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1. Introduction     

The conventional mode of health delivery can be profiled as follows: a patient, if he does not 
feel good, will visit his physician and report his symptoms (e.g., headache, bellyache, and 
nausea, etc); the physician strives to make a few empirical hypotheses based on the patient’s 
complaints and medical history; in general, the physician has to further examine the 
patient’s vital signs (e.g., body temperature, blood pressure, and pulse, etc.) so as to confirm 
or reject his initial hypotheses; if the physician is confident enough on his hypotheses, the 
final diagnosis decision can be made and the according treatments are hereby delivered; if 
not, the physician will resort to various medical instruments (e.g., electrocardiography, 
ultrasonography, and computed tomography, etc) and laboratory tests (e.g., blood test, 
urinalysis, and immunological analysis, etc); during this procedure, the initial hypotheses 
may be updated at any time; to those complicated diseases, the physicians will propose a 
few tentative treatments and modify them in accordance with clinical observations. 
It is noteworthy that above procedure is triggered and driven by patients’ symptoms. But 
most symptoms are subjective, and are late manifestations of a disease or a group of 
diseases. In other words, they often incur expensive and painful clinical treatments. 
Furthermore, once the patients perceive malign symptoms, they may have missed the best 
opportunity of medical treatments. Take cardiovascular diseases (CVDs) for an example. 
Nowadays it is possible to treat or relieve nearly all CVDs by medical interventions, such as 
controlling blood pressure and blood cholesterol. In the case of refractory or congenital 
CVDs, various sophisticated clinical instruments and operations, including pacemakers, 
prosthetic valves, coronary artery bypass and even whole heart transplantation, have been 
developed and practiced too. As a consequence, the World Health Organization (WHO) 
reports “… at least 80% of premature deaths from heart disease and stroke could be avoided 

                                                 
1 Adapted from LI Bing Nan (2009) Wavelet Neural Networks: The Fusion of HC and SC for 
Computerized Physiological Signal Interpretation, PhD Dissertation, University of Macau, 
Taipa, Macau 

Source: Decision Support Systems, Advances in, Book edited by: Ger Devlin,  
 ISBN 978-953-307-069-8, pp. 342, March 2010, INTECH, Croatia, downloaded from SCIYO.COM
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through effective reduction of risk factors.” Unfortunately, it is still reported over 861,826 
American deaths due to CVDs (35.2% of all deaths) in 2005 (Rosamond et al., 2008), and over 
4.35 million European deaths (49% of all deaths) each year (Petersen et al., 2005). Such 
paradoxical results may be attributed to that various cardiovascular risks, such as 
arteriosclerosis and other peripheral arterial diseases, are asymptomatic whereas they have 
been able to cause a deadly stroke or heart attack (Cohn et al., 2003). 
For better healthcare, the individuals are hereby being expected to assume more 

responsibility for their own health, for example, having their blood pressure checked 

regularly (WHO, 1998). It is now one of the hottest topics in science and engineering to 

make such self-examination easier. For instance, IBM has declared their understandings on 

the future healthcare: “…the ability to securely capture sensitive medical data has the 

potential to allow healthcare to move from the traditional doctor’s office to wherever the 

patient happens to be… in the future, technology will enable: millions of people with 

chronic diseases will be able to have their conditions monitored as they go about their daily 

life through sensors at home… a pill dispenser will help patients track their drug regimen 

and automatically transmit such data to caregivers… virtual doctors can check blood 

pressure, pulse and others remotely, and follow up if necessary…” (http://www-

07.ibm.com/innovation/in/ideas/five_in_five/). As a matter of fact, there have been a few 

cost-effective instrumentations recommended and practiced for self-serviced healthcare at 

home (Korhonen et al., 2003), (Scalvini et al., 2005). In contrast to those subjective symptoms, 

the measured vital signs or physiological signals are generally more sensitive to various 

pathophysiological alterations. Then home subjects can take care of their own health 

condition better. However, till now their prevalence is not as optimistic as expected yet. The 

reason is multifold. We argue that the competence of computerized interpretation of 

cardiovascular physiological signals, such as electrocardiograms (ECG) and arterial blood 

pressure (ABP) waveforms from self-serviced cardiovascular health monitoring, should be 

paid special attention. 

1.1 Cardiovascular system and diseases 
Various nutrients and oxygen necessary for life maintenance are transported by the blood 

circulation in cardiovascular system (CVS). Meanwhile, circulatory system is responsible to 

discharge various metabolic wastes away. Hosting blood circulation, CVS is thus of vital 

importance for body health. In a broad sense, CVS is comprised of the subsystems for a 

complete blood circulation, namely pulmonary circulation, cardiac circulation and systemic 

circulation (Fig. 1). The subsystems in red, originated from the pulmonary capillaries, to left 

heart, arterial system and systemic capillaries, are responsible to transporting the oxygenic 

blood to various body organs and tissues. In contrast, those subsystems in blue, including 

systemic capillaries, venous system, right heart and pulmonary arteries, are in charge of 

collecting deoxygenated blood back to pulmonary circulation. The capillary circulations 

connect the venous circulation and the arterial one. But the heart is at the center of 

circulatory system. It coordinates and drives the overall procedure of blood circulation. 

The heart, the lung, the vasculature and the blood are vital components for cardiovascular 
circulation. Any adverse alteration in them will evoke a series of deadly threatens to body 
health. Therefore it is not surprising that CVDs have been one of leading causes of death for 
years. In general, CVDs may result in arrhythmia. It disturbs the essential procedure of 
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blood perfusion and nourishment. But the cardiovascular deterioration often commences 
with arteriosclerosis, a procedure of plaque deposit so that the vasculature turns to 
stiffened. The stiffened vasculature increases cardiac workload as well as blood pressure. 
High blood pressure not only impairs myocardium but also further exacerbates 
arteriosclerosis to stenosis. The late implications are often thrombosis and embolism, which 
may cause cerebral ischemia (stroke) or cardiac ischemia (heart attack). In a word, it is 
important to have cardiovascular rhythm and vascular elasticity checked frequently. 
 

 

Fig. 1. The circulatory system 
(a) Adapted from www.3dscience.com 2009; (b) and (c) Adapted from www.bbioo.com 2009 

1.2 Non-invasive cardiovascular health monitoring 
In respect to the importance of CVS on body health, the relevant investigations never cease 
in the past centuries; various methodological and technological breakthroughs keep 
advancing the development of cardiovascular health monitoring and treatments in clinical 
medicine (WHO and CDC 2004). Modern healthcare technologies make clinical physicians 
able to inspect CVS condition in depth. However, with respect to their complexity or costs, 
most of them are not suitable for routine cardiovascular health monitoring at home. Up to 
now, merely a few cost-effective technologies, such as electrocardiography and 
sphygmography, have been extensively investigated and practiced for that purpose 
(Welkowitz 1981). 

1.2.1 Electrocardiography 
Electrocardiography strives to manifest the cardiac electrical conduct system, which 
supervises the myocardial behaviours of systole and diastole. A normal cardiac rhythm 
commences with the electrical impulse by sinoatrial node (Fig. 2). It propagates to right and 
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left atria and makes their myocardium contract. Then, the stimulus travels to 
atrioventricular node. After a delay, it conducts throughout ventricular myocardium in the 
line of HIS bundle, Left and Right Bundle Branches, and a dense network of Purkinje Fibers 
(Klabunde 2004). Following that electrical stimulus, four cardiac chambers contract and 
pump blood step by step. In other words, for efficient blood circulation, the electrical 
conduct system is of vital importance as it controls and coordinates the overall procedure of 
myocardial systole and diastole. 
In essence, electrocardiography takes advantage of human body’s homogeneous 
conduction, which projects the variation of myocardial potentials over time to body surface. 
To measure myocardial behaviours from different perspectives, electrocardiography has 
been evolved to 12-lead ECGs (Fig. 3). Among them, one to three of bipolar leads (i.e., Lead 
I, II, and III) or unipolar leads (i.e., Lead αVR, αVL, and αVF) are friendly for user 
manipulation, and hereby receive more attention for home health monitoring. 
 

 

Fig. 2. Cardiac electrical conduction system (courtesy of Marquette Electronics 1996) 

Electrocardiography is widely recommended in clinical medicine for the analysis of cardiac 

arrhythmia, conduction abnormality, electrolyte disturbances, and so on (Bacquer et al., 

1998). But it is noteworthy that ECG is not able to reflect myocardial contractility directly, 

whereas they may give a rough indication of increased or decreased contractility. In 

contrast, arterial blood pressure and its waveforms have been long recommended as the 

quantitative indicators of myocardial contractility and the workloads (Rego and Souza 2002).  

 

 

Fig. 3. 12-lead ECG monitoring (adapted from www.wikipedia.com 2009) 
(a) Illustrative lead placement; (b) Exemplified ECG recordings 
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1.2.2 Sphygmography 
The assessment of arterial blood pressure is an integral part of cardiovascular examination 
in clinical medicine. Various sphygmomanometers have been well developed for blood 
pressure measurement. But they merely report a few rough estimates of arterial blood 
pressure, including systolic pressure, diastolic pressure and mean pressure. They are 
obviously not enough to characterize the complicated procedure of blood circulation. Hence, 
other than blood pressure values, those experienced physicians are apt to master the 
variations of arterial blood pressure. In general, they palpate the variations by their fingers 
at accessible arteries and evaluate cardiovascular circulation comprehensively (Fig. 4a). 
Nowadays there have been many technologies developed for measuring sphygmograms, 
namely, recording the dynamical ABP waveforms precisely. It is definitely beneficial to the 
reproducible interpretation. As a matter of fact, the routine practice of non-invasive 
cardiovascular health monitoring prefers the techniques of applanation tonometry (Fig. 4b). 
 

 

Fig. 4. Non-invasive monitoring of ABP waveforms (adapted from www.wikimedia.org 
2009) 
 

 

Fig. 5. Illustrative ABP waveforms  
(a): Catheterization [MIMIC/03701: 0-5.8s]; 
(b): Photoplethysmography [FANTASIA/f2o01: 0-5.8s]; 
(c): Applanation tonometry [GXABP/05607080306: 0-5.8s] 
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In non-invasive applanation tonometry, a high-fidelity tonometer is placed on the accessible 
arteries with gentle pressure so as to occlude blood flow partially. It is hereby possible to 
capture the variation of arterial blood pressure through that site and convert it into other 
types of electrical signals (Fig. 5). It has been claimed by previous investigators that such 
non-invasive ABP waveforms are reliable and comparative to those obtained invasively by 
intra-arterial measurement (Sato et al., 1993). 

2. Computerized physiological signal interpretation 

 

Year Regularization Delineation 
Quality 

Evaluation 
Modeling 

Recognition and 
Classification 

1960 
Spectral 
analyis 

   Spectral analysis 

1961   
Heuristic 
decision 

 Heuristic decision 

1962 
Linear 

regression 
Derivative 

analysis 
  Adaptive filters 

1968 Linear filters    Thresholding 
1973     Template matching 

1975  
Syntactic 
method 

   

1978     Bayesian theory 
1980     Decision table 
1985 Filter banks     
1989     FL 

1990    
Spectrotemporal 

analysis 
Hidden Markov 

models 

1991     
Multilayer 

perceptrons (MLP) 
1995  GA  WT ART 

1996    HT 
Fuzzy ARTMAP; 

WN 

1997     
Gaussian 

probability network 
1998    PCA RBF 

1999     
Complexity 

measurement 
2000    Combined HT and SOM 
2001  Fuzzy NN    
2002 ICA     

2003     
Inductive logic 
programming 

2004     Competitive WN 
2006     Data mining 

2007     
Geometric 
matching 

Table 1. Advances of computerized ECG interpretation in chronicle 
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Disease diagnosis and health prognosis by arterial pulse waveforms came into being in the 
centuries B.C. in China, but till 1896 the Italian scientist Scipione Riva-Rocci invented the 
first quantitative sphygmomanometer to measure blood pressure (WHO and CDC 2004). 
The advances of applanation tonometers (Papaioannou et al., 2004) and 
photoplethysmographers (Allen 2007) make it possible to quantitatively observe the 
hemodynamical procedure of arterial blood pressure. The first contemporary 
electrocardiograph was invented by Willem Einthoven (Holland, 1860-1927) in 1901, and the 
first portable Holter Monitor was introduced in 1949 for obtaining ambulatory ECG. The 
introduction of computers into their interpretation can be gone back to 1960s (Warner 1965), 
but became commercially available in 1970s (Bailey et al., 1974). The readers may refer (Cox 
et al., 1972) and (Thomas et al., 1979) for a detailed review on the early-stage development of 
computerized physiological signal interpretation. 

2.1 Overview 
 

Cardiovascular System Modeling 
Year 

Preprocessing and 
Modeling 

Recognition and 
Classification Cardiac Function Vascular Property 

1967    LPM 
1968 Thresholding    
1971 Polynomial    
1972 Heuristic decision    

1973   
Diastolic waveform 

analysis 
Linear LPM 

1974  Linear curvature   
1976  Syntactic method  4-element LPM 
1983   Spectral analysis  
1985 Filter banks    
1986    Area analysis 
1988 PCA    
1992 NN    
1993   Transfer function  
1994   Template matching  
1995    Transit time 
1997    Physical model 
1998   8-element LPM  
1999    Windkessel model 
2002 Refractory period  Linear regression  

2003    
Systolic waveform 

analysis 
2004 Fuzzy logics    

2005 WT 
Adaptive filter 

banks 
  

2006   
Modified 

Windkessel model
 

2007    
Support vector 

machine 

Table 2. Advances of computerized ABP interpretation in chronicle 

www.intechopen.com



 Decision Support Systems, Advances in 

 

144 

In general, a system oriented to ECG interpretation is comprised of the essential modules for 
(1) signal regularization to suppress various noises and artefacts; (2) adaptive delineation of 
critical points; (3) signal quality evaluation to find out those “dominant” and “ectopic” 
beats; (4) feature characterization for reliable and consistent classification; and (5) 
recognition and classification to assist medical diagnosis or health prognosis (Kligfield et al., 
2007). Till now a plethora of computational methods and techniques have been proposed 
and validated for that purpose. A few representative ones were selected and listed in Table 
1. Note that it is extremely difficult to figure out the progressive participation of different 
methods and techniques in computerized ECG interpretation. So Table 1 is absolutely not 
exhaustive. The situation is similar to Table 2, which illustrates the progressive development 
of computerized ABP interpretation. However, the major contributions of computers in this 
field are cardiovascular system modelling and risk factor derivation, but not pattern 
analysis and waveform classification. 

2.2 Current state of the art 
In essence, computerized interpretation is oriented to inferring the intrinsic health messages 
from non-invasive ECG and/or ABP. In the early stage of computerized ECG interpretation, 
the advances were mainly focused on modelling the practical expertise by heuristic 
decisions and syntactic methods. In addition, various well-developed methods, such as 
spectral analysis and linear regression, were programmed for automated signal processing 
and recognition. Later, to cope with ECG complexity as well as variability, more analytical 
methods, including Hilbert transform (HT), Hermite decomposition (HD), wavelet 
transform (WT), principal component analysis (PCA) and independent component analysis 
(ICA), were introduced step by step. It is deemed such alternative descriptions are more 
suitable for computerized interpretation. 
To different signals and applications, above techniques keep invariant in terms of their 
analytical models and computing methods. It is totally different from the methods like 
neural networks (NN), fuzzy logics (FL), genetic algorithms (GA) and adaptive resonance 
theory (ART), whose models are dynamically adjustable in different cases. Consequently, 
they are particularly suitable for discovering the nonlinear relationships between 
physiological signals and health prognosis. Zadeh and other pioneer investigators defined 
the latter paradigms as soft computing (Zadeh 2007). In essence, soft computing is oriented 
to attacking the uncertainty and the imprecision in the real world by a consortium of NN, FL 
and other evolutionary computing techniques. As a comparison, it is appropriate to term the 
analytical methodologies like spectral analysis and WT as hard computing. 
Since the models of hard computing have been formulated exactly, there are not so many 

stories reported on the integration of hard computing paradigms. On the contrary, soft 

computing is integrative in nature (Kecman 2001). As a consequence, many integrative 

paradigms, such as Fuzzy ARTMAP (Ham & Han 1996) and GreyART Network (Wen et al., 

2007), were applied to computerized ECG interpretation soon after the introduction of soft 

computing. In addition, as stated in reference (Ovaska et al., 2002), (Tsoukalas & Uhrig 

1997), (Thuillard 2001), (Iyengar 2002), the methodologies of hard computing and soft 

computing are not in a competitive position, but often complementarily implemented in 

various engineering applications. As to computerized ECG interpretation, the investigators 

are now more interested to fuse the paradigms of hard computing and soft computing for 

integrative advantages.  
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By observing the published investigations, the integration is generally achieved with two 
different kinds of paradigms. The first one is to extract patterns and features by hard 
computing but associate them to health prognosis adaptively by soft computing. This kind 
of paradigms is easily understandable, and not so challenging in terms of engineering 
implementation. Hence, a plethora of successful stories have been reported, including the 
combination of PCA and Multilayer Perceptrons (MLP) (Papaloukas et al., 2002), the 
combination of Hermite polynomials and neuro-fuzzy systems (Linh et al., 2003), and the 
combination of HD and Support Vector Machines (SVM) (Osowski et al., 2004). Another 
kind of paradigms is to fully integrate the analytical models and the computing methods of 
hard computing and soft computing. They are conceptually elegant but more challenging 
for engineering implementation. The pilot paradigms with applications in ECG 
interpretation include Wavelet Networks (Dickhaus & Heinrich 1996), Bayesian Probability 
Network (Long et al., 1997), and so forth.  
Despite with a long history in clinical medicine, the advances of computerized ABP 

interpretation are not as optimistic as those of ECG interpretation (Table 2). It may be due to 

the intrinsically qualitative methodology in traditional Pulse Diagnostics (Fei 2003). On the 

contrary, the computers are good at digital and quantitative processing and analysis only. 

Thus it is necessary to introduce various quantitative indices for computerized ABP 

interpretation (Luo et al., 2005). The prevailing methods and techniques in this field are 

mainly focused on deriving quantitative risk factors, including cardiac output, arterial 

compliance and vascular resistance, by means of various analogous electrical models 

representing a CVS. Those models are possibly comprised of the capacitances analogous to 

arterial compliance, the resistances analogous to vascular resistance, the inductances 

analogous to blood inertia, and so on. However, no matter the low-order Windkessel 

models (Goldwyn & Watt 1967) or the high-order transmission line models (Heldt et al., 

2002), their effectiveness and reliability are still arguing and pending for further 

investigation (Frank et al., 1973; Murray and Foster 1996). 

Quite few paradigms were reported to recognize and classify non-invasive ABP waveforms 
by means of pattern recognition and computational intelligence, which on the contrary have 
been prevalent for computerized ECG interpretation. In this chapter, one of our ultimate 
goals is to investigate the applications of hard computing, soft computing and their fusion 
for computerized ABP interpretation. The attention will be particularly concentrated on the 
refractory variability of non-invasive physiological signals. 

3. Physiological signal modelling 

3.1 Conventional waveform analysis 
In clinical medicine, the cardiologists are concerned with the rhythms, amplitudes and 

waveforms as a whole for physiological signal interpretation (Fei 2003; Yanowitz 2007). It is 

possible to formulate their expertise and experience into computer languages, and let the 

computers analyze those physiological signals automatically (Miyahara et al., 1968; Belforte 

et al., 1979; Degani & Bortolan 1989). The first step in advancing computerized physiological 

signal interpretation was to mimic the decision making procedure of clinical experts. In 

general, the clinical experts have been trained well to inspect various metrics of 

physiological signals, including their rhythms, amplitudes, waveforms and various 

derivative parameters (Fig. 6). From this point of view, the computers are even better to 
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measure those parameters (Caceres et al., 1962). Nevertheless, such kind of information is 

susceptible to various instrumental and manual artefacts. In terms of non-invasive 

physiological measurements, it is particularly difficult to guarantee the accuracy of 

amplitude information. That is why morphological analysis and rhythm information turn to 

more and more popular in computerized physiological signal interpretation. 

As early as in 1960s (Okajima et al., 1963), a few pioneer investigators have noticed the 

uniqueness of computer ECG interpretation. In order to disregard the effects of insignificant 

factors, such as pulse rate and age, they proposed to extract and normalize the QRS complex 

for pattern recognition. This idea, namely morphological analysis instead of metric 

measurement, was revisited more than once in the following years (Bemmel et al., 1973; 

Maitra & Zucker 1975; Suppappola et al., 1997; Laguna et al., 1999). In those systems, the 

ECG waveforms or their components (e.g., QRS complex, ST-T segmentation, etc) were 

regularized and normalized beat by beat for morphological analysis. Thus the beat-to-beat 

amplitude variations were diminished in those paradigms. It was deemed that various 

insignificant constituents in ECGs may be suppressed effectively. As a consequence, 

although the amplitudes bring important pathophysiological clues (Petrutiu et al., 2006), 

morphological analysis becomes more and more popular in computerized ECG 

interpretation (Weiben et al., 1999; Lagerholm et al., 2000; Linh et al., 2003; Chazal et al., 

2004; Osowski et al., 2004; Christov et al., 2005). 

 

 
(a) 

 

(b) 

Fig. 6. Physiological waveform analysis (a): ECG; (b): ABP 
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The pioneer investigators were interested in pulse waveform analysis and pattern 
recognition in the beginning of computerized ABP interpretation (Fei 2003). However, 
unlike ECGs, there is a lack of authoritative ABP benchmark with beat-by-beat annotations. 
In addition, it is extremely difficult to convert the qualitative, ambiguous knowledge in 
traditional Pulse Diagnostics into computer languages. The investigators were hereby more 
interested to associate ABP waveforms with other quantitative risk factors for 
cardiovascular health prognosis (Table 2). However, by means of those techniques, the ABP 
waveforms had to be calibrated with ABP values that were recorded separately. Additional 
errors and biases would be introduced in above procedure (Li et al., 2008). Consequently, 
there were still a few, although not so many, investigators working on ABP morphological 
analysis (Martin et al., 1994; Li et al., 2008). 
It is difficult to calibrate non-invasive physiological signals with regard to the accidental 
instrumental inaccuracy and human artefacts as well. Thus many investigators chose to 
normalize those physiological signals and concentrated on morphological analysis  (Weiben 
et al., 1999; Lagerholm et al., 2000; Linh et al., 2003; Chazal et al., 2004; Osowski et al., 2004; 
Christov et al., 2005). Moreover, it has been reported that the morphological features from 
normalized ECGs are comparable to those from original ones in computerized interpretation 
(Chazal et al., 2004). 
To normalize physiological signals, several common filters were firstly applied to remove 
baseline wandering, muscular tremor, electrical line interference, and other noises 
(Lagerholm et al., 2000; Chazal et al., 2004; Christov et al., 2005). After the basic filters, those 
physiological signals were then normalized, in a beat by beat manner, to the amplitudes 
within [-1, 1] and the intervals within [0, 1]. Then the same group of physiological signals, 
no matter ECGs or ABP waveforms, turned to more consistent and amenable to 
computational interpretation. Following the strategies in reference (Chazal et al., 2004), it is 
possible to derive the morphological features out by nonlinear sampling. As to ECG signals, 
the sampling was carried out within two windows (Fig. 7a). The first one (150ms) attempted 
to characterize the QRS complex while the other one (350ms) for the T wave. Within each 
window, 10 points of physiological signals were uniformly sampled. In terms of ABP 
waveforms, the unique sampling window (500ms) was oriented to the region between 
systolic and diastolic complexes (Fig. 7b). Similarly, there were totally 20 points sampled 
 

 

Fig. 7. Nonlinear sampling for morphological feature characterization (a): ECG; (b): ABP 
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from each beat of ABP waveforms. Those sampling points formed the morphological 
features for subsequent computerized recognition and classification. 

3.2 Adaptive physiological signal modelling 
The conventional strategies, including signal regularization and morphological analysis, are 
helpful to suppress physiological signal variability in some sense. It seems the results are 
amenable to computerized interpretation, too. However, it is meanwhile observed that 
morphological feature sets are not sparse and not robust enough. Actually, signal 
representation in time domain is legible but redundant, which may be evidenced by means 
of PCA (Geva 1998; Stamkopoulos et al., 1998). As a consequence, morphological analysis 
was generally combined with domain transformation, such as Hilbert transform (Bolton & 
Westphal 1981), HD (Rasiah et al., 1997; Lagerholm et al., 2000; Linh et al., 2003) and WT 
(Senhadii et al., 1995; AI-Farhoum & Howitt 1999; Saxena et al., 2002; Engin 2007), in those 
published paradigms of computerized physiological signal interpretation. 
Domain transformation, unlike direct morphological analysis, attempts to characterize 
physiological signals in an alternative space, where the genuine signal components are more 
discernible from noises and artefacts. For instance, the well-known spectral analysis is 
exactly based on a classical domain transformation, namely Fourier transform. It is hereby 
possible to suppress baseline wandering by a high-pass filter, or remove electrical line 
interference with a notch filter.  
In domain transformation, the recorded physiological signals are alternatively characterized 
by a set of singular basis functions. In general, those basis functions, either orthonormal or 
not, have no explicit physical meanings, which make them abstract for understanding. But 
lots of refractory problems may turn resolvable in those alternative function spaces. Take 
computerized ECG arrhythmia interpretation for an example. It has been confirmed that 
Hermite basis functions (HBFs) and wavelet energy descriptors are among those most 
competitive ones for feature characterization in discrimination analysis (Senhadii et al., 1995; 
Rasiah et al., 1997; AI-Farhoum & Howitt 1999; Lagerholm et al., 2000; Saxena et al., 2002; 
Linh et al., 2003; Engin 2007). 

3.2.1 Hermite decomposition 
It is possible to carry out domain transformation and signal modeling by orthonormal basis 

functions or not. But the orthonormal basis functions are usually preferred due to the fast 

implementation. It is hereby desired to find out a series of orthonormal basis functions for 

compact physiological signal modeling. Nevertheless, to be orthonormal, the basis functions 

have to meet a set of rigorous mathematical regularities. In other words, most orthonormal 

basis functions, such as cosine basis functions for Fourier Transform, are not efficient for 

physiological signal modeling. On the contrary, it has been found that HBFs share the 

resembling waveforms with electrocardiograms (ECGs). Thus they can be utilized to model 

ECG waveforms compactly (Rasiah et al., 1997; Lagerholm et al., 2000; Linh et al., 2003). 

In mathematics, HBFs are derived from Hermite polynomials: 

 
2

2
1

( )
2 !

t

m m
m

e t
m π

−

=Φ H , (1) 

where Hm(t) is the mth Hermite polynomial: 
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where H0(t)=1 and H1(t)=2t. Hermite polynomials are a classical orthogonal polynomial 
sequence, and with common usages in probabilistic analysis and physics.  
To cope with physiological signal variability, two modulating parameters, ǔ and Ǖ, were 
applied to the conventional HBF in this dissertation. So they turned to be: 

 
2

2
1

( )
2 !

t

m m
m

e t
mσ π

−

=Φ H , (3) 

where t was modulated as (n-Ǖ)/ǔ (ǔ and Ǖ are dilation and translation factors respectively). 
Then it is possible to approximate and model a physiological signal compactly as: 

 
M

1
' ( )m mm

c n
=

=∑S Φ . (4) 

The object is to find out the appropriate model order M, the optimal modulating parameters 
ǔ and Ǖ in HBFs, as well as the according weight cm. 
 

 

Fig. 8. Modelling physiological signals by 7 order HBFs (a): ECG; (b): ABP 

However, in practice, it has been found that physiological signal modelling by the 
modulated HBFs often suffers from excessive computing. The heuristic gradient descent 
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algorithms have been advocated for this problem (Rasiah et al., 1997). Here a special 
algorithm was adopted to achieve fast implementation. In summary, the algorithm strives to 
find an approximately optimal solution in the fixed transformation grids. Firstly, it 
adaptively estimates the spans of dilation and translation in accordance with the incoming 
physiological signal. In the second, that limited transformation space is segmented into M-
by-M grids (M was designated in advance). Then, the algorithm generates an estimate in 
each transformation grid, and evaluates it against the original physiological signal. Such 
procedure iterates throughout the entire transformation grids (M2). The final results are 
taken as those parameters leading to the minimum approximation error. As shown in Fig. 8, 
such fast algorithm performed fairly well, and a few low-order HBFs have been able to 
approximate those physiological signals. 

3.2.2 Wavelet analysis 
The advantages of wavelet transform over other techniques lie in its unified time-frequency 
analysis. In other words, by wavelet transform it is possible to characterize a physiological 
signal with its temporal and spectral features simultaneously. Thus a variety of successful 
applications have been reported on physiological signal processing and analysis, covering 
from adaptive denoising, compression, delineation to feature characterization, pattern 
recognition, and others. In terms of feature characterization, the investigators paid substantial 
attention on wavelet energy (Senhadii et al., 1995; AI-Farhoum & Howitt 1999), wavelet 
entropy (Rosso et al., 2001) and other energy-dense wavelet coefficients (Senhadii et al., 1995). 
In essence, wavelet transform can be considered as a kind of multirate filter banks. The 
signal components within distinct spectra emerge at different scale levels of wavelet 
transform. The investigators in reference (Senhadii et al., 1995) hereby proposed to 
characterize ECG signals by a feature vector containing energies at different wavelet scales. 
The DWT with 10 levels was employed there. The authors in reference (AI-Farhoum & 
Howitt 1999) further investigated on the relative wavelet energy, which was concerned with 
both spectral and temporal aspects of wavelet transform. A 6-element feature vector was 
formed with the wavelet energies at scale 2, 3, 4 and before, within, after the QRS complex 
in each beat of ECG. 
The results of wavelet transform manifest the resemblance of a physiological signal and the 
modulated wavelets at different scales and shifts, which is quite similar to spectral analysis 
by Fourier transform. Therefore, taking a signal’s wavelet transform as Wa,b, it is possible to 
define the total wavelet energy as: 

 
2

,tot a b a
a b a

Er Er= =∑∑ ∑W , (5) 

where Era is the wavelet energy at scale a: 

 
2

,a a bb
Er =∑ W . (6) 

The relative wavelet energy at each scale is then defined as: 

 /a a totREr Er Er= , (7) 

which reflects the probability distribution of energy scale by scale. Then, coming to wavelet 
entropy, it will be defined as in the reference (Blanco et al., 1998): 
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Ep REr REr= − ⋅∑ . (8) 

Wavelet entropy may serve as a measure of order/disorder degree of a physiological signal. 
Thus it provides useful information about the underlying dynamical process associated with 
that signal. 
Another kind of features comes from the energy-dense components of wavelet transform. 
Two different strategies have been proposed and validated to derive them (Senhadii et al., 
1995; Christov et al., 2005). The first one was desired to find out them by matching pursuits 
from time-frequency dictionaries, which will be elucidated in next chapter. The second one 
was based on the fast DWT. Given the results of DWT as WAM(n/2M) and WDm(n/2m) 
(m=1,2,…M), the feature sets were derived from the maximum coefficients at WAM(n/2M) 
and each scale band WDm(n/2m). Hereafter those extrema at different scales will be termed as 
wavelet scale maxima. 
In this chapter, the feature sets based on relative wavelet energies, regional wavelet 
entropies and wavelet scale maxima were evaluated for physiological signal variability. It is 
noteworthy that wavelet transform by different mother wavelets, owing to their distinct 
properties (e.g., support, regularity, and vanishing moments), generally lead to different 
analytical results. Here the 3-order Gaussian derivative was chose as the mother wavelet. 
The energy of ECG QRS complexes have been identified within 5~15Hz approximately (Pan 
& Tompkins 1985). Obviously, the energies of ECG P and T waves concentrate within a 
spectral band less than 5Hz. Meanwhile, it has been found in our practice that, no matter 
ABP systolic or diastolic complex, their spectral energies are in a region less than 5Hz. The 
spectral resolution of 3-order Gaussian wavelet is obviously appropriate for ECG and ABP 
analysis. 
 

 

Fig. 9. Feature characterization by wavelet-based time-frequency analysis (a): ECG; (b): ABP 
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In terms of physiological signal characterization, the ratios of all wavelet scales, except the 
first one, were chosen for relative wavelet energy (Fig. 9). Then, the results of wavelet 
transform were partitioned into 9 segments based on wavelet spectral bands and temporal 
fiducial marks (Fig. 9). Coming to ECG signals, wavelet spectral bands were chosen as the 
scales {9; 17; 25}, the scales {33; 41; 49; 57; 65} and the left scales till 121. They were desired to 
characterize the spectral energies of QRS complex, P and T waves respectively. The 
temporal partition took advantage of a 200ms window (50ms before and 150ms after the R 
point). The entropy in each segment was computed and rated for regional wavelet 
entropies. With regard to APW signals, the spectral bands were chosen as {9; 17; 25}, {33; 41; 
49} and the left scales. The temporal fiducial marks were based on the systolic peak and 
diastolic peak of ABP waveforms (Fig. 9). 

3.2.3 Matching pursuits 
In view of the advantages of fast implementation, it is attractive to screen the energy-dense 
wavelet coefficients and model physiological signals under the frameworks of fast DWT. As 
a matter of fact, the abovementioned paradigm of wavelet shrinkage was exactly by means 
of this idea. However, it is noteworthy that orthonormal wavelet basis functions (WBFs), 
due to their mathematical regularity, are not efficient for physiological signal modeling. The 
authors in reference (Mallat & Zhang 1993) hereby proposed a technique of matching 
pursuits based on WP analysis, by which it is possible to adaptively select the appropriate 
wavelet coefficients out from a large and redundant dictionary of time-frequency atoms. 
In fast DWT, a signal is split into an approximation part and a detail one by a pair of 
quadrature mirror filters (QMF). Then the approximation part will be iteratively separated 
by that pair of QMF. Unlike DWT, WP analysis splits both parts of approximation and detail 
iteratively. Such paradigm preserves the advantages of fast implementation, but incurs the 
risk of redundancy in time-frequency representation. It rewards the extra flexibility for noise 
suppression and signal compression (Mallat 1998). There have been standard algorithms for 
WBF selection, based on information entropy minimization, from the redundant dictionary 
of time-frequency atoms (Coifman & Wickerhauser 1992). Nevertheless, they are not 
oriented to compact signal characterization. Under the framework of WP analysis, the 
technique of matching pursuits attempts to characterize a complicated signal concisely with 
several adaptive WBFs. 
Physiological signal decomposition and modelling by matching pursuits is similar to the 
standard WT:  

 1

1
( ) ,m

m mm
s n R f R f

Μ Μ+

=
= < > +∑ ψ ψ , (9) 

where mψ  is the modulated orthonormal wavelet, and Rmf is the decomposition residue at 

level m. However, unlike the common WBF, the mψ  here is characterized as [4.3]: 
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where 20 log N; 0 2 N; 0 2j jj p k−
≤ ≤ ≤ ≤ ≤ ≤ . It was in essence a discrete mother wavelet 

dilated by 2j, centred at 2j (p+1⁄2) and modulated by a sinusoidal wave with frequency 2π2-j 

(k+1⁄2). By matching pursuits, those wavelets best matching the residue at each scale level 
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would be chosen for physiological signal characterization. In other words, the technique of 
matching pursuits here is greedy and locally optimized in contrast to those globally-
optimizing algorithms based on information entropy. 
The authors in reference (Mallat & Zhang 1993) demonstrated the competence of matching 
pursuits for complicated signal modelling by means of Gabor wavelets as an example. 
Actually, matching pursuits is a general technique under the framework of WP analysis 
(Suppappola & Suppappola 2002). For instance, the symmlet wavelet with 8-order vanishing 
moments has been proved effective (Christov et al., 2005). In this chapter, the Daubechies 
wavelet with 8-order vanishing moments was evaluated for physiological signal modelling. 
The pending decisions include the desired number of wavelets, the tuning parameters of 
wavelets, and the level of WP decomposition. 
 

 

Fig. 10. Modelling physiological signals by 7 order matching pursuits (a): ECG; (b): ABP 

We are interested in modelling physiological signals by adaptive wavelets. The first of all, to 
accomplish the dyadic WP analysis, the signal length should be equivalent to a power of 
two, such as 128 (27), 512 (29) and 1024 (210). In this chapter, all physiological signals were re-
sampled or interpolated, instead of zero-padding, to approach those standard lengths. In the 
second aspect, the resultant models should be as compact as better. It has been reported in 
reference (Suppappola & Suppappola 2002) that, by matching pursuits, 10-order WBFs were 
generally enough to characterize the ECG signals in MIT/BIH Arrhythmia Database 
(Moody 1997). Nevertheless, 5 orders of them seem not enough. As a consequence, the order 
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of WBFs is empirically chosen as 7 for compact physiological signal models with fair 
performance. In the third aspect, by referring to their octave spectral bands, 8 level of WP 
analysis seems appropriate to capture most of the essential components of cardiovascular 
physiological signals. Then, the WBFs are adaptively traced and tuned by matching 
pursuits. Compared with those HBF models, no matter for ECG signals or ABP waveforms, 
the WBF models (Fig. 10) are obviously better than them. 

4. Adaptive clustering and classification 

The underlying objective of non-invasive cardiovascular monitoring is to tell ‘normal’ or 
‘abnormal’ health conditions. If possible, it is desired to further elucidate the causes of 
‘abnormal’ health conditions, for example, left ventricular hypertrophy, aortic valve 
stenosis, arteriosclerosis, or others. The physiological signals, either ECGs or ABP 
waveforms, bring important messages of blood circulation within cardiovascular system. 
Thus it is a tradition of interest to observe their properties as well as variations from normal 
subjects and the patients with various symptoms. Recording effective physiological signals 
is not an easy task in respect to pathophysiological variability, instrumental inaccuracy and 
manual inconsistency. On the other hand, it is even more challenging to interpret those 
recorded physiological signals clearly. As a matter of fact, even clinical physicians have to 
take long-term career training in order to obtain and maintain their skills, let alone 
electronic computers. 
The most intuitive ways for computerized physiological signal interpretation come into 
being as knowledge engineering and expert systems. By them, it is possible to formulate and 
convert medical experts’ knowledge and experience into computer-compatible data and 
information (MN ECG Coding Center 2009). Nevertheless, it has been found that the 
abstract and qualitative medical knowledge is not so amenable to nonclinical computer 
engineers. For instance, most clinical physicians are good at coping with various 
physiological signal variations and artefacts, but they are generally not able to elucidate 
their extraordinary capability to nonclinical engineers in a quantitative manner. On the 
other hand, computer engineers are good at constructing knowledge base and inference 
machines, but lack of proper medical knowledge and diagnostic experience. Without their 
thorough cooperation, those computerized medical expert systems are not robust enough 
with regard to physiological signal variability. 
As a consequence, nonclinical scientists and engineers attempted to resolve such challenge 
from another aspect. Suppose there are lots of recorded physiological signals with credible 
annotations by a group of medical experts. The investigators are concerned with the 
methods and techniques by which those physiological signals may be related to their 
annotations automatically. In this regard, a good many of computational methods, including 
template matching and statistical analysis in hard computing (Long et al., 1997; Gerencsér et 
al., 2002), Artificial Neural Networks (ANNs) and Fuzzy Logics (FL) in soft computing 
(Suzuki 1995; Tatara & Gnar 2002; Lei et al., 2008), have been proposed and validated for 
computerized physiological signal interpretation. 
In general, those techniques do not simply resort to the empirical thresholds of amplitudes 
and rhythms any more. In stead, the advanced signal processing methods, such as wavelet 
analysis and HD, are utilized to find out the underlying properties of physiological signals. 
Whereas their results are not intuitive to visual inspection, it is deemed that the alternative 
features are more suitable than original physiological signals for computerized 
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interpretation. In above sections, some of signal processing techniques, including 
morphological sampling, adaptive HBFs, relative wavelet energies, regional wavelet 
entropies, wavelet scale maxima and adaptive WBFs, have been investigated carefully to 
attack physiological signal variability. 
It is noteworthy that, in those alternative feature spaces, the conventional medical 
knowledge accumulated in clinical medicine does not hold any more. The new rules and 
explanatory statements have to be established in order to recognize and classify 
physiological signals. We are concerned with the autonomous organization and clustering 
of physiological signals in this section. Actually, if those physiological signals could be 
organized together for similar groups but separately for different groups, it is not so difficult 
any more to classify them by computational methods. In addition, it is extremely difficult or 
expensive to request medical experts to carefully review and annotate so many 
physiological signals. Take the MIT/BIH Arrhythmia Database (MAD) at PhysioNet 
(Moody 1997) for an example. Whereas each recording lasts 30 minutes only, there have 
been over tens of thousands of beats with variant annotations in it. 
As a consequence, the techniques of self-organizing and data clustering receive much 
attention in computational intelligence. A variety of them, including fuzzy c-means (FCM) 
(Lei et al., 2008) and self-organizing maps (SOM) (Lagerholm et al., 2000), have been 
extensively investigated for physiological signal analysis. By them it is possible to fuse the 
advantages of wavelet analysis and computational intelligence for self-organizing 
physiological signals.  

4.1 Self-organizing physiological signals 
As mentioned above, annotating physiological signals by hands is an extremely challenging 
task. Unfortunately, it is even more challenging at present to carry out fully-automated 
recognition and classification by computers. However, at least, it is possible to organize and 
cluster physiological signals by computers in an autonomous manner. The results may serve 
as a reference to medical experts in analyzing and annotating physiological signals. 
Unsupervised classification, also known as data clustering, is exactly the techniques 
designed to find out the intrinsic distributions of unknown signals or data (Jain et al., 2000). 
The metrics of similarity and the criterion function, but not human intervention, determine 
the final results of data clustering. 
There have been a variety of clustering algorithms, most of which are based on either 
iterative error minimization or hierarchical clustering (Duda et al., 2001). Hierarchical 
techniques organize signals or data in a nested sequence of groups which can be displayed 
in a dendrogram. In contrast, the error minimizing algorithms desire to work out a systemic 
partition that minimizes the internal variances and maximizes the mutual discrepancies. The 
latter paradigms are more frequently utilized in computerized physiological signal 
interpretation. 

4.1.1 Self-organization by error minimization 
The issue of data clustering can be elucidated in a formal language: Given N feature vectors 
in a d-dimensional metric space, determine one of their distributions in K groups, so that the 
members in the same group are more similar to each other than to those in different groups. 
The value of K may or may not be specified, but a clustering criterion function must be 
designated for optimization. In essence, the error minimization is a kind of local criteria 
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because it is sensitive to the initial clustering, the similarity metrics and the criterion 
function. The interested readers are advised to look through the reference (Jain & Dubes 
1988) for details on algorithms and techniques in this field. 
Take the classical algorithm of k-means for an example. It seeks to assign N patterns, based 
on their attributes and the designed metrics, into K groups {C1, C2, …, CK| K<<N}. Then, 
each cluster Ck has nk members and each member is in exactly one cluster. The results are 
comprised of prototyping templates and the pattern affiliation to each group. In k-means, 
the prototyping template for each group is defined as its centroid: 
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where k
ix  is the ith pattern belonging to the group k. Error minimization seeks to reduce (12) 

as a criterion function: 
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where ek is the Euclidean norm or a similar metric within each group 

 
1
( ) ( )k

Tn k k
k i k i ki

e x C x C
=

= − −∑ . (13) 

The ideal results of a k-means algorithm will minimize the internal variance within each 
group but maximize the mutual discrepancies between different groups. 
In the k-means algorithm, each pattern is limited to one and only one of K groups, which is 
often not true in computerized physiological signal interpretation. As a matter of fact, the 
physiological signals from cardiovascular health monitoring are subject to multifold effects 
of cardiac functions, vascular elasticity and even blood viscosity. In other words, it is 
usually not appropriate to simply assign a physiological signal to a single group. To this 
issue, two kinds of paradigms, namely FCM and SOM, have been proposed and practiced 
with success. 
FCM applies a membership degree µij to indicate the belongingness of the jth pattern to the 

ith group. The criterion function of FCM is similar to that of k-means: 
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where µkn represents the membership degree of feature vector xn in the kth group, Ck is the 

kth group centroid, and m (m>1) is a constant controlling the resultant fuzziness. 

There are constraints oriented to the normalization of probabilistic distribution. By that, it 

has been proved in reference (Duda et al., 2001) that data clustering in the light of maximum 

likelihood is equivalent to a centriod-based clustering by their averages. Then, in accordance 

with Equations (15) and (16), the membership degrees µkn and the centroids Ck are updated 

iteration by iteration respectively: 
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The algorithm is optimized when the patterns close to their group centroids are assigned 
with high membership degrees, and those far away from their centroids are with low 
membership degrees. 

4.2 Neural computation 
SOM is another popular paradigm for adaptive data clustering. It follows the strategies of 
ANNs instead of that of FCM. ANNs are generally comprised of various computational 
models originated from biological neural networks. In neuroscience, a neural network 
describes a population of physically interconnected neurons whose inputs and outputs 
define a recognizable network (Figure 11a). Communication between different neurons 
often involves electrochemical processes abstracted as synapses. In general, a neuron will 
trigger an action potential and further transmit it to the associated neurons if it perceives the 
incoming stimulations over a certain threshold (Hebb 1949). Similarly, a computational 
ANN model takes an ensemble of simple processing elements as neurons, and linear 
connections between them as synapses (Figure 11b). Each neuron merely carries out a 
simple linear or nonlinear transform, but their aggregation with linear connection often 
exhibits complex global behaviours. In other words, the functional characterization of an 
ANN relies not only on its basic processing elements but also on the systematic connections. 
 

 

Fig. 11. Biological vs. artificial neural networks (adapted from www.neurevoluion.net 2009) 

ANNs are claimed for their competence in nonlinear mapping as well as self-adaptation. 
Suppose the ANNs input space is comprised of the N-dimension continuous or discrete 

feature vectors {X∈dN}, its output space consists of the M-dimension continuous or discrete 

responses, categories or decisions {Y∈dM}. It has been proved that an ANN, with appropriate 

infrastructure and controlling parameters, may establish a nonlinear map f(X⇒Y) 
approaching their genuine relationships arbitrarily well. Take computerized ECG 
interpretation for an example. The incoming feature vectors may be the 20-dimension 
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morphological sampling, the 10-dimension HBFs, the 15-dimension relative wavelet 
energies, the 9-dimension regional wavelet entropies, or the 7-dimension WBFs. The output 
vectors may be “normal” and “abnormal” in one dimension, the 5-dimension AAMI 
heartbeat classes, the 15-dimension MIT/BIH arrhythmia types (Moody 1997) or even 
hundred-dimension cardiovascular diseases. Then the ANN may be configured and tuned 
by means of the annotated physiological signals. The popular paradigms include (Jain et al., 
2000) multilayer perceptrons (MLPs), radial basis function (RBF) networks, probabilistic 
neural networks (PNNs), and so forth. In contrast, there are also many ANN paradigms 
specially designed for the cases of no prefixed responses. SOM and adaptive resonance 
theory (ART) are the typical examples of them. It is deemed that their outputs may reflect 
the intrinsic properties of physiological signals in some sense. 
An ANN may be characterized by its basic processing elements and the connections 
between them. Different from conventional analytical models, the controlling parameters in 
an ANN are unknown in advance, and have to be identified by self-adaptive learning. The 
underlying discrepancies of abovementioned paradigms exactly lie in their learning 
mechanisms. Those supervised ANNs often rely on error minimization. Namely, the ANN 
parameters are tuned step by step in order to minimize mapping errors. On the contrary, the 
unsupervised ANNs generally adopt the strategies of competitive learning. Merely those 
most similar nodes to network inputs will be updated accordingly. In a nutshell, their 
underlying mechanisms of self-adaptation are utterly different: 

• Error Minimization: In supervised ANN learning, an input X is presented to that ANN 

with unknown parameters {θ| k
iΘ ; k

ijw }, its actual output Y* will be evaluated against 

the target output Y. An artificial objective function J, usually as the square of the errors, 

is introduced to relate θ and network performance |Y – Y*|. As the ultimate target is to 

reduce |Y – Y*| to the minimum, it is a reasonable choice to update those parameters in 

the gradient descent direction. Of course, a prerequisite assumption is that J is smooth 

and differentiable everywhere. The topics worthy of investigation in this field include 

how to arrive at the global minimum but local minima, how to speed up evolution 

while avoiding oscillation, and so forth. 

• Competition and Resonance: Competitive learning is complementary to above 
supervised learning by means of error minimization. A central point of this kind of 
systems is pattern matching that searches and updates the internal memories of a 
network against an external input. The common SOM networks compete for an 
updating in a prefixed feature space. In other words, even the outliers may stimulate 
the internal behaviours of a SOM network. On the contrary, the ART networks lead 
either to a resonant state or to a parallel memory. If pattern matching ends at an 
established node, the prototyping template may either remain the same or incorporate 
information from matched portions of new input. Otherwise, if ends at a new status, the 
ART network learns the new input. Anyway, such match-based learning stands for a 
totally new style of network self-adaptation. 

The rationale of supervised ANNs is built on an underlying assumption: any complex 
relationship or association can be modelled as a function, and meanwhile, that function can 
be approximated by a linear combination of simple linear or nonlinear basis functions. The 
essence of supervised learning means utilizing some form of quantitative algorithms to 
reduce the errors or costs on a set of known training data. At present, a good many of 
gradient descent or conjugate gradient algorithms, and their variants, have been well 
established to evolve ANNs for reducing the specific errors or costs. Suppose a function can 
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be characterized by its unknown parameters f(Θ| θk, k=1, …, K). Then, on a training dataset, 
the incoming pattern sj(n) and the desired response yj should have been confirmed. 
However, if the function response from f does not equal to the desired one, there is an 
empirical error ej=|f(sj(n))–yj|. The idea of ANN evolution is to minimize the error square 
by means of the gradient information. 
In above paradigms of supervised learning, the optimization is oriented to minimize the 
apparent errors or costs. However, there is no any warranty that the final results are optimal 
and reside at the global optimum. Even after different enhancing strategies are incorporated, 
the optimum can be guaranteed with respect to the available training dataset only. If the 
training dataset is representative enough to cover the whole space of interest, it is safe to 
convey the optimality of ANNs to the unknown testing dataset. However, it is often not the 
case. The problem is, what we are really interested in is the optimality in testing but not 
training dataset. The relevant research is mainly focused on the generalization and 
expectation risk minimization. Based on the concept of margin, Vapnik proposed the 
optimum separation hyperplane for classification and recognition (Vapnik 1998). The 
margin can be modeled as the shortest distance of training data to a separation hyperplane. 
In a word, to a linear classification problem, the optimum separation hyperplane is the one 
with the maximal margin among all possible separation hyperplanes. Vapnik and his 
colleagues also proposed the technique of Support Vector Machines (SVMs) for hunting that 
optimum separation hyperplane. Nowadays SVMs are considered as one of the most 
promising techniques in computational intelligence.  
After decades of years of development, there has been a variety of ANN models with 
successful applications to adaptive clustering, function learning, pattern classification and 
nonlinear prediction. SOM, multilayer perceptrons (MLPs), radial basis function (RBF) 
networks, recurrent (Hopfield) networks and adaptive resonance theory (ART) networks are 
all well-established and have been widely validated in various real-life applications [6.15]. 
MLPs originate from linear perceptrons, which is one of the earliest ANN models. The 
rationale of utilizing MLPs for classification is quite intuitive: it is possible to approximate 
any function by a linear combination of simple basis functions. Then, in MLPs, there are a 
layer of input neurons, one or several layers of hidden neurons and one layer of output 
neurons. If we take each output neuron as a target function, to a specific incoming pattern, 
the neuron with the biggest response in the output layer is then assumed as the one 
representing the expected result. To define the MLPs, it is necessary to decide the number of 
hidden layers and the number of neurons in each hidden layer. Generally speaking, one or 
two hidden layers have been powerful enough, provided enough neurons in each layer, to 
approximate a function with any complexity. The adaptation or optimization of MLPs 
mainly relies on the algorithm of error backpropagation. Its essence is similar to gradient 
descent algorithm. The rationale of RBF networks for classification is similar to that of 
MLPs. Furthermore, their architectures are quite similar, too. However, the localization of 
neuronal transfer functions determines many unique properties of RBF networks. Firstly, 
there is always a single layer of hidden neurons in RBF networks. In other words, it is 
comparatively manageable to develop RBF networks. Secondly, there are merely several 
hidden neurons covering a specific incoming pattern; hence merely those involved neurons 
will adapt themselves accordingly. Namely it is easier for RBF networks to arrive at their 
optima than MLPs if the target space is appropriately covered by initial RBF neurons. 
However, due to the localization of response, more hidden neurons are also necessary for 
RBF networks at the same time. 
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5. Simulations 

The part of experiments in this chapter was built on a workbench dataset (Fig. 12)., which 
was excerpted from the recording 207 of the MAD workbench. The different types of 
arrhythmia ECGs often intertwine together. At the same time, the single group of 
arrhythmia ECGs often has diversified morphologies, too. The dataset consists of 2 leads of 
synchronous ECG recordings, namely MLII and V1. There are 6 types of arrhythmia 
patterns identified by medical experts. All data have been normalized before adaptive 
modelling in order to suppress physiological signal variability. The feature descriptors, 
including HBFs, relative wavelet energies, wavelet scale maxima and matching pursuits, 
were utilized for physiological signal modelling. Those descriptors were then transferred to 
a subsequent FCM or SOM for adaptive clustering. In addition, the supervised MLP and 
PNN were taken advantages for physiological signal classification. The performance of all 
paradigms were evaluated quantitatively. 
 

 

Fig. 12. Selected arrhythmia ECG beats from MAD 

The orders of Hermite modeling, relative wavelet energies, wavelet scale maxima and 
matching pursuits were set as 7, 15, 16 and 7. The subsequent FCM or SOM adapted the 
input layer in accordance with the incoming patterns, while had a fixed output layer with 12 
nodes. In other words, 12 clusters eventually came into being. Note that it is necessary to 
assign a larger cluster number than the genuine one. In most cases, patterns vary even 
within a same group. As shown in Fig. 13, the ECG beats are classified in accordance with 
their abstract model parameters but not the intuitive morphological features any more. 
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In Fig. 13, the ECG beats within each same cluster have been identified by their canonical 
annotations. For computerized interpretation, it is desirable to have those within-cluster 
ECG beats being the same group, for example, the LBBB beats. However, many of them are 
mixed together in most cases. It degrades the quality of computerized interpretation 
substantially. Without the priori knowledge on the incoming ECG beats, we have to take 
those in a cluster as a single type of arrhythmia. We hereby took a strategy of majority 
voting to evaluate the performance of adaptive clustering quantitatively. As shown in Fig. 
13, the majority beat of the first and second clusters is VF (!) while the one of the forth 
cluster is PVC (V). In other words, the 339 beats of the first two clusters will be taken as VF 
while the 70 beats in the forth cluster are PVC. Then, based on the following confusion 
matrix, it is possible to calculate the quantitative accuracy of adaptive clustering. 
 

 

Fig. 13. Adaptive ECG arrhythmia clustering with WSM and SOM 

 

 LBBB RBBB APC PVC VF VEB total 

LBBB 1393 4 44 3 52 2 1498 
RBBB 38 81 44 2 45 0 210 

APC 0 0 0 0 0 0 0 

PVC 19 0 18 23 10 0 70 
VF 4 0 0 74 158 103 339 

VEB 0 0 0 0 0 0 0 
total 1454 85 106 102 265 105 2117 

Table 3. The confusion matrix of adaptive clustering by the system in Fig. 13 
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The sensitivity Se may be defined as (Lagerholm et al., 2000): 
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, (17) 

and the accuracy is based on the quantitative error rate: 

 
FP FN

(%)
TP FP

Error
+

=
+

, (18) 

where TP stands for the amount of true positives, FN for false negatives, and FP means false 
positives. By means of above indices, the performance of various wavelet networks for 
clustering can be evaluated quantitatively, as listed in the following Table 4. 
 

 TP FP FN Se Error (%)

HBF-SOM 1519 598 598 0.718 56.5 

HBF-FCM 1560 557 557 0.737 52.6 

RWE-SOM 1576 541 541 0.744 51.1 

RWE-FCM 1605 512 512 0.758 48.4 

WSM-SOM 1655 462 462 0.782 43.6 

WSM-FCM 1695 422 422 0.801 39.9 

MP-SOM 1574 543 543 0.744 51.3 

MP-FCM 1564 553 553 0.739 52.2 

PCA-SOM 1627 490 490 0.769 46.3 

PCA-FCM 1666 451 451 0.787 42.6 

Table 4. Clustering performance comparison of wavelet networks 

There are several points worthy of noting in Table 4. The first of all, no any method achieved 
a good result as expected due to the intrinsic harshness of the selected ECG recording. 
Among various paradigms of computational intelligence for clustering, the one by WSM is 
most competitive. In the second aspect, the clustering results of FCM are better than those of 
SOM, although the improvement is not so much. In the third aspect, FP and FN are same in 
all cases. No matter FCM or SOM, it attempts to assign an incoming pattern to a specific 
cluster even though that pattern may be far away from all clusters. Therefore, any 
inaccurately assigned pattern is both false positive for other clusters and false negative for 
the right cluster. Finally, it seems that the energy-oriented models (e.g., relative wavelet 
energies (RWE) and WSM) are better for adaptive clustering than the morphology-oriented 
ones (e.g., HBFs and matching pursuits (MPs)). 
There are six groups of ECG beats with known arrhythmia in Fig. 12, namely LBBB, right 

bundle branch block beat (RBBB), premature atrial contraction (PAC), premature ventricular 

contract (PVC), ventricular flutter (VF) wave and ventricular escape beat (VEB). Each group 

has different number of normalized ECG beats, namely 1454 LBBBs, 85 RBBBs, 106 PACs, 

102 PVCs, 265 VFs and 105 VEBs. 

In essence, each ECG beat after normalization could be characterized as a 360-dimensional 
multivariate vector. Obviously it is not a good idea to apply them directly for network 
interpretation due to the “curse-of-dimensionality” and the inter-dimensional crosstalk. As a 
consequence, the modelling parameters instead of the original signals were imported for 
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training and evaluation. It is not only contributive to concise network architecture but also 
more robust against physiological signal variability (Li et al., 2009). 
To train and test the computational paradigms for classification, each group of the dataset 
was randomly divided into two subgroups with the ratio 0.8:0.2. In other words, 80% ECG 
beats were utilized to train the classifiers, while the left 20% were reserved for network 
validation. Such procedure was repeated for five times, hence each computational paradigm 
was trained and evaluated five times independently. The final performance was based on 
the averaged recognition rate and classification accuracy. It is hereby possible to estimate 
the generalization capability of a computational paradigm by means of such “leave-one-out” 
strategy. 
Three types of ANN were implemented and evaluated for supervised classification, that is, a 

MLP, a PNN and a kNN. Both MLPs and PNNs attempt to approximate the prototype of the 

specific group of physiological signals with the neurons and associated weights. The 

category of an incoming pattern is assigned according to the output neuron with maximal 

response (MLPs) or the winner neuron in competitive learning (PNNs). Their performance 

has been reported in the following Table 5. 

 

  MLPs PNNs kNN 

mean (μ) 19.11 7.42 8.56 
HBFs 

std (ǔ) 2.29 1.59 1.49 

mean (μ) 19.44 9.13 8.89 
RWE 

std (ǔ) 1.58 1.18 0.98 

mean (μ) 17.53 6.9 8.56 
WSM 

std (ǔ) 1.23 1.24 1.09 

mean (μ) 26.9 13.9 13.29 
MPs 

std (ǔ) 3.21 0.91 1.05 

Table 5. Performance evaluation of three types of supervised classifiers 

Obviously the PNN classifier performed better than the MLP one in most cases. For 
instance, no matter by means of which kind of physiological signal modelling, the 
classification error rates of the MLP classifier range from 17.53% to 26.9%. On the contrary, 
the worst result of PNN classifier is 13.9% only. Furthermore, the results in Table 5 indicate 
that, although methodologically simple, kNNs achieved the competitive classification 
performance for uneven datasets. The classification error rates are comparable to those by 
PNNs in most cases. As a matter of fact, if with a narrow spread of Gaussian basis functions, 
a PNN classifier can be in essence considered as a kNN one. Nevertheless, the PNNs are 
generally with comparatively abstract neurons for category prototyping. In contrast, kNNs 
rely on the isolated training patterns only. Theoretically speaking, after supervised training, 
the PNN classifiers with appropriate configuration run faster than the kNN ones. 
From the viewpoint of physiological signal modelling, the best performance of recognition 
and classification should be attributed to WSM. No matter by which kind of supervised 
classifier, the WSM models always lead to a minimal error rate in comparison with other 
kind of adaptive models. Note that the energy-oriented modelling strategies, including 
relative wavelet energies (RWE) and WSM, are inefficient for physiological signal 
representation. However, they performed well for adaptive clustering and supervised 
classification. It is exactly opposite to those morphology-oriented modelling schemes, for 
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example, HBFs and MPs. In summary, the energy-oriented modelling schemes are better 
than those morphology-oriented ones for computerized recognition and classification. 

6. Conclusion 

The central idea of this chapter is focused on computerized interpretation of cardiovascular 
physiological signals, including ECG and ABP waveforms. Both of them are easily accessible 
by means of contemporary biosensors and transducers. However, their computerized 
interpretation has to confront the intrinsic variability due to pathophysiological artefacts, 
instrumental inaccuracy and inconsistent measurement. The techniques based on domain 
transformation and signal modelling, including RWE, WSM, HBFs and MPs, were 
elaborated and evaluated carefully in this chapter. In addition, the paradigms of adaptive 
clustering and supervised classification were introduced for computerized physiological 
signal interpretation. A few computerized paradigms were carried out by combining them 
and evaluated on a real-world workbench database. Although intriguing, the results 
indicate that there is no any prevailing paradigm for computerized interpretation of 
cardiovascular physiological signals yet. It hereby calls for more sophisticated paradigms, 
for example, wavelet networks, wavelet SVMs, wavelet ARTMAP, and so on. 
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