1,247 research outputs found

    HEART MONITORING VIA WIRELESS ECG

    Get PDF
    The monitoring of heart had been a complex task. Acquiring ECG of the chronic patient spending most of their time outside the hospital had been a trivial task. Recording of ECG of such patients using wireless method is further challenging. This paper presents various methods of wireless ECG acquisition, their limitations and challenges. Cardiomobile, Flexible wireless ECG are the examples of such systems that are available in the medical world for wireless ECG

    A novel wavelet-based filtering strategy to remove powerline interference from electrocardiograms with atrial fibrillation

    Full text link
    This is an author-created, un-copyedited versíon of an article published in Physiological Measurement. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at http://doi.org/10.1088/1361-6579/aae8b1[EN] Objective: The electrocardiogram (ECG) is currently the most widely used recording to diagnose cardiac disorders, including the most common supraventricular arrhythmia, such as atrial fibrillation (AF). However, different types of electrical disturbances, in which power-line interference (PLI) is a major problem, can mask and distort the original ECG morphology. This is a significant issue in the context of AF, because accurate characterization of fibrillatory waves (f-waves) is unavoidably required to improve current knowledge about its mechanisms. This work introduces a new algorithm able to reduce high levels of PLI and preserve, simultaneously, the original ECG morphology. Approach: The method is based on stationary wavelet transform shrinking and makes use of a new thresholding function designed to work successfully in a wide variety of scenarios. In fact, it has been validated in a general context with 48 ECG recordings obtained from pathological and non-pathological conditions, as well as in the particular context of AF, where 380 synthesized and 20 long-term real ECG recordings were analyzed. Main results: In both situations, the algorithm has reported a notably better performance than common methods designed for the same purpose. Moreover, its effectiveness has proven to be optimal for dealing with ECG recordings affected by AF, sincef-waves remained almost intact after removing very high levels of noise. Significance: The proposed algorithm may facilitate a reliable characterization of thef-waves, preventing them from not being masked by the PLI nor distorted by an unsuitable filtering applied to ECG recordings with AF.Research supported by grants DPI2017-83952-C3 MINECO/AEI/FEDER, UE and SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha.García, M.; Martínez, M.; Ródenas, J.; Rieta, JJ.; Alcaraz, R. (2018). A novel wavelet-based filtering strategy to remove powerline interference from electrocardiograms with atrial fibrillation. Physiological Measurement. 39(11):1-15. https://doi.org/10.1088/1361-6579/aae8b1S115391

    Artificial Intelligence for Noninvasive Fetal Electrocardiogram Analysis

    Get PDF

    Influence of the Main Filter on QRS-amplitude and Duration in Human Electrocardiogram.

    Get PDF
    Accurate measurement of electrocardiograms (ECG) is critical for effective diagnosis of patient’s cardiac functions. Detailed examination of filters’ effects on ECG accuracy, reproducibility and robustness covering a wide range of available commercial products can provide valuable information on the relationship between quality and effectiveness of filters, and assessments of patients’ cardiac functions. In this study, ECG device with 12 leads and built-in filters used for ECG measurements was assessed on human volunteers. Results showed that with respect to measuring QRS wave duration and R-amplitude variation, there was a 4 % inaccuracy when the main filter was ON and OFF, and R-amplitude variation was most pronounced in the V4 lead. Accordingly, variability of R-amplitude and length of QRS wave can be reduced by the use of appropriate lead, and filter activation during the ECG assessment

    Smart helmet: wearable multichannel ECG & EEG

    Get PDF
    Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet

    ECG classification using an optimal temporal convolutional network for remote health monitoring

    Get PDF
    Increased life expectancy in most countries is a result of continuous improvements at all levels, starting from medicine and public health services, environmental and personal hygiene to the use of the most advanced technologies by healthcare providers. Despite these significant improvements, especially at the technological level in the last few decades, the overall access to healthcare services and medical facilities worldwide is not equally distributed. Indeed, the end beneficiary of these most advanced healthcare services and technologies on a daily basis are mostly residents of big cities, whereas the residents of rural areas, even in developed countries, have major difficulties accessing even basic medical services. This may lead to huge deficiencies in timely medical advice and assistance and may even cause death in some cases. Remote healthcare is considered a serious candidate for facilitating access to health services for all; thus, by using the most advanced technologies, providing at the same time high quality diagnosis and ease of implementation and use. ECG analysis and related cardiac diagnosis techniques are the basic healthcare methods providing rapid insights in potential health issues through simple visualization and interpretation by clinicians or by automatic detection of potential cardiac anomalies. In this paper, we propose a novel machine learning (ML) architecture for the ECG classification regarding five heart diseases based on temporal convolution networks (TCN). The proposed design, which implements a dilated causal one-dimensional convolution on the input heartbeat signals, seems to be outperforming all existing ML methods with an accuracy of 96.12% and an F1 score of 84.13%, using a reduced number of parameters (10.2 K). Such results make the proposed TCN architecture a good candidate for low power consumption hardware platforms, and thus its potential use in low cost embedded devices for remote health monitoring

    Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Get PDF
    Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system

    Improving Maternal and Fetal Cardiac Monitoring Using Artificial Intelligence

    Get PDF
    Early diagnosis of possible risks in the physiological status of fetus and mother during pregnancy and delivery is critical and can reduce mortality and morbidity. For example, early detection of life-threatening congenital heart disease may increase survival rate and reduce morbidity while allowing parents to make informed decisions. To study cardiac function, a variety of signals are required to be collected. In practice, several heart monitoring methods, such as electrocardiogram (ECG) and photoplethysmography (PPG), are commonly performed. Although there are several methods for monitoring fetal and maternal health, research is currently underway to enhance the mobility, accuracy, automation, and noise resistance of these methods to be used extensively, even at home. Artificial Intelligence (AI) can help to design a precise and convenient monitoring system. To achieve the goals, the following objectives are defined in this research: The first step for a signal acquisition system is to obtain high-quality signals. As the first objective, a signal processing scheme is explored to improve the signal-to-noise ratio (SNR) of signals and extract the desired signal from a noisy one with negative SNR (i.e., power of noise is greater than signal). It is worth mentioning that ECG and PPG signals are sensitive to noise from a variety of sources, increasing the risk of misunderstanding and interfering with the diagnostic process. The noises typically arise from power line interference, white noise, electrode contact noise, muscle contraction, baseline wandering, instrument noise, motion artifacts, electrosurgical noise. Even a slight variation in the obtained ECG waveform can impair the understanding of the patient's heart condition and affect the treatment procedure. Recent solutions, such as adaptive and blind source separation (BSS) algorithms, still have drawbacks, such as the need for noise or desired signal model, tuning and calibration, and inefficiency when dealing with excessively noisy signals. Therefore, the final goal of this step is to develop a robust algorithm that can estimate noise, even when SNR is negative, using the BSS method and remove it based on an adaptive filter. The second objective is defined for monitoring maternal and fetal ECG. Previous methods that were non-invasive used maternal abdominal ECG (MECG) for extracting fetal ECG (FECG). These methods need to be calibrated to generalize well. In other words, for each new subject, a calibration with a trustable device is required, which makes it difficult and time-consuming. The calibration is also susceptible to errors. We explore deep learning (DL) models for domain mapping, such as Cycle-Consistent Adversarial Networks, to map MECG to fetal ECG (FECG) and vice versa. The advantages of the proposed DL method over state-of-the-art approaches, such as adaptive filters or blind source separation, are that the proposed method is generalized well on unseen subjects. Moreover, it does not need calibration and is not sensitive to the heart rate variability of mother and fetal; it can also handle low signal-to-noise ratio (SNR) conditions. Thirdly, AI-based system that can measure continuous systolic blood pressure (SBP) and diastolic blood pressure (DBP) with minimum electrode requirements is explored. The most common method of measuring blood pressure is using cuff-based equipment, which cannot monitor blood pressure continuously, requires calibration, and is difficult to use. Other solutions use a synchronized ECG and PPG combination, which is still inconvenient and challenging to synchronize. The proposed method overcomes those issues and only uses PPG signal, comparing to other solutions. Using only PPG for blood pressure is more convenient since it is only one electrode on the finger where its acquisition is more resilient against error due to movement. The fourth objective is to detect anomalies on FECG data. The requirement of thousands of manually annotated samples is a concern for state-of-the-art detection systems, especially for fetal ECG (FECG), where there are few publicly available FECG datasets annotated for each FECG beat. Therefore, we will utilize active learning and transfer-learning concept to train a FECG anomaly detection system with the least training samples and high accuracy. In this part, a model is trained for detecting ECG anomalies in adults. Later this model is trained to detect anomalies on FECG. We only select more influential samples from the training set for training, which leads to training with the least effort. Because of physician shortages and rural geography, pregnant women's ability to get prenatal care might be improved through remote monitoring, especially when access to prenatal care is limited. Increased compliance with prenatal treatment and linked care amongst various providers are two possible benefits of remote monitoring. If recorded signals are transmitted correctly, maternal and fetal remote monitoring can be effective. Therefore, the last objective is to design a compression algorithm that can compress signals (like ECG) with a higher ratio than state-of-the-art and perform decompression fast without distortion. The proposed compression is fast thanks to the time domain B-Spline approach, and compressed data can be used for visualization and monitoring without decompression owing to the B-spline properties. Moreover, the stochastic optimization is designed to retain the signal quality and does not distort signal for diagnosis purposes while having a high compression ratio. In summary, components for creating an end-to-end system for day-to-day maternal and fetal cardiac monitoring can be envisioned as a mix of all tasks listed above. PPG and ECG recorded from the mother can be denoised using deconvolution strategy. Then, compression can be employed for transmitting signal. The trained CycleGAN model can be used for extracting FECG from MECG. Then, trained model using active transfer learning can detect anomaly on both MECG and FECG. Simultaneously, maternal BP is retrieved from the PPG signal. This information can be used for monitoring the cardiac status of mother and fetus, and also can be used for filling reports such as partogram

    Biomedical Applications of the Discrete Wavelet Transform

    Get PDF
    corecore