50,095 research outputs found

    A lightweight web video model with content and context descriptions for integration with linked data

    Get PDF
    The rapid increase of video data on the Web has warranted an urgent need for effective representation, management and retrieval of web videos. Recently, many studies have been carried out for ontological representation of videos, either using domain dependent or generic schemas such as MPEG-7, MPEG-4, and COMM. In spite of their extensive coverage and sound theoretical grounding, they are yet to be widely used by users. Two main possible reasons are the complexities involved and a lack of tool support. We propose a lightweight video content model for content-context description and integration. The uniqueness of the model is that it tries to model the emerging social context to describe and interpret the video. Our approach is grounded on exploiting easily extractable evolving contextual metadata and on the availability of existing data on the Web. This enables representational homogeneity and a firm basis for information integration among semantically-enabled data sources. The model uses many existing schemas to describe various ontology classes and shows the scope of interlinking with the Linked Data cloud

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    A Hybrid Web Recommendation System based on the Improved Association Rule Mining Algorithm

    Full text link
    As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major categories such as collaborative recommendation system and content based recommendation system. In case of collaborative recommen-dation systems, these try to seek out users who share same tastes that of given user as well as recommends the websites according to the liking given user. Whereas the content based recommendation systems tries to recommend web sites similar to those web sites the user has liked. In the recent research we found that the efficient technique based on asso-ciation rule mining algorithm is proposed in order to solve the problem of web page recommendation. Major problem of the same is that the web pages are given equal importance. Here the importance of pages changes according to the fre-quency of visiting the web page as well as amount of time user spends on that page. Also recommendation of newly added web pages or the pages those are not yet visited by users are not included in the recommendation set. To over-come this problem, we have used the web usage log in the adaptive association rule based web mining where the asso-ciation rules were applied to personalization. This algorithm was purely based on the Apriori data mining algorithm in order to generate the association rules. However this method also suffers from some unavoidable drawbacks. In this paper we are presenting and investigating the new approach based on weighted Association Rule Mining Algorithm and text mining. This is improved algorithm which adds semantic knowledge to the results, has more efficiency and hence gives better quality and performances as compared to existing approaches.Comment: 9 pages, 7 figures, 2 table

    Template Mining for Information Extraction from Digital Documents

    Get PDF
    published or submitted for publicatio

    Weak signal identification with semantic web mining

    Get PDF
    We investigate an automated identification of weak signals according to Ansoff to improve strategic planning and technological forecasting. Literature shows that weak signals can be found in the organization's environment and that they appear in different contexts. We use internet information to represent organization's environment and we select these websites that are related to a given hypothesis. In contrast to related research, a methodology is provided that uses latent semantic indexing (LSI) for the identification of weak signals. This improves existing knowledge based approaches because LSI considers the aspects of meaning and thus, it is able to identify similar textual patterns in different contexts. A new weak signal maximization approach is introduced that replaces the commonly used prediction modeling approach in LSI. It enables to calculate the largest number of relevant weak signals represented by singular value decomposition (SVD) dimensions. A case study identifies and analyses weak signals to predict trends in the field of on-site medical oxygen production. This supports the planning of research and development (R&D) for a medical oxygen supplier. As a result, it is shown that the proposed methodology enables organizations to identify weak signals from the internet for a given hypothesis. This helps strategic planners to react ahead of time

    Ontologies on the semantic web

    Get PDF
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The “Semantic Web” was touted by its developers as equally revolutionary but has not yet achieved anything like the Web’s exponential uptake. This 17 000 word survey article explores why this might be so, from a perspective that bridges both philosophy and IT

    Semantic learning webs

    Get PDF
    By 2020, microprocessors will likely be as cheap and plentiful as scrap paper,scattered by the millions into the environment, allowing us to place intelligent systems everywhere. This will change everything around us, including the nature of commerce, the wealth of nations, and the way we communicate, work, play, and live. This will give us smart homes, cars, TVs , jewellery, and money. We will speak to our appliances, and they will speak back. Scientists also expect the Internet will wire up the entire planet and evolve into a membrane consisting of millions of computer networks, creating an “intelligent planet.” The Internet will eventually become a “Magic Mirror” that appears in fairy tales, able to speak with the wisdom of the human race. Michio Kaku, Visions: How Science Will Revolutionize the Twenty - First Century, 1998 If the semantic web needed a symbol, a good one to use would be a Navaho dream-catcher: a small web, lovingly hand-crafted, [easy] to look at, and rumored to catch dreams; but really more of a symbol than a reality. Pat Hayes, Catching the Dreams, 2002 Though it is almost impossible to envisage what the Web will be like by the end of the next decade, we can say with some certainty that it will have continued its seemingly unstoppable growth. Given the investment of time and money in the Semantic Web (Berners-Lee et al., 2001), we can also be sure that some form of semanticization will have taken place. This might be superficial - accomplished simply through the addition of loose forms of meta-data mark-up, or more principled – grounded in ontologies and formalised by means of emerging semantic web standards, such as RDF (Lassila and Swick, 1999) or OWL (Mc Guinness and van Harmelen, 2003). Whatever the case, the addition of semantic mark-up will make at least part of the Web more readily accessible to humans and their software agents and will facilitate agent interoperability. If current research is successful there will also be a plethora of e-learning platforms making use of a varied menu of reusable educational material or learning objects. For the learner, the semanticized Web will, in addition, offer rich seams of diverse learning resources over and above the course materials (or learning objects) specified by course designers. For instance, the annotation registries, which provide access to marked up resources, will enable more focussed, ontologically-guided (or semantic) search. This much is already in development. But we can go much further. Semantic technologies make it possible not only to reason about the Web as if it is one extended knowledge base but also to provide a range of additional educational semantic web services such as summarization, interpretation or sense-making, structure-visualization, and support for argumentation
    • 

    corecore