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Abstract: Increased life expectancy in most countries is a result of continuous improvements at
all levels, starting from medicine and public health services, environmental and personal hygiene
to the use of the most advanced technologies by healthcare providers. Despite these significant
improvements, especially at the technological level in the last few decades, the overall access to
healthcare services and medical facilities worldwide is not equally distributed. Indeed, the end
beneficiary of these most advanced healthcare services and technologies on a daily basis are mostly
residents of big cities, whereas the residents of rural areas, even in developed countries, have major
difficulties accessing even basic medical services. This may lead to huge deficiencies in timely
medical advice and assistance and may even cause death in some cases. Remote healthcare is
considered a serious candidate for facilitating access to health services for all; thus, by using the most
advanced technologies, providing at the same time high quality diagnosis and ease of implementation
and use. ECG analysis and related cardiac diagnosis techniques are the basic healthcare methods
providing rapid insights in potential health issues through simple visualization and interpretation
by clinicians or by automatic detection of potential cardiac anomalies. In this paper, we propose a
novel machine learning (ML) architecture for the ECG classification regarding five heart diseases
based on temporal convolution networks (TCN). The proposed design, which implements a dilated
causal one-dimensional convolution on the input heartbeat signals, seems to be outperforming all
existing ML methods with an accuracy of 96.12% and an F1 score of 84.13%, using a reduced number
of parameters (10.2 K). Such results make the proposed TCN architecture a good candidate for low
power consumption hardware platforms, and thus its potential use in low cost embedded devices for
remote health monitoring.

Keywords: ECG; temporal convolution; TCN; healthcare

1. Introduction

Electrocardiogram (ECG) is a rapid bedside inspection that measures the electrical
activity generated by the heart as it contracts. It is commonly used to recognize diverse
heart diseases such as arrhythmia, cardiomyopathy, coronary heart disease, cardiovascular
disease, and many others. The inspection process has always been carried out by physicians
and clinicians, which is a time-consuming procedure requiring significant medical and
human resources to process the large amount of ECG data [1]. On the other hand, due to the
diversity of ECG signals, many issues could arise, making this process of ECG inspection
even more challenging. For example, the ECG of two healthy people may not be completely
similar. Moreover, two patients suffering from the same heart disease could show different
signs in their ECGs. Another issue could be that two different diseases have very close
signals at the ECG level. It seems that there are no definite standards to be used in the
diagnosis process [2]. For that reason, the use of artificial intelligence (AI) methods are
needed, as these methods are learnable through accumulated experiences such that they
could find hidden patterns that humans cannot find.

Sensors 2023, 23, 1697. https://doi.org/10.3390/s23031697 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031697
https://doi.org/10.3390/s23031697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/https://orcid.org/0000-0001-9783-114X
https://orcid.org/https://orcid.org/0000-0001-6459-7043
https://orcid.org/https://orcid.org/0000-0002-5088-1462
https://orcid.org/https://orcid.org/0000-0001-6334-3084
https://doi.org/10.3390/s23031697
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031697?type=check_update&version=1


Sensors 2023, 23, 1697 2 of 16

The computerized analysis of ECG signals was mainly meant to improve the diagnosis
process, save time, and target rural and remote regions where medical specialists are not
always affordable [3]. To this end, millions of ECG schemes are recorded worldwide every
year, where most of them are automatically analyzed and decided afterwards. However,
a false analysis is very likely, especially in the case of inexperienced clinicians who might
endorse any automated results without further analysis. Such clinical mismanagement
mostly ends up with a useless or even dangerous treatment. Thus, it becomes necessary
that the ECG results are read and approved by well-experienced physicians. On the other
hand, doctors highly recommend the modernization of existing computerized ECG analysis
methods as well as the improvement of their robustness for more reliable medication.

Machine learning (ML) has proven to be eminently successful in different classification
problems. This opened the door for its use in ECG analysis problems, and various ML-based
methods have been recorded in this domain. In [4], ECG signals of normal people are
collected and compared to ECG signals under tests using cross-correlation techniques. This
allows for the detection of ECG signals of patients with myocardial infarction with an
accuracy of 91.5% and a F1 score of 90.8%. In [5], a hybrid model of a decision tree with the
C4.5 algorithm is applied on ECG features after they have been extracted using the genetic
algorithm. The model was tested on the UCI arrhythmia dataset in two modes: 2-class and
16-class, ending up with highest evaluation metrics that have been recorded for the UCI
arrhythmia dataset. In [6], two life-threatening arrhythmias, AFIB and AFL, are considered.
A residual deep neural network architecture is proposed to detect the presence of such
arrhythmias based on the RR interval of the ECG signals. The inputs are first extracted,
denoised, and then normalized before being introduced to the network. A 10-fold cross-
validation is carried out in training, leading to massive results in terms of accuracy and other
metrics. In [7], the authors introduced a model based on a feed-forward multilayer neural
network with error back propagation learning algorithm for the diagnosis of ischemic
heart disease. The resulting high-order statistics facilitate the discrimination between
the nonlinear dynamics of normal and diseased cases. Another feed-forward network
for the same task was proposed in [8]. The network is deeper in terms of used layers,
which makes it capable of classifying 6 ECG abnormalities that are representative of both
rhythmic and morphological ECG abnormalities. The authors in this paper emphasize the
need for expert review of borderline and complex cases after any automated classification.
On the other hand, different prevalent deep learning architectures such as GoogLeNet,
ResNet, and LSTM have shown great performance in the ECG domain [9–11]. This comes
at the cost of storage and computation, as these models include millions of learnable
parameters. Therefore, the adoption of such networks in hardware applications is often
avoided. Other studies showing different cardiopathologies can also be considered in
the future [12]. The main problem of machine learning methods that are data-driven
remains the availability of datasets and different conditions of acquisition between different
available datasets.

Convolution neural networks (CNN) are mainly intended for visual imagery analysis
and computer vision tasks. However, with the great success these networks have shown in
classification tasks, they started to be involved in automated ECG analysis as well. Nev-
ertheless, the performance of convolutional networks could degrade due to the impurity
of data as well as the imbalance in the number of examples between classes. For that,
it is often required to utilize some effective data augmentation techniques with the raw
data before the recruitment of robust-to-data convolutional network models. In this paper,
we present an optimal architecture for sequential data processing based on 1D Temporal
Convolutional Networks (TCN). A database of five classes named ECG5000 [13], originally
established from the BIDMC Congestive Heart Failure Database [14], is considered in our
study. The ECG database signals used are noise-free clean, which makes them ready for
use without any preprocessing. Each sample includes a single heartbeat. The ECG5000
database is enhanced by three data augmentation techniques for better performance of
the network. The network involves various diluted causal one-dimensional convolutions
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with padding. As a result, the output signal is the same length as the input heartbeat.
The convolution layers are followed by a softmax unit that matches the heartbeats with
their classes. Accordingly, the network is evaluated. Due to the unique internal design
of TCNs, these networks are lighter in weight, faster, and more stable than conventional
convolutional networks. This allows the implementation of efficient embedded systems
suited to remote health monitoring systems. ECG analysis devices are thus realized using
low complexity and power consumption hardware.

The rest of the paper is organized as follows: in Section 2, we provide a background
on the machine learning methods used in ECG analysis. In Section 3, we present in detail
our proposed temporal convolution network architecture; next we demonstrate the data
augmentation techniques applied to the ECG data and designate the values used in the
training process; and lastly we explain the standard used in the evaluation of the network.
In Section 4, we display the results of the multiple trials that we carried out and compare
our optimized model to some existing machine learning networks implemented on the
same dataset. The whole paper is summarized and concluded in Section 5.

2. Background and Related Work

A large part of the world’s population resides in a spread-out remote or rural area.
In these rural and remote areas, besides other basic needs of life, the overall access to
medical facilities ranges from difficult to deficient, and the availability of doctors is scarce.
The deficiency of timely medical advice and assistance to the patients, due to distance
and lack of adequate infrastructure, is the source of critical situations and may lead to
death in some cases. Remote health care is considered a serious candidate for facilitating
access to health services for all. Sensing and actuating technologies along with big data
analysis provide basic building blocks for remote health monitoring (RHM). The concept of
RHM is not new, but newer and efficient systems are still being designed to overcome the
weaknesses of existing systems, especially for rural areas. Indeed, in rural areas, the main
challenges are related to communication latency and bandwidth availability, autonomy
and energy consumption, and low cost devices.

In the context of SAFE-RH (Sensing, ArtiFicial intelligence, and Edge networking
towards Rural Health monitoring), a framework is proposed to cope with the above-
mentioned problems by sending (and thus recording permanently) only the relevant data.
Indeed, these relevant data to send are related to generation of alarms identified mostly by
AI or machine learning (ML) driven methods, and thus significantly limit the bandwidth
cost and communication overhead. Figure 1 shows the overall architecture of the proposed
RHM system where ECG related flow is depicted in red.

The study of ECG signals has become an essential tool in the clinical diagnosis of
various heart diseases. This study is mainly based on the detailed characteristics of the
ECG signal. In detail, an ECG signal is composed of numerous heartbeats connected
together. Each heartbeat consists of different parts, namely: P wave, QRS complex, and T
wave (see Figure 2). A normal heartbeat is characterized by given amplitude values for
its peaks (P, Q, R, S, T, and U), as well as given duration values for its intervals (PR, RR,
QRS, ST, and QT) and segments (PR and ST). The variation of any of these values indicates
a certain abnormality at the diagnosis level. More details of an ECG beat can be found
in [15]. These peaks, intervals, and segments are called the ECG features, on which the
ECG classification is mainly based. The ECG classification problem is often a multi-class
classification problem. It includes several classes not limited to: normal (N), right bundle
branch block (RBBB), and left bundle branch block (LBBB). An ECG classification process
involves multiple steps starting from signal preprocessing, feature extraction, then nor-
malization, and ending with classification. In the first phase, signals are filtered to remove
any kind of possible noise that could affect the extraction of the features. This includes
powerline interference [16], EMG noise [17], baseline wander [18], and electrode motion
artifacts [19]. Various techniques are proposed for noise removal such as low and high pass
linear phase filters. For baseline adjustment, techniques such as linear phase high pass
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filter, median filter, and mean median filter are usually employed. In the second phase,
the main features are collected to be used as inputs to a classification model. The commonly
used techniques for this purpose are: Continuous Wavelet Transform (CWT) [20], Discrete
Wavelet Transform (DWT) [21], Discrete Fourier Transform (DFT) [22], Discrete Cosine
Transform (DCT) [23], S-Transform (ST) [24], Principal Component Analysis (PCA) [25],
Pan–Tompkins Algorithm [26], Daubechies Wavelet (Db4) [27], and Independent Com-
ponent Analysis (ICA) [28]. For the normalization of the features, two main approaches
are commonly used: Z-score [29] and Unity Standard Deviation (SD) [30]. Finally, in the
classification stage, different models are utilized such as: Multilayer Perceptron Neural Net-
work (MLPNN) [31], Quantum Neural Network (QNN) [32], Radial Basis Function Neural
Network (RBFNN) [33], Fuzzy C-Means Clustering (FCM) [34], ID3 Decision Tree [35], Sup-
port Vector Machine (SVM) [36], Type2 Fuzzy Clustering Neural Network (T2FCNN) [37],
and Probabilistic Neural Network (PNN) [38].

Figure 1. Overall framework of remote health monitoring in rural areas. In red is the flow related to
ECG data. The classification is done by embedding intelligence near sensors and sending only alarms.
If necessary, raw data can be sent to fog or cloud for further analysis or storage.
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Figure 2. Normal ECG waveform.
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Different ECG classifications have been recorded. In [39], the authors established a
four-class ECG classification problem using the RR intervals as inputs. The data were
collected from the MIT-BIH arrhythmia database. The raw signals were first subjected
to baseline adjustment. After that, the RR intervals were extracted using DWT and then
normalized using Z-score. The classification was done using FCM with an accuracy of
99.05%. No other metrics were calculated. The same authors considered in [40] another
four-class ECG classification problem using the same database but with different classes.
The features used were the RR intervals and the R point location. The feature extraction
was done using DWT with Daubechies wavelet of order 3. The outputs were classified at
two stages: preclassification using FCM and final classification using a three-layer MLPNN.
The final accuracy was up to 99.99%. A two-class problem was demonstrated in [41] using
the MIT-BIH arrhythmia database. The RR interval and R location were extracted using
Db4 discrete wavelet transform. An FFNN, trained with back propagation algorithm, was
used as a classifier. The final results showed an accuracy of 95%, a sensitivity of 90%,
and a specificity of 90%. Another two-class ECG classification problem was investigated
in [42]. Data were collected from the two databases: MIT-BIH arrhythmia and normal
sinus rhythm. Noise was removed by band pass filter. The features, RR interval and
R peak, were first extracted using DWT and then normalized by zero mean. An FFNN,
with error back propagation algorithm, was used for classification. The performance of
the model was estimated by the calculation of the classification accuracy (96.77%) and
Youden index (0.9415). In [43], the authors constructed an ECG classification model for six
classes. Data were collected from the MIT-BIH arrhythmia database. The utilized features
were QRSh (QRS complex height), QRS width, R peak, RRt interval (current RR interval at
time t), and RRt+1 interval (next RR interval at time t+1). The Pan–Tompkins algorithm
was used in feature extraction. A low pass linear phase filter was built for noise removal,
whereas a median filter was built for baseline correction. Outputs were classified using a
particle swarm optimization (PSO) RBFNN. The sensitivity and specificity of the model
were 96.251% and 99.104%, respectively. In [44], an ECG classifier was built based on the
MIT-BIH arrhythmia database for the classification of eight heart diseases. The involved
features, R peak, QRS segment, and RR interval were normalized before being fed into the
classification model consisting of a PNN (radial basis layer and competitive layer) and a
three-layer FFNN with back propagation algorithm, using zero mean and unity standard
deviation. The model evaluation showed a sensitivity of 98.508%, a specificity of 99.906%,
and an overall accuracy of 98.710%. Another ECG classifier was investigated in [45] using
the MIT-BIH arrhythmia database. R peak and RR interval were extracted by the use of
DWT, whereas the classification process was done by an MLPNN. The model was shown
to be reliable with a mean square error of 0.00621.

Convolution neural networks (CNN) have also been involved in ECG analysis. In [46],
a 2D CNN approach for ECG classification is investigated. The sequential vectors rep-
resenting the heartbeats are transformed into binary images via one-hot encoding [47]
before being introduced to the network. The morphology of the heartbeats as well as the
temporal relationship between every two adjacent heartbeats is captured in such images.
The learning process is accelerated using ADADELTA [48], a per-dimension learning rate
method for gradient descent. The network also involves a biased dropout [49] to mitigate
the overfitting of the network. The network, when tested on the MIT-BIH arrhythmia
database, has shown to be highly effective in the detection of various cardiovascular dis-
eases. Another work is investigated in [50]. A 1D CNN approach for arrhythmia detection
is proposed. The sequential data are extracted using two leads and then injected directly
into the network without any preprocessing. Although the network achieves high accuracy
when tested on the MIT-BIH database, some classes are hardly recognized. This can be the
result of the impurity of the data as well as the imbalance between classes.



Sensors 2023, 23, 1697 6 of 16

3. Method
3.1. Proposed Architecture

Until recently, sequential data was mostly analyzed and modelled using recurrence-
dependent networks such as recurrent neural networks and LSTM architectures. However,
the most problematic issue that arises in training such networks is the vanishing or explod-
ing of gradients. In other words, the network is often incapable of learning its weights
from long-past values. For that, convolutional neural networks, widely used for computer
vision and visual imagery tasks, are currently used for signal processing as well, under the
name 1D Temporal Convolutional Network (1D TCN). The convolution in a TCN is uni-
dimensional, causal, and dilated. A causal convolution means that the computation at a
given unit of the network only depends on present and past values; this suits sequential
data where each point of a sequence depends on previous ones. On the other side, dilation
is set to increase the sparsity of a kernel so that the receptive field of the convolution layer
can be enlarged without using additional parameters. Note that a receptive field is the
region in the input that produces a feature at the output. The receptive field (R) of a dilated
convolution layer with factor d is R = d(k− 1).

To build up a TCN, multiple convolution layers are stacked above each other as shown
in Figure 3. The dilation factor of layer i ≥ 1 is defined as di = 2i−1; this leads to an
exponential growth of the receptive field size. Finally, with the scheme shown above,
the receptive field of a TCN of l layers and convolution kernels of size k is defined as:

R = 2l(k− 1). (1)

The convolution in a TCN layer is defined as follows:

F(x(t)) = (x ~d f )(t) =
k

∑
j=0

f (j)x(t− d · j) (2)

where x is the input sequence, d is the dilation factor, and f is a convolution filter of size
k applied at time t. It should be noted that an input sequence of length n is introduced to
the above vanilla 1D convolution layer in order to generate an output sequence of length
n− k + 1. A zero padding of length k− 1 is often applied at the beginning of the sequence
so that the length of the sequence is preserved.

Active neuron

Inactive neuron

Active path

Inactive path

Output

Input

Hidden

Hidden

𝑑 = 1

𝑑 = 2

𝑑 = 4

Figure 3. Dilated causal convolution in a TCN of four layers.

The full TCN model that we propose in this work is demonstrated in Figure 4. It is
made up of multiple residual blocks, followed by a fully connected layer (FC), a softmax
function, and a classifier. Each block contains a group of layers and a skip connection
that links its input to its output. A 1× 1 convolution is set on the skip connection of the
first block in case the input and output mismatch in size. The skip connection is mainly
used to revive gradients so that they can flow from one block to another without passing
through non-linear activation functions. This, along with the dilation property of the
utilized convolution, helps in solving the gradients’ exploding/fading issues. Within a
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residual block, the layers can be described as two sets connected in series where each set
is composed of a dilated causal convolution layer, followed by layer normalization and
spatial dropout layers. After the second normalization layer, a rectified linear unit (ReLU)
is added. Note that the two convolution layers are identical (same filters and dilation
factor) in one block, whereas they differ from one block to another. A normalization layer
is added for faster and better performance of the TCN. It helps improve the stability of the
network in case the weight’s initialization or the used regularization techniques are not
helpful. This occurs by normalizing each of the inputs in the batch independently across
all channels (features) using the mean and variance values [51]. This is different from batch
normalization, mainly used in conventional convolutional networks, where normalization
takes place at the level of batches in each channel separately. Layer normalization is
well suited for sequence data where, unlike batch normalization, the batch size has no
role. This allows the processing of large input sequences using any batch size for data
division. Moreover, with layer normalization, parallelization is easily implemented with
no need to have communication and synchronization between the different computing
engines, as each one is computing separate data. On the other hand, in the dropout layer,
some of the neurons are randomly deactivated during the network training. This aims
to provide different forms of the network while training to avoid overfitting afterwards.
Finally, the rectified linear unit (ReLU) performs a threshold operation on its input, where
any element of a value less than zero is set to zero. This is done to achieve a non-linear
transformation of the data so that they can be linearly separable during classification.
The used values of the model hyperparameters can all be found in Section 4.

Dilated causal 1𝑑 convolution, Filter length 𝐾𝑇 Layer normalization

Dropout  (factor=0.3) ReLU Softmax

𝑇 = 140 (0.56𝑠)

1 × 𝑇 𝐹𝑇 × 𝑇 𝐹𝑇 × 𝑇 𝐹𝑇 × 𝑇𝐹𝑇 × 𝑇

𝐹𝑇 × 𝑇 5Block 1 Block 3 Block 4Block 2

FC

𝑑 = 8𝑑 = 4𝑑 = 2𝑑 = 1

1 × 1 convolution

Figure 4. TCN architecture for ECG heartbeat classification. The input signal is made of 140 points
(0.56 s). Number of filters is FT. Filter length is KT. Dilation factors of blocks are 1, 2, 4, and 8, respectively.

Temporal convolution networks have been shown to outperform recurrent neural
networks [52]. In terms of memory, the sparse kernels in TCNs allow the prediction of a
time series from their long-past values using a very low number of parameters. In recurrent
networks, this is done by the use of cycles and condensed recurrent connections, resulting
in a large number of parameters. Moreover, the internal structure of a TCN is independent
of the input signal. This allows the processing of excessively long sequences using a small
TCN structures. Additionally, the receptive field size in such networks is easily tuned
by modifying the number of layers, the filter size, and the dilation factors; this facilitates
control of the model’s memory for various requirements. In terms of performance, temporal
convolution networks are much faster than recurrent networks. This is due the fact that
these networks compute their outputs in parallel. On the other side, the structure of a TCN
leads to more stable gradients where these gradients vary in the direction of the layers not
in the temporal direction (also thanks to the residual connections). Temporal convolution
networks are not without flaws. Indeed, these networks do not function well in the case
of domain transfer especially from a domain that requires a short history to another that
requires a long one.

3.2. Data Augmentation

In terms of classification problems, the lack of sufficient training samples of certain
classes is often fixed by using data augmentation techniques. This occurs by adding
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new copies of the existing samples of the deficient classes after applying certain minor
alterations or using machine learning models to generate new examples in the latent space
of the original data. Various techniques can be found in the literature for the augmentation
of image data such as rotation, flipping, cropping, and color transformation [53]. Such
mechanisms preserve the main features of an image while providing a bigger space for
training. This seems more complicated in the case of one-dimensional data. In this work,
we propose three simple types of data augmentation that can be applied to the ECG signals:
amplitude shifting, time shifting, and amplification. Amplitude shifting, as shown in
Figure 5a, means moving the signal a certain number of steps either upward or downward.
Time shifting is presented in Figure 5b; it is about moving the signal a given number of
steps either to the right or to the left. Amplification, as shown in Figure 5c, is done by
vertically extending the signal by a certain ratio. Like conventional 2D data augmentation
techniques, these proposed techniques, along with many others, provide additional data
for use in training while preserving the main features of a signal.

Original
Shifted Upward
Shifted Downward

(a) Amplitude shifting

Original
Shifted Leftward
Shifted Rightward

(b) Time shifting

Original
Amplified

(c) Amplification

Figure 5. Data augmentation techniques applied to the classes PVC, SP, and UB of the
ECG5000 dataset.

3.3. Training Process

The general TCN model, proposed in Section 3.1 and shown in Figure 4, is trained
using Adam optimizer on batches of size 20 at a learning rate of 0.0025. Different trials are
carried out, as will be shown in Section 4, by changing the number of blocks, the number of
filters, the filters’ size, and the applied data augmentation techniques. The training process
lasts for 250 epochs. The dropout ratio of all dropout layers is 0.3. The raw dataset (before
augmentation) is divided into two sets: training dataset and testing dataset, with a ratio of
90 : 10. The training dataset is shuffled once before use, and no cross-validation is applied.
On the other hand, the evaluation of the network is done on the testing dataset at the end of
every epoch. The final accuracy is chosen at the epoch where the parameters of the network
produce the minimum loss.

3.4. Network Evaluation

Classification model performance is mostly evaluated based on the “confusion ma-
trix” [54]. This is a quite common measure that can be applied to both binary and multiclass
classification problems where the counts of predicted and actual outcomes are all represented.
For each class, four quantities can be identified: TP, FP, TN, and FN. The term “TP” denotes
True Positive, which represents the number of positive examples that are correctly classified
by the model. Similarly, the term “TN” stands for True Negative, which represents the number
of negative examples that are correctly classified. The term “FP” stands for False Positive,
which is the number of negative examples classified by the model as positive; whereas the
term “FN” denotes False Negative, i.e., the number of positive examples classified as negative.
The most commonly used criterion in the evaluation of a classification model is accuracy,
which presents the fraction of true examples over all examples:

Accuracy =
All correct

All
=

TP + TN
TP + TN + FP + FN

. (3)
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However, the accuracy defined in Equation (3) can be misleading when the datasets
used for training and test purposes are imbalanced. For that, there are other metrics that
could be involved in the evaluation process for better analysis: precision and sensitivity.
Precision is the proportion of correctly classified positive cases, i.e., the fraction of positive
examples over the total predicted positive examples. On other hand, sensitivity is the
proportion of correctly recognized actual positive cases, i.e., the fraction of positive instances
over the total actual positive instances. The formulas are defined below:

Precision =
True Positives

Predicted Positives
=

TP
TP + FP

;

Sensitivity =
True Positives

All Actual Positives
=

TP
TP + FN

.

It should be noted that the two quantities above are computed for each class separately,
and therefore the overall quantities are deduced by averaging. For the sake of brevity,
precision and sensitivity can be combined into one term, the F-score, as follows:

Fβ = (1 + β2)
Sensitivity× Precision

(β2 · Sensitivity) + Precision
. (4)

The balanced F-score is the harmonic mean of precision and recall; that is, the
F1-score (β = 1):

F1 = 2 · Sensitivity× Precision
Sensitivity + Precision

. (5)

It is always preferable to achieve a good performance of the TCN model using the
most concise network structure. For that, the number of parameters that comprise the
TCN is another criterion to be considered in the evaluation process. A TCN, as shown
in Figure 4, is made up of multiple layers, where each distinct layer involves a different
number of parameters. The only layers that have no learnable parameters are the input
layer, the ReLU layer, and the dropout layer. The input layer only provides the shape
of the input signal and has nothing to do with the training process. The ReLU performs
a threshold operation on its input x according to the fixed equation f (x) = max(0, x).
Similarly, this layer is not changed during the training phase. The dropout layer is set to
reduce the number of activated neurons in the training phase where elimination takes place
in a merely random way. The layers that include learnable parameters are the convolution
layer and the normalization layer. Each convolution layer has two types of parameters:
weights and biases. The weights are learned during the training process. They are matrices
that affect the prediction ability of the model, which is altered during the back-propagation
process based on the used optimization strategy. The biases are set to delay or accelerate
the activation of nodes. The total number of parameters in a convolution layer is the sum
of all present weights and biases. Knowing that the size of a filter of a given convolution
layer is denoted by KT , the number of filters of this layer is denoted by FT , and the number
of filters of the previous layer is denoted by Fp

T , then the total number of parameters of this
convolution layer (Pconv) is defined as follows:

Pconv = W + B = (KT × Fp
T × FT) + FT (6)

where W and B are the number of weights and the number of biases of the convolution
layer, respectively. Note that the dilation, stride, and padding are hyperparameters that do
not interfere in the learning process [55,56]. Similarly, a normalization layer also has two
learnable parameters of its own: offset (also called beta) and scale (gamma). Each channel
of a normalization layer has one parameter of each kind. Attached to the convolution layer,
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the normalization layer thus has FT betas and FT gammas. Hence, the total number of
parameters in a normalization layer is:

Pnorm = 2× FT . (7)

4. Results and Discussion

The TCN model that we proposed in Section 3.1 is tested on the ECG5000 dataset [13]
that has been collected from the BIDMC Congestive Heart Failure Database [14]. The raw
record is composed of 17,998,834 data points including 92,584 heartbeats. The heartbeats
are first extracted and then interpolated so that they all become the same length. After that,
the heartbeats are annotated according to five classes holding the following labels: Normal
(N), R-on-T Premature Ventricular Contraction (Ron-T PVC), Premature Ventricular Con-
traction (PVC), Supraventricular Premature or Ectopic Beat (SP or EB), and Unclassified
Beat (UB). About 128,570 annotated heartbeats are present from which a dataset of 5000 ran-
domly selected heartbeats is created. The new dataset is then divided into two sets: one for
training that contains 4500 samples and another for testing that contains 500 samples.

On the other hand, different forms of the TCN model are built and experimentally tested.
All details are summarized in Table 1, where 12 different experiments are demonstrated.
The number of blocks varies between 3 and 5. The size of the filters of the dilated convolu-
tion layers is constant in one block whereas it grows from one block to another. However,
the number of filters is always the same. Consequently, the number of parameters of the TCN
model is calculated (see Section 3.4 for more details). In all experiments, the mini-batch has a
size of 20, whereas the training process lasts for 250 epochs. The dilation factors (di) of the
five blocks (if they exist) are 1, 2, 4, 8, and 16, respectively. For data augmentation, different
factors are tried out on the three classes: PVC, SP, and UB. In all experiments, the classes
PVC and UB (classes 3 and 5, respectively) are augmented 24 times. On the other hand,
class SP is augmented 12 times in Experiments 1–10, 24 times in Experiment 11, and 6 times
in Experiment 12. Based on the available training data and the size of the training batch,
the size of one epoch is determined. The best results are obtained for Experiments 1 and
5. In Experiment 1, the TCN model involves about 10,200 parameters and achieves an F1
score of 84.13% and an accuracy of 96.12%. The TCN model in Experiment 5 involves about
39,900 parameters and achieves an F1 score of 85.43% and an accuracy of 96.62%.

Table 1. Different forms of the TCN model proposed in Section 3.1 with different data augmentation
cases. #Epochs = 250 and Mini-Batch Size = 20.

Exp #Blocks #Filters Filter Size #Parms Data Augmentation Factor Epoch Size F1 Score Accuracy
#1 4 16 {2, 4, 6, 8} 10.2 K class3:24, class4:12 ,class5:24 460 84.13% 96.12%
#2 3 16 {2, 4, 6} 6 K class3:24, class4:12 ,class5:24 460 68.54% 94.80%
#3 5 16 {2, 4, 6} 15.4 K class3:24, class4:12 ,class5:24 460 83.76% 96.26%
#4 4 8 {2, 4, 6, 8} 2.7 K class3:24, class4:12 ,class5:24 460 73.40% 95.20%
#5 4 32 {2, 4, 6, 8} 39.9 K class3:24, class4:12 ,class5:24 460 85.43% 96.62%
#6 4 16 {4, 6, 8, 12} 14.9 K class3:24, class4:12 ,class5:24 460 81.04% 95.87%
#7 4 32 {4, 6, 8, 12} 58.4 K class3:24, class4:12 ,class5:24 460 75.60% 96.07%
#8 3 16 {4, 6, 8, 12} 8.6 K class3:24, class4:12 ,class5:24 460 78.32% 95.57%
#9 3 16 {6, 8, 12, 14} 12.2 K class3:24, class4:12 ,class5:24 460 73.57% 95.70%
#10 3 32 {2, 4, 6} 23.3 K class3:24, class4:12 ,class5:24 460 73.80% 96.00%
#11 4 16 {2, 4, 6, 8} 10.2 K class3:24, class4:24, class5:24 566 80.85% 96.35%
#12 4 16 {2, 4, 6, 8} 10.2 K class3:24, class4:06, class5:24 407 79.70% 96.02%

The TCN model in Experiment 1 is the most optimal among all models present in
Table 1. In detail, it has convolution layers that involve 16 filters (FT = 16). The size of the
filters augments from one block to another as KT ∈ {2, 4, 6, 8}. The training data of classes
PVC and UB are augmented 24 times: 4 times by amplitude shifting, 12 times by time
shifting, and 8 times by amplification; whereas the training data of class SP are augmented
only 12 times: 2 times by amplitude shifting, 6 times by time shifting, and 4 times by ampli-
fication. More details are found in Tables 2 and 3. After data augmentation, the number of
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samples of the training data set grows from 4500 to 9204. The mini-batch has a size of 20,
which leads to the distribution of the samples on an epoch of 460 iterations. With 250 epochs,
the training process ends after 115,000 iterations. The evolution of the training and testing
accuracy is shown in Figure 6. As shown, the model gains its optimal parameters after
nearly 75 epochs with a testing accuracy of 96.12%. A more detailed evaluation of Exper-
iment 1 can be done based on the confusion matrix shown in Figure 7. The sensitivity
percentages of the classes are presented to the right of the 5× 5 confusion matrix, whereas
the precision percentages are placed below it (all in blue). The classification results for
Classes 1-3 are very competitive where the sensitivity and precision percentages are high.
By contrast, the classification is misleading for Class 4 with a sensitivity of 42.1%, and for
Class 5 with a precision of 50%. In the latter two classes, the applied data augmentation
techniques improve the classification results to a limited range. We should mention here
that without data augmentation, the sensitivity of Class 4 is 31.5%, whereas the precision
of Class 5 is 25%. Apart from data augmentation, multiple techniques could be employed
to handle imbalanced data such as K-fold cross-validation, the use of specialized models
like XGBoost, and the aggregation of more raw data. The receiver operating characteristic
(ROC) curves of the five classes are shown in Figure 8, which demonstrates an excellent
classification of the proposed model for four classes (Class 1, Class 2, Class 3, Class 5) and
satisfactory classification results for Class 4.

Table 2. Data augmentation applied on ECG5000 dataset in Experiments 1–10 of Table 1.

Class
Data Augmentation Type

Amplitude Shift Time Shift Amplification
PVC [−0.4, 0.4]0.2 [−6, 6]1 [1.05, 1.4]0.05

SP [−0.4, 0.4]0.4 [−5, 5]1 [1.05, 1.2]0.05

UB [−0.4, 0.4]0.2 [−6, 6]1 [1.05, 1.4]0.05

Table 3. Distribution of samples of ECG5000 dataset in Experiments 1–10 of Table 1, before and after
data augmentation.

Class
Count

Testing Set
Before Augmentation After Augmentation
Training Set Total Training Set Total

N 292 2627 2919 2627 2919
Ron-T PVC 177 1590 1767 1590 1767
PVC 10 86 96 2150 2160
SP 19 175 194 2287 2306
UB 20 2 24 550 552
Total 500 4500 5000 9204 9704
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Figure 6. Training and validation process of TCN model in Experiment 1 of Table 4.
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Figure 7. Confusion matrix of the TCN model proposed in Experiment 1 of Table 1, applied to the
ECG5000 dataset.
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Figure 8. ROC curves of the trained model with marked operating points (dots) obtained for the
five-class use case (Experiment #1, see Table 1).

The ECG5000 dataset has been adopted in various classification works for heart disease
detection. The comparison between our optimal model and some state-of-the-art models
is demonstrated in Table 4. We show in this table the accuracy, the F1 score (combination
between sensitivity and precision), and the number of parameters of the different models.
As shown, our TCN model with the fewest number of parameters among all other existing
models (10.2 K) attains the highest accuracy among all of these models (96.12%). On the
other hand, our TCN model affords an F1 score of 84.13%, which is lower only than that
of the TCN model proposed in [57]. The effect of the applied data augmentation is also
investigated. The accuracy is only 93.4% and the F1 score is down to 70.18% for the same
TCN model when applied to the raw data.

As noticed in the confusion matrix of Figure 7, the slight deficiency in the F1 score
is mainly due to classes SP and UB (see orange boxes). For that, we retrain the network
while excluding these classes. As shown in Table 4, the accuracy now is up to 98.54%,
whereas the F1 score reaches 94.51%. The detailed results are present in the confusion
matrix of Figure 9. The receiver operating characteristic (ROC) curves of the three classes
are shown in Figure 10 with an AUC ≈ 1 demonstrating excellent classification results for
this use case.
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Figure 9. Confusion matrix of the TCN model proposed in Experiment 1 of Table 1, applied to the
ECG5000 dataset excluding classes SP and UB.
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Figure 10. ROC curves of the trained model corresponding to Experiment 1 of Table 1, where the
network is trained only on the first three classes.

Table 4. Evaluation of different methods on the ECG5000 dataset.

Architecture Accuracy (%) F1 Score (%) #Parameters
TCN [57] 94.2 89.0 14.88 K
LSTM-FCN [58] 94.1 72.5 404.74 K
CCN [58] 93.4 81.5 266.37 K
LSTM [58] 93.1 68.9 138.37 K
1-NN (L2 dist.) [59] 92.5 54.9 70 K
Our TCN 96.12 84.13 10.2 K
Our TCN (First 3 classes) 98.54 94.51 10.2 K
Our TCN (Without Data Augmentation) 93.4 70.18 10.2 K

5. Conclusions

In this paper, we proposed a 1D Temporal Convolutional Network (TCN) based ar-
chitecture for ECG classification of five heart diseases. The main goal was to provide a
low complexity architecture aimed at being used in low-cost embedded devices for remote
health monitoring. The proposed architecture is characterized by its simplicity and the
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lowest number of used parameters compared to the state-of-the-art approaches (10.2 K pa-
rameters < 15 K in the literature). Moreover, the proposed architecture is outperforming all
existing state-of-the-art ML methods in terms of overall accuracy and F1 score, reaching up
to 96.12% and 84.13%, respectively. The ROC curves of the proposed model show excellent
classification performances with an average AUC ≈ 1. As future work and perspectives,
an extensive study to interpret and explain the obtained results will be conducted, along
with the study of quantization and pruning of the network’s parameters and their influence
on the overall accuracy of the proposed architecture as well as the hardware resources
used and power consumption needed. Both microcontroller-based and circuit-specific
implementations will be targeted with a comparison in terms of power consumption, ease
of implementation and use, and overall cost.
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43. Korürek, M.; Doğan, B. ECG beat classification using particle swarm optimization and radial basis function neural network.

Expert Syst. Appl. 2010, 37, 7563–7569. [CrossRef]
44. Yu, S.N.; Chou, K.T. Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst.

Appl. 2008, 34, 2841–2846. [CrossRef]

http://dx.doi.org/10.1016/S0735-1097(86)80478-8
http://www.ncbi.nlm.nih.gov/pubmed/3950244
https://en.wikipedia.org/w/index.php?title=Electrocardiography&oldid=1120710988
https://en.wikipedia.org/w/index.php?title=Electrocardiography&oldid=1120710988
http://dx.doi.org/10.1109/ACCESS.2019.2944027
http://dx.doi.org/10.1016/j.protcy.2016.08.137
http://dx.doi.org/10.1109/EMBC.2013.6609527
http://dx.doi.org/10.1109/ICOSP.2004.1452618
http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-76029-2_5
http://dx.doi.org/10.1007/978-1-4471-6684-9_20
http://dx.doi.org/10.5455/ijlr.20170415115235
https://encyclopedia.pub/entry/30809
https://encyclopedia.pub/entry/30809
https://en.wikipedia.org/wiki/Daubechies_wavelet
https://en.wikipedia.org/wiki/Daubechies_wavelet
http://dx.doi.org/10.1016/j.aci.2018.08.006
https://onlinelibrary.wiley.com/doi/10.1002/9780470479216.corpsy1047
http://dx.doi.org/10.4097/kjae.2015.68.3.220
http://dx.doi.org/10.1109/ICUFN49451.2021.9528698
http://dx.doi.org/10.1515/comp-2016-0005
http://dx.doi.org/10.1109/ICDM.2001.989523
http://dx.doi.org/10.22161/ijaers.74.60
http://dx.doi.org/10.1007/978-3-319-09072-6_4
http://dx.doi.org/10.3233/ICA-170540
http://dx.doi.org/10.5815/ijisa.2013.06.03
http://dx.doi.org/10.9781/ijimai.2011.1411
http://dx.doi.org/10.1016/j.eswa.2010.04.087
http://dx.doi.org/10.1016/j.eswa.2007.05.006


Sensors 2023, 23, 1697 16 of 16

45. Ayub, S.; Saini, J. ECG classification and abnormality detection using cascade forward neural network. Int. J. Eng. Sci. Technol.
2011, 3, 41–46. [CrossRef]

46. Li, J.; Si, Y.; Xu, T.; Saibiao, J. Deep Convolutional Neural Network Based ECG Classification System Using Information Fusion
and One-Hot Encoding Techniques. Math. Probl. Eng. 2018, 2018, 1–10. [CrossRef]

47. Wikipedia Contributors. One-Hot—Wikipedia, The Free Encyclopedia. 2022. Available online: https://en.wikipedia.org/wiki/
One-hot (accessed on 14 November 2022).

48. Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. [CrossRef]
49. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. arXiv 2014, arXiv:1409.0575. [CrossRef]
50. Ferretti, J.; Randazzo, V.; Cirrincione, G.; Pasero, E. 1-D Convolutional Neural Network for ECG Arrhythmia Classification.

In Progresses in Artificial Intelligence and Neural Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 269–279. [CrossRef]
51. Ba, J.; Kiros, J.; Hinton, G. Layer Normalization. arXiv 2016, arXiv:1607.06450.
52. Bai, S.; Kolter, J.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.

arXiv 2018, arXiv:1803.01271.
53. Shorten, C.; Khoshgoftaar, T. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 1–48. [CrossRef]
54. Shultz, T.R.; Fahlman, S.E.; Craw, S.; Andritsos, P.; Tsaparas, P.; Silva, R.; Drummond, C.; Ling, C.X.; Sheng, V.S.; Drummond, C.;

et al. Confusion Matrix. In Encyclopedia of Machine Learning; Springer: New York, NY, USA, 2011; p. 209. [CrossRef]
55. Roy, S.; Rodrigues, N.; Taguchi, Y.h. Incremental Dilations Using CNN for Brain Tumor Classification. Appl. Sci. 2020, 10, 4915.

[CrossRef]
56. Lee, W.Y.; Park, S.; Sim, K.B. Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-

free harmony search algorithm. Optik 2018, 172, 359–367. [CrossRef]
57. Ingolfsson, T.M.; Wang, X.; Hersche, M.; Burrello, A.; Cavigelli, L.; Benini, L. ECG-TCN: Wearable Cardiac Arrhythmia Detection

with a Temporal Convolutional Network. In Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence
Circuits and Systems (AICAS), Washington, DC, USA, 3–7 May 2021; pp. 1–4. [CrossRef]

58. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access
2018, 6, 1662–1669. [CrossRef]

59. Chen, Y.; Keogh, E.; Hu, B.; Begum, N.; Bagnall, A.; Mueen, A.; Batista, G. The UCR Time Series Classification Archive. 2015.
Available online: https://www.cs.ucr.edu/~eamonn/time_series_data/ (accessed on 8 April 2002).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4314/ijest.v3i3.68420
http://dx.doi.org/10.1155/2018/7354081
https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/One-hot
https://doi.org/10.48550/ARXIV.1212.5701
https://doi.org/10.48550/ARXIV.1409.0575
http://dx.doi.org/10.1007/978-981-15-5093-5_25
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1007/978-0-387-30164-8_157
http://dx.doi.org/10.3390/app10144915
http://dx.doi.org/10.1016/j.ijleo.2018.07.044
http://dx.doi.org/10.1109/AICAS51828.2021.9458520
http://dx.doi.org/10.1109/ACCESS.2017.2779939
https://www.cs.ucr.edu/~eamonn/time_series_data/

	Introduction
	Background and Related Work
	Method
	Proposed Architecture
	Data Augmentation
	Training Process
	Network Evaluation

	Results and Discussion
	Conclusions
	References

