER PRINT CAPTURE 

PREPROCESSOR 

OFF-LINE 

I STORE 

I 	COMPARISON SIGNATURE 
PROCESS EXTRACTION 

APPLICATION 
DATABASE 

CONTROL 

APPLICATION 

Figure 4.3 Comparison Process Organization 

The main processing stages which form the skin pattern matching method are: 

Print Capture: The optoelectronic front-end which generates a digitized grey- 
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scale  representation of a fingerprint formed by pressing a finger on a glass 

surface. 

• Preprocessing: Takes the grey-scale image and produces a normalized binary 

representation of the peaks and toughs. 

• Signature Extraction: This provides the reference fingerprint image against 

which subsequent prints are compared. 

• Pattern Matching: The matching technique is based upon a form of direct 

correlation which has been modified to allow for distortion of the 

fingerprint image caused by rotation, translation, and stretching. 

4.3.1 	Print Capture 

The print-capture subsystem is required to produce a grey scale (typically 8-bit) 

image of 256 x 256 pixels corresponding to an area of approximately one square 

centimetre of the skin surface. How this is achieved, in practice, is irrelevant to the 

subsequent matching process provided that the same specification is used. The optical 

system described here has been developed and used successfully with the prototype 

FVU system and is also suitable for use with the single-chip version. 

The simple optical system shown in figure 4.4 produces a high-contrast image of 

a fingerprint by utilizing the total internal reflection effect of a prism"' ] . The imaging 

surface is the hypotenuse face of a glass prism with one of the perpendicular faces 

blacked out. In this configuration total internal reflection ensures that no light is 

projected through the remaining face of the prism. When an object, in this case a 

fingerprint, is pressed against the image surface the total internal reflection pattern is 
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perturbed and incident light at the points of contact is scattered. This produces an image 

based on the fingerprint ridge pattern which can be viewed through the unbiackened 

perpendicular face of the prism. 

Figure 4.4 Typical Optical Setup 

The image is focused onto a two-dimensional solid-state sensor, typically a CCD 

or CMOS device. This analogue representation of the image data is sampled, and 

digitized to give the required 256 x 256 pixel grey-level data ready for the 

preprocessing functions, filtering, and thresholding. 

4.3.2 	Preprocessing 

The first stage of preprocessing is the application of a simple smoothing function. 

This is designed to remove 'speckle' noise from the image i.e. interference of a higher 

spacial frequencies than those of the ridge/trough patterns of a fingerprint. The process 

is achieved by convolving the image data with a 3 x 3 unary weighted window to 

produce an average of each pixel with its eight nearest neighbours. Non-unary weights 

were considered but the unary weighted template offered acceptable performance and 

simplified the hardware implementation. 
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The second part of the preprocessing function delineates the ridge/trough patterns, 

normalizes the image to compensate for uneven lighting and image intensity, and 

compresses the data to 1-bit per pixel. The adaptive thresholding technique requires 

that the 256 x 256 image is divided into 256 separate 16 x 16 sub-images or 'patches'. 

For each patch, a threshold is calculated and then applied to the appropriate patch data 

to assign each pixel as being in a trough (black) or a ridge (white). Typically, the level 

of the threshold is set so as to divide the image into equal numbers of black and white 

pixels. 

4.33 	Signature Extraction 

The matching process requires a reference signature to be compared with the 

captured fingerprint image. This signature is derived during the initial enrolment 

session and characterizes the skin pattern to emphasizes the main ridge/trough patterns 

of the fingerprint. 

Figure 4.5 Typical Signature Template 
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This is achieved by applying the threshold function twice with two different 

threshold levels. The first threshold divides the pixels into two sets, 25% black and 75% 

white. A second application of the process with a different threshold divides the image 

into sets consisting of 75% black and 25% white pixels. The results are then analysed 

to assign one of three values to each pixel: white, black, or don't care. White pixels are 

those that were classified as white after the application of both thresholds. Similarly, 

pixels which were black using both thresholds are assigned as being black. All other 

pixels are labelled as don't care. 

The signature is then extracted from the resulting 256 x 256 ternary valued image. 

A sparse template is positioned over a predetermined region and the sampled points are 

recorded to produce the fingerprint signature. The template size, number of sample 

points, and number of signatures can be varied for each implementation. For this 

application, the frame size of 48 x 48 pixels has been chosen containing 128 sample 

points arranged as shown in figure 4.5. This sub-sampling reduces the reference 

template storage requirements and decreases the computational load during the 

comparison process. 

Figure 4.6 Sub-signature Template Positions 
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The  frame is applied to the image in 16 positions to derive a set of 'sub-signatures' 

for each fingerprint. Figure 4.6 shows how the 16 sub-signatures are arranged in a 4 x 

4 grid to cover the central region of the image. Thus the total storage for the signature 

for one fingerprint is 128 x 2 x 16 = 512 bytes. 

4.3.4 	Pattern Matching 

The matching problem is to determine whether or not the captured fingerprint 

corresponds to the set of reference 16 sub-signatures. Each sub-signature is compared 

with the captured image and a correlation or similarity score is derived. This correlation 

is performed repeatedly for a number of positions and angles of rotation to 

accommodate movement between the captured and reference prints. 

The highest scores for each sub-signature are ranked along with their normalized 

position address in a 32 x 32 grid of 8 x 8 pixel blocks covering the image space. These 

results are then analysed in the final part of the matching process, called polling, to 

make the match/fail decision. 

The criterion for acceptance is that the scores for a predetermined number of sub-

signatures should be present in the ranking table for any 2 x 2 area of the 32 x 32 block 

grid. The polling threshold used to determine a good match is based upon the maximum 

number of sub-signatures that can legitimately score at that position in the grid. For a 

centralized position all 16 sub-signatures are valid. Sufficient lateral or vertical 

movement reduces the number of sub-signatures from 16 to either 12 or 9. For each 

maximum, a polling threshold is set to discriminate between matching and rejection. 

The thresholds currently used in the Edinburgh algorithm are tabulated in table 4.2. A 

comparison decision is made based on the poll score, and a higher level control function 
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is  executed based on the result. 

No. of valid sub-signatures 16 12 9 

Polling threshold 10 8 7 

Table 4.2 Polling Thresholds 

It should be noted that the algorithm implemented in VLSI form differs slightly 

from the general description summarized in this section. The algorithm has been 

presented in a serial form which would not be practical for implementation as a real-

time system. The use of parallel architectures are required to reduce the massive 

processing overhead of this algorithm. The variations will be highlighted as the 

architectures used to implement the algorithm in VLSI form are described in the next 

section. 

4.4 ASIC FUNCTIONS AND ARCHITECTURES 

A real-time image processing ASIC chipset has been designed and fabricated 

implementing the fingerprint matching algorithm described in the previous section. 

4.4.1 	Overview 

Figure 4.7 shows the main elements of the fingerprint matching subsystem. 

Parcorl is a real-time image processing ASIC which performs all the image 

preprocessing, data sequencing and analysis functions which form the fingerprint 

matching algorithm. The second ASIC, Parcor2, implements a high throughput, parallel 

binary correlation array which is used to accelerate the comparison process. 
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Figure 4.7 Fingerprint Image Processing Sub-system 

The off-chip memory provides temporary buffering for the image data at various 

stages of processing and a store for the selected reference signature. Pre-calculated 

address modifiers are stored in look-up-table ROMs for use during the correlation 

process. Each of the autonomous process modules on Parcorl are independently 

executable under the control of high-level software running on the FVU systems' 

embedded 8-bit microcontroller. 

Data transfer to, and from, the fingerprint processing subsystem and the 

microcontroller is achieved via an interface situated on Parcorl. As well as access to 

data and control registers associated with the process modules on Parcor 1, the interface 

allows read access to all associated memory space, i.e. RAM, ROM and Parcor2. This 

feature, combined with the independent control of individual processes, is particularly 
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useful for system testing. Test data can be set up for any part of the process cycle to 

verify each part of the subsystem. The remainder of this section will review the 

architectures used to implement each of the required functions. 

4.4.2 	Microcontroller Interface 

Communication and control between the process modules on Parcorl and the 

microcontroller takes place via on-chip interface logic. The interface takes the form of 

a set of read-only and write-only registers which are used to control and monitor the 

operation of the processes performed by the chipset. 

An address byte is used to select one of 16 read-only registers and 16 write-only 

registers. Table 4.3 provides a summary of the registers and their functions. A 5-bit 

address from the microcontroller is used to select a particular register. The upper bit is 

effectively a read/write select bit with the four least significant bits selecting a 

particular register for access. Physically, the interface consists of a 8-bit bidirectional 

address/data bus plus two timing strobes. The timing of the transfer of an address word 

to Parcorl is controlled by the address strobe, as. The data timing, to or from the ASIC, 

is then controlled by a data strobe, ds. The registers are of the following types: 

	

• Write Registers: 	Used to set up process parameters, control execution of 

processes, and modify off-chip memory. 

	

• Read Registers: 	Used to monitor the process status of Parcorl and access 

result registers, and view external memory locations (RAM, ROM, 

Parcor2). 
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READ  ONLY REGISTERS 

ADDR REGISTER FUNCTION PROCESS 
0 STATUS Shows ASIC operational status All 

1 not used 

2 THRESH. For image monitoring Image Capture 

3 PSCORE Score returned by polling process Polling 

4-14 not used 

15 READDATA Memory read data register. Low byte Memory access 

WRITE ONLY REGISTERS 

ADDR REGISTER FUNCTION PROCESS 

16 CONTROL Select and execute a particular process All 

17 not used 

g SIGSELECT Select signature or signature bank Correlation or ranking 

19 ROWCOL. Select correlation block address Correlation 

20 BINTARGET Target threshold value Image capture 

21 not used 

22 RANKTHRESH Threshold of interest for correlation results Ranking 

23 ANGLES Set number of angles for correlation Corrank 

24 BEST Select number of scores for polling Polling 

25 not used 

26 ADDLO Memory address register. Low byte. Memory access 

27 ADDHI Memory address register. High byte. Memory access 

28 CELLADDR Cell address for ranking process Ranking 

29 XADDR Correlation score position address register. Colunm Polling 

30 YADDR Correlation score position address register. Row Polling 

F31 WR1TEDATA Memory write data register Memory access 

Table 4.3 ASIC Register Map 

Control Register: By writing to this register the individual processes can be 

selected and started. Bit 4 is used to enable ASIC memory access by the 

microcontroller. This should be asserted before any use is made of the 

memory access registers 

• Status Register: 	The status register is used to determine when a particular 

ASIC process has been completed. The status register is automatically 
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cleared when a process is started, and the appropriate bit is set in the 

register when the process has finished. Bit 7 is used to indicate that a new 

patch threshold has been calculated and is ready to be accessed by the 

microcontroller. 

Memory Access Registers: Two registers, addhigh and addlow, allow an address 

within the ASIC memory map to be selected. Before writing to either of the 

address setup registers, or the writedata register, the memory access bit 

within the control register must be set. After completion of the required 

memory accesses, this bit must be reset by writing zero to the control 

register. The action of setting up an address, by writing to addhigh or 

addlow, causes a read operation from the specified location which is then 

stored in the readdata register. This register can then be read by the 

microcontroller. When reading the cell array only the lower 6 bits of the 

result in readdata are valid. To write to a specific memory location an 

address is setup by writing to addhigh, then addlow. When the required data 

is then written to the writedata register, the selected memory location is 

accessed and updated with the new value. Note that the action of setting up 

the address causes a read operation to take place, so that the original 

contents of the ASIC memory is available until the next memory access is 

performed. 

4.43 	Smoothing Filter and Thresholding 

These processes form a binary thresholded version of a 256 x 256 x 7 bit image. 

They do so 'on the fly' so that live fingerprint image data are consumed from the sensor 
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subsystem  to form a complete binary image which is left in a 64kbit RAM. The early 

image is incidentally smoothed via a two-dimensional convolution operation, prior to 

binarization. The data flow for the smoothing and thresholding processes are shown in 

figure 4.8. 

Figure 4.8 Image Preprocessing Dataflow 

The process architecture has been carefully arranged so that there is no 

requirement to buffer the full grey-scale image. Memory utilization for the 

preprocessing functions is as follows: 

RAM_C: Dynamically buffers the previous two image lines, as required by the 

smoothing function. 

RAM—A: Acts as a flip-flop buffer for the smoothed grey-scale data. While one 

half (4kbytes) is being processed by the thresholding function, new filtered 

data is written to the other. 

RAM—B: Buffers the full 64kbit binary image formatted ready for the next stage 

of processing, binary correlation. 
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Figure 4.9 3x3 Convolution Window 

The grey scale image is first smoothed using a 3 x 3 convolution window with unity 

weights as shown in figure 4.9. The result is a local average of the centre pixel with its 

eight nearest neighbours. If the pixels are indexed by column and row as P(x,y) then the 

smoothing operation is: 

1 	' 	1 

P(x,y) 

Pa(XY) - 
- x=—1 [y=—1 	} 
 8 

Note: edge-effects affect only the border pixels, and are ignored (i.e. they may 

be computed erroneously, if necessary). 

The architecture for this filter operator is given in figure 4.10. The two-line delay 

is realized in the off-chip memory, RAM—C. The input to the filter is 7-bit grey scale 

image data sourced either from the FIFO or RAM—C. The datapath consists of two 

multiplexed adders. The first adds columns of 3 pixels. The second adds the results of 

column summations. The filter operator is fully pipelined, so new data is read 

continuously. Once the datapath pipeline is fully loaded it produces one filtered pixel 

value every three system clock cycles. 
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Figure 4.10 Smoothing Filter Datapath 

The initial 7-bit data grows to 8-bits after the first pixel addition, then to 9-bits at 

the second. At the first column addition they grow to 10-bits, and finally to 11-bits at 

the second. The maximum possible signal value at this point is 9 x 127 = 1143, which 

is only marginally above the 10-bit range. An 8-bit result is recovered by first dropping 

the least significant 2-bits (equivalent to dividing by 4). Then, if the top bit is set (which 

indicates overflow), the remaining 8-bits are hard clamped to 255. 

The filtered grey-scale data is buffered in off chip RAM until there is sufficient to 

commence the binary thresholding. This involves taking the filtered grey-scale data and 

producing a normalized black and white representation of the ridge/trough pattern of 

the fingerprint image. 

Patching is the process of splitting the filtered grey-scale image into 256 patches of 

16 x 16 pixels. For each patch a threshold is calculated (thresh caic), and then applied 

to the patch data categorizing each pixel as either black or white (binarize). A 'target' 

for the number of white pixels required (usually 50% but 25% or 75% during signature 

generation) is set and then an optimum threshold, guaranteed to give at least the target 

score, is calculated by the following procedure. 
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STAGE  1 
255 - 

191 - 

127-

63- 

0- 

8-BIT RAIN 

Computes 8-bit threshold in four passes (stages) using 
three thresholds per pass to discriminate four sub-ranges. 
Each pass produces two bits of the result starting with the 
most significant pair. 

THRESHOLD 

Figure 4.11 Successive Approximation Process 

The threshold calculation process (see figure 4.11) is based upon a successive 

approximation technique whereby a threshold is estimated, and then refined in binary 

steps. The computational load is reduced by applying the procedure to only one quarter 

of the pixels in each patch, by restricting the search to four stages (binary steps), and by 

using three thresholds per pass to discriminate four subranges. The architecture for this 

process is shown in figure 4.12. This produces an 8-bit threshold, which is then applied 

to the whole of the patch to produce the binary image with, at least, the target number 

of white pixels. 

The result of the thresholding process is a 64k binary image, which is packed into 

bytes and stored in RAM—B. Each grey-scale value for a patch is compared with the 

threshold and the result written to the appropriate bit location, selected by bsel, in a byte 

read from RAM—B. 
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Figure 4.12 Threshold Processor, thresh_caic 

The format of the stored binary image data, developed by Bruce 221, is such that if 

the image is divided into 8 horizontal strips of 32 lines, a byte read from RAM-13 would 

contain one bit from the corresponding position in each of the 8 strips (see figure 4.13). 

Figure 4.13 Binary Image Storage Format 
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This format allows fast data access during the computationally intensive 

correlation phase of the verification algorithm. 

4.4.4 	Correlation 

The comparison process involves a series of binary correlations between a 

fingerprint image and reference signature templates. Conceptually, the templates are 

compared with the fingerprint image for various positions and angles of rotation, 

looking for variations with maximum correlation. 

Figure 4.14 Correlation Dataflow 

Central to the hardware architecture is a correlation cell which counts coincidences 

in the pixel streams, generated from the image and signature. The cell retains a best 

score that is updated, if larger than the previous score, after every 128 point correlation. 

Parallelism is achieved in two ways. Firstly, the image is divided into 8 horizontal strips 

and these are correlated simultaneously against the same signature, using a column of 

8 cells. Secondly, 4 signatures are correlated simultaneously against the same image 

data using four rows of cells. Once the 4 signatures have been fully correlated within 
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the predefined limits of position and rotation, the next four signatures are used and so 

on, until all 16 sub-signatures have been used. This array of 32 correlation cells is 

implemented as a second ASIC device, Parcor2. An architectural overview of this chip 

is given in section 4.4.5. 

The datailow diagram for this correlation process is shown in figure 4.14. The 

comparison process control module, on Parcorl, forms addresses to transfer the correct 

binary image data and signature data to the cell array for the current position and angle. 

The 64k binary image, in RAM—B, is not stored in raster scan format. The 256 x 

256 pixel image is split into 8 strips of 32 rows by 256 columns, and organized such 

that an address refers to a single bit in each 32 x 256 strip. Thus, when the RAM is 

accessed it returns the eight pixels corresponding to the same location in each strip. The 

signature data is stored in RAM—C. The data is organized so that when a byte is 

accessed the data and don't care bits for 4 signatures are accessed simultaneously. 

To take into account the rotation of the image, pre-computed offsets to modify the 

address used to access the fingerprint image data are stored in EPROMs (one for row 

offsets and one for column offsets), which share the address/data bus for RAM—A. 

These address modifiers are read by the control hardware and combined with the true 

address to form the virtual address. The result of this combination (either addition or 

subtraction) results in the generation of the row overflow, row underflow and column 

error signals used to control the function of the correlation cell array. 

4.4.5 	Correlation Array 

Parcor2 performs the task of correlation which is the core of the fingerprint 
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matching algorithm. Central to the hardware architecture is an array of correlation cells 

which count the coincidences in data streams generated from the fingerprint image and 

the signature data (see figure 4.15). Each cell also retains a best score that is updated, 

if larger than the previous best score, after every 128 point correlation. The 8 x 4 matrix 

allows 8 image lines to be correlated with 4 signatures simultaneously. 

Figure 4.15 Correlation Cell Array 

Additional hardware is provided to shift the fingerprint data up or down when error 

signals are produced by the correlation controller on Parcorl. A 5-bit address and on-

chip decoder allows each cell to be accessed and its best score register read. 

The matching process is performed using a parallel array of correlation cells. A cell 

counts the number of matches between the fingerprint under analysis and the reference 
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print  for a number of translations and angles. Each cell also maintains a maximum score 

which is updated after each 128 point correlation. 

Figure 4.16 Correlation Cell 

A correlation cell, figure 4.16, is constructed around a 6-bit ripple adder with carry-

in and carry-out flags which counts the number of coincidences between the fingerprint 

and signature data for a particular position and angle. Although each correlation is 128 

points, a maximum score of 63 is set by the use of the don't care bits in the signature 

data. After each 128 point correlation, the result is compared with the current highest 

score. This is achieved by inverting the highest score and adding it to the new score. If 

a carry is produced, the new score is latched and held as the current maximum. It is vital 

that, during the comparison period, the carry-in to the adder is held low. The error 

signal, which is generated from the column error signal, colcout, is used to control the 

carry-in bit. Signals used to control the operation of a correlation cell include cntclr 

(reset the counters), maxcir (clear the best score registers), compare (force a score 

comparison), and cebar (enable the score output buffers). 
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After a sequence of 128 point correlations, the process is halted and all the 

correlation results are read out and ranked in 'best score' tables in RAM_A (see section 

4.4.6). The array is then reset and the maximum score registers cleared ready for the 

next correlation sequence to be executed. This correlation-rank process is repeated for 

each of the 4 banks of 4 sub-signature templates and various positions. 

4.4.6 	Rank Value Filter 

This Parcorl process reads a correlation score from the correlation cell array 

(Parcor2) and performs a ranking function on the score. Provided that the magnitude of 

the score is greater than the ranking threshold level, rankthresh, the score is 

dynamically ranked in a table of the top 16 scores for the current signature. A similar 

table is maintained for each of the 16 signatures. 

007F 

SCORE 15 [ 

SCORE 

1 [ 

SCORE 0 

0000 

SIG.0 	SIG. 1  

unused unused 

YADDR YADDR 

XADDR XADDR 

SCORE SCORE 

unused unused 

YADDR YADDR 
XADDR XADDR 

SCORE SCORE 
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YADDR YADDR 

XADDR XADDR 

SCORE SCORE 
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00FF 	 07FF 
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YADDR 

XADDR 

SCORE 
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> YADDR 

XADDR 

SCORE 
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YADDR 

XADDR 

SCORE 
0080 	 0780 

Figure 4.17 Rank Table Format 
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The  data stored at each location within a rank-table, figure 4.17, consists of 3 bytes, 

the score, and a 2-byte address relating each score to a position in the 32 x 32 block grid 

covering the fingerprint image space. When a new score is to be ranked the data 

corresponding to a particular rank-table is read from memory, starting with the highest 

ranked score. The new score is compared with each successively lower score until it is 

found to be equal or lower in magnitude. It is then slotted into the rank table along with 

its associated address bytes. This causes the previous lowest score to drop-off the 

bottom of the table. If the new score proves to be lower than the any of the existing 

ranked scores no changes are made to the table and the new score is discarded. 

The ranking process datapath, figure 4.18, is constructed around two 6-bit wide, 3-

word deep FIFOs which provide on-chip buffering for scores and their associated 

address bytes (xaddr, yaddr). Multiplexers are used to direct the flow of data around the 

module. The signals used to control the dataflow (ci - có) are a function of fixed process 

cycle timing and data comparisons and are generated in a local datapath sequencer. 

Figure 4.18 Rank Value Filter Datapath 
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4.4.7 	Polling 

The polling function is the final stage of the comparison process. The results 

tabulated during the correlation and rank procedures are analysed to determine the level 

of similarity between the fingerprint image and the reference templates. To accelerate 

this process, a simple module is provided which searches the best score tables in 

RAM—A, counting the number of sub-signatures with ranked scores within a specified 

2 x 2 area of the 32 x 32 block grid covering the fingerprint image space. Hence if the 

specified address is {x,y} it also searches for scores with addresses {x,y+1}, {x+l,y}, 

{x+1,y+l}. If a score is found in the tables with a valid address for a particular sub-

signature a count is incremented. This gives a a maximum possible poll score of 16 

(assuming a full search of the best score tables). The datapath schematic for this 

function is given in figure 4.19. 

Assuming a sufficient number of sub-signatures for a given area of the image have 

ranked scores, the result is a positive match between the presented image and the 

reference fingerprint. 

Figure 4.19 Polling Operator Datapath 
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4.5 ASIC IMPLEMENTATION 

The architectures described in the previous sections were implemented as two 

digital ASICs, Parcorl and Parcor2, using silicon compilation design techniques. Both 

devices were fabricated by European Silicon Structures (ES2), but were implemented 

using different software tools. This section will briefly describe the design method 

followed for each device. A summary of the main physical characteristics for Parcorl 

and Parcor2 are presented in table 4.4 

CHARACTERISTIC PARCOR1 PARCOR2 

Foundry ES2 ES2 

Process 2m 2j.tm 

No. of transistors 43,870 20,884 

Die width 9.03mm 8.49mm 

Die height 9.23mm 7.62mm 

Die area 8332mm2  6462mm 2  

Clock frequency (typ.) 12MHz 12MHz 

Clock frequency (max.) 13MHz 20MHz 

No. ofl/Opins 84 45 

Power (05V & MHz) 320mW 196mW 

Package 84 pin J-lead 68 pin J-lead 

Table 4.4 FVU ASIC Physical Characteristics 

4.5.1 	Parcorl 

Parcorl, the image processing ASIC, was designed using the SOLO-1400 silicon 

compiler 951  which provides a fast route for the implementation of digital ASICs for 

fabrication by ES2 and their second sources. Figure 4.20 shows the design flow for 

SOLO-1400 from design entry, through simulation and physical layout, to design 

validation prior to shipment to ES2 for fabrication. 
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Figure 4.20 SOLO-1400 Design Flow 

The circuit is entered either as a logic diagram via a schematic-capture package or 

in text form using a proprietary hardware description language (HDL) called model. In 

this instance model was used since this made it easier to describe, in a compact manner, 

parallel architectures such as the correlation cell array. The design is built up 
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hierarchically.  At the lowest level are basic design elements (logic gates, latches, 

counters) selected from ES2 part libraries. These parts are then grouped together to 

form the higher level operators required to implement the architecture. Once the design 

description is captured and successfully compiled, further software tools are used to 

automatically generate design models for simulation and the physical layout of the 

ASIC. 

Figure 4.21 Photograph of Parcorl 

The floorplan structure of a SOLO generated design consists of a small number of 

columns, containing rows of CMOS transistor pairs (one p-type and one n-type device) 

known as stages. Every library part and user defined block is implemented as a series 

of interconnected stages. Redundant logic is automatically removed from the design by 

the compiler before the layout process takes place. Functional simulation was 

performed both prior to, and after, layout when more accurate timing and loading 
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information was available 

After performing post layout simulation and design verification, the artwork and 

simulation test vectors for the circuit are taped-out and shipped to ES2 for the 

fabrication of prototype devices. Parcor 1 (figure 4.21) contains all the logic, except the 

parallel correlation array, required to implement the fingerprint image preprocessing 

and comparison algorithm. 

4.5.2 	Parcor2 

The second ASIC, Parcor2, implements the parallel correlation array which 

accelerates the computationally intensive part of the fingerprint comparison process. 

This device was implemented using the Genesil [1041,1941  suite of integrated circuit 

design tools. Unlike SOLO-1400, which is linked to a single silicon foundry, Genesil 

allows a design to be captured then compiled for fabrication by a variety of silicon 

vendors (including ES2). 

The design capture method involves the selection of the required building blocks 

from the on-line library of parameterised building blocks such as memory, registers, 

arithmetic modules, input/output structures, test elements and basic logic gates. On-

screen 'forms' are completed to define the parameterisable elements for each instance 

of a block. These blocks are then grouped to form higher level modules which, in turn, 

are connected together to complete the design. Once the functional description is 

captured the software automatically generates internal models for logical function, 

timing, power and layout. A graphical view of each module is also generated at this 

stage. Functional simulation then provides verification of the logical operation of the 

captured circuit against its design specification. Functional simulation may be 



- 68 -  

performed at any level in the design hierarchy (block, module, chip, system). Static 

timing analysis might also be performed at this stage. The Genesil timing analyser 

exhaustively examines every possible circuit path, calculating delays for various 

process parameters, operating temperatures, and supply voltages. The results are 

automatically analysed to provide values for the maximum operating frequency, and a 

list of the critical paths for each module. 

- _ f 
Figure 4.22 Photograph of Parcor2 

After functional and timing verification at the module level has been completed the 

design is ready for floorplanning. During this phase of the design flow, the small 

number of compiled modules (including 110 pads) forming the complete chip are 

interactively placed to produce an efficient floorplan. The software then automatically 

routes the power, control, and data lines between the blocks and the I/O pads. The 

design is then ready for final simulation and timing analysis to verify functionality and 

performance. Once completed, the design artwork and test vectors are taped out and 
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sent  for fabrication. Parcor2 was fabricated using ES2's 2.Oim CMOS process. This 

chip was the first device to be fabricated using this combination of silicon design 

software and silicon vendor. A photograph of the resulting device is given in figure 

4.22. Note the regular structure due to the datapath architecture adopted for this design. 

4.6 DISCUSSION AND CONCLUSIONS 

The FVU system has been developed based around a custom image processing 

ASIC chipset. An alternative implementation approach would have been to utilise 

standard function specific image processing devices or powerful signal processing 

microprocessors. A major advantage of this approach would have been the significantly 

reduced engineering costs involved in developing the FVU system. 

Set against this advantage is that standard parts either do not have enough 

processing bandwidth or architectural flexibility implement all of the required 

functions. The fingerprint comparison algorithm consists of a number of different 

functions each with different processing requirements. For example any standard part 

capable of implementing the low level parallel processing correlation part of the 

algorithm would not be an appropriate device to perform any of the higher level data 

analysis functions. 

The support memory for the ASIC implementation is very efficiently utilised since 

it was organised to suit the dataflow requirements of the algorithm rather than those of 

a particular standard device. Another potential advantage of implementing the 

fingerprint system in ASIC form is algorithmic security. it is much more difficult to 

copy an ASIC than it is to replicate software. 
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The  use of VLSI technology in the development of the prototype fingerprint access 

control system has produced a compact, powerful, real-time image processing system. 

Further size, cost, and performance gains can be achieved by applying the leverage of 

VLSI to elements of the system beyond the core digital processing elements. The next 

chapter will describe the design of an architecture for a chip which efficiently combines 

the whole of the image sensing, preprocessing functions and comparison algorithm into 

a single highly integrated device. 
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Chapter 5. IMAGE SENSOR-PROCESSOR 

5.1 	MACRO-ARCHITECTURAL SPECIFICATION 

This chapter describes the architectures developed to implement the fingerprint 

sensing, capture, and comparison system as a single, highly integrated VLSI device, 

ASIP (Application specific ImageProcessor). Figure 5.1 shows the functional 

schematic of the prototype FVU system, as described in chapter 4. The single chip 

sensor-processor replaces the sensing, image capture, preprocessing, and image 

comparison functions as indicated by the shaded area. 
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Figure 5.1 FVU Functional Schematic 

The principal functional modules forming the fingerprint comparison sub-system 
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are  the same as the prototype FVU, but the architectures and design methods used to 

implement the individual parts of the algorithm are quite different. A detailed 

description of the architectural design of the various elements of the integrated image 

sensor-processor will be presented in this chapter. The benefits of this design approach 

will be highlighted using the single board, prototype FVU system as a benchmark. 

Figure 5.2 shows the main functional elements of the integrated sensor-processor. 

Compared with the existing system architecture, the most radical change is the 

integration of the image sensor with the digital image processor on the same substrate. 

This has been made possible by the recent development [851,[871  of a high quality, 

customisable sensor array designed to be fabricated using the same standard low-cost 

ASIC CMOS process as is used to fabricated the surrounding digital logic. This 

technology will be described in more detail in section 5.2. 

The external memory requirements have been reduced from 192kbit to 64kbit by 

including on-chip, fast access, SRAM tailored to the needs of the individual processes. 

This is achieved through the use of compilers which can generate memory blocks of any 

required size (i.e. word length x number of words). A single, off-chip, 64kbit SRAM 

has been retained to buffer the binary image produced by the image capture and 

preprocessing function. The decision not to integrate this memory was based on the 

economics of integrating large RAMs. 

Image capture and preprocessing (digitisation, filtering and binary thresholding) 

are performed on-chip without the need for interaction with the high level control 

software running on the microcontroller. To increase the performance of the 

comparison process, the number of correlation cells has been increased from 32 to 64. 

This change to the architecture alone reduces the fingerprint comparison time by 50%, 

from 1.5 seconds (typical) to 0.75 seconds (typical). 
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The  address modifiers used during correlation, to rotate the image with respect to 

the reference templates, are now stored in on-chip LUT ROM. Autonomous execution 

of the correlation and ranking processes has been provided, easing the computational 

load on the microcontroller and reducing the execution time. The ranking process, 

which reads the high scores from the correlation cell array, has been modified reducing 

the memory requirements for the best score tables and increasing its throughput. 

READ ONLY REGISTERS 

ADDR REGISTER FUNCTION PROCESS 

0 STATUS Shows ASIC operational status All 

1-2 not used 

3 PSCORE Score returned by polling process Polling 

4-13 not used 

14 READIII Memory read data register. High byte Memory access 
15 READLO Memory read data register. Low byte Memory access 

WRITE ONLY REGISTERS 

ADDR REGISTER FUNCTION PROCESS 

16 CONTROL Select and execute a particular process All 

17 TARGEfl Tally target value (highest) Image capture 

18 SIGBANK Select one from two banks of 4 signatures Corrank 

19 ROWCOL Set sensor exposure or select correlation block Image capture or corrank 

20 TARGEI2 Tally target value (middle) Image capture 

21 CORRThST Set number of 128 point correlations Corrank 

22 TARGEF3 Tally target value (lowest) Image capture 

23 ANGLES Set number of angles for correlation Corrarik 

24 BEST Select number of scores for polling or DAC test input Image capture or polling 

25 SENThST Sensor, DAC and comparator test select register Image capture 

26 ADDLO Memory address register. Low byte. Memory access 

27 ADDHI Memory address register. High byte. Memory access 

28 XADDR Correlation score position address register. Column Polling 

20 YADDR Correlation score position address register. Row Polling 

30 WRITEHI Memory write data register. High byte Memory access 

31 WRITELO Memory write data register. Low byte Memory access 

Table 5.1 ASIP Register Map 

The final analysis of the best score tables, to determine whether or not a fingerprint 
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and the selected reference match, is still performed by software, running on the 8-bit 

microcontroller. Like Parcor 1, a hardware module has been provided on-chip to 

accelerate this process by scanning the best score tables and counting coincidences of 

ranked scores with particular block addresses. This information is then used by the 

control software to determine the quality of match between the image and the reference. 

The microcontroller interface is very similar to that used in Parcor 1, although the 

register map has changed to accommodate the requirements of the new architectures. 

Table 5.1 provides a summary of the registers used in ASIP and a brief description of 

their functions. 

The remainder of this chapter looks in detail at the architectures used to implement 

the fingerprint matching algorithm, highlighting the various novel approaches used to 

produce ASIP. First, however, it is necessary to briefly review the CMOS image sensing 

technology that has enabled this device to be designed. 

5.2 CMOS IMAGE SENSORS 

There is a wide range of commercially available solid state image sensors based on 

a variety of technologies all of which are suitable for image processing applications. 

Unfortunately, none of these devices are manufactured using the same low-cost ASIC 

CMOS process which is used to implement the image processing logic. Research at 

Edinburgh University [84],[75],[85],[87],[91]  has resulted in the development of a novel 

photodiode based, image sensing technology, fabricated using a standard digital CMOS 

process. 
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, 

- 

Figure 5.3 Typical CMOS image Sensor 

The performance of this technology matches that of CCD (the most commonly 

used image sensor technology) in almost every area e.g. linearity, dark current, spectral 

sensitivity, signal to noise ratio, blooming protection. Compared to CCD based 

cameras, the Edinburgh CMOS sensor has the added advantages that it only needs a 

single 5V power supply, and a simple single-phase clock. Additionally, the control and 

signal formatting logic can be on the same silicon substrate as the sensor array. Further 

features of the technology which are particularly interesting from a system designer's 

point of view include: 

• Customisable pixel pitch. 

• Customisable array size. 

• Portability to different CMOS processes. 

• Electronic exposure control. 

• Can be integrated with custom processing logic. 
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The sensor is based on an array of MOS devices used to form a photodiode, one for 

each pixel. A photodiode is formed by extending the source region of the MOS device 

(see figure 5.4). 

Figure 5.4 MOS Photodiode 

A row of photodiodes are charged then isolated via a common word line connecting the 

gate of each MOS transistor. Light falling on the source region of a pixel produces a 

small photo current which gradually discharges the device. After a short integration 

period, a pixel is read by selecting the transistor and dumping the remaining charge onto 

a bit line. Each bit line connects a column of pixels together. Pixels in any given column 

are accessed individually by enabling a row at a time. At the top of each bit line is a 

sense amplifier pitch matched to the pixel column width (typically 10-20im). this 

converts the charge packet into a voltage which is sampled and stored on a capacitor. 

The design of this sense amplifier is critical to the near CCD performance of this 
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MOS image sensor. The stored values can then be sequentially accessed and output via 

a final amplification stage. The timing of the activation of the word lines and pixel 

columns are controlled by horizontal and vertical digital shift registers, each pitch 

matched to the respective pixel dimension. All other sensor timing and output 

formatting signals are generated by digital control logic, implemented on the same 

silicon substrate as the sensor array. This module can also be expanded to include 

application specific functions such as video formatting and automatic exposure control. 

Circuitry is also provided that allows the post-fabrication testing of the sensor to 

be performed using conventional digital-logic test techniques. Basically, predetermined 

digital data is loaded into the bit-lines, word-lines, and pixels and the output patterns 

compared with the expected results. A full description of this test strategy is available 

e1sewhere 901 . 

Finally, the flexibility to produce a image sensor tuned to the requirements of the 

fingerprint verification algorithm at a cost, in production volumes, of substantially less 

than that of a standard CCD sensor, makes a CMOS based sensor particularly suitable 

for this application. 

53 IMAGE SENSING AND PRE-PROCESSING 

To illustrate the advantages offered by integrated sensor-processor systems, this 

section looks in detail at the image sensing, digitisation, smoothing and normalisation 

functions of the fingerprint matching system. 
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53.1 	Architectural Overview 

In the prototype FVU system the image sensing and preprocessing functions were 

performed in the following manner. First the analogue signal from the CCD sensor 

module was digitised using a video-rate, analogue-to-digital convertor (ADC) to give a 

256 x 256 pixel 8-bit grey level representation of the fingerprint image. This data was 

then passed via a FIFO to the image processing ASIC, Parcorl, where it was smoothed 

and binary thresholding applied. Off-chip memory was provided to buffer the grey level 

data during threshold calculation and to store the final, normalised, binary image data. 

In principle, the same function can be implemented without the need for an ADC, FIFO, 

or grey-level image buffer. Figure 5.5 shows a simplified schematic of the image 

normalisation sub-system used in ASIP. 

Figure 5.5 Image Sensor and Preprocessor Block Diagram 
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The  process operates in the following manner. A sequence of nine sub-sampled 

image frames are read out from the CMOS sensor. This data is processed to produce 9-

bit local thresholds, one for each of the 256 16 x 16 pixel patches, covering the full 

image space and using a successive approximation technique. Before the first frame in 

a sequence is accessed, each location in the threshold RAM is reset to a seed value. As 

the sensor array is scanned out, a threshold is driven, via a fast digital-to-analogue 

convertor (DAC), onto one input of a comparator while the analogue image signal, from 

the sensor, is applied to the other. The resulting binary pixel stream is analysed to 

determine the ratio of black to white pixels in each patch, using a tally circuit. These 

tally values are also buffered in on-chip RAM. 

After each frame, the 256 patch thresholds are updated according to the tally 

results, ready for the next sub-sampled frame to be scanned out. This allows a 9-bit 

threshold to be calculated for each patch, 1-bit per frame, in nine frames. By suitable 

sensor addressing and sub-sampling (appropriate to this application) the calculation of 

the thresholds has been achieved within in one frame time. 

A second, full 256 x 256 pixel frame (nine sub-sampled frames) is read and the 

local thresholds are applied, resulting in the required digitised binary image. Finally, the 

normalised binary data is formatted and stored in off-chip memory, ready for the start 

of the comparison process. The format for the binary image data is the same as that used 

in the prototype FVU. 

The 3 x 3 smoothing function, implemented as part of the digital preprocessing 

circuitry on Parcorl, has now become an integral part of the custom CMOS sensor 

operating in the analogue domain. How this is achieved, as well as description of the 

rest of the image capture sub-system, will be presented in the next section. 
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53.2 	Sensor and Filter 

An entirely novel custom CMOS sensor, based on the technology described in 

section 5.2, has been designed for use in the image capture part of the single-chip 

fingerprint image processor. The sensor architecture is shown in figure 5.6. It comprises 

of a 258 x 258 pixel photodiode array, sense amplifiers, custom addressing and control 

logic, output amplification, and built-in test structures. The normal raster-scan data-

access for this type of sensor has been modified to allow groups of 3 x 3 pixels to be 

addressed simultaneously, their values averaged and then to be read out. This method 

of implementing the filter function as an integral part of the sensor structure was first 

suggested by wang 71 . 

I 	HORIZONTALSHIFrREGISTER 	 I ANALOGUE 

> otrii'irr 
SENSE AMPLIFIERS 	 j 	SIGAI. 

I.iii. 

Figure 5.6 ASIP Custom CMOS Image Sensor Architecture 

The averaging of a pixel with its eight nearest neighbours is achieved by selecting 

three word lines together, and then selecting three pixel columns simultaneously. The 

normal address sequence is complicated, in both the horizontal and vertical directions, 
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by  the 3 x 3 access requirement. In the horizontal direction after the first group of three 

pixels (0, 1,2) are accessed (see figure 5.7) the next group of three would be (3,4,5) not 

(1,2,3) as might be expected. This is because the values of pixels 1 and 2 have already 

been read destructively. 

A similar address pattern is also required in the vertical direction to simultaneously 

enable groups of three word lines. With this address pattern used in both the horizontal 

and vertical directions only one-ninth of the data is accessed during a single frame 

access. To access a full frame of averaged pixels, the array must be read nine times with 

a full integration period between each access. Figure 5.7 shows the pixel sample 

sequence during the first access, i.e. Frame 1. 

Figure 5.7 3 x 3 Pixel Scan Sequence for Frame 1 

After each scan, the start position of the 3 x 3 block is moved by one pixel in either 
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a  vertical or horizontal direction and then, following the integration period, a second 

sequence of averaged pixel data is scanned Out. After the nine sub-frames have been 

read out, a full locally averaged 256 x 256 pixel image has been accessed. Since the 

required image size required is 256 x 256 pixels, a photodiode array with 258 x 258 

pixels has been chosen to eliminate spurious edge effects. 

The address sequences for each of the sub-frames are as follows: 

Frame 1: Horizontal scan: (0, 1,2), (3,4,5), (6,7,8)............. (255,256,257) 

Vertical scan: (0, 1,2), (3,4,5), (6,7,8) ............. (255,256,257) 

Frame 2: Horizontal scan: (1,2,3), (4,5,6), (7,8,9)............. (254,255,256) 

Vertical scan: (0, 1,2), (3,4,5), (6,7,8)............. (255,256,257) 

Frame 3: Horizontal scan: (2,3,4), (5,6,7), (8,9,10) ............ (253,254,255) 

Vertical scan: (0, 1,2), (3,4,5), (6,7,8).............. (255,256,257) 

Frame 4: Horizontal scan: (0, 1,2), (3,4,5), (6,7,8)............. (255,256,257) 

Vertical scan: (1,2,3), (45,6), (7,8,9) ............. (254,255,256) 

Frame 5: Horizontal scan: (1,2,3), (4,5,6), (7,8,9)............. (254,255,256) 

Vertical scan: (1,2,3), (4,5,6), (7,8,9)............. (254,255,256) 

Frame 6: Horizontal scan: (0, 1,2), (3,4,5), (6,7,8) ............. (255,256,257) 

Vertical scan: (1,2,3), (4,5,6), (7,8,9)............. (254,255,256) 

Frame 7: Horizontal scan: (0,1,2), (3,4,5), (6,7,8) ............. (255,256,257) 

Vertical scan: (2,3,4), (5 P6,7), (8,9,10) ............ (253,254,255) 

Frame 8: Horizontal scan: (1,2,3), (4,5,6), (7,8,9)............. (254,255,256) 

Vertical scan: (2,3,4), (5,6,7), (8,9,10) ............ (253,254,255) 

Frame 9: Horizontal scan: (2,3,4), (5,6,7), (8,9,10) ............ (253,254,255) 

Vertical scan: (2,3,4), (5,6,7), (8,9,10) ............ (253,254,255) 
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These  address sequences are generated by modified horizontal and vertical shift 

registers. Figure 5.8 shows the horizontal shift register logic required to produce the 

necessary address sequences. For normal raster-scan output there is a shift register 

element associated with each pixel column address bit. A line start pulse (Is) propagates 

along the shift register sequentially enabling each pixel column. In the block address 

scheme used here only one shift register element (cellO, cell], etc.) is required for 

each group of three address lines. Control lines (hO, hi, h2) decode the shift register 

outputs to enable any consecutive group of three address lines simultaneously. 

Figure 5.8 Horizontal Shift Register Logic Diagram 

This allows the address patterns described earlier to be produced. A similar 

arrangement of is used in the vertical shift register to allow groups of three word lines 

to be selected together. 

The field read-out time for this scheme is almost identical to the of the normal 



- 85- 

(raster-scan)  method even though, to access a full image, nine sub-sampled scans are 

required. This is due to the fact that there is only one-third the number of delay elements 

in both the horizontal and vertical shift register for a given array size. Hence, the 3 x 3 

unary weighted smoothing function required by the fingerprint algorithm has been 

implemented in the analogue domain with no changes to the photodiode array, and only 

a minimal increase in the complexity of the sensor control logic. This compares with 

the 600 gates of logic required to implement the datapath for the digital version of the 

filter function. 

The bit-line and word-line test structures, used to test the sensor using 

predetermined digital patterns, have been slightly modified to accommodate the 3 x 3 

block address scheme. Further control lines (teO, tel, te2) have been provided in the 

horizontal shift register to allow pixel lines to be selected individually to check for pixel 

column and sense amplifier faults. 

53.3 	Sensor Controller 

The sensor controller produces all the clocks and control pulses necessary for the 

correct operation of the image sensor. The core of the controller is a divide-by-three 

clock generator which takes the system clock (typically 18Mhz) and produces various 

sensor clocks (at one-third the system frequency i.e. 6MHz). One of these clocks, ck, is 

used to increment a frame counter module. Outputs from this counter are decoded to 

generatefs, is, sample and reset signals. 

The sensor runs independently of the image capture process. Another output, pvb, 

is used by the image capture process to time the sampling of valid data from the sensor. 

Exposure is controlled by changing the period between reset pulses. This is known as 
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the integration period. For this application completely automatic exposure control is not 

required, since the sensor is working in a controlled lighting environment. A local 

register allows the integration period to be set, and the exposure controlled, by the 

microcontroller. Another register is used to select the sensor's mode of operation i.e. 

normal or one of three test modes. 

53.4 Sequencer 

The image capture and preprocessing module, once initiated, performs the capture, 

filtering, binary thresholding and format functions, independently of any interaction 

with the microcontroller. At the core of the process control and address generator is a 

complex counter module, whose outputs are decoded to provide all the necessary 

address and control sequences. The high level control sequence is split into two phases. 

During phase —I (threshold calculation) a sequence of nine sub-frames are read out and 

local thresholds are calculated, one for each of the 256 16 x 16 pixel patches covering 

the fingerprint image space. In the second phase (binary thresholding) another nine sub-

sampled frames are accessed, the local thresholds are applied to the image data and the 

resulting binary image is stored in the 8k x 8 off-chip SRAM. 

For phase—] the sequencer has to generate signals to perform the following 

functions: 

• Signal generation for the sensor shift registers, indicating which of the nine 

sub-sampled frames is currently being read out. 

• Target threshold selection for the tally circuit. This depends on the number of 

sub-sampled pixels read out for a given patch in a particular frame. 

• Address sequence generation for the tally and threshold RAM. This has to 

select the correct tally value and threshold for the next pixel to be 

scanned Out of the sensor array. 
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• Timing of the update of the 256 local thresholds. The threshold is updated for 

a particular 16 x 16 pixel patch immediately after the last pixel of that 

patch has been read Out and counted by the tally circuitry. 

Inphase_2 the following signals are required: 

• Signals for the sensor shift registers to indicate which of the nine sub-sampled 

frames is currently being read out. 

• Format address sequences for binary image RAM. These must ensure that 

every binary pixel value is stored in the correct location in the format 

required by the comparison process. 

• Signals to select the correct bit location in a byte to store the binary pixel data. 
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Figure 5.9 Simplified Sequencer Schematic 

The sequencer consists of three counters and decoding circuitry as shown in figure 

5.9. The frame counter is a modulo-9 counter, which determines which one of the nine 
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sub-sampled frames is currently being scanned out of the sensor. At the start of a new 

sub-frame the pixel counter and line counter are pre-loaded with a value which is 

dependent on the status of the frame counter. The pixel counter is clocked each time a 

valid pixel is generated by the image sensor using the pixel sample clock, pclk. The 8-

bit output of the pixel counter starts at 0,1 or 2 depending on the pre-load value and then 

increments by 3 after each clock cycle. A carry strobe is generated by the pixel counter 

when the output value is greater than 252. 

This carry signal is used to clock the line counter which operates in a similar 

manner to the pixel counter, incrementing by three each time it is clocked. After a carry 

is generated, the pixel counter re-loads the frame value and starts counting again. When 

the line counter generates a carry strobe the frame counter is incremented and the count 

sequence is repeated until nine sub-frames have been processed. Higher level control 

logic then repeats the whole count sequence for phase-2 of the process, binary 

thresholding. The image capture and binary thresholding process timing is calculated 

as follows: 

Sensor clock cycles = frames x [sub-frames x [[delay + pixels] x lines]] 

= 2 x [9 x [[42 + 86] x 86]] = 198 144 cycles 

The delay before each line is accessed is required to allow video formatting to be 

added to the sensor output signal. In any future design this delay could be reduced to 

the minimum number of cycles required to select and sample a row of pixels. 

The sensor clock (or pixel clock) runs at one-third of the system clock rate so the 

total number of system clock cycles required to capture and preprocess a fingerprint 

image is 198144 x 3 = 594432 cycles. With an 18MHz system clock the process 
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execution  time is approximately 33ms. Therefore, problems due to image movement 

during image capture do not occur, and the dynamic use of the sensor as an image 

storage device is vindicated. 

5.3.5 	Tally and Threshold Calculation 

A local threshold is calculated for each of the 256 16 x 16 patches covering the 

image space. The 9-bit thresholds are formed 1-bit per frame in nine image frames. 

At the beginning of phase 1, a start or seed threshold (50% of full scale i.e. 256) 

is set for each patch. A sub-sampled frame is then scanned out from the sensor, and the 

analogue output signal is compared with an analogue representation of a digital 

threshold, using a fast comparator. A 9-bit DAC has been custom designed for this 

application. Its design and implementation are described in chapter 6. 

The selection of the correct local threshold, from the 256 possible for the current 

pixel being scanned out, is a non trivial task. After every five or six pixels a different 

local threshold has to be selected and converted. The datapath sequencer (section 5.3.4) 

performs this task. The resulting binary pixel stream is then analysed and a running total 

or tally of white pixels is kept for each patch. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

I I kJ XTMLY 

THRESHOLD UPDATE FLAG 

Figure 5.10 Tally and Threshold Memory Format 

An on-chip 256 x 16 bit SRAM provides buffering for both the 9-bit thresholds 
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and  the tally values. Each word in the memory contains the current threshold and 

current pixel tally for a particular patch in the format shown in figure 5.10. 

The tally scores are continuously compared with one of three target values which 

have been pre-loaded into local registers. These target values are based on the number 

of white pixels in a patch necessary to give the desired ratio of black to white pixels in 

the final binary image (usually 1:1). The actual number of pixels sampled in a patch 

depends on the start position of the 3 x 3 sample template. Analysis of the address 

sequence has shown that the number of sampled pixels in any given 16 x 16 patch is 

one of three values:- 25, 30 or 36. Hence the need for three different target values. For 

a ratio of 1:1 the corresponding pre-loaded target values would be 12, 15 and 18. 

When the tally score for a patch exceeds the target, a flag is set in the tally/threshold 

memory. This threshold flag is then used to increment, or decrement, the current 

threshold value for a particular patch, in successively smaller binary steps after each 

sub-sampled frame. After nine frames the table of 256 9-bit local thresholds is 

complete. Phase-2 of the process then applies these thresholds to a second sequence of 

nine frames to produce the required normalised binary image (see section 5.3.6). 

A datapath has been designed to perform the tally and threshold calculation 

function, and is shown in figure 5.11. The tally circuitry keeps a count of the number 

of white pixels in the binary image data stream (pixval) for each patch. It also 

continuously compares each patch tally value with one of three target scores (target], 

target-2, target-3). The target scores are system-level parameters and are pre-loaded 

into local registers before the process is executed. The threshold update logic modifies 

the table of 256 patch thresholds according to the status of the threshold flag generated 



by the tally circuit, and a control strobe (up) from the process sequencer. A 9-bit shifter 

module is initialised to 256 at the start of a new sequence of nine sub-sampled image 

frames. After each frame the number is down shifted by 1-bit (i.e. 256 -> 128 ->64 -> 

32 -> 16 -> 8 -> 4 -> 2 -> 1). This number is used to set successively lower bits in the 

current patch thresholds gradually refining each local threshold in binary steps until, 

after nine frames, a 9-bit threshold has been calculated for each patch. 
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Figure 5.11 Pixel 'filly and Threshold Update Datapath 

This efficient mapping of the algorithm to hardware has enabled the following 

savings to be made, compared to the FVU system: - the total RAM requirement has been 

reduced from (128x8+512x8+8kx8+64kx1)=l36,l92 bits to(256x16+Mk 

x 1) = 69,632 bits and the analogue-to-digital conversion from an off-chip 9-bit flash 

ADC to a simple on-chip DAC and comparator. 



- 92 -  

53.6 Threshold and Format 

After the completion of the threshold calculation phase of the process a second 

sequence of nine sub-sampled frames are scanned out of the sensor array. The table of 

threshold values are applied to the scanned data to produce a stream of binary pixel 

values. 
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Figure 5.12 Threshold and Format Logic 

During this phase, the digitised data is not counted by the tally circuit but is 

compressed into bytes, and stored in the format required for the next process in off-chip 

SRAM. The data format is the same as used in Parcorl. After each patch has been 

processed, its tally score and threshold values are automatically reset to their start 

values, ready for another image capture sequence. A simplified view of the binary 

threshold and data format operator is shown in figure 5.12. The required address 

patterns for binary image store, RAM B, are generated by the process sequencer. 

The image sensing and preprocessing functions are now complete and the system 

is ready to start the fingerprint comparison and result analysis processes. 
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5.4 IMAGE COMPARISON AND RESULT ANALYSIS 

These processes take the captured and preprocessed fingerprint image, and 

compare it with a pre-stored reference using a correlation based technique. 

5.4.1 	Overview 

The architectures used to perform the image comparison and correlation score 

analysis in ASIP have evolved from those used in the prototype FVU system. Changes 

have been made to increase throughput, and to reduce the logic gate count and the 

software control overhead. 
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Figure 5.13 Image Comparison and Analysis Dataflow 

The principle changes and additions are as follows: 

• 8 x 4 correlation cell array expanded to 8 x 8 cells and integrated. 

• Pipelined Correlation and Score Ranking (hardware control) has been introduced. 
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•  Address modifier LUT ROM. 

• Reference signature RAM. 

• Best score table RAM. 

• Pre-calculated correlation score address offset value LUT RAM. 

A simplified schematic for the new architecture is given in figure 5.13. The new 

pipelined correlation and ranking processor has been produced by linking the individual 

operators by the process controller, corrank. On-chip memory has been provided to 

store reference signature data (sigrarn), and the best score tables (rankram). 

The 4 x 8 correlation cell array, originally implemented as a separate ASIC 

(Parcor2), has now been integrated and expanded to form an array of 8 x 8 cells. This 

doubles the throughput of the correlation process, allowing eight signatures to be 

correlated simultaneously in eight different locations. The pipelined correlation and 

ranking process operates in the following manner. 

Load x, y-offsets and rank thresholds into 16 x 16 nut RAM. This can be 

done as soon as the system is powered up, since the data is pre-

calculated and does not depend on the particular fingerprint being 

processed. 

Load required reference fingerprint signature data into sigram. This 

happens after a user has claimed an identity, via either a PIN number or 

smart card. 

Load number of correlation angles (typically 11): Angles register. 

Load number of correlation positions (normally 64 for a 8 x 8 block 

position): Corniest register. 
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Select signature bank: Sigbank register. 

Load block address position: Rowcol register. 

Start correlation/rank process sequencer (corrank) via the process control 

register, control. 

The required number of 128 point correlations are then executed under the control 

of the correlation sequencer, corrcon, using the expanded parallel correlation cell array. 

The process cycle timing for the correlation process corrcon is calculated as follows: 

System cycles 	= angles x block positions x [points + setup] 

= 11 x64x[128+2] 

= 91520 cycles 

Following the completion of the correlation process, the 64 high score registers in 

the cell array are accessed and ranked in best score tables which are formed in local 

memory (ran kram). The information stored in the tables is the same as in the prototype 

FVU system, but the format has been modified to reduce the memory requirements and 

speed up data access. Corrank makes repeated calls to the rank-value filter (RVF), once 

for each score in the correlation cell array. It uses the data in the Hut RAM and the 

rowcol register to generate the required offset block addresses, xaddr and yaddr. The 

RVF has been re-designed to reduce its size and increase data throughput. The 

architecture is presented in section 5.4.3. After all 64 scores have been ranked, a 

process-complete bit is then set in the ASIP system status register. The corrank process 

can then be repeated for a new block position or signature bank, after the appropriate 

registers have been updated. 
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When all the necessary correlation sequences have been completed, the final 

analysis of the best score tables is performed to complete the comparison process. This 

process, known as polling, scans the best-score tables looking for scores with block 

addresses in a 2 x 2 area of the 32 x 32 block grid covering the image space. The next 

sections describe these new architectures and their operation in greater detail. 

5.4.2 	Correlation Cell Array 

The correlation cell array has been expanded from 4 x 8 to 8 x 8 cells, and has been 

integrated as part of the digital image processor logic on ASIP. The cell architecture is 

functionally identical to that used in Parcor2, but minor logical changes have been made 

to produce a more gate-efficient implementation. The number of cells actually 

implemented is 58, rather than the full 64, due to algorithmic redundancy discovered 

during trials of the prototype Fl/U system 23 . The 8 x 8 cell array architecture is shown 

in figure 5.14. When one of these redundant cell locations is addressed to read its best 

score register, a score of zero is returned. 

Figure 5.14 8 x 8 Correlation Cell Array 
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5.4.3 	Rank Value Filter 

The ranking process forms a table of best scores one for each of the 16 signatures. 

Each location in the table contains a correlation score, and a block address generated by 

the corrank process controller. The table is formed in a local memory block, rankram, 

which is realised on-chip. The new best-score ranking table format is shown in figure 

5.15. The memory requirement for the best-score tables has been reduced from 8kbit to 

4kbit in a 256 x 16 bit format. 
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3 243 
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0  WM  240 
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16 	1110 	65 0 

Figure 5.15 Rank Table Format 

The new RVF has been designed to implement a modified ranking procedure called 

dynamic ranking. In the old RVF, a new score was compared with each score in the 

table, starting with the highest, until it was slotted in or the bottom of the table was 

reached. The modified RVF searches a table starting with the lowest value, but will 
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terminate  as soon as one of the following conditions is met: 

• The new score is less than the ranking threshold. 

• The new score is less than the lowest score in the ranking table. 

• The new score is less than the score in the current location. 

• The top of the table has been reached. 
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Figure 5.16 Rank Value Filter 

The execution time of the ranking process is now data dependent. The simple 

architecture used to implement this new ranking procedure is shown in figure 5.16. 

Simple multiplexing of data sources onto the inputs of a comparator allows comparison 

of a new score with the ranking threshold and with each score read out of the best-score 

tables. The multiplex control signals and rankram addresses are generated by a local 

sequencer. 
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The cycle timing for this process is based on the number of scores to be ranked, 

and a variable delay dependent on which of the process-finish criteria is triggered first. 

System cycles 	= cells x [rank—time + overhead] 

= 64 x [[0 to 301 + 61 

= 384 to 2304 cycles 

The 6-cycle delay between the processing of each new score is necessary to allow 

corrank to access a new score from the correlation cell array, and to form the 

appropriate offset block-address. 

5.4.4 	Polling 

The polling process scans the best-score tables looking for scores with block 

addresses in a 2 x 2 area of the 32 x 32 block grid covering the image space. 

Figure 5.17 Polling Operator Datapath 
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The polling function architecture (see figure 5.17) is similar to that used in Parcorl, 

except that it takes advantage of the new best-score table format to decrease the search 

time by 50%. Only one best-score table memory access is now required, rather than two 

in the previous architecture, to read the score block address data (xid, yid). The start 

block address (xaddr, yaddr) has been pre-loaded into local registers. Xid is then 

compared in parallel with xaddr and xaddr+l and, similarly, yid is compared with 

yaddr and yaddr+ 1. 

The results of these comparisons are used to determine whether or not the address 

falls within the current 2 x 2 block defined by xaddr and yaddr. If one or more matches 

are found within a given best-score table, the counter is incremented by one. Hence, if 

at least one score exists within the current 2 x 2 search block in each best-score table, 

the module would return a score of 16. The polling process cycle timing depends on the 

number of signatures; this determines the number of best score tables, and the portion 

of each table which is to be searched. 

System cycles 	= signatures x best-scores 

= 16 x [1 to 15] 

= 16 to 240 cycles 

High level software running, on the system microcontroller, then analyses these 

poll scores for all the valid block addresses. If there are sufficient scores in a given area, 

the system returns a positive match result. The next section will compare some of the 

architectural features of ASIP with the architectures used to implement the fingerprint 

algorithm in the prototype FVU system. 
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5.5 COMPARISON OF ARCHITECTURES 

This section will briefly compare some of the architectural features of the prototype 

FVU system with those of the single chip sensor-processor ASIC. 

MEMORY RESOURCES UTILISATION 

RESOURCE TYPE SIZE IMAGE CAPTURE 
& PRE-PROCESSING 

IMAGE COMPARISON 
& ANALYSIS 

F]FO FIFO 128 x8 128 x 8 1000/0 - - 

RAM_A SRAM 8192x8 8192x8 1000/0 - - 

RAM_B SRAM 8192x8 8192x8 1000/0 8192x8 100% 

RAM-C SRAM 8192x8 512x8 6% 512x8 6% 

R_LUT EPROM 2048 x 8 - - 1408 x 6 

C_LUT EPROM 2048 x 8 - - 1408 x 6 

TOTALS: 230400 bits 136192 bits 59% 86528 bits 38% 

Table 5.2 FVU (PARCOR) Memory Resource and Utilisation 

Memory utilisation is one useful measure of the implementation efficiency of an 

image processing system. Table 5.2 and table 5.3 show the memory resources used by 

the prototype FVU system, and the single chip ASIC. As can be seen from the data, the 

overall memory requirement has been reduced from 230,400 bits, in the FVU, to 90,880 

bits, in an ASIP based system. This represents a memory reduction of nearly 61%. The 

savings have been made through architectural optimization, and the use of compiled 

memory cells tailored to the needs of the algorithm. The average utilisation of the 

available memory resources has been almost doubled from 48.5% to 88.5%. 
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MEMORY RESOURCES UTILISATION 

RESOURCE TYPE SIZE IMAGE CAPTURE 
& PRE-PROCESSING 

IMAGE COMPARISON 
& ANALYSIS 

SIGRAM SRAM 256x16 256x16 100% 256x16 100% 

RANXRAM SRAM 256x16 - - 256x16 1000/0 

RLUT SRAM 16x16 - - 16x16 100% 

RAM_B SRAM 8192x8 8192x8 100% 8192x8 1000/0 

LUT ROM 1408 x12 - - 1408x12 100% 

TOTALS: 90880 bits 69632 bits 77% 90880 bits 100% 

Table 5.3 ASIP Memory Resource and Utilisation 

The architectural optimization has also helped reduce the number of gates required 

to implement the algorithm. Table 5.4 shows the gate counts for principal functional 

modules which are common to both the Parcor chipset and ASIR Some of the savings 

were made by reducing the number of data storage elements within datapaths, and 

making greater use of the available on-chip memory. 

MODULE FYU 
(GATES) 

ASIP 
(GATES) SAVING 

THRESH 2711 1062 61% 

MICROINT 1105 1088 1% 

CORRCON 774 648 16% 

RANK 1018 350 669o' 

VOTEPOLL 681 528 22% 

CONPART - 518 

CORRANK - 424 

CELL ARRAY 6962k 6965 0% 

This value is based on the assumption that two PARCOR2 correlation ASICs are uti- 

lised to produce the 8 x 8 cell array used in the ASIP sensor-processor. 

Table 5.4 Process Gate Costs 
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The largest reduction in the number of gates is for the smoothing and adaptive 

threshold functions. The 66% saving is due to the elimination of the smoothing filter 

datapath, and the simplified adaptive threshold operator achieved by improved dataflow 

timing in ASIP. 

FVU Chipset ASIP Sensor-processor 

PROCESS CYCLES CYCLES 

Image capture & 
pre-processing 

209.664 594.432 

Correlation 10,250,240 5,125,120 

Ranking 709,632 75,264 

Polling 393,216 131,072 

TOTAL = 11,562,752 TOTAL = 5,925,888 

Table 5.5 Comparison of Processing Time 

The time to capture and produce a binary thresholded version of a fingerprint image 

in the FVU system is one image-sensor frame time. In the ASIP system, the same 

function now takes two frame times. The first frame to calculate the threshold values 

from the image data, and the second to apply them to the image. This does not adversely 

affect the system performance since it is the correlation function, not image capture and 

preprocessing, that dominates the overall process timing (see table 5.5). With a 12MHz 

system clock the total time to capture and compare a fingerprint, excluding any 

software overhead, is 0.96 sees. for the FVU chipset and 0.49 secs. for ASIP. This 

reduction is almost entirely due to the increase in architectural parallelism, with the 

doubling of the number of correlation cells from 32 in Parcor2 to 64 in ASIP. Using the 

designed system clock rate of 18MHz, the capture and compare time for ASIP is 

reduced to 0.33 secs. 
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As well as reducing the overall memory requirements, gate count, and processing 

time, the new architecture dramatically reduces the system component count. Table 

5.6 provides a comparison of the image capture and comparison sub-system component 

requirements for the FVU system and a system, using the ASIP chip. It can be seen that, 

by integrating the image sensor and memory, the large number of peripheral support 

circuitry disappears. This leads to a more compact system with lower power 

consumption and, potentially, greater reliability. 

FVU ASIP 

VLSI/MSI 16 3 

LSI 37 0 

Discittes 400 (approx.) 20 

Table 5.6 System Component Requirements 

5.6 SUMMARY 

This chapter has presented an architecture for a single-chip sensor-processor for 

fingerprint comparison. The architecture has been compared with the ASIC-based 

prototype fingerprint comparison system for various characteristic measures including 

memory requirement and utilisation, gate costs, processing time, and number of 

components. In every respect the new architecture outperforms the existing system. The 

next chapter describes the method used to design and implement the ASIP architecture 

as a single-chip VLSI device. 
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Chapter 6. IMPLEMENTATION 

6.1 IMPLEMENTATION METHODOLOGY 

To successfully implement the architecture presented in the previous chapter it is 

necessary to combine two different design methodologies - full-custom and silicon 

compilation. The traditional full-custom approach is appropriate for creating 

handcrafted mixed signal (analogue and digital) circuits, but does not allow fast 

generation of large quantities of digital processing logic. 

Silicon compilation provides an environment for the capture, simulation, layout, 

and verification of complex digital circuits with the design emphasis (from the 

engineer's point of view) on the high level design capture and simulation, rather than 

the low-level implementation details. The SOLO 1400 silicon compiler was used to 

produce the image processing ASIC, Parcorl, which was described in Chapter 4. The 

software package does not provide facilities for full-custom cell development or mixed-

signal circuit simulation. It does, however, provide a mechanism for the integration of 

blocks, such as RAM, ROM, and PLA, generated by its own megacell compilers. This 

method of linking internally generated cells into the standard SOLO physical design 

flow has been adapted to allow externally created custom blocks to be included as well. 

Several mixed full-custom and compiled ASIC designs have been successfully 

implemented at Edinburgh University. The general design flow for this method of 

generating ASICs is presented in figure 6.1 and has been fully documented 

9 ' 7  elsewhere. 
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Figure 6.1 Mixed Full-Custom/Compiled Design Flow 

Problems associated with this approach include: 

• Different design capture techniques for full-custom and digital parts of the 

ASIC. 

• No mixed-signal simulation. 

• No simulation model of the custom block in the digital design environment. 

• No post layout design verification (except basic electrical and design rule 

checks (ERC and DRC)). 
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A comparison of different methods of mixing analogue and digital ASIC design 

has been made by Hesketh and Burrows 573 . They suggest various improvements to this 

design approach, all of which are linked to the development of tools that integrate the 

design, simulation, and verification of full-custom cells into the compiled logic design 

flow. Unfortunately these tools were not available when ASIP was being designed. 

6.2 DESIGN PARTITIONING 

The various functional elements forming the single chip image processor-sensor 

can be partitioned into three groups, based on different implementation methodologies. 

The three methodologies are; compiled digital logic, compiled megacells (RAM, ROM, 

etc.), and full-custom cells (handcrafted digital or analogue circuitry). Table 6.1 shows 

the results of this partitioning exercise. As well as the full-custom cells for the sensor, 

DAC, and comparator, several custom input/output (I/O) pads are also required. They 

provide certain analogue input and output signals associated with the sensor, including 

isolated digital and analogue power supplies. These cells are not part of the compiler 

generated padring which contains the I/O pads for the rest of the chip. 

The remainder of this chapter describes the implementation, simulation and 

verification of each of the major sub-system forming the architecture presented in 

Chapter 5. 
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COMPILED DIGITAL LOGIC 

MODULE DESCRIPTION 

CONPART Sensor controller and image capture process sequencer. 

THRESH Tally, threshold and format operators. 

MICROINT Microcontroller interface. 

CELL64 Correlation cell any. 

CORRANX . Correlation and ranking process sequencer. 

CORRCON Correlation operator. 

RANK Rank-value filter operator. 

VOTEPOLL Polling operator. 

COMPILED MEGACELLS 

BLOCK TYPE SIZE FUNCTION 

SIGRAM RAM 256 X 16 Tally and threshold values or reference 

signature data. 

RANXRAM RAM 256 X 16 Best correlation-score tables. 

RLIJT RAM 16X 16 Block address offset modifier and 

ranking thresholds. 

PINGLUT ROM 704 X 12 Image rotation address modifiers for 

PONGLUT ROM 704X 12 image comparison. 

FULL-CUSTOM CELLS 

BLOCK DESCRIPTION 

PHOARY 258 x 258 pixel photo-diode array. 

HORARY Horizontal shift register. 

SENSHARY . Sense amplifier array. 

VERARY Vertical shift registers. 

VVV Bit-line and word-line test structures. 

OUTPUT . Output amplification and format logic. 

DACOMP Video-rate 9-bit DAC and comparator. 

PADBLK . Custom I/O bonding pads. 

Table 6.1 Design Implementation Partitioning 
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6.3 DAC AND COMPARATOR 

The DAC and comparator form part of the digitisation and thresholding circuit. 

Threshold values are applied to one input of the comparator via the DAC while the 

analogue image data is applied to the other input. The output of the comparator is 

digitised binary image data. The operation of this process is fully described in section 

5.3. 

6.3.1 DAC Architecture 

The states (on or off) of a series of nine, geometrically ratioed, n-type transistors is 

determined by the value of the 9-bit threshold driven onto their gates. These devices are 

used to sink varying amounts of current sourced from a load p-type device. As the 

current increases the voltage measured at the output node decreases. 

Figure 6.2 Digital to Analogue Convertor Schematic 

The n-type device between the ratioed transistors and ground offsets the transfer 

function from zero. Further output offset and range control is provided by varying the 
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gate voltages on the p-type load transistor and the n-type device, connected in parallel 

to the ratioed transistors. The required DAC output range is in the region of 2V with a 

5V offset from ground. This is dictated by the range and offset of the sensor's output 

signal. 

6.3.2 DAC Layout and Simulation 

The size of the ratioed n-type devices is initially determined by fixing the width/ 

length ratio for the least significant transistor, and then increasing the area in binary 

steps for each subsequent device. Minimum device sizes for the chosen process are 

channel width (W) = 2pm and channel length (L) = 1 .6p.m. Since the active area ratio 

between each device is critical to the correct operation of this circuit, it is better to use 

larger area devices to reduce the effects of process round-off. A minimum channel 

width and length is set at 4pm 

INPUT BIT 
TRANSISTOR DIMENSIONS 

(A)WIL Jim (B)WILjun 

LSB bO 4/4 4/64 

bi 8/4 4132 

b2 16/4 4/16 
W 32/4 4/8 
b4 64/4 4/4 

b5 128/4 8/4 
b6 256/4 16/4 

W 512/4 32/4 

MSB b8 1024/4 64/4 

Table 6.2 Transistor Channel WIL Dimensions 

Column A in table 6.2 shows least significant transistor set to the minimum W/L 
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A simulation model is extracted from this circuit and its operation verified using 

the HSPICE simulator 11  with Level 6 process models. Starting with the input word 

(b8-W) set to zero, then cycling through all possible values, the transfer characteristic 

for the circuit shown in figure 6.4 is produced. 

DAC OUTPUT 

.J,uulI, uIIIjIIuI'IIlIIIIIuIIIItuuIIuIIIuI,IuIuII. - 

TIME (LIN) 
0 	12.OU 	 24.01J 	 36OU 	 48.OU 	 60.OU 

Figure 6.4 DAC Transfer Characteristic (HSPICE) 

6.3.3 Comparator Architecture 

The comparator compares the output from the sensor and the DAC, and produces 

a stream of digitised binary pixels. The comparator architecture chosen for this process 

is based on a standard, two-stage comparator circuit described by Allen and 

Holberg 931 . 

The first stage of the circuit is a differential amplifier, see figure 6.5, whose 

objective is to amplify the difference between the two input potentials. A high gain 

inverting stage, and simple inverting output buffer forms the second stage of the 

comparator. Assuming common mode input potentials, the current flowing in M5 is 

split equally between the paths M1/M3 and M2/M4. This current is mirrored to the 



- 113 -  

second stage by the ratio of M7 to M5. The current in path M2/M4 is mirrored to M6 

by the ratio of the device sizes of M4 and M6. The various devices are sized to meet the 

requirements of the application, which include an output slew rate of 500 V/Ls, an input 

voltage range of 1.5-4.5V, and a minimum input difference of 4mV with a 5V supply 

voltage. 

Vdd 

Vdd 36/3 	 M5 	 M7 	230/3  70/3 
vbi 

613 

4/4 Ml 
240/3 	

cop 
M2 

240/3 	
4f4 vdac 

50/3 veen 	 60/3 	
90/3 

M3 
M4 	 MS 

Figure 6.5 Two-Stage Comparator and Buffer 

6.3.4 Comparator Layout and Simulation 

Design equations given by Allen and Holberg are used to calculate the initial 

device sizes. Using these values, the circuit is implemented using the Magic design 

software, and the circuit parameters extracted for simulation. After simulation, the 

device sizes are modified iteratively, extracted, and re-simulated to more closely match 

the desired circuit specification. The final layout circuit, with its guard rings, is shown 

in figure 6.6. 
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Figure 6.6 Comparator Layout 

The simulation results presented in figure 6.7 trace the output of the comparator 

for a variety of input voltage offsets and differentials. Initially input_a is set to 3.49V. 

The second input on the comparator is set 3.48V (i.e. lOmV below input—a). The 

comparator output is 5V with these input levels. At 105ns, input_b is changed from 

3.48V to 3.52V. Within 20ns of the input changing, the output has moved full-scale 

from 5V to OV. At 255ns, input_b reverts to 3.48V and after approximately 60ns the 

comparator output swings back to 5V. 

Input_a is then set to 1.49V and input_b is switched between 1.48V and 1.50V. The 

comparator output again switches between 5V and OV. This simulation demonstrates 

the comparator's function at the extremes of its input range, with an input differential 

of 2OmV. 
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Figure 6.7 Comparator Operation (HSPICE) 

The simulation results shown in figure 6.8 (a), (b), and (c) show the output 

response of the DAC to the full range of possible digital input values (i.e. 0 - 511). The 

graphs also plot the response of the comparator, with a fixed voltage on one input, when 

the output of the DAC is applied to the other input. The fixed input voltage levels are: 

1.7V in (a), 2.5V in (b) and 33V in (c). As the DAC output matches the d.c. voltage the 

comparator output switches from 5V to OV. 



- 116 -  

- 	 COMPARATOR OU1PIJr 

JAUIJUIPUI 

.1 , 
TIME 	CLIM) 

12.OU 	 29.0U 	 36.OU 	 i8.01.1 60.0U 

Comparator response to DAC output and 1.7v 
6 

: 	 ! 	 COMPARATOR Off 

8 2-5V 

DAC OUTPUT 

o C.. .........• 
TIME 	CLIN) 

12.Ou 	 2q.0u 	 36.01.1 	 98.0U G0.OU 

Comparator response to DAC output and 2.5v 

COMPARATOR OUTPUT 

4-' 3.3V 

- 

DACOUT 

o 
TIME 	(LIM) 

80.  

(C) Comparator response to DAC output and 3.3v 

Figure 6.8 DAC and Comparator Operation (HSPICE) 
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6.4 CUSTOM SENSOR 

The image sensor module consists of the following parts: 258 x 258 photo-diode 

array, sense amplifiers, horizontal shift register, vertical shift register, output amplifier 

logic, test structures. These elements, plus the DAC-Comparator block and several 

custom I/O pads, are formed into a single, large, custom block which is integrated with 

the compiled digital processing logic. 

The starting point for the development of the custom sensor is a module designed 

as a single-chip CMOS monochrome video camera 8 . A comparison of the 

specification of the monochrome camera and the requirements for the custom sensor is 

presented in table 6.3. 

FEATURE U CCIR FORMAT 
CMOS SENSOR 

CUSTOM CMOS 
SENSOR 

Photodiode array 312 x 287 258 x 258 
Read-out sequence raster scan 3 x 3 block scan 
Pixel size 201Lm x 161im 20jnn x 16m 

Output format COR video Unformatted 
Exposure control Electronic Electronic 
Clock 6MHz 6MHz 
Test Built-in test Built-in test 

Table 6.3 CMOS Sensor Characteristics 

To create a image sensor suitable for this application, several parts of the existing 

design have to be modified. The pixel aspect ratio required by the fingerprint 

verification system optics is the same as that used in the monochrome sensor, i.e. 4:3. 

This means that the photodiode array can be utilised with only the array size needing to 

be changed, from 312 x 287 to 258 x 258 pixels. The unique 3 x 3 block read-out 

scheme means that the horizontal and vertical shift registers from the original sensor are 

not suitable and, therefore, have to be completely redesigned for this application. 
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Figure 6.9 Horizontal Shift Register Cell 

During normal sensor operation, the horizontal shift register is required to enable 

contiguous groups of three sense amplifier, output storage, capacitors to scan out a line 

of pixel data. The horizontal shift register circuit, logic and functional operation has 

been described in detail in section 5.3.2. Figure 6.9 shows the logic for a single shift 

register element (3 pixel columns) and its corresponding layout. Note that the circuit is 
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pitch-matched to the width of a group of three pixels. The width of the full shift register 

module (i.e. 258 x 201im = 5 160p.m) is the same for either the standard raster-scan 

addressing format, or the new 3 x 3 block scheme. However, the depth of each shift 

register cell for the 3 x 3 scheme is reduced, since only a single flip-flop is required for 

each group of three pixels. 

During the sensor test procedure it is desirable to be able to individually address 

pixel columns. Three additional control lines are added to the decoding logic within a 

cell to enable this to happen. To verify the operation of the horizontal shift register 

logic, a small number of cells are linked together to form a short shift register, which is 

then simulated using HSPICE. 

The vertical shift register controls the selection of particular lines of pixels, which 

are then accessed in parallel. For the 3 x 3 addressing scheme, three lines have to be 

selected simultaneously. Further logic is provided to control the timing of the resetting 

of pixels and sense amplifiers. 

Another consequence of this addressing scheme is the need to modify the bit-line 

and word-line test structures, to maintain the same level of error discrimination as is 

available in the normal raster scan test procedure. 

The output stage includes circuitry to perform the following functions; signal 

amplification, gain control, offset control, and video formatting. The video formatting 

circuit is not required by the fingerprint application. Since the formatting function can 

be disabled via a control signal, it is not necessary to remove or modify this module. 
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Figure 6.10 Vertical Shift Register Cell 

6.5 CUSTOM BLOCK AND I/O PADS 

Before the individual full-custom cells forming the sensor, DAC, and comparator 

circuits can be integrated into the final design, they are assembled into a single large 

block. Some custom I/O pads, including isolated power supplies for the sensor and 
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DAC, are also included in this block. They are positioned so that they will lie just within 

the SOLO generated pad-ring when the block is included in the chip floorplan. Figure 

6.11 shows the final artwork for the custom block, highlighting the main elements. 

Figure 6.11 Custom Block Artwork 
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6.6 DIGITAL LOGIC AND COMPILED MEMORY 

The implementation of the digital logic follows the standard SOLO design flow, 

which is described earlier (see section 4.5.1). The digital elements of the design are 

captured using SOLO's hardware description language, model. To reduce the 

computational load, the design is created and simulated as a series of separate 

functional modules. These modules are then linked together, with the necessary 

compiled memory and the full-custom block to form the complete ASIP chip. 

The required static RAM modules are compiled using the SOLO megacell 

generation software. Table 6.4 provide a summary of the main characteristics of each 

of the memory blocks. 

PARAMETER 
SIGRAM 

OR 
RANKRAM 

RLUT 
PINGLUT 

OR 
PONGLUT 

Generator RAM vl.2.8 RAM v1.2.8 RAM vl.2.8 
Words: 256 256 256 
Bits per word: 16 16 16 
Memory enable: inverted inverted inverted 
Write enable: inverted inverted inverted 
Output buffer: normal normal normal 
Technology: ECPD15 	'ECPD15 ECPDI5 
Dimensions: 3082 x 1678 mm 1610 x 554 mm 4427 x 864 mm 

Area: 5.17 nim2  0.89 mm2  3.82 mni2  
Rotation: 900 none none 
Cycle time (typ.) 17.61nS 11.70nS 40.36nS 
Power. 4.39 mW/MHz 1.96 mW/MHz 530 mW/MHz 
BIST: yes yes yes 

Table 6.4 Compiled Memory Data Sheets 
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The worst-case access times of the ROM generated by SOLO, is not sufficient to 

meet the requirements of this application. The solution is to split the LUT data between 

two modules, PINGLUT and PONGLUT, and to read data out from each on alternate 

clock cycles. This effectively reduces the worst-case cycle time for the ROM from 79ns 

to 55ns (based on an 18MHz system clock). 

4 

1 	 T  2 	T 	•14 

Figure 6.12 ASIP Floorplan 

The system clock from the input pad and buffer is distributed to the digital logic 

via a number of high drive buffers. To help prevent clock skew problems between the 
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various on-chip processes, the load on each clock buffer is balanced where possible. 

After several iterations, the final floorplan for the design is produced as shown in 

figure 6.12. A slightly more compact design can be achieved by distributing the 

memory blocks in columns 2 - 4, and placing some of the digital logic in column 1 to 

completely fill the area above the custom block. Unfortunately, the width of this column 

would violate the row power-supply limit, imposed by the SOLO software. The lack of 

sophisticated floorplanning software in SOLO is a severe limitation to the efficient 

implementation of the proposed architecture. 

The digital padring for the chip is generated interactively with SOLO. Care is 

needed to ensure that the area of the padring close to the custom pads is kept free of 

digital pads. The overall size of the chip is 14mm x 14mm giving a die area of just under 

200mm2. After completing visual checks on custom block to compiled logic 

connectivity, the design artwork is taped-out and shipped to ES2 for fabrication of 

prototype devices. 

This chapter has described the mapping of the fingerprint comparison architecture 

to a highly integrated single-chip sensor-processor. Two different implementation 

methods, full-custom and compiled cell, have been combined in a single device. The 

simulation results for the full-custom elements are also given. The fabrication, 

packaging and testing of the prototype ASIP sensor-processor is described in the next 

chapter. 
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Chapter 7. FABRICATION AND TESTING 

7.1 	FABRICATION 

Prefabrication processing of the design was carried out by ES2, during which the 

artwork for the compiled memory megacells and the I/O pads was generated to 

complete the design. A simple, metal layers only, design rule check (DRC) was 

executed to verify the placement of these blocks in the final design. To reduce the cost 

of prototyping the ASIP chip, no post-fabrication testing was carried out by the silicon 

vendor. 

Figure 7.1 Photograph of ASIP 

Due to the large size of this device. approximately 200 mm 2, relatively few 
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packaging options were available. A custom package of some type, such as direct 

bonding onto a ceramic substrate, was considered but rejected, on the grounds of cost 

and added risk. ES2 were eventually able to supply a 299-pin, ceramic PGA, package 

with a well size which could accommodate the single-chip sensor-processor. The 

excessive number of pins (the chip only requires 105), and a downward facing well 

caused some problems for the design and construction of a suitable test rig. A total of 

twenty prototype devices were packaged. Table 7.1 provides a summary of the main 

physical characteristics of the ASIP sensor-processor chip. 

ASIP 

Foundry ES2 

Process 1.51mi 

Transistors 272 000 

Dimensions 14mm x 14mm 

Area 196mm2 . 

Clock (max.) 18MHz 

No. 1/0 105 

Package 299 CPGA 

Table 7.1 ASIP Physical Characteristics 

7.2 TEST PROCEDURE 

The equipment used to test ASIP after fabrication and packaging is shown in figure 

7.2. The device under test is plugged into a simple test board, which consists of an 8051 

microcontroller, image memory and the necessary power and bias circuitry. The chip is 

controlled via a microcontroller emulator, a Hitex Teletest 511981,  which provides a 

hardware and software environment enabling in-circuit emulation of the 8051 
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microcontroller. Interactive software supplied with the emulator, running on an IBM 

compatible PC, allows communication with the emulator and target system. 

The test routines were written in 'C' and then cross-compiled for the 8051 

microcontroller using the Keil C-5 l E 991  compiler. The compiler additionally optimises 

the code for compactness and speed. The resulting code is then downloaded via a serial 

link to the emulator where it can be executed and the results monitored. 

The responses of the chip to the stimuli generated by the microcontroller, were 

monitored using a variety of equipment. Analogue characteristics were measured using 

an oscilloscope while digital signals, such as address and data buses, were traced using 

a logic analyser. 

Figure 7.2 ASIP Test Setup 
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The testing has not been completed, but the data obtained so far is presented in the 

rest of this section. In total eight devices have been tested. Initially, testing was 

performed on the chips to check the power supply and clock generation circuits. 

When the first device was powered up, and the initialisation pulses were issued, the 

test circuit (including A SIP) consumed around 400mA at 5V with 12MHz system 

clock. After a short period (around 60 seconds), the supply current fell to around 

200mA. The power supply was cycled, but the device continued to draw 200mA. This 

suggested the existence of a low resistance path between the power rails which had 

failed. A second device was tested, producing a similar result. At this stage, a thorough 

review of the test rig, the package pinout, and device bonding was carried out but 

revealed no inconsistencies. 

Next, the interface between the compiled logic and the custom block and the 

custom block itself was checked for possible power supply connection errors. This was 

done using the Magic layout editor. By selecting individual I/O ports, it was possible to 

check if tracks were electrically connected. Eventually, a short between power and 

ground was discovered in the output stage of the image-sensor block. This had occurred 

where various modules in the output circuitry of the sensor block tapped off power and 

ground from parallel supply rails. The ground connection for a particular module, 

which was connected to more than one ground point, had been inadvertently connected 

to the power rail. Since the module had multiple ground connections, if the track could 

be cut, the fault could be overcome without loss of circuit function. 
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cutting exercise had been successful. 
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Figure 7.4 Track Cutting 

A total of eight devices, consisting of the two power test chips, four cut chips, and 

two further uncut examples, were each subjected to a variety of functional tests. The 

following sections will describe the tests carried out, and present the results. 

7.3 MEMORY TESTS 

After power-up and initialisation, tests to verify the operation of the various 

memory blocks were run. These routines also verify the microcontroller interface, since 

all memory accesses involve writing to, and reading from, interface registers on AS1P. 

The program shown in figure 7.5 performs a basic test of one of the on-chip SRAM 

blocks; similar routines were used to check the other memory blocks. 
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main() 

volatile unsigned mt ij.errhi.errlo; 

volatile unsigned mt hi.lo; 

serialO; 

XBYTEICONThOL]=O; 

printf("TEST 2- SIGRAM\n"); 

errhi=errlo=O; 

for (j=th  j<=255; j-i-s-) { 

XBYTE[ADDHJ}=SIGRAM; 

XBYTE[ADDLO]=j; 
XBYTE[WRITELO}=255-j; 

XBYFE[WRIIEFIIJ=255-j; 

for (j--O; j<=255; j-s.+) { 

XBYTE[ADDIII]=SIGRAM; 

XBYrE[ADDLOJ=j; 
hi = XBYTEIREADffl]; 
if (lo != (255-j)) errlo++; 

lo = XBYTE[READLO]; 

if(hi != (255-i)) enhi-i-+; 

if ((errhi != 0) It (errlo != 0)) 

printf('%u lo errors\n",errlo); 

printf("%u hi errors'gf',errhi); 

11 Setup serial communications. 

11 Reset all current ASIC processes. 

If Print message on terminal. 

I/Reset high and low error counts. 

11 Select memory page. 

11 Set memory address register. 

If Write to low byte data register. 

II Write to high byte data register. 

11 Loop for 256 locations. 

11 Select memory page. 

11 Set memory address register. 

11 Read from low byte data register. 

If If not correct increment error count. 

11 Read from high byte data register. 

If If not correct increment error count. 

11ff there are any errors then print 

11 error messages. 

Figure 7.5 Typical Memory Test Routine 

During the first interactive memory checks, it was noted that there were occasional 

glitches on both the address and data strobes, controlling the transfer and latching of 

data between the microcontroller emulator and ASIP These glitches generally appeared 

coincident with heavy switching of address/data lines on the interface bus. Attempts 

were made to find the cause of this glitching, including replacing the emulator processor 

pod, but with no improvement. This glitching problem had also been noted on an 
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unrelated project, using the same emulator. Unfortunately, this noise on the interface 

was interpreted by ASIP as valid instructions, causing unpredictable results. A partial 

solution was found by reducing the supply voltage to around 4.7V (from the nominal 

5V used initially). Although not totally satisfactory, it did at least allow the functional 

testing of ASIP to continue. Table 7.2 shows the results for the eight devices used 

during the initial test phase at 4.7V and 4MHz. Those devices identified by a letter (i.e. 

A, B, D and E), were those which had been powered up without correcting the power 

supply short, while those with digit codes (i.e. 2, 3, 4 and 5), had been processed to 

correct the fault before being tested. 

DEVICE 	SIGRAM 	RANKRAM 	RLUT 	LUT -f BINRAM 

A Address bit bO stuck PASSED Low and high bytes PASSED PASSED 
at zero, stuck at zero 

B PASSED Odd locations O.K. Low and high bytes PASSED ALL FAILED 
Even locations: Low stuck at zero 
& High bytes = vat + 19 

D PASSED PASSED Low and high bytes PASSED PA SSED 
stuck at zero 

E Even locations O.K. PASSED Low and high bytes PASSED PASSED 
Odd locations: stuck at zero 
Low byte= value+ 19 
High byte = value - 5 

2 ALL FAILED PASSED Address bit bO stuck PASSED PASSED 
at one 

3 Even locations O.K. PASSED Various high and low PASSED PASSED 
Odd locations: byte errors 
Low byte=value+ 19 
High byte = value - 3 

4 PASSED PASSED Address bit bO stuck ALL FAILED ALL FAILED 
at one Write enable fault 

5 High bytes O.K. PASSED Various high and low PASSED PASSED 
Low bytes: byte errors 
Even locations O.K. 
Odd locations errors 

All tests performed at 4.7V with a 4MHz system clock 

Table 7.2 Memory Test Results 
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The first memory blocks tested were the three, on-chip SRAM blocks. The test 

procedure involved writing a different value to each memory location, reading back the 

result, and comparing it with the test data. The errors exhibited by the main 256 x 16 

SRAMs (SIGRAM and RANKRAM) on some of the chips did not vary with either 

voltage or clock frequency. Since these blocks worked on some of the devices tested, it 

is likely these particular fixed-pattern errors were due to manufacturing faults. 

The remaining on-chip SRAM (RLUT), the small 16 x 16 block used during the 

ranking and polling procedures, failed on all of the tested chips. On the uncut devices 

all memory locations (high and low bytes) returned zero, while the data read from the 

remaining chips had some relationship to the memory address. Further simulation of the 

chip did not reveal any marginal timing or excessive loading which could have caused 

the non-operation of this memory block. 

The two on-chip ROM blocks, which together form the LUT table of address 

modifiers, were the next part of ASIP tested. The data read from the ROM was 

compared with the expected results from the ROM compiler. The test was successful 

for all the chips tested except one. Every LUT location produced the wrong result for 

this device. 

The final memory block, the 8k x 8 binary image store, is situated off-chip but is 

accessed via ASIP, using a similar method to the on-chip blocks. Six of the eight 

devices passed this test, one failed due to a stuck-at-zero write enable strobe and the 

other failed with an undiagnosed fault. Other than the total failure of the 16 x 16 SRAM, 

RLUT, all the memory errors discovered are attributable to processing faults. 
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7.4 DAC AND COMPARATOR 

The input to the DAC can be sourced either from local memory, or from an 

interface register (BEST), by setting the appropriate bit in the SENTEST register. To 

test the function of the DAC, a series of values were written to BEST and the response 

of the DAC measured via an analogue output pad on the chip. The comparator, circuit 

was tested at the same time as the DAC by applying an external voltage to one input of 

the comparator and the output of the DAC to the other. 

Full sweep of DAC output and response of comparator with a 2.4V 
reference on one input and the DAC output on the other. 

Full sweep of DAC output and response of comparator with a 3.1 V 
reference on one input and the DAC output on the other. 

Figure 7.6 DAC and Comparator Test Results 
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The resulting DAC and comparator output responses were monitored using an 

oscilloscope. The DAC output, and the comparator response to it for two different 

voltage levels, 2.4V and 3. IV, are shown in figure 7.6 (a) and (b). The results show that 

the circuits operate as expected. 

7.5 SENSOR 

The bit-line test mode was selected by writing to the appropriate location in the 

sensor configuration register, SENTEST. This procedure tests the integrity of the photo-

diodes, the connecting bit-lines, sense amplifiers, and associated read-out circuits. One 

of two complementary test patterns can be selected, each consisting of a series of 

alternating highs and lows on consecutive bit-lines. The result of the test is a sequence 

of high and low values on the analogue output of the sensor, CVO. 

Figure 7.7 Sensor Bit-line Test Output 

The image shown in figure 7.7 traces CVO, and the pixel clock used to sample the 

analogue signal. As can be seen from the results, the output stages of the sensor produce 

a good '1' but a poor '0'. This is consistent with the HSPICE simulations of the output 

stages. 
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The word-line test exercises the vertical shift register and the photodiode array 

word lines, using an alternating high-low digital pattern. A test-pattern decoder, 

situated on the opposite side of the array from the vertical shift register, is used to detect 

this pattern. The output of the decoder is a series of high pulses, which can be monitored 

on the word line test output pin, WTO. Figure 7.8 traces WTO for one of the test devices 

running at 0.2 MHz. At higher frequencies, the pulses gradually shrink from nearly 4V, 

to around 2V at 1MHz. This is due to excessive delays in the combinational decode 

logic. 

Figure 7.8 Sensor Word-line Test Output 

Unfortunately, at this stage another design fault in the full-custom block was 

discovered. A logic fault in the sensor control logic restricted the sensor so that it could 

only be operated in test mode. This required further track cutting to allow the sensor to 

be run in normal mode, but would permanently disable the test modes. This 

modification was performed on two devices. Preliminary testing of these devices 

produced encouraging results. Figure 7.9 (a), (b) and (c) show the analogue output of 

the sensor, CVO, responding to different light levels. Further testing using a focused 

light source, and a new test rig, incorporating a frame grabber, will be required to fully 

characterise the operation of the sensor. 
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Pixel sample clock and sensor output (CVO). No light. 

Pixel sample clock and sensor output (CVO). Some light. 

Pixel sample clock and sensor output (CVO). Bright light. 

Figure 7.9 Sensor Normal Mode Response 
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The testing of the memory and full custom elements of ASIP has successfully 

verified their basic operation, but has also of revealed a number of implementation and 

manufacturing faults. These faults, unfortunately, prevent ASIP being operated as a 

complete system. The next section describes the testing of the digital preprocessing and 

image processing logic. 

7.6 IMAGE CAPTURE AND PROCESSING. 

The remaining tests deal with the verification of the compiled digital logic which 

implements the preprocessing, correlation, and data analysis functions forming the 

fingerprint comparison algorithm. 

The initial test of the image capture process involved verifying that the process 

would execute and halt after capturing one image frame. First, appropriate registers for 

the image capture process were set up, and the process executed by setting the 

appropriate bit in the control register. Image data is only consumed by the process from 

the start of a new frame, which is detected by monitoring the frame end strobe. After 

capturing and processing an image frame, a process complete bit is set in the ASIP's 

status register. This register is monitored by the software running on the 

microcontroller. 

After verifying the controllability, of the process, the next step was to provide data 

via a multiplexed input, which could source live data from the output of the digitising 

comparator (i.e. sensor data), or synthetic data from an external source. The formatting 

logic, and address generation logic, is checked by making use of this external input. 

First, the external binary image RAM is cleared and the process data input is tied to 5V 
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(logic 'I'). Then, the process is executed and monitored, via the status register, until 

complete. The contents of the RAM is then examined. Assuming there are no functional 

(or fabrication) errors, the expected result is FF in every location. The address 

patterns generated during the execution of the process can also be monitored using a 

logic analyser attached to the address bus. 

This and other, more complex, tests involving the sensor, DAC, and comparator 

were used to analyse the functionality of the image capture process. These tests verified 

the basic operation of the process, but also revealed a number of minor logic errors 

within the design. These errors were traced back to the simulation model, and rectified. 

The main elements of the image processing logic; the correlation array, the rank-

value filter and the votepoll process were checked in a similar fashion. First, each 

process was checked for controllability, and then internal and external memory was 

loaded with synthetic data to verify each section. 

The correlation controller and the correlation array contained one minor data 

mapping error, which was not spotted during simulation. The other processes (ranking 

and polling) revealed no detectible design errors. 

7.7 SUMMARY 

In conclusion, a prototype single-chip image sensor-processor for fingerprint 

comparison has been fabricated and tested. Tests were carried out to check the operation 

of the on-chip memory blocks, RAM and ROM, the DAC and comparator circuit, the 

image sensor, and all of the digital processing logic. 
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The results of the memory tests verified that, except for a small cache RAM and 

errors due to manufacturing yield, all of the on-chip memory worked correctly. A 

video-rate DAC and comparator circuit forms the core of the image digitisation 

operator. This module performed as expected, producing results very close to the 

extracted HSPICE simulations. 

Preliminary chip testing exposed a design error in the image sensor output stage: 

the fault was corrected by ion beam track cutting. In bit- and word-line test modes, 

which test pixel control and access line integrity, the sensor responded correctly. 

Further testing of the image sensor will be necessary, using focused light and a new test-

rig which incorporates a frame-grabber, in order to fully characterise operation. 

Functional testing of the preprocessing logic, i.e. image capture and digitisation, 

confirmed its basic operation. Further testing, using real image data from the sensor, 

will be necessary to complete the testing of this operator. The image processing logic, 

i.e. correlation, ranking, and polling were individually tested using synthesised data 

loaded into the on-chip memory. Other than a small number of minor logic errors, the 

digital processes operated as expected. 

The next chapter provides a summary and critical discussion of the work presented 

in this thesis. 
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Chapter 8. SUMMARY, DISCUSSION AND CONCLUSIONS 

The utilisation of image processing techniques, to solve a wide variety of 

monitoring and control applications, has been severely limited by the cost of available 

implementation technologies. The motivation behind the work presented in this thesis, 

was to find a method to allow the implementation of real-time application specific 

image processing systems for a few hundred pounds, rather than thousands of pounds 

as with present methods. In addition to system cost reduction, if the size and power 

requirements of image processing systems could also be reduced, new markets for low-

cost commercial and domestic image processing products would be created, and 

existing application areas expanded. 

8.1 	A BRIEF REVIEW 

Chapter 2 briefly reviewed the history of implementation methods and 

technologies for image processing systems, highlighting the limitations of each type, 

and describing a range of currently available VLSI devices for image processing. VLSI 

technology and design techniques have enabled the fabrication of massively parallel 

processing platforms, based on custom VLSI processing elements. Although a large 

number of different general purpose parallel processing architectures have been 

developed, no single architecture can efficiently implement all types of image 

processing function. The proposed solution to the design of efficient, general purpose, 

image processing systems lies in the development of hybrid multiprocessor computing 

platforms, combining several different processing architectures in order to allow 

efficient mapping of the algorithm to the system. This hybrid architecture can also be 

scaled down to enable the production of application-specific image processing systems 
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based around a small number of high performance custom VLSI devices. A number of 

image sensors, which provide the image detection front-ends for image processing 

systems, have also been provided by the use of VLSI technology. 

The solution proposed in this thesis, for the low-cost implementation of image 

processing systems, is to combine the processing power and the image sensing 

capabilities offered by VLSI on a single, highly integrated device. An image processing 

system for automated identity verification, based on fingerprint comparison provided a 

demonstration vehicle for the implementation method. Chapter 3 presented a summary 

of biometric identification techniques, and commercially available identity verifiers, 

justifying the choice of a fingerprint comparison system as a technically, and 

commercially, relevant demonstration system. 

Further background regarding the fingerprint comparison system, which forms the 

basis of the practical work presented in this thesis, was given in chapter 4. An 

architectural overview of the fingerprint comparison sensor-processor was given in 

chapter 5, along with a description of the CMOS-based image sensor technology which 

has enabled the integrated sensor-processor approach to be considered. The remaining 

chapters described the implementation, fabrication and testing of the demonstration 

sensor-processor device, ASIP. 

8.2 CONCLUSIONS 

The objective of the work described in this thesis was to provide a low-cost method 

for the implementation of application-specific image processing systems. The technical 

achievements of this work have come very close to reaching that goal. A VLSI device 
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has been fabricated that has succeeded in integrating, or eliminating, through 

architectural enhancements, nearly all the elements of typical image processing systems 

i.e. image capture, signal conditioning, digitisation, temporary image memory, image 

preprocessing and analysis logic. In order to build a fingerprint-based identity verifier 

around this device the only major devices required, other than peripheral system 

components (i.e. keypad, display, fingerprint capture platen, power supply, template 

store or smart card reader), are a single 64kbit RAM to store the preprocessed binary 

fingerprint image, and a simple, embedded microcontroller to provide system 

housekeeping functions. A breakdown of the costs of the major elements of the 

prototype fingerprint verification system, described in chapter 4, and a similar system 

based on the ASIP smart sensor-processor is given in table 8.1. 

Sub-System Prototype FVU system Smart sensor-processor  
based system 

Optics module 20.00 20.00 

Image sensor and 170.00 1 

interface module 

Image processing moth- 285.00 130.00 
erboard2  

Peripheral modules3  100.00 85.00 

Total component costs4 : £575.00 £235.00 

Image sensor now integrated with image processor. 
Includes A/D, fast access memory, image processing ASIC(s), microcontroller, reference 
signature store and support logic. Image processing core based on Parcorl and Parcor2 for 
the FVU and on ASIP for the proposed system. 
Includes PSU. magnetic can! reader, LCD display, box, etc. 
Component costs only, for 100-off quantities. Does not include assembly costs. 

Table 8.1 System Economics 

As can be seen, the use of the integrated sensor-processor provides a significant 

reduction in the component costs from £575 per unit to £235. This price does not 
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include assembly costs, which would also be much lower for the ASIP based system 

due to the reduced number of components. 

In addition to the component economics, a system designed using the sensor-

processor concept also benefits from the other advantages of VLSI technology, namely 

small size, low power consumption, and smaller numbers of system components 

leading to higher system reliability, and very high processing performance. The latter 

benefit is achieved by efficient mapping of each part of the algorithm to an appropriate 

processing architecture. Critical to the success of this implementation approach is the 

ability to successfully integrate the image sensor technology onto the same substrate as 

the image processor. The CMOS sensor technology developed at Edinburgh University, 

and used in this work, has numerous architectural design advantages, including choice 

of array size, pixel aspect ratio, read-out format, and the possibility of closely coupled 

preprocessing functions, and/or low level image processing. The fact that the CMOS 

sensor technology is fabricated using the same low cost digital technology as the image 

processing logic, has an obvious beneficial impact on the system economics. The 

architectural design freedom offered by the integrated sensor-processor approach, was 

highlighted by the implementation of the smoothing filter function as part of the image 

preprocessor in the fingerprint comparison system. In the prototype system, the 

function was implemented as a pipelined datapath in the digital domain, while the same 

function was integrated into the read-out logic of the custom sensor architecture at no 

additional hardware cost. 

Of course there are disadvantages with this implementation method, many of 

which became apparent during the development of the demonstration device. The most 

obvious problem with the implementation method is the risk of a less than 100% 
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correct, first time device. This is due to the tremendous complexity of these sensor-

processors, and the inability of existing design tools to provide the necessary mixed-

mode and mixed-level simulation and verification required to avoid design errors. This 

is especially important when integrating compiled and full-custom modules in a single 

chip. 

Post-fabrication testing is also difficult because of the limited number of input and 

output signals available. Since these sensor-processors are essentially systems-on-a-

chip, with light in and control signal out, careful consideration has to be given to the 

accessibility and observability of internal nodes, to allow adequate test coverage. The 

use of on-chip memory resources can be particularly useful in aiding the testing of 

buried processes. Synthetic data can be set up in on-chip memory and the process 

executed. The results can then be read out via the memory and checked. 

Another criticism of the use of custom VLSI technology as an implementation 

technology, is the lack of algorithmic flexibility which requires a new design to be 

created for each application. With the highnon-recoverable tngineering (NRE) costs of 

VLSI devices, this is a regarded as significant drawback of the custom implementation 

approach. This perceived lack of flexibility is not due to the technology itself, but is 

more likely caused by poor architectural design. With careful system partitioning, the 

use of a minimal number of additional module parameterisation registers, and high 

level system configuration and control access through a simple interface, the functions 

contained in a custom device can be used to solve tasks other than those for which they 

were originally designed. Further savings can be made through the amortisation of the 

NRE costs across a number of different designs, by the use of macro or library cell 

blocks. This enables cells such as the sensor, DAC, and compiled blocks such as the 

correlation array to be re-used in future designs. 
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The architectures used to implement the image processing functions forming the 

fingerprint comparison algorithm, were also used to demonstrate the feasibility of a 

proposed medical pattern matching system for fertility testing being developed at the 

University of Massachusetts 33 . The method relies on determining the presence, or not, 

of a particular hormone produced during the female menstrual cycle. Samples taken 

from women are prepared, and analysed for the existence of crystallisation patterns, 

known as 'ferning' patterns, which are an indicator of the presence of a particular 

hormone. In the fingerprint comparison system a template produced from an original 

fingerprint is compared with a presented image for verification of identity. In this 

second application, the comparison template was generalised representation of a 

ferning pattern. An example ferning pattern and comparison template are shown in 

figure 8.1. 

U---. 
• — — — U • — — — _ • ____ • — — — . .---. 
.---. • — — — . • — — — - • — — — • 
U---. 
U---. 

SAMPLE WrM 	 SYNTHETIC  
IFERNING PATTERNS 	 PATTERN  

Figure 8.1 Ferning Pattern Sample and Template 

Using the image pre-processing functions and the correlation elements of the 

fingerprint system it was shown that it was possible to determine the presence of ferning 
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patterns in the test images. Only minor changes to the adaptive threshold function and 

different high level data analysis processing were required to change the fingerprint 

comparison system into a fertility monitor. This example demonstrates the flexibility of 

the implementation approach. 

8.3 FUTURE RESEARCH 

As discussed earlier, the first prototypes of fingerprint comparison smart sensor-

processor devices failed to operate as specified. One of the main difficulties was the 

massive complexity of the design, and the fact that it combined analogue and digital 

parts. The tools used to implement the design were not ideal for the task, with no means 

of verifying of the integration of the full custom analogue and compiled digital 

elements of the design. This led to the introduction of several design errors. More 

sophisticated CAD tools for the simulation, implementation and verification of mixed 

technology (analogue, digital) and method (full-custom, compiled) devices are 

becoming available. There are two distinct design flows required for analogue and 

digital Circuit design. For successful mixed signal circuit design these tools will need to 

provide a number of additional features. These include system level simulation, 

behavioural modelling to allow analogue cells to be represented in the digital design 

environment and circuit extraction to allow implementation verification of full custom 

circuits against behavioural and functional models. Additional features such as 

synthesis automatic test pattern generation tools for digital logic and interactive 

floorplanning tools are also now available to the designer. All of these tools should 

enable complex designs, like the fingerprint comparison device, to be developed with 

a greater degree of confidence in right-first-time silicon. 

Another way of reducing the design risk during the production of a prototype or 

limited production system, is to partition the proposed system into more than one 
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device at appropriate algorithmic breakpoints. An appropriate algorithmic breakpoint 

is one where a function cannot start until another has completed processing. For the 

fingerprint algorithm such a breakpoint occurs after the thresholding function has 

stored the binary fingerprint data in memory prior to the start of the comparison 

process. For a future redesign of the fingerprint comparison device, the architecture 

could be split between the image sensing/preprocessing and image analysis parts of the 

system. This would result in a smart sensor-processor which integrates the sensor, 

smoothing function, digitisation, and adaptive thresholding elements of the function, 

resulting in a binary representation of a fingerprint image. A second, purely digital 

device, would then implement all of the image comparison and analysis functions using 

the binary fingerprint and a signature template as input data. Although the verification 

of the two device approach would be slightly simpler the disadvantage is that the total 

prototyping costs would be significantly higher. 

The limiting factor in the design of low-cost image processing systems has been 

the cost of the processing hardware required to execute image processing functions in 

real-time. As VLSI technologies advance, with smaller geometries and higher levels of 

integration, the price of processing power is continuing to fall dramatically, enabling 

the production of much lower cost systems with ever greater capabilities. Soon, 

however, the limiting factor will not be the cost of the silicon which will dominate, but 

the cost of post-fabrication testing and device packaging. Testing the analogue portions 

of mixed analog-digital devices is particularly time consuming. Built-in self test (BIST) 

and other novel test techniques, such as those used to test the CMOS sensor technology 

as a digital device, will have to be developed for analogue circuits. 

Packaging costs form a significant proportion of the manufacturing cost of an 
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ASIC. This is particularly true for image sensor devices with their optical requirements. 

New packaging technologies, such as flip-chip, TAB bonding, and multi-chip modules, 

are being developed which promise to deliver higher levels of system integration, 

reduced system size and, eventually, lower cost. Using the multi-chip module approach 

the whole of the fingerprint comparison system (excluding peripheral human interface 

devices) could be integrated into a package about 35 mm square (see figure 8.2). 

Figure 8.2 MCM Fingerprint Comparison System 

In conclusion, VLSI smart sensor-processor architectures are an appropriate 

method for the implementation of image processing systems. This has been 

demonstrated by the successful implementation of a fingerprint comparison system as 

the single-chip, highly integrated sensor-processor presented in this thesis. 



-150- 

REFERENCES 

Biometrics 

1 	Braggins, D., "Reading Between the Pixels", Image Processing, pp. 43-45, 

May/June 1991. 

2 	Driscoll, E.C. and Fowler, R.C., "A Comparison of Centralized versus 

Distributed Architectures in Biometric Access Control", Proc. 1989 Int. 

Carnahan Conference on Security Technology, Zurich, pp.  193-198, Oct. 
1989. 

3 	Harman, L.D., Khan, M.K., Lash, R., Kamig, PR, "Machine Identification of 

Human Faces", Pattern Recognition, Vol. 13, Iss. 2, pp.  148-153, Jan. 1991. 

4 	Frazer, F.,"Thumbs Up for Security", Scotsman newspaper, Edinburgh, p.  28, 
26th Nov. 1991. 

5 	Holmes, J.P., Maxwell, R.L. and Wright, L.J., "A Performance Evaluation of 

Personnel Identification Devices", Sandia National Laboratories, 

Albuquerque, 1990. 

6 	Hughes, P.A., Green, A.D.P., "The Use of Neural Networks for Fingerprint 

Classification", Proc. 2nd I.E.E. hit. Conf. on Artificial Neural networks, 

Bournemouth, U.K., Nov. 1991. 

7 	MacGregor, P. and Welford, R., "Veincheck: Imaging for Security and 

Personnel Identification", Advanced Imaging, Vol. 6, No. 7, pp.  52-54, July 
1991. 

8 	McCorquodale, "Smart cards: major new initiatives", Electronic Banking & 

Finance, pp.  3-4, May 1990. 

9 	Maxwell, R.L. and Wright, L.J., "A Performance Evaluation of Personnel 

Identity Verifiers", Sandia National Laboratories, Albuquerque, 1987. 

10 	Maxwell, R.L., "The Status of Personnel Identity Verifiers", Sandia National 

Laboratories, 1985. 

11 	Miller, B.L., "1990 Biometric Industry Directory", PIN, Warfel & Miller, Inc., 

1990. 

12 	Miller, B.L., "Biometric Industry Update: Part 1", PIN, Warfel & Miller, Inc., 

pp.4-7, Sept. 1991. 



- 151 -  

13 	Miller, B.L., "Biometric Industry Update: Part 2", PIN, Warfel & Miller, Inc., 

pp. 1,5-7, Oct. 1991. 

14 	Parks, J.R., "BIOMETRICS - Facts, Fantasies and Futures", Biometrics 

Conference, Elsevier, 1989. 

15 	Parks, J.R., "Biometrics: The People Sensors", Sensor Review, Pp.  79-84, April 
1989. 

16 	Peckham, J., "I'd Know That Voice Anywhere (Security)", Systems 

International, Vol. 17, Iss. 9, pp. 49-50, Sept. 1990. 

17 	Price, W.L., Chorley, B.J., "The Intelligent Token or 'Super-Smart' Card", 

Smart Card: The Future of IC Cards, Proc. IFIP Int. Conference, 

Laxenburg, Austria, pp.  133-138, Oct. 1987. 

18 	Stonham, TJ., "Practical Face Recognition and Verification with Wisard", 

Aspects of Face Processing, pp.  426-441, Martinus-Nijhoff, 1986. 

19 Suenaga, Y., Watanabe, Y,"A Method for the Synchronized Acquisition of 

Cylindrical Range and Colour Data", IEICE Transactions, Vol. E 74, No. 

10, Oct. 1991. 

20 	Sutherland, K., Renshaw, D.A., Denyer, P.B., "A Novel Automatic Face 

Recognition Algorithm Employing Vector Quantisation", Proc. lEE 

Colloqium on Facial Recognition and Storage, London, Jan. 1992. 

21 Yoshimura, M., Kato, Y., Matsuda, S., Yashimura, I., "On-line Signature 

Verification Incorporating the Direction of Pen Movement", IEICE 

Transactions, Vol. E 74, No. 7, July 1991. 

Image Processing - Applications, Architectures and Systems 

22 	Bruce, W. H., "Development and Implementation of Fingerprint Matching and 

Recognition Algorithms", BSc Project Report HSP 436, Dept. Electrical 

Engineering, University of Edinburgh, 1985. 

23 	Bruce, W.H., "Microcontroller Software for Fingerprint Verification Unit", 

Appendix, ISG Internal Report, Finger-22-B, Dept. of Electrical 

Engineering, Edinburgh University, Aug. 1989. 

24 	Bruce, W.H., "Fingerprint Matching and Recognition Algorithm", Unpublished 



-152- 

Ph.D. Thesis, Dept. Electrical Engineering, University of Edinburgh. 

25 

	

	Chakrabarti, C. and JaJa, J., "VLSI architecture for Template Matching", Proc. 

IEEE ISCAS, pp.  69-72,1990. 

26 	Denyer, P. B., "Skin Pattern Recognition Method", ISG internal report Finger- 

001-C, Dept. Electrical Engineering, University of Edinburgh, 1988. 

27 	Flynn, M., "Some Computer Organisations and their Effectiveness", IEEE 

Trans. Comp., Vol. C-21, No. 9, pp.  948-960,1972. 

28 	Graham, M.D., "The diff4: A Second-Generation Slide Analyser", Computing 

Structures for Image Processing, pp.  179-193, ed. Duff, Academic Press, 

1983. 

29 	Groen, FC.A., Jonker, P.P., Duin, R.P.W., "Hardware versus Software 

Implementations of Fast Image Processing Algorithms", NATO ASI series, 

Vol. F42 Real-time Object Measurement and Classification, Springer-

Verlag, 1988. 

30 	Hodgkiss, D., "Hard and Soft Options", Image Processing, pp. 10-12, July/Aug. 

1992. 

31 	Hogan, B., "High-Performance Image Processing on a Massively Parallel 

Computer", Advanced Imaging, pp.  42-48 & 85, Oct. 1990. 

32 	Howington, L.C., "Automated License Plate Reading", Advanced Imaging, pp. 

46-49, Sept. 1989. 

33 	Jackson, G.S. and Ciesielski, M.J., University of Massachusetts at Amherst, 

private communication, Nov. 1991. 

34 	Jones, R.E., "Vision Helps Canned Guinness Keep Ahead", Advanced Imaging, 

pp. 14-16. 

35 	Kurokawa, H., Matsumoto, K., Temma, T., Iwashita, M., Nukiyama, T, "The 

Architecture and Performance of Image Pipeline Processor", Proc. VLSI 

'93, pp.  275-285, 1983. 

36 	Lee, C.Y., Catthoor, F., De Man, H., "Real-Time Regularity Detection for Robot 

Vision Using a Customized Architectural Approach", Proc. IEEE ISCS, pp. 

1493-1496,1990. 

37 	O'Brien, K. and D. O'Conchuir, "Real Time Image Processor for In-line 

Robotic Control in Flexible Manufacturing Systems", Proc. IEEE IPCCC, 

pp. 788-794, Phoenix, 1990. 



- 153 -  

38 	Potter, J.L., "The Massively Parallel Processor", MIT Press, 1985. 

39 	Reddy, D.R. and Hon, R.W., "Computer Architectures for Vision", Proc. Image 

Understanding Workshop, Science Applications, pp.  169-185, 1979. 

40 Ruttlidge, H., "The Performance of an Automatic Metaphase Finder used for 

Chromosome Aberration Scoring", Institute of Physics Conference Series, 

No. 44, pp.  210-219, 1975. 

41 	Sanz, J.L.C., "Which Parallel Architectures are Useful/Useless for Vision 

Algorithms?", Machine Vision and Applications, pp.  167-173, Springer-

Verlag, 1989. 

42 	Souza, L.A., Piedade, S.M., Caeiro, J.J., "A High Performance Image 

Processing System", Proc. IEEE ISCS ConI., pp.  751-754, 1990. 

43 	Stix, G., "Check it out", Scientific American, pp.  98-99, Aug. 1992. 

44 	Tucker, J.H. and Shippey, 0., "Basic Performance Tests on the CERVIFIP 

Linear Array Prescreener", Analytical and Quantitative Cytology, Vol. 5, 
No. 2, pp.  129-137., 1983. 

45 	Vellacot, O.R., "The Imputer - A Niche Architecture in Electronic Vision", JFIT 

Technical Conf., Keele, March 1993. 

46 	Williams, S., Bruce, W.H., "FVU Hardware & Software Description", Internal 

Report, Dept. Electrical Engineering, University of Edinburgh 1989. 

VLSI for Image Processing 

47 	Anderson, S.,"FVU ASICs - Data Sheets", ISO internal report Finger-20-A, 

Dept. Electrical Engineering, University of Edinburgh, Feb. 1989. 

48 

	

	Anderson, S.,"FVU ASICs - Design Data", ISG internal report Finger-21-A, 

Dept. Electrical Engineering, University of Edinburgh, June 1988. 

49 Arvind, D.K., Robinson, I.N., Parker, I.N., "A VLSI Chip for Real-Time Image 

Processing", Proc.IEEE ISCS ConI., pp.  405-408, Newport Beach, May 

1983. 

50 	Batali, J., "A Vision Chip", M.Sc. Thesis, Dept. of Electrical Engineering and 

Computer Science, Massachusetts Institute of Technology, May 1981. 



- 154 -  

51 	Beynon, J.D.E and Lamb, D.R., "Charged-Coupled Devices and their 

Applications", Chapt. 4, ISBN 0-07-084522-0, Pub. McGraw-Hill, 1980. 

52 Blanz, W.E.,"VLSI-oriented Architectures for Real-time Image Processing", 

Proc. of the SPIE - The International Society for Optical Engineering, Vol. 
1246, PP.  57-68, Feb. 1990. 

53 	Brofferio, S., Monti, M., Rampa, V., Taliercio, M., "VLSI Recursive Motion 

Estimator Chip Set", Proc. IEEE ISCS, pp.  57-60, 1990. 

54 	Catthoor, F., O'Gorman, L., Jam, R., "An ASIC Architecture for Contour Line 

Filtering", IEEE ICASSP, pp.  1056-1059, 1988. 

55 	Corry, A. and Patel, K., "Architecture of A CMOS Correlator", The GEC 

Journal of Research, Vol. 1, No. 1, pp.  35-38, 1983. 

56 	Goudet, C., Mathieu, Y., Concordel, G., Demassieux, N., "A Real-Time Multi- 

Kernel Picture Convolver", Proc. IEEE CICC, pp.  17.8.1 - 17.8.4, Boston, 
1990. 

57 	Hesketh, J.A. and Burrows, D.F., "A Comparison of Methods for Large-scale 

Mixed Signal ASIC Design", Unpublished paper, LSI Logic Europe Plc, 

Bracknell, U.K., June 1992. 

58 	Jutand, F., Demassieux, N., Artieri, A., "A New VLSI Architecture for Large 

Kernel Real Time Convolution", Proc. IEEE ICASSP, pp.921-924, 1990 

59 

	

	Lea, R.M., "SCAPE: A Single Chip Array Processing Element for Image 

Analysis", Proc. VLSI ConI., pp.  285-294, 1983. 

60 	Legat, J-D. and De Muelenaere, P.,"A High Performance SI[MD Processor for 

Binary Image Processing", Proc. IEEE Custom Integrated Circuits ConI., 

pp. 17.4.1-17.4.4, Boston, 1990. 

61 	Maguire, G., O'Brien, I., Finnerty, M., Daly, J., Mitchell, S., Rida, N., 

O'Riordan, J., Griffin, F., "IRIS: A 20MHz Image Recognition System", 

Proc. IEEE Custom Integrated Circuits Conf., pp.  17.6.1-17.6.4, Boston, 
1990. 

62 	Maguire, P., Griffin, F., O'Sullivan, M., O'Brien, J., "OPTIC - A high 

performance image processor", Proc. 18th ESSCIRC ConI., pp.  143-146., 
Copenhagen, 1992. 

63 	Maruyama, M., Nakahiri, H., Araki, T., Sakiyama, S., Kitao, Y., Aono, K., 

Yamada, H., "An Image Multiprocessor on a Single Chip", IEEE Journal of 



- 155 -  

Solid State Circuits, Vol. 25, No. 6, Dec. 1990. 

64 	Quenot, G. and Zavidovique, B, "A Data-Flow Processor for Real-Time Low- 

Level Image Processing", Proc. IEEE Custom Integrated Circuits ConI., 

pp. 12.4.1-12.4.4, San Diego, 1991. 

65 	Ramaswamy, R., Brebner, G., Aspinall, D., "Architecture of a Highly Reliable 

Systolic Correlator Array", Proc. IEEE ICASSP Conf., pp.  917-920, 1990. 

66 Rauscher, R.H. and Maeder, A.J., "A Chip For Real-Time Skeleting of Images", 

Proc. IEEE Custom Integrated Circuits ConI., pp.  15.4.1-15.4.4, Boston, 
1990. 

67 	Reder, J.R., "VLSI Implementation of Multiple Binomial Windows for Real- 

time Image Processing", Proc. IEEE ISCS ConI., pp.  739-742, 1990. 

68 Ruetz, P.A. and Brodersen, R.W., "Architectures and Design Techniques for 

Real-Time Image-Processing ICs", IEEE Journal of Solid State Circuits, 

Vol. 22, No. 2, April 1987. 

69 	Ruetz, P.A., "The Architectures and design of a 20-MHz Real-Time DSP Chip 

Set", IEEE Journal of Solid State Circuits, Vol. 24, No. 2, April 1989. - 

70 	Shah, I., Akiwumi-Assani, 0., Johnson, B., "A Chip-Set for Lossless Image 

Compression", 1990 Proc. IEEE Custom Integrated Circuits Conf., pp. 

17.7.1-17.7.4, Boston, 1990. 

71 	Wang, G. and Lu, M., "3 x 3 Filter", Dept. of Electrical Engineering, Edinburgh 

University, personal communication, Dec. 1989. 

Sensors & Sensor-Processors 

72 	Anderson, S., Bruce, W.H., Denyer, P.B., Renshaw, D., Wang, G., "A Single 

Chip Sensor and Image Processor for Fingerprint Verification", 1991 Proc. 

IEEE Custom Integrated Circuits Coni., San Diego, pp. 12.1.1-12.1.4, 

1991. 

73 	Bernard, T.M., Zavidovique, B., Devos, F, "The NCP Retina: An Imager, a 

Haiftoner and a Micro-Grained Array Processor on the Same Chip", 18th 

ESSCIRC Conf., pp.  1559-162, Sept. 1992. 

74 	Chen, K., Afgahi, M., Danielsson, P.E., Svensson, C., "PASIC: A Processor-Al 



- 156 -  

D converter-Sensor Integrated Circuit", Proc. IEEE ISCS Coni., New 

Orleans, pp.  1705-1708, 1990. 

75 	Denyer, P.B., Renshaw, D., Wang, G., Lu, M., Anderson, S., "On-chip CMOS 

Sensors for VLSI Imaging Systems", Proc. VLSI 91, Edinburgh, 1991. 

76 Forchheimer, R., Chen, K., Svensson, C., Odmark, A., "Single-Chip Image 

Sensors with a Digital Processor Array", Submitted to Journal of Solid-

State Circuits, May 1990. 

77 	Hakkarainen, J.M. and Lee, H.-S., "A 40x40 CCD/CMOS AVD Processor for 

use in a Stereo Vision System", 18th ESSCIRC Conf., pp.  15 1-154, Sept. 

1992. 

78 	Jansson, C., Ingethag, P., Svensson, C., Forchheimer, R., "An addressable 

256x256 Photodiode Image Sensor Array with an 8-bit Digital Output", 

18th ESSCIRC Conf., pp.  15 1-154, Sept. 1992. 

79 	Kemeny, S., Torby, H., Meadows, H., Bredthauer, R., LaShell, M., Fossum, 

E.R., "CCD Image Sensor with Differential, Pyramidal Output for Lossless 

Image Compression", 1991 Proc. IEEE Custom Integrated Circuits Coni., 

San Diego, pp 12.6.1-12.6.4, 1991. 

80 	Kioi, K., Shinozaki, T., Toyoyama, S., Shirikawa, K., Ohtake, K., Tsuchimoto, 

S., "Design and Implementation of a 3D-LSI Image Sensing Processor", 

submitted for publication in the IEEE Journal of Solid-State Circuits, 1991. 

81 Lyon, R.F., "The Optical Mouse and an Architectural Methodology for Smart 

Digital Sensors", VLSI systems and computations, pp. 1-19, Springer-

Verlag, 1981. 

82 	Middelhoek, S. and Audet, S.A., "Silicon Sensors", Academic Press, 1989. 

83 	Mead, C., "Analog VLSI and Neural Systems", Addison-Wesley, 1989. 

84 	Renshaw, D.A., Denyer, P.B., Wang, G., Anderson, S., "Application Specific 

Vision Sensor Processors", report to SERC, contract GR/F 36538, July 

1992. 

85 	Renshaw, D.A., Denyer, P.B., Wang, G., Lu, M., "ASIC Vision", 1990 Proc. 

IEEE Custom Integrated Circuits Conf., Boston, pp.  3038-3041, 1990. 

86 

	

	Renshaw, D.A., Denyer, P.B., Lu, M., Wang, G., "A Single-Chip Camera with 

Automatic Exposure Control", IEEE ISIC, pp.  346-359, Sept. 1991. 

87 	Renshaw, D.A. and Denyer, P.B., "ASIC Image Sensors", 1990 Proc. IEEE 



-157 -  

International Symposium on Circuits and Systems, pp.  7.3.1-7.3.4, 1990. 

88 

	

	Tanner, J.E. and Mead, C., "A Correlating Optical Motion Detector", Conf. on 

advanced Research in VLSI, MIT, pp.  57-64, 1984. 

89 	Shimmi, T., Kobayashi, H., Yagi, T., Sawaji, T., Matsumoto, T., Abidi, A.A., "A 

Parallel Analog CMOS Signal Processor for Image Contrast 

Enhancement", 18th ESSCIRC Conf., Copenhagen, pp.  163-166, Sept. 
1992. 

90 	Wang, G., Denyer, P.B., Renshaw, D., Lu, M., "A Simple Solution for Image 

Sensor Testing", lEE ISIC, pp.  202-205, Sept. 1991. 

91 	Wang, G., Renshaw, D., Denyer, P.B., Lu., M., "CMOS Video Cameras", Proc. 

EuroASIC 91, pp.  100-104, 1991. 

92 	Yu, P.C., Lee, H-S., "A CMOS Resistive-fuse Processor for 2-D Image 

Acquisition, Smoothing, and Segmentation", 18th ESSCIRC Coni., 

Copenhagen, pp. 147-150, Sept. 1992. 

Other References 

93 	Allen, RE., Holberg, D.R., "CMOS Analog Circuit Design", pp. 333-348, 

HRW, 1987. 

94 	Cheng, E.K., Mazor, S., "The Genesil Silicon Compiler", Silicon Compilation, 

Chapt. 9, pp.  361-405, Ed. Gajski, D.D., Addison-Wesley, 1988. 

95 	ES2, "SOLO 1400 Overview", Pub. ES2 Ltd., Bracknell, U.K., Jan. 1990. 

96 	Hamilton, A. and Browniow, M., "Full-Custom Layout Using Magic and 

SOLO", internal document, Dept. of Electrical Engineering, University of 

Edinburgh, July 1989. 

97 	Hamilton, A., Baxter, D.J., Churcher, S., "How to Import Magic CIF Files", 

internal document, Dept. of Electrical Engineering, University of 

Edinburgh, June 1990. 

98 	Hitex, "Teletest 51 User's Manual", Pub. Hitex-Systementwicklung, Karlsruhe, 

Germany, June 1989. 

99 	Keil, "C51 Compiler User's Guide", Pub. Keil Electronik GmbH., Munich, 

Germany, 1989. 



- 158 -  

100 Meta-Software, "Hspice User's Manual", Pub. Meta-Software, Inc., Campbell, 

California, 1990/9 1. 

101 	Murray, A.F., "Specification of an Optical Front-End for Fingerprint Sensing", 

ISG Report No. Finger-005-B, Dept. Electrical Engineering, University of 

Edinburgh, Jan. 1988. 

102 Ousterhout, J.K., "Magic: A VLSI Layout System", Proc. of 21st Design 

Automation ConI., pp.  152-159, 1984. 

103 	Scott, W.S., Mayo, R.N., Hamachi, G., Ousterhout, J.K., "1986 VLSI Tools: 

Still More Works by the Original Artists", Report No. UCB/CSD 86/272, 

EECS, University of California, Berkeley, California, Dec. 1985 

104 Silicon Compiler Systems, "Genesil Designer", Pub. Silicon Compiler Systems, 

Corp., San Jose, California, 1987. 



- 159 -  

Appendix A. PUBLICATIONS 



Proceedings of the 
IEEE 1991 
CUSTOM INTEGRATED CIRCUITS 
CONFERENCE 

REPRINTED FROM 

Town & Country Hotel 	 May 1245, 1991 
San Diego, California 



Reprinted from PROCEEDINGS OF THE IEEE 1991 CUSTOM INTEGRATED 
CIRCUITS CONFERENCE, San Diego. California. May 12-15, 1991 

A SINGLE CHIP SENSOR & IMAGE PROCESSOR 
FOR FINGERPRINT VERIFICATION 
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ABSTRACT 

This paper describes a real-time image processing 
system, including an image sensing array, which is 

implemented as a single VLSI device. The architectural 
overview and system performance figures demonstrate 
that, through efficient integration of the sensing, 
processing and memory elements of the image-
processing system, increased performance and greatly 
reduced manufacturing costs can be achieved for a 
specific application (in this case fingerprint 
verification). The device, designed and fabricated 

using a standard 1.2l.Im ASIC CMOS process and 
18MHz operation. includes a 258 x 258 image sensor 
array, real-time image normalisation and image 
matching circuitry. 8K bits of fast access memory and 
16K bits of ROM. 

INTRODUCTION 

Integrated sensor-processor technology provides a 
new method for implementing image processing 
systems IPS as single chips. Typical IPS for the 
analysis and recognition of images conventionally 
consist of five main elements :- sensor, data 
preprocessor, image analysis hardware, memory and 
CPU. The input medium to this class of system is visible 
electromagnetic radiation which is sensed and 
converted into an electrical representation of the 
image. The sensor can be based on vidicon or solid-
state CCD or MOS technology. The electrical signal 
usually corresponds to some standard such as PAL 
format video in order to simplify the interfacing to 
various systems, or it may simply be a raster scan read-
out. A preprocessor stage then performs global 
functions such as spatial noise filtering, AID 
conversion and image normalisation before the main 
image processing task is carried out. The core of the 
system can be either a high-performance single-chip 
DSP (e.g. TMS320) or. for real-time operation, an array 
of general purpose processors (e.g. Transputers) or 
dedicated image array-processors (e.g. IMS A110). 

Memory is required to buffer images, store reference 
data and results for post-analysis. The final component 
of a generic IPS is a low-bandwidth (when compared 
with the image processor) microprocessor which is 
needed to perform system control functions and 
analysis of results. 
A prototype system for personal verification based on 
finaerprint matching which contains all the elements of 
such a typical image processing system, (Figure 1). 

FINGERPRINT VERIFICATION SYSTEM 

cco - 	 . RAU 	RAM 

RO 

: IcO dI 

- 	 . - 	Asic IMAGE PROCESSING -•41111 
FIFO L 

CHIPSET
I  MICRO- 

CONTROLLER 

COMPONENTS NCLIJOED IN THE 

Figure 1: Block diagram of fingerprint matching system 

has been developed at Edinburgh University [ ' ] . The 

sensing unit used was a CCD based camera module. 
The preprocessing functions and the main comparison 
algorithm were implemented as a two device ASIC chip-
set with a microcontroller performing all other system 
functions. The system has also been integrated as a 
single sensor-processor chip (Figure 1) as described 

below. 

ALGORITHM 

A simple optical system produces a high-contrast 
image of a fingerprint by utilising the total internal 
reflection effect of a prism. The image is focused onto 
the sensor which produces an analogue representation 
of the data. An image preprocessing stage filters and 
adaptively thresholds the grey scale image to produce 
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(a) (b) 

(C) 	 (d) 

a binary image reaoy for the matching stage. Basically 
the comparison is then performed as follows, to 
accommodate the translational and rotational 
movement the comparison algorithm correlates a 
number of reference signatures against the fingerprint 
over a range of angles and offsets Matching decisions 
are then taken on the basis of results in this multi-
dimensional correlation space. This is a reliable but 
computationally intensive process. To verify a 
fingerprint against a known reference in a time-scale of 

1 second requires the equivalent of 2x10 9  arithmetic 
operations per second. The results of these correlations 
are tabulated and compared against a specified 
threshold and a decision is made whether or not the 
fingerprint presented is a good match. The architecture 
used to implement the system as a single device is 
presented in this paper and its performance compared 
with that of the prototype, highlighting the advantages 
of integrating image sensing and processing on the 
same silicon siostrate. 

ARCHITECTURE: SENSOR 

Integration of the image sensor 	has been made 
possible by the recent development of a high quality, 
customisable sensor array designed to be fabricated 
using the same standard low-Cost ASIC CMOS process 
as is used for the surrounding digital image-processing 

circuitry. The sensing technology 121.131 is based on a 
photodiode 	array 	and 	includes 	all 	necessary 
amplification and control circuitry on-chip. Middelhoek 

and Audet !I state that one of the important 
disadvantages of integrated smart sensors is that the 
process required for the production of the sensing 
elemer:s is generally not compatible with the process 
required for the digital circuitry. In the case of image 
processing we have now demonstrated that a more 
than adequate sensor performance is achieved without 
compromising the requirements for the rest of the 
system. 
The nature of the sensor technology has allowed the 
sensor array to be customised to the requirements of 
the application. In this case a 258 x 258 array with a 
pixel asoecf ratio of 4:3 has been chosen. Raster read 
out from this performs a simple spatial transform of the 
image to correct for optical distortion of the print image 
from the angled prism face. The clocking requirement is 
a simple single phase clock and power is provided by 
the same 5v suoply that is used by the surrounding 
digital logic. The addressing and read out circuits have 
been modifiec to allow local 2-D smoothing to take 
place as the image data is scanned Out. This is 
performed in the analogue domain and implements the 
required low-Dass filtering without any hardware 
Overhead, an example of the benefits of being able to 
tailor the sensor technology to the application. 

ARCHITECTURE: PROCESSOR 

The output signal from the sensor array is an analogue 
representation of the image at each pixel site. This 
signal is processed to give a normalised binary (i.e. 
black and white) representation of the fingerprint image 
wnich can then oe inteoreied by the digital processing 
logic. An adaptive tr.resnold technique is employed to 
eliminate gross intensity variation across the image 
causea by uneven iliumination of the fingerprint and 
variable skin characteristics. Figure 2 shows two 
examples of grey-level fingerprints before and after the 
adaptive thresholding function has been applied. The 
image is divided in:c 256 16 x 16 pixel patches and 
local tnresholdS are calculated for each patch using a 
successive aoproxirnation method. The thresholds are 
then applied to the image to give the desired ratio of 
black to white pixels (usually 50'/e). The architecture 
implemented to achieve this function is described in 
greater detail in the next section. An off-chip 64K bit 
static RAM is used to store the resulting binary image. 
The data is then ready for correlation with the reference 
fingerprint data which has been pre-loaded into local 
memory. 

1 
40  IiJt. 

Figure 2: Grey-level fingerprint images (a),(c) 

Normalised binary fingerprint images (b),(d) 
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The matching process is performed by an 8 x 8 matrix of 
correlation cells and a complex controller, address 
generator. The controller ensures the flow of data into 
the parallel correlation array is maximised to achieve 
me necessary high throughput. Fast on-chip memory 
close to the array together with pre-calculated address 
modifiers (to accommodate rotation of the image) allows 
64 single-bit comparisons to be made on every cycle of 
the 18MHZ system clocks. Each cell counts pixel 
matches and performs comparisons with locally held 
reference scores At appropriate moments during the 
correlation sequence the current values of the 64 score 
registers are read and ranked in result tables for 
analysis after all Inc correlations have been completed. 
The final stage of the process is to analyse the ranked 
scores to determine whether or not the images match. 
Circuitry is provided on-chip to perform this function. 
Table I provides a summary of the main features 
provided by the single-chip sensor processor. 

PERFORMANCE 

To illustrate the advantages offered by integrated 
sensor-processor systems. this section looks in detail 
at the digitisation and normalisation function of the 
fingerprint matching system. Assume the image size is 
258 x 258 pixels and 9-bit grey-level data is required 
which is then to be processed to give a 256 x 256 
normalsed binary image. 
In a typical image processing system this function 
would oe acneveC in the following manner. First the 

analogue signal from the sensor is digitised by a 9-bit 
AD convertor to gve a grey-level representation of the 
image. This data is then buffered in a 256 x 256 x 9-bit 
memory store. Assuming an adaptive threshold 
technique is to be employed with a patch size of 16 x 

16 pixels, a local threshold is then calculated from the 
stored image for each patch. These are then applied to 
the image data and the resulting binary image is stored 
in memory for subseouent processing. 
In principle the same functon can be implemented 
without the need for an AD converter or grey-level 
image buffer. Figure 3 shows a simplified schematic of 
the image normalisation sub-system. This is achieved 
by reading sequence of 9 image frames during which 
the 9-bit local tnreshoids are calculated using a 
successive approximation technique. As the sensor 
array is scanned out the selected threshold is fed, via 
a custom DAC. to one input of a comparator while the 
analogue image sgnal is applied to the other. The 
output of the comearator is a binary representation of 
the image. The resulting digital pixel stream is analysed 
to determine the ratio of black and white pixels in each 
patch using a tally circuit. After each frame each 
threshold is updaiea according to the tally result ready 
for the next frame This allows a 9-bit threshold to be 
calculated for each patch, 1-bit per frame, in 9 frames. 
A final frame is then read and the local thresholds are 
applied to it resulting in the required normalised binary 
image. 
By suitable sensor addressing and sub-sampling 
(appropriate to this application( the calculation of the 
thresholds is achieved within in one frame time. This 

COMPARATOR  

'FORMAT RAM 

TALLY '1. 258 x 258 

SENSOR 

RAM 	L THRESHOLD 
UPDATE 

9-BIT DAC 	 256 x 7 

RAM 

ADDRESS 	 256 x 9 

GENERATOR 

Figure 3: Block diagram of digitisation and normalisation function 
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tailoring of the algorithm and hardware allows the 
following savings to be made :- the total RAM 
requirement reduces from (64K x 9 + 256 x 9 + 64K x 1) 
= 657.664 bits to (256 x 16 + 64K x 1) = 69,632 bits and 
the requirement for conversion from a 9-bit flash ADC to 
a simple DAC and single comparator. 
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Figure 4: Integrated sensor-processor chip plot 

CONCLUSIONS 

The ability to integrate the sensor and processing logic 
as described in this paper facilitates reductions in size 

from 525cm 2  to 48cm 2 . and component Count, from 453 
to 23 for the fingerprint matching system. Other features 
are compared in Table 2. This is achieved not just 
through the usual leverage of integration but also by 
the additional factor of flexibility of choice of 
architecture for each component substructure in the 
system. 
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CHIP FEATURES 

Sensor 258 x 258 CMOS Sensor 

Functions 3 x 3 unary weighted smoothing filter 
9-bit DAC & Comparator Module 
Adaptive threshold module 
20 x 8-bit system registers 

8 x 8 correlation cell array 
Rank-value 	filter 
Polling (result analysis module) 
Microcontroller 	Interface 

Memory 2 x 512 x 16 	SRAMs 
1x16x16 	SRAM 
2 x 704 x 12 ROM 

Physical Package: 160-pin PGA 
No, Transistors: 272 000 

Die size: 11.5mm x 11.5mm 
Power: 600mW @ 18MHz. 
Supply: 5v & OV 

Table 1: Integrated sensorprocessor features 

ASIC BASED 
PROTOTYPE 

INTEGRATED 

SYSTEM 

No, 	VLSI / LSI devices 16 	. 3 

No, 	MSI devices 37 0 

No, Discrete components 400 (approx.) 20 

Power (Ave.) 6W@I2MHZ. 1W@I8MHz. 
Area 	(sub-system) 525 cm  48 cm  
Response Time (typical) 1.5 sees. 0.5 sees 

Table 2: Comparison of ASIC prototype and 
integrated sensor-processor 

The development time for this device was one man 
year. The device is currently being prepared for 
fabrication at ES2 (European Silicon Structures) using 
a 1.2um CMOS process. The sensor and digital image 
processing parts of the system have already been 
independently proven in silicon. The digital logic was 
implemented using silicon compilation software from 
ES2 while the full custom elements (sensor, DAC, 
comparator) were designed by available custom layout 
design tools. The chip-plot. Figure 4, shows clearly the 
standard cell format of the digital logic and the location 
of the sensor and memory blocks. 
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ON-CHIP CMOS SENSORS FOR VLSI IMAGING SYSTEMS 

Peter B. Denyer, David Renshaw, Wang Gouyu, Lu Ming Ying, 
Stuart Anderson 

Department of Electrical Engineering, University of Edinburgh, 
Mayfield Road, Edinburgh, EH9 3JL, Scotland 

Abstract 
We present techniques for the integration of vision sensors and processors on 
common CMOS substrates. This establishes the feasibility of single-chip vision 
systems which offer reductions in size, power and cost over contemporary 
techniques. 

1. INTRODUCTION 

Potential electronic vision applications are widespread; examples include:-

bar-code and text readers 

security cameras 

image capture for DTP 

biometric verification; fingerprints, faces, etc. 

fax 

production line inspection 

video telephones 

• vision subsystems in robots and autonomous vehicles 

consumer camcorders and still cameras 

automotive applications 

Virtually all of these applications, and a host of others, are sensitive to cost, size 
and power consumption. This applies not only to the camera function but also to 
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the subsequent image processing functions, which are invariably 
computationally demanding. 

Commonly such systems are constructed from commodity camera modules, 
frame grabbers and PC's, or dedicated image processing hardware. These 
systems can hardly be described as miniature, and their cost and power 
consumption severely limit their application. Only where production volumes 
are very large, as in consumer camcorders, do all parameters fall to attractive 
levels. 

Fortunately the advancing capability of VLSI, especially CMOS, technology 
permits the integration of video-rate A/D conversion and the implementation 
of powerful custom image processing architectures. Challenging imaging 
applications, such as fingerprint verification, have become possible within a 
few tens of cubic inches, consuming a few watts of power. This is still far from 
ideal and the dominant limiting factor is usually the camera module itself. 

It is well known that silicon can act as an excellent photoreceptor over the 
visible spectrum. The majority of solid-state cameras today use CCD 
technology (a variant of MOS) which, over two decades, has been highly 
refined to optimise this function. Some sensor manufacturers use a variant of 
single-channel MOS technology in which only doping levels are altered to 
optimise optical performance parameters such as anti-blooming. 

Other workers [1,2] have recognised the attraction of implementing sensors 
in an unmodified CMOS process, permitting the inclusion of the sensor with 
other control and processing functions on the same chip. Despite encouraging 
results this technique has never been developed to the point at which the 
sensor performance matches that of CCD cameras. The purpose of our work 
is to realise, in unmodified CMOS technology, array image sensors which 
match the performance of CCD cameras. We have succeeded in this aim and 
report here the circuit techniques and results that we have achieved, 
including demonstrator single-chip vision systems. 

2. TECHNIQUES 

In common with others [31 we use a photodiode sensor comprising an array of 
MOS transistors, one per pixel, Figure 1. The photodiode is implemented by 
extending the source region of the transistor. This may be reset and then 
isolated under control of the MOS transistor gate. All of the gates in each row 
are driven in common. 

Once reset, the reverse-biased (photo)diode converts incident light into a 
small photocurrent which gradually discharges the phot.odiode capacitance. 
The pixel is read by opening the gate, connecting the photodiode to the MOS 
transistor drain. All of the drain in each column are connected in common and 
only one row is read at any time. 
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Commonly, the column lines are gated through an analogue multiplexer to a 
single external charge sense amplifier. The requirements of this amplifier are 
daunting considering that high-speed and wide dynamic range must be 
achieved from a charge packet in the pixel which may be of the order of lfC. 
Accordingly we have replaced this scheme by providing charge sense 
amplifiers at the top of each column. These need not work so quickly, since 
their activation frequency is equal to the line rate rather than the pixel rate, 
and they are situated as close as possible to the pixel array. Their sole 
constraints are the need to achieve a good dynamic range and to be realised 
within the pixel pitch (of the order of 10-20im). We use a single-ended 
differential charge integrator which gives a low impedance lv analogue 
representation of the pixel charge with a theoretical dynamic range of 70dB. 
The read time is approximately 500nsec. 

ACCESS -ir 	OUTPUT 

SAMPLE —J 	
± C 

hold 

RESET _Lcint  

LVref 

HORIZONTAL 	OUTPUT 
SHIFT REGISTER AMPLIFIER 

COLUMN SENSE AMPLIFIER 

IMAGER ARRAY 

N 
VERTICAL' 
SHIFT REGISTER 

Figure 1. Architecture of a CMOS image sensor with 
column charge sense amplifiers. 

The voltage representation at the output of these sense amplifiers is sampled 
and stored on a row of capacitors and the information on these is multiplexed 
out in the conventional manner, with the exception that we implement the 
output charge integrator on-chip, including a sample-and-hold stage. For 
applications requiring a composite video waveform it is relatively easy at this 
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stage to include an analogue multiplexer to switch in blanking and sync. 
levels at appropriate times. 

Serially-scanned operation is achieved by adding vertical and horizontal 
digital shift registers at the periphery of the array and these also must match 
the pixel pitch. The vertical register successively activates the row lines, 
whilst the horizontal register controls the sequential pixel read-out within 
each line. The performance of the array is quite insensitive to these control 
waveforms and amplitudes, in contrast to CCD, and this is a distinctive 
advantage of the approach. 

Prototype CMOS arrays using this architecture give remarkably good results. 
They operate over very wide margins of temperature and supply voltage. The 
single parameter of concern is fixed pattern noise from two sources; threshold 
variations in the MOS pixel access transistors causing speckles, and 
mismatches between the column sense amplifiers causing vertical stripes. 
Without compensation these effects have an rms value around 1% of 
saturation. In later designs we have eliminated these effects by:- 

reducing the applied pixel reset voltage to make the actual reset value 
independent of the gate potential and gate threshold. 

implementing an offset compensating phase in the common sense 
amplifiers during idle periods, such as line and frame synchronisation. 

These circuit techniques successfully eliminate the fixed pattern noise and 
overcome a traditional objection to the potential of this approach. 

Figure 2. A demonstration CMOS CCTV camera. 
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Figure 2 shows a completed CCTV camera chip fabricated on a standard 2 
micron CMOS ASIC line. The chip contains an array of array of 312 x 287 
pixels with timing and automatic exposure control on-chip. 

(a) 
	

(b) 

Figure 3. Comparison of CCD and CMOS camera performance 
under identical conditions:- (a) CCD (b) CMOS 

Figure 3 compares the picture output of this device with an existing CCD 
camera module. The results are subjectively indistinguishable. 

3. AUTOMATIC EXPOSURE CONTROL 

By electronically controlling the integration period we can proportionately 
decrease the sensitivity of the array. We can achieve this through the vertical 
shift register by controlling the duration, in cycles, of a 'reset' pulse entered 
at the top of this register. This varies the integration time in steps equal to 
the line period. We further gate this signal with one of short duration to 
reduce the exposure time in steps equal to the pixel period, down to a 
minimum time constrained by the read time of the column sense amplifiers. 
This is approximately 500nsec, giving a total exposure range of 40,000:1. 
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If we now alter the exposure time in response to the monitored video output 
we can implement fully automatic electronic exposure control and avoid the 
need for mechanical ins control on the lens. 

Figure 4 shows a simple scheme for such a control algorithm. The video 
stream is internally histogrammed in three bins:- very white, average and 
very black. The exposure is increased or decreased according to whether the 
image content is judged to be too bright or too dark. 

BL 

Too 

Figure 4. Automatic exposure control decision diagram 

We have implemented this scheme (which costs approximately 1000 gates) on 
several CMOS sensor arrays and obtained satisfactory performance. 

4. RESULTS 

Over a series of prototypes we have improved the performance of CMOS 
sensor arrays to match or out-perform typical monochrome CCD performance 
in most respects. A detailed comparison is given in Table 1. The CMOS data 
is measured from the CCTV camera demonstrator device shown in Figure 3. 
The CCD data is compiled from manufacturers data sheets. 
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CCD Camera Integrated 
Module Edinburgh 
(typical) CMOS Camera 

voltage 12v 5v 

power 1W 200mW 

minimum pixel size for 
1.5jim process lOj.im x 10im 16p.m x 16im 

saturation level 20 lux 20 lux 

s.n.r. 52dB 51dB 

output composite video composite video 
lvp-p lvp.p 

integration 
time range 300:1 40,000:1 

dark current 
as fraction of saturation 
at room temperature, 
20msec integration time. 0.005 0.0004 

antiblooming factor lOOx lOOx 

Table 1. Comparison of CCD and CMOS sensor performance 

5. Application Examples 

We report here two examples which illustrate the potential of this technology 
for integrated vision applications. 

Our first example is a low-resolution camera for use in intruder-alarm 
verification. This device is installed with a Passive Infrared detector and, 
upon detecting an alarm, transmits a short sequence of video to a control unit 
which compresses and transmits this data to a remote monitoring station. 
Within a few seconds of an alarm event a remote observer can deduce its cause 
and take appropriate action. As greater than 95% of such alarms are false, the 
provision of video verification will eliminate much unnecessary police action. 

Passive alarm units are very low cost items and cost is a primary constraint 
on this device. 
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Figure 5 shows the complete intruder-alarm camera module. This iiiclwh- a 
1.5jm CMOS camera chip nwasui -ing :.mm x 4.mm combining a lSt-i\ IU() 
pixel sensor array with all timing and control elect ronic on-chip. The device 
Is customised for this application, and this includes driver.-, '.hicli 
automatically tngger lamp or flash devices to assist in dark (-onditiolls. A 
further novel feature of this device is the use of a miniature glass fells which 
Is bonded directly to the sensor chip surface. This enables a 9() field of view 
and assists in improving the robustness and cost of this small unit. 

- 

• 	
1 

-1 

Figure 5. Complete alarm verification camera module using a 
custom CMOS sensor with a miniature chip-mounted lens 

The assembly shown is on a ceramic hybrid substrate and includes a 5v 
regulator, a clock crystal and approximately one dozen passive components. A 
simple bipolar stage provides sufficient output impedance to drive 20011 of co-
axial cable to the modem unit. 

Our second example shown in Figure 6 is a very substantial single-chip vision 
processing system. This includes:- 

258 x 258 pixel array. 

Image preprocessing and quantisation to form a normalised 
binary image. 
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64-cell 2000 Mopsec correizitor irrav. 

Post-correlation decision hardwa n•. 

16k bits RAM cache. 

16k bits ROM look-up tahh. 

With the aid of two external devices 'one 64khit RAM and ont 8051 

microcontrolleri this device performs all of the image vning and prming 

functions necessary to capture and verify a fingerpnnt against a stored 
refrence print within one second. 

Figure 6. An integrated vision system 258 x 258 sensor array and 
image processor for fingerprint capture and verification 

This is perhaps the best example of our goals; the integration of a sensor and 
powerful image processor on one substrate. 

We have demonstrated several other devices in both 2 micron and 1.5 micron 
ASIC CMOS technologies and claim that these techniques are portable to any 
commodity CMOS process. 
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CONCLUSIONS 

The aim of 'smart' vision devices, incorporating image sensors and processors 
in one chip has been substantiated. These integrated devices can be 
implemented today in unmodified commodity CMOS technology. Vision 
systems implemented in this way enjoy unprecedented reductions in size, cost 
and power consumption. 
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