30 research outputs found

    Secrecy Outage Probability Analysis for Downlink Untrusted NOMA Under Practical SIC Error

    Full text link
    Non-orthogonal multiple access (NOMA) serves multiple users simultaneously via the same resource block by exploiting superposition coding at the transmitter and successive interference cancellation (SIC) at the receivers. Under practical considerations, perfect SIC may not be achieved. Thus, residual interference (RI) occurs inevitably due to imperfect SIC. In this work, we first propose a novel model for characterizing RI to provide a more realistic secrecy performance analysis of a downlink NOMA system under imperfect SIC at receivers. In the presence of untrusted users, NOMA has an inherent security flaw. Therefore, for this untrusted users' scenario, we derive new analytical expressions of secrecy outage probability (SOP) for each user in a two-user untrusted NOMA system by using the proposed RI model. To further shed light on the obtained results and obtain a deeper understanding, a high signal-to-noise ratio approximation of the SOPs is also obtained. Lastly, numerical investigations are provided to validate the accuracy of the desired analytical results and present valuable insights into the impact of various system parameters on the secrecy rate performance of the secure NOMA communication system.Comment: 6 pages, 5 figures, GLOBECOM 202

    High-performance signal acquisition algorithms for wireless communications receivers

    Get PDF
    Due to the uncertainties introduced by the propagation channel, and RF and mixed signal circuits imperfections, digital communication receivers require efficient and robust signal acquisition algorithms for timing and carrier recovery, and interfer- ence rejection. The main theme of this work is the development of efficient and robust signal synchronization and interference rejection schemes for narrowband, wideband and ultra wideband communications systems. A series of novel signal acquisition schemes together with their performance analysis and comparisons with existing state-of-the- art results are introduced. The design effort is first focused on narrowband systems, and then on wideband and ultra wideband systems. For single carrier modulated narrowband systems, it is found that conventional timing recovery schemes present low efficiency, e.g., certain feedback timing recov- ery schemes exhibit the so-called hang-up phenomenon, while another class of blind feedforward timing recovery schemes presents large self-noise. Based on a general re- search framework, we propose new anti-hangup algorithms and prefiltering techniques to speed up the feedback timing recovery and reduce the self-noise of feedforward tim- ing estimators, respectively. Orthogonal frequency division multiplexing (OFDM) technique is well suited for wideband wireless systems. However, OFDM receivers require high performance car-rier and timing synchronization. A new coarse synchronization scheme is proposed for efficient carrier frequency offset and timing acquisition. Also, a novel highly accurate decision-directed algorithm is proposed to track and compensate the residual phase and timing errors after the coarse synchronization step. Both theoretical analysis and computer simulations indicate that the proposed algorithms greatly improve the performance of OFDM receivers. The results of an in-depth study show that a narrowband interference (NBI) could cause serious performance loss in multiband OFDMbased ultra-wideband (UWB) sys- tems. A novel NBI mitigation scheme, based on a digital NBI detector and adaptive analog notch filter bank, is proposed to reduce the effects of NBI in UWB systems. Simulation results show that the proposed NBI mitigation scheme improves signifi- cantly the performance of a standard UWB receiver (this improvement manifests as a signal-to-noise ratio (SNR) gain of 9 dB)

    Optimisation of Bluetooth wireless personal area networks

    Get PDF
    In recent years there has been a marked growth in the use of wireless cellular telephones, PCs and the Internet. This proliferation of information technology has hastened the advent of wireless networks which aim to increase the accessibility and reach of communications devices. Ambient Intelligence (Ami) is a vision of the future of computing in which all kinds of everyday objects will contain intelligence. To be effective, Ami requires Ubiquitous Computing and Communication, the latter being enabled by wireless networking. The IEEE's 802.11 task group has developed a series of radio based replacements for the familiar wired ethernet LAN. At the same time another IEEE standards task group, 802.15, together with a number of industry consortia, has introduced a new level of wireless networking based upon short range, ad-hoc connections. Currently, the most significant of these new Wireless Personal Area Network (WPAN) standards is Bluetooth, one of the first of the enabling technologies of Ami to be commercially available. Bluetooth operates in the internationally unlicensed Industrial, Scientific and Medical (ISM) band at 2.4 GHz. unfortunately, this spectrum is particularly crowded. It is also used by: WiFi (IEEE 802.11); a new WPAN standard called Zig- Bee; many types of simple devices such as garage door openers; and is polluted by unintentional radiators. The success of a radio specification for ubiquitous wireless communications is, therefore, dependant upon a robust tolerance to high levels of electromagnetic noise. This thesis addresses the optimisation of low power WPANs in this context, with particular reference to the physical layer radio specification of the Bluetooth system

    RAPID CLOCK RECOVERY ALGORITHMS FOR DIGITAL MAGNETIC RECORDING AND DATA COMMUNICATIONS

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN024293 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Nanosatellite Store-and-Forward Communication Systems for Remote Data Collection Applications

    Get PDF
    Due to compact design, cost-effectiveness and shorter development time, a nanosatellite constellation is seen as a viable space-based data-relay asset to collect data from remote places that are rather impractical to be linked by terrestrial means. While nanosatellites have these advantages, they have more inherent technical limitations because of limited space for subsystems and payloads. Nanosatellite S&F communication systems are notably challenging in this respect due to requirements on antennas, transceivers, and signal processing. Although nanosatellites can be scaled up for better resources and capabilities, smaller platforms (i.e., ≤6U CubeSat) tend to be used for cost-effectiveness and lower risk. This thesis dealt with the problem of designing a nanosatellite S&F communication system for delay-tolerant remote data collection applications considering: (a) technical constraints in hardware, processing capabilities, energy budget and space in both the nanosatellite and ground sensor terminal (GST) sides; (b) physical communication layer characteristics and constraints such as limited available bandwidth, LEO channel Doppler, attenuation and fading/shadowing effects, low transmit power and data rate, and multi-user interference among asynchronously transmitting terminals. We designed, developed, and operated an amateur radio payload with S&F communication and APRS-DP capabilities, and performed a post-launch communication failure investigation. We also investigated suitability of E-SSA protocol for IoT/M2M terminals to nanosatellite communication by analyzing performance and energy efficiency metrics. The thesis comprises nine chapters. Chapter 1 describes the research background, problem, objectives, state of research, potential contributions of this thesis, and a gist of methodology detailed in later chapters. Chapter 2 and 3 provide an extensive literature review. Chapter 2 reviews the previous research works on using nanosatellites for S&F communication for remote data collection, and the previous nanosatellite S&F missions. Such research works and nanosatellite missions were undertaken primarily in the context of non-commercial/civil applications. Then, Chapter 2 surveys the recent commercial nanosatellite IoT/M2M players and examines their proposed systems in terms of satellite platform, constellation design, communication technology, targeted applications, requirements, and performance. Chapter 3 presents a literature review on communication system architecture, physical layer and random-access schemes, protocols, and technologies relevant to satellite IoT/M2M systems. In the context of IoT/M2M applications, the constraints in energy budget, transmit power and available bandwidth limit the system’s capacity in terms of amount of data that can be received and number of GSTs that can be supported. In both nanosatellite and GST sides, there are stringent limitations in hardware complexity, processing capabilities and energy budget. Addressing these challenges requires a simple, spectrally and energy efficient asynchronous random-access communication protocol. This research investigated using the enhanced spread spectrum Aloha (E-SSA) protocol for satellite IoT/M2M uplink (terminal to satellite) communication and analyzed its performance and suitability for the said application. Chapter 4 discusses the BIRDS-2 CubeSat S&F remote data collection system, payload design, development, tests, and integration with the BIRDS-2 CubeSats. Chapter 5 discusses the investigation on communication design issues of BIRDS-2 CubeSat S&F payload, tackling both the methodology and findings of investigation. It is noted that there are only a few satellites that have carried an APRS-DP payload but even some of these failed due to communication, power, or software issues. In BIRDS-2 Project, considering tight constraints in a 1U CubeSat equipped with other subsystems and payloads, we developed a S&F/APRS-DP payload and integrated it with each of the three 1U CubeSats of participating countries. After launching the CubeSats from the ISS, several amateur operators confirmed reception downlink beacon messages, but full two-way communication failed due to uplink communication failure. Thus, this research not only studied the design and development of a S&F/APRS-DP payload suitable for a CubeSat platform, but also systematically investigated the causes of communication failure by on-orbit observation results and ground-based tests. We found that uplink failure was caused by two design problems that were overlooked during development, namely, the poor antenna performance and increased payload receiver noise floor due to satellite-radiated EMI coupled to the antenna. Chapter 6 first describes the enhanced spread spectrum Aloha (E-SSA) based nanosatellite IoT/M2M communication model implemented in Matlab and derives the mathematical definitions of packet loss rate (PLR), throughput (THR) and energy efficiency (EE) metrics. Then, it tackles the formulated baseband signal processing algorithm for E-SSA, including packet detection, channel estimation, demodulation and decoding. Chapter 7 presents the simulation results and discussion for Chapter 6. Chapter 8 tackles the S&F nanosatellite constellation design for global coverage and presents the results and findings. Chapter 9 describes the laboratory setups for validating the E-SSA protocol and then presents the findings. Finally, Chapter 9 also gives the summary, conclusions, and recommendations. Simulation results showed that for E-SSA protocol with the formulated algorithm, THR, PLR and EE metrics are more sensitive to MAC load G, received power variation σLN and Eb/N0, due to imperfect detection and channel estimation. With loose power control (σLN=3dB), at Eb/N0=14 dB, the system can be operated up to a maximum load of 1.3 bps/Hz, achieving a maximum THR of 1.25 bps/Hz with PLR<0.03. Without power control (σLN=6dB,9dB), at Eb/N0=14 dB, maximum load is also 1.3 bps/Hz, but achievable THR is lower than ~1 bps/Hz and PLR values can be as high as ~0.23. Worse PLR results are attributed to misdetection of lower power packets and demodulation/decoding errors. Both are caused by the combined effects of MUI, channel estimation errors, imperfect interference cancellation residue power, and noise. The PLR and THR can be improved by operating with higher Eb/N0 at the expense of lower energy efficiency. Then, laboratory validation experiments using a SDR-based platform confirmed that with G=0.1, Eb/N0=14dB, σLN=6dB, the formulated algorithm for E-SSA protocol can still work even with inaccurate oscillator (±2 ppm) at GSTs, obtaining experimental PLR result of 0.0650 compared to simulation result of 0.0352. However, this requires lowering the detection thresholds and takes significantly longer processing time. For the S&F nanosatellite constellation design, it was found that to achieve the target percent coverage time (PCT) of more than 95% across all latitudes, a 9x10 Hybrid constellation or a 10x10 Walker Delta constellation would be required.九州工業大学博士学位論文 学位記番号:工博甲第506号 学位授与年月日:令和2年9月25日1: Introduction|2: Nanosatellite S&F Research, Missions and Applications|3: Satellite S&F Communication Systems and Protocols|4: BIRDS-2 CubeSat S&F Data Collection System, Payload Design and Development|5: Investigation on Communication Design Issues of BIRDS-2 CubeSat APRS-DP/S&F Payload, Results and Discussion|6: E-SSA-based Nanosatellite IoT/M2M Communication System Model and Signal Processing Algorithm|7: Simulation Results and Discussion for E-SSA-based Nanosatellite IoT/M2M Communication System|8: Nanosatellite Constellation for Global Coverage|9: Experimental Laboratory Validation for E-SSA Protocol, Research Summary, Conclusions and Recommendations九州工業大学令和2年

    The 30/20 GHz mixed user architecture development study

    Get PDF
    A mixed-user system is described which provides cost-effective communications services to a wide range of user terminal classes, ranging from one or two voice channel support in a direct-to-user mode, to multiple 500 mbps trunking channel support. Advanced satellite capabilities are utilized to minimize the cost of small terminals. In a system with thousands of small terminals, this approach results in minimum system cost

    Signal constellation and carrier recovery technique for voice-band modems

    Get PDF
    corecore