31,387 research outputs found

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    Practical application of CFD for wind loading on tall buildings

    Get PDF
    This paper is concerned with assessing the scope of appicabiity for computational fluid dynamics(CFD) in the field of structural engineering, with a particular reference to tall buildings. Modern design trends and advances in engineering materials have encouraged the demand for taller and more slender structures. This pattern induces inherent structural flexibility; these cases exceed the limitations of the quasi-static method offered by current codes of practice. Wind tunnel testing is the traditional solution for such dynamically sensitive structures. However, even this scaled modelling approach is clouded by some uncertainties, including scaling the Reynolds number and assuming damping values for the aeroelastic model. While CFD cannot be used as a replacement for wind tunnel testing, there are results within the literature to suggest it has the potential to act as a complimentary tool - provided it is used within its capabilities. The paper outlines the various turbulence models that are available and summarises the extent of their application in a practical structural engineering sense. It also details the user-defined criteria that must be satisfied and discusses the potential for simplified models in tall building CFD analyses, with a view to promoting more efficient and practical solutions

    Linkage between knowledge management practices towards library user’s satisfaction at Malaysian University Libraries

    Get PDF
    Academic library services have begun to apply various knowledge management (KM) practices in the provision of library services. KM has been developed to enhance the use of organizational knowledge through practices and organizational learning. KM practices include the creation, capture and/or acquisition of knowledge, its retention and organization, its dissemination and re-use, and general responsiveness to the new knowledge. The focus of this research is the assessment of KM practices, particularly creation, acquisition, capture, sharing, recording and preservation, and their effects on Library User’s Satisfaction (LUS) in Malaysian university libraries. The objective of this research is the development of a model to enhance KM processes (i.e. Creation, acquisition, capturing, sharing, recording, and preserving) and to improve library users’ satisfaction. A quantitative approach in research methodology is employed (e.g. Questionnaire) for the purpose of generating new knowledge and understanding of library concerns. The findings of this research show that the overall KM practice at six Malaysian university libraries is at a high level. The findings from the structural model indicated that two KM processes, namely knowledge creation and acquisition, are not supported in terms of KM practices at Malaysian university libraries. Other KM processes, namely capturing, sharing, recording, and preserving are fully supported towards KM practices in the library. Hence, the major contribution of this research is a model, namely KM Practice-Library User’s Satisfaction (KMP-LUS) highlighting six KM processes based on strong Structural Equation Modeling (SEM) fit indices

    Analysis of swirling flow in hydrocyclones operating under dense regime

    Get PDF
    There are many circumstances where hydrocyclone performance and dense flow are intertwined, such as for example when feed solids flow exceeds hydrocyclone capacity during continuous operations. The work reported here, which is part of an ongoing research effort to develop a robust CFD model for prediction of hydrocyclone performance, focuses on hydrocyclone operation under high solids concentration. The paper presents the basic physics framework that accounts for solid–liquid and solid–solid interactions under hydrocyclone’s swirling flow. Operating conditions that are past the transition from spray to rope regime are deliberately chosen for this purpose. Model predictions are validated by comparison with solids split and separation curves measured on a 100 mm diameter hydrocyclone. CFD model predictions permit taking an insightful look at the inside of a hydrocyclone under extreme operating conditions, which would be difficult to achieve experimentally. Velocity profiles, G-force distribution and distribution of solids predicted by CFD are bound to lead to a better understanding of the separation that takes place inside a hydrocyclone, which may eventually help improve hydrocyclone design and performance

    Numerical study of asymmetric keel hydrodynamic performance through advanced CFD

    Get PDF
    The hydrodynamics of an asymmetric IACC yacht keel at angle of yaw are presented using simulations performed by advanced computational fluid dynamics using state-of-the-art software. The aim of the paper is to continue working on the improvement of numerical viscous flow predictions for high-performance yachts using Large Eddy Simulation and Detached Eddy Simulation on unstructured grids. Quantitative comparisons of global forces acting on the keel and wake survey are carried out. Qualitative comparisons include flow visualisation, unsteady and separated flow and other features. Star-CCM+ and the trimmed cell method give better forces and wake prediction compared to the unstructured mesh of ANSYS Fluent. Both solvers give good flow visualisation near and far field of the keel
    • 

    corecore