154,390 research outputs found

    Reviews

    Get PDF
    Brian Clegg, Mining The Internet — Information Gathering and Research on the Net, Kogan Page: London, 1999. ISBN: 0–7494–3025–7. Paperback, 147 pages, £9.99

    A unified framework for building ontological theories with application and testing in the field of clinical trials

    Get PDF
    The objective of this research programme is to contribute to the establishment of the emerging science of Formal Ontology in Information Systems via a collaborative project involving researchers from a range of disciplines including philosophy, logic, computer science, linguistics, and the medical sciences. The re­searchers will work together on the construction of a unified formal ontology, which means: a general framework for the construction of ontological theories in specific domains. The framework will be constructed using the axiomatic-deductive method of modern formal ontology. It will be tested via a series of applications relating to on-going work in Leipzig on medical taxonomies and data dictionaries in the context of clinical trials. This will lead to the production of a domain-specific ontology which is designed to serve as a basis for applications in the medical field

    Design approaches in technology enhanced learning

    Get PDF
    Design is a critical to the successful development of any interactive learning environment (ILE). Moreover, in technology enhanced learning (TEL), the design process requires input from many diverse areas of expertise. As such, anyone undertaking tool development is required to directly address the design challenge from multiple perspectives. We provide a motivation and rationale for design approaches for learning technologies that draws upon Simon's seminal proposition of Design Science (Simon, 1969). We then review the application of Design Experiments (Brown, 1992) and Design Patterns (Alexander et al., 1977) and argue that a patterns approach has the potential to address many of the critical challenges faced by learning technologists

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    Teaching telecommunication standards: bridging the gap between theory and practice

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Telecommunication standards have become a reliable mechanism to strengthen collaboration between industry and research institutions to accelerate the evolution of communications systems. Standards are needed to enable cooperation while promoting competition. Within the framework of a standard, the companies involved in the standardization process contribute and agree on appropriate technical specifications to ensure diversity and compatibility, and facilitate worldwide commercial deployment and evolution. Those parts of the system that can create competitive advantages are intentionally left open in the specifications. Such specifications are extensive, complex, and minimalistic. This makes telecommunication standards education a difficult endeavor, but it is much demanded by industry and governments to spur economic growth. This article describes a methodology for teaching wireless communications standards. We define our methodology around six learning stages that assimilate the standardization process and identify key learning objectives for each. Enabled by software-defined radio technology, we describe a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. Using only open source software and commercial of-the-shelf computers, this environment is portable and can easily be recreated at other educational institutions and adapted to their educational needs and constraints. We discuss our and our students' experiences when employing the proposed methodology to 4G LTE standard education at Barcelona Tech.Peer ReviewedPostprint (author's final draft

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    A short manual to the art of prosopography

    Get PDF

    The Principles Of Developing A Management Decision Support System For Scientific Employees

    Get PDF
    Employees engaged in mental work have become the most valuable assets of any organization in the 21st century. The satisfaction of those involved in mental work requires the provision of objectivity and transparency in their decision-making. This, in turn, entails the development of scientifically motivated decision making mechanisms and scientific-methodological approaches to evaluate their performance based on innovative technologies.The main goal of this article is in development of the scientific and methodological framework for the establishment of a decision support system to manage the employees engaged in mental work and operating in uncertainty. In this regard, initially, the question of evaluating the activities of scientific workers is examined, its characteristic features are determined, and the fuzzy relation model is proposed as a multi-criterion issue formed in uncertainty. Taking into consideration the hierarchical structure of the criteria that allows evaluating the activities of scientific workers, a phased solution method based on an additive aggregation method is proposed. In accordance with the methodology, a functional scheme of the decision support system to manage the scientific personnel is developed. The working principle of each block and the interaction of the blocks are described. The rules for the employees\u27 management decisions are shown by referring to the knowledge production model.Based on the proposed methodological approach, the implementation phases of the decision support system for the management of the scientific workers of the Institute of Information Technology of ANAS are described. To evaluate the employees\u27 performance, the tools to collect initial information, evaluate the system of criteria, define their importance coefficients and mathematical descriptions are provided. Some results of the system software are presented. The opportunities of the system based on the proposed methodology to support enterprise mangers to make scientifically justified decisions are provided
    corecore