6,238 research outputs found

    Construction of ATS Cloud Console Final Report

    Get PDF
    ATS cloud console for rapid analysis of cloud image sequence

    Management of spatial data for visualization on mobile devices

    Get PDF
    Vector-based mapping is emerging as a preferred format in Location-based Services(LBS), because it can deliver an up-to-date and interactive map visualization. The Progressive Transmission(PT) technique has been developed to enable the ecient transmission of vector data over the internet by delivering various incremental levels of detail(LoD). However, it is still challenging to apply this technique in a mobile context due to many inherent limitations of mobile devices, such as small screen size, slow processors and limited memory. Taking account of these limitations, PT has been extended by developing a framework of ecient data management for the visualization of spatial data on mobile devices. A data generalization framework is proposed and implemented in a software application. This application can signicantly reduce the volume of data for transmission and enable quick access to a simplied version of data while preserving appropriate visualization quality. Using volunteered geographic information as a case-study, the framework shows exibility in delivering up-to-date spatial information from dynamic data sources. Three models of PT are designed and implemented to transmit the additional LoD renements: a full scale PT as an inverse of generalisation, a viewdependent PT, and a heuristic optimised view-dependent PT. These models are evaluated with user trials and application examples. The heuristic optimised view-dependent PT has shown a signicant enhancement over the traditional PT in terms of bandwidth-saving and smoothness of transitions. A parallel data management strategy associated with three corresponding algorithms has been developed to handle LoD spatial data on mobile clients. This strategy enables the map rendering to be performed in parallel with a process which retrieves the data for the next map location the user will require. A viewdependent approach has been integrated to monitor the volume of each LoD for visible area. The demonstration of a exible rendering style shows its potential use in visualizing dynamic geoprocessed data. Future work may extend this to integrate topological constraints and semantic constraints for enhancing the vector map visualization

    Location prediction based on a sector snapshot for location-based services

    Get PDF
    In location-based services (LBSs), the service is provided based on the users' locations through location determination and mobility realization. Most of the current location prediction research is focused on generalized location models, where the geographic extent is divided into regular-shaped cells. These models are not suitable for certain LBSs where the objectives are to compute and present on-road services. Such techniques are the new Markov-based mobility prediction (NMMP) and prediction location model (PLM) that deal with inner cell structure and different levels of prediction, respectively. The NMMP and PLM techniques suffer from complex computation, accuracy rate regression, and insufficient accuracy. In this paper, a novel cell splitting algorithm is proposed. Also, a new prediction technique is introduced. The cell splitting is universal so it can be applied to all types of cells. Meanwhile, this algorithm is implemented to the Micro cell in parallel with the new prediction technique. The prediction technique, compared with two classic prediction techniques and the experimental results, show the effectiveness and robustness of the new splitting algorithm and prediction technique

    Composite structural materials

    Get PDF
    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described

    Photoheliograph study for the Apollo telescope mount

    Get PDF
    Photoheliograph study for Apollo telescope moun
    • …
    corecore