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SUMMARY

Artificial intelligence for noninvasive fetal electrocardiogram analysis

Most women experience uncomplicated pregnancies. However, some women have 
high-risk pregnancies, where the fetus or the newborn has an increased risk of 
experiencing an adverse health condition. These health conditions include delayed 
fetal growth, preterm birth, birth injuries and can even lead to infant mortality. 
Many of these conditions are preventable and can be managed with timely clinical 
intervention. For early detection of pregnancy- and labor-related complications, 
there is a need for effective fetal monitoring techniques to provide information about 
the fetal condition and contribute to an improved perinatal outcome. 

The most common approach for fetal monitoring in clinical practice is 
cardiotocography (CTG), which monitors changes in the fetal heart rate (HR) in 
response to uterine contractions. CTG monitoring of the fetal HR is commonly 
based on either a Doppler-based ultrasound transducer or an invasive fetal scalp 
electrode. The Doppler-ultrasound technique, which can be performed both during 
pregnancy and labor, is unobtrusive but it frequently suffers from signal loss. 
The scalp electrode provides more reliable measurements, but its applicability is 
limited to the intrapartum period after the completion of 32 weeks of gestation. In 
general, the specificity of CTG is low, meaning that an abnormal CTG may also be 
encountered for healthy fetuses, leading to unnecessary interventions. Moreover, 
the perinatal outcome has not been improved since CTG was introduced in clinical 
practice.  Techniques like fetal blood sampling and ST waveform analysis (STAN) 
used in conjunction with CTG did not manage to decrease neonatal morbidity and 
mortality either. Hence, additional information about the condition of the fetus is 
required.

Noninvasive fetal electrocardiography, based on multiple electrodes positioned on 
the maternal abdomen, may be a valuable alternative for fetal monitoring, allowing 
for the extraction of the fetal HR and uterine contractions similar to conventional 
CTG. However, unlike Doppler ultrasound, fetal electrocardiography can provide 
accurate, beat-to-beat, HR information, which is necessary for reliable analysis of 
the fetal HR variability, an important indicator of fetal distress. Moreover, other 
than Doppler ultrasound, noninvasive fetal electrocardiography offers the possibility 
to perform morphological analysis of the fetal electrocardiogram (ECG). Most 



cardiac defects have some manifestation in the morphology of the ECG signals, 
while ECG waveform changes may indicate fetal hypoxia. Morphological analysis 
of the ECG waveform is currently performed through the invasive STAN method. 
However, making use of a scalp electrode, this method is merely employed during 
labor. Moreover, the use of a single lead for the ECG acquisition is being criticized. 
In contrast, abdominal measurements of the fetal ECG can be performed during 
pregnancy employing multiple electrodes, overcoming the main shortcomings of the 
STAN method. 

Despite the numerous advantages of the noninvasive fetal electrocardiography, its 
use in clinical practice is limited and yet does not incorporate morphological ECG 
analysis. The reason is the low signal-to-noise ratio (SNR) of the obtained fetal ECG 
signal, which is obscured by a mixture of maternal ECG and various other noises 
and interferences. Even after accurate maternal ECG removal, the residual noise 
in the fetal ECG may hamper the reliable extraction of the ECG morphological 
characteristics and, in some cases, even the QRS complex locations, necessary for the 
extraction of the fetal HR. In this thesis, we aim to advance the field of noninvasive 
fetal electrocardiography by improving the fetal HR extraction process to achieve 
more reliable CTG monitoring and by enhancing the quality of the extracted fetal 
ECG signals to enable morphological ECG analysis. 

First, a method is proposed for reliable extraction of the fetal HR. Fetal R-peak 
detection in noninvasive fetal ECG recordings is challenging due to the low SNR and 
the non-stationarity of the fetal ECG signals. A deep learning model was developed 
that directly estimates the fetal HR from the multichannel fetal ECG, without the 
need for R-peak detection. Deep learning models implicitly perform extraction of 
features, which have often proven to be more informative than expert features. The 
proposed model combines convolutional neural networks with long short-term 
memory networks to capture both short-term as well as long-term temporal HR 
patterns. The robustness of the algorithm is increased by a classifier that estimates 
the reliability of the HR estimation. The proposed method, which is invariant both 
to changes in the fetal orientation and to electrode position, outperforms the best 
methods proposed in the literature. 

In the second part of the thesis, signal processing methods for enhancing the 
quality of the fetal ECG signals are proposed. Several complex physiological and 
instrumental noises with spectral overlap with the fetal ECG remain even after the 



application of powerful fetal ECG extraction algorithms. The low SNR of the fetal 
ECG hinders the morphological analysis of its waveform in clinical practice. To 
address this issue, initially the use of a time-sequenced adaptive filter is proposed 
that significantly improves the quality of the multichannel fetal ECG recordings, 
revealing the morphology of the signals. To overcome the limitations of this filter, 
such as requirement for accurate estimates of R-peak locations prior to use and 
inability of handling abrupt changes in ECG morphology, a second alternative 
denoising method is developed that is based on deep learning.  An encoder-decoder 
deep convolutional network is trained to remove the residual noise by capturing the 
structure of the fetal ECG in the encoder of the network and recovering the signal 
details through the decoder. The method is tuned and assessed both for single channel 
and multichannel fetal ECG signals. In both cases, experiments on both synthetic 
and real data show that the network can achieve a substantial quality improvement 
of the noisy signals. Clearly, the multichannel network delivers cleaner and more 
reliable fetal ECG signals.  

In combination with current fetal monitoring techniques, noninvasive fetal 
electrocardiography could support clinical decisions. The work presented in this 
thesis may open the way for morphological analysis of the fetal ECG signals and 
contribute to the spread of this technique in clinical practice.
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ABBREVIATIONS

aNLMS             Augmented normalized least mean squares
aTSAF             Augmented time sequenced adaptive filter
AUC    Area under the ROC curve
AV    Atrioventricular (node)
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HR   Heart rate
ICA    Independent component analysis
LMS               Least mean squares
LSTM    Long short-term memory
MAE    Mean absolute error
MCG    Magnetocardiogram
MSE    Mean squared error
NLMS   Normalized least mean squares
NMSE   Normalized mean squared error
PCG   Phonocardiography
PLI    Powerline interference
PReLU                 Parametric rectified linear unit
ReLU   Rectified linear unit
RMSE                  Root mean squared error
RNN   Recurrent neural network
SA    Sinoatrial (node)
SNR    Signal to noise ratio
STAN    ST waveform analysis
TSAF    Time sequenced adaptive filter
UC    Uterine contraction
VCG    Vectorcardiogram
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1.1 Motivation

Annually, an estimated 2.5 million neonatal deaths and 2.6 million stillbirths 
occur worldwide [1]. Half of all stillbirths occur intrapartum, while most of them 
result from preventable conditions [2]. One of the leading causes for obstetric 
complications is oxygen deficiency during labor. When oxygen deficiency lasts long, 
it can cause irreversible damage to the central organs of the fetus, such as the brain, 
a condition known as perinatal asphyxia [3]. Fetal surveillance is crucial to allow 
for timely intervention and prevent the damage of the fetal vital organs. However, 
even though obstetrical monitoring has advanced during the last years, perinatal 
morbidity and mortality rates still remain high. Thus, there is a need for improved 
fetal monitoring techniques that can provide information of the fetal health status 
during both pregnancy and labor.  In addition, congenital heart defects (CHDs) are 
the most common types of congenital malformations and a leading cause of death 
due to fetal defects [4]. CHDs affect approximately 1 in 100 live births [5] and cause 
death to almost 300.000 babies annually during pregnancy or infancy [6]. Timely 
detection of CHD can lead to reduced mortality and morbidity but is hampered by 
the low detection rates of the current screening technology [6]. Therefore, there 
is an urgent need for additional technologies that could provide supplementary 
information about the cardiac health status of the fetus and improve the prenatal 
CHD detection rate. 

Electronic fetal monitoring was introduced in clinical practice in the 1960s through 
cardiotocography (CTG), which is a simultaneous recording of the fetal heart rate 
(HR) and uterine contractions (UCs). CTG was developed as a way to assess fetal 
distress since it enables the evaluation of the fetal response to stress caused by 
uterine contractions [7]. An example of CTG recording is shown in Fig. 1.1. With the 
introduction of the CTG, perinatal asphyxia was expected to be successfully detected.  
As perinatal asphyxia is considered the major cause of cerebral palsy, the underlying 
expectation was to achieve a reduction in neonatal mortality and morbidity. 
Unfortunately, not only the incidence of cerebral palsy has not decreased but also there 
has been a significant increase in the incidence of unnecessary operative deliveries 
[8]. Although CTG is the current standard for fetal monitoring, its diagnostic value 
is limited [8]. One reason for this is that CTG patterns are interpreted visually, while 
at the same time the inter- and intra-observer variability is high. The fourth annual 
Confidential Enquiry into Stillbirths and Deaths in Infancy (CESDI) reported that 
the CTG interpretation was questioned in more than half of all perinatal deaths [9]. 
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Moreover, the CTG has good sensitivity but very poor specificity, meaning that from 
the fetuses with abnormal CTG only 40-60% present intrapartum hypoxia, i.e. oxygen 
deficiency that affects the peripheral tissues [10].

In view of the poor specificity of the CTG, additional diagnostic tools are necessary to 
assess the fetal well-being. The most important tools complementary to CTG are 
fetal blood sampling (FBS) [11] and analysis of the fetal electrocardiogram (ECG) 
waveform [12]. During FBS, a small amount of blood is taken from the fetus and its 
pH is identified. However, there are risks associated with FBS such as infection [14]. 
Moreover, since FBS provides instantaneous information only, the procedure needs 
several repetitions in case the CTG remains abnormal. Lastly, systematic reviews 
have demonstrated no benefit of using fetal blood sampling for reducing unnecessary 
interventions or influencing long-term outcomes [15]. 

Fig. 1.1 Example of a CTG, a simultaneous recording of the fetal heart rate (FHR) and the 
uterine contractions (UCs) [13]. 

Another method used in conjunction with CTG is ST waveform analysis (STAN).  
STAN analyzes changes in the ST segment and the T/QRS ratio of the fetal ECG 
that occur secondary to fetal hypoxia. STAN recordings are performed through 
an invasive electrode attached to the fetal scalp (Fig. 1.2a). An example of a STAN 
recording is illustrated in Fig. 1.2b. Even though initial studies showed promising 
results in improving perinatal outcome with the use of STAN [16], [17], subsequent 
studies could not reproduce the original findings [18], [19], [20], [21]. Moreover, the 
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use of STAN is limited in several ways. First, since STAN uses a scalp electrode, it 
can only be used during labor after rupture of the membranes and sufficient cervical 
dilation. Second, STAN alarms should be ignored when CTG is reassuring [22]. 
Because of the high intra-observer variability of the CTG interpretation, this limits 
the success of the STAN method. Finally, ST analysis is performed on a single-lead 
scalp ECG that might not provide the optimal ECG derivation, possibly diminishing 
the performance of the waveform analysis [23], [24], [25].  From the above it is 
clear that both FBS and STAN have poor diagnostic value and several limitations. 
Therefore, there is a need for a non-invasive, safe, and long-term monitoring method 
that provides more reliable information about the fetal condition and that can be 
used during both pregnancy and labor, as well as in patients with elevated risk of 
preterm labor. 

Besides the poor specificity of CTG, its use in clinical practice is also limited for 
another reason. The fetal HR is the main source of information from which the 
physiological condition of the fetus can be assessed. Most CTG monitors use Doppler 
ultrasound technology to determine the fetal HR [27]. This technology is noninvasive, 
but it uses autocorrelation techniques to determine the fetal HR, leading to an HR 
that is averaged over several heartbeats [28]. This limits the computation of the HR 
variability that ideally requires beat-to-beat HR information. Because the autonomic 
nervous system regulates the HR, the presence of HR variations indicates autonomic 
regulation and can provide important information about fetal distress [29], [30], 
[31]. Recently, there has been strong interest in computerized HR variability 
analysis that can quantify beat-to-beat HR variations [29], [30], [32], [33]. There are 
several other technical limitations associated with the use of Doppler CTG, one of 
them being the frequent incidence of periods of signal loss [34]. Moreover, Doppler 
CTG measurements are especially inaccurate in cases of obese patients, premature 
deliveries and during second stage of labor. Another disadvantage of the Doppler 
CTG is in that it is sensitive to maternal and fetal movements, requiring frequent 
repositioning of the ultrasound probe. Last but not least, although long-term fetal 
HR monitoring is often recommended, there is no strong proof that exposure to 
long-term ultrasound radiation is completely harmless for the fetus [35]. 

An alternative way to determine the fetal HR is through measuring the electrical 
activity of the heart (i.e. the fetal ECG). The electrical activity of the heart can be 
assessed either by electrodes placed on the maternal abdomen or the fetal scalp. As 
mentioned before, fetal scalp measurements are invasive and can only be performed 
during labor after the membranes have ruptured. On the contrary, recording the 
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fetal ECG through electrodes on the maternal abdomen (Fig. 1.3) is an unobtrusive 
technique and can therefore be applied in all stages of pregnancy. Fetal ECG 
recordings offer the possibility not only to extract beat-to-beat HR information, 
overcoming the main limitation of Doppler ultrasound, but also to assess the 
fetal ECG signal morphology. The depolarization and repolarization properties of 
the heart are reflected in the fetal ECG morphology. It has been reported in the 
literature that fetal hypoxia is reflected by changes in the fetal ECG waveform [36], 
[37]. In fact, this was the reason why the STAN technology emerged. In contrast to 
STAN, noninvasive fetal ECG can be measured also during pregnancy. Moreover, 
as noninvasive fetal ECG provides multilead measurements, it may overcome some 
of the current shortcomings in ST waveform analysis [38], [39]. In addition, most 
cardiac defects have some manifestation in the morphology of the ECG signals [4], 
[40], [41]. 

Through abdominal recordings, apart from measuring the fetal HR, it is also possible 
to retrieve the maternal HR and the uterine activity [42]. Therefore, noninvasive 
fetal ECG recordings could be used as an alternative or complementary solution to 
current fetal monitoring. Unfortunately, the noninvasiveness of the fetal ECG comes 
at the cost of low signal-to-noise ratio (SNR). The fetal ECG is mixed with various 
noise sources that complicate its extraction from the signal mixture. The difficulty 
to extract a noise-free fetal ECG signal from the abdominal measurements explains 
why the application of abdominal fetal ECG recordings in clinical practice is still 
limited.

1.2 Goals of this study

From the previous section, it is clear that noninvasive fetal ECG analysis can provide 
additional information regarding the fetal condition. The main shortcoming of this 
technique and the reason of its limited application in clinical practice is the low SNR 
of the recorded fetal ECG. This is due to the fact that the fetal ECG signal is generated 
from a small source (fetal heart) and has to propagate through several attenuating 
media to reach the maternal abdominal surface; moreover, various interferences 
and noises are additionally recorded by the abdominal electrodes. This results in 
recorded fetal ECG signals with an amplitude of about 10μV [27] that largely overlap 
in frequency and time domain with the maternal ECG and other interferences and 
noises. Even after accurate maternal ECG removal and the application of advanced 
signal processing techniques for fetal ECG extraction [4], [43], the residual noise 
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in the fetal ECG may impede reliable ECG waveform analysis.  In some cases, the 
amount of noise is such that even the extraction of the QRS complex locations, which 
is required for the computation of the fetal HR and fetal HR variability, becomes 
complicated.

This thesis has two objectives: i) to improve the fetal HR extraction process from 
noninvasive fetal ECG recordings and achieve more reliable beat-to-beat HR 
information and ii) to enhance the SNR of the fetal ECG signals that are extracted from 
the mixture of abdominal signals such as to enable, in the future, the morphological 
analysis of the fetal ECG waveform. Special attention is dedicated to investigating 
different postprocessing methods of the extracted fetal ECG signals for improving 
their quality, to advance the field of noninvasive fetal electrocardiography and 
stimulate research in this area, with the end goal of enabling fetal ECG waveform 
analysis in clinical practice.

Fig. 1.2  (a) Scalp electrode [26]. (b) Example of a STAN recording. In the right panel, the fetal 
HR is shown as the top graph, the uterine activity as the second graph from above and the 
results of the ST analysis are presented with the crosses in the bottom graph. In the left panel, 
three fetal ECG complexes, each one corresponding to a single cross are shown [23].

1.3 Thesis outline

Chapter 2 gives an overview of the physiological and technical background that is 
relevant for this thesis. The background provides a description of the fetal heart 
anatomy and development and of the fetal ECG and its clinical relevance. Moreover, 
several fetal monitoring techniques are explained with a focus on noninvasive 
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fetal electrocardiography. After the background chapter, the first part of the thesis 
describes a technique developed for reliable fetal HR detection from noninvasive 
fetal ECG recordings. The low SNR and the non-stationarity of the noninvasive fetal 
ECG signals make QRS detection, which is typically required for HR extraction, a very 
demanding task. In Chapter 3, a new method is proposed that instead of performing 
QRS detection, directly determines the fetal HR from the extracted fetal ECG signals. 
To this end, a deep learning technique is employed that combines convolutional 
neural networks with recurrent neural networks.

 

Fig. 1.3 Noninvasive fetal ECG recording (Photo by Bart van Overbeeke) [23]. Electrodes on the 
maternal abdomen measure a signal mixture, from which the fetal ECG should be extracted.     

The noninvasive fetal ECG is often severely contaminated by a considerable amount 
of noise sources. Even after the application of advanced signal processing techniques 
for fetal ECG extraction, the signal quality remains usually very low. The second 
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part of this thesis focuses on the development of postprocessing methods for the 
enhancement of the fetal ECG obtained from noninvasive abdominal recordings. 
Chapter 4 proposes an improvement of the time-sequenced adaptive filter for 
enhancing the quality of multichannel fetal ECG. The improved filter is demonstrated 
in this chapter to be effective in reducing major noise components and revealing the 
ECG waveform. However, accurate location of fetal ECG complexes is required to 
synchronize the filter, and the method cannot handle abrupt changes in fetal ECG 
morphology, e.g. in cases of arrhythmia. To address these shortcomings, a novel 
fetal ECG denoising method, based on deep learning, is proposed in Chapter 5. The 
method uses a deep fully convolutional encoder-decoder network that learns an end-
to-end mapping from noise-contaminated single channel fetal ECG signals to clean 
ones. An adaptation of the method to exploit the spatiotemporal patterns existing in 
multichannel signals is outlined in Chapter 6. This method can achieve a substantial 
improvement in the quality of the noisy signals, while being able to preserve beat-to-
beat morphological variations without requiring any prior knowledge of the locations 
of the ECG complexes and the noise spectra. 

In the last chapter of this thesis (Chapter 7), the main findings of this work are 
summarized and directions for future research are discussed. Chapters 3-6 are 
studies that have been published in international peer-reviewed journals. Each of 
these chapters is written to be self-contained, causing some overlapping among 
them.

1.4 List of publications
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2.1 Physiology of the fetal heart

2.1.1 Fetal cardiac development

The human heart is one of the first organs to form and function in the fetus [44]. 
However, several weeks are needed until it takes the shape of a four-chambered heart 
(Fig. 2.1). Around 18 to 19 days after fertilization, the heart develops from a tissue 
known as mesoderm, near the head of the embryo, in a region called cardiogenic 
area [45]. Initially, the cardiogenic area has the appearance of two endocardial 
tubes, which are then fused to form a primitive heart tube with five distinct regions 
(Fig. 2.1). The primitive heart tube develops and reshapes to a structure with four 
champers at day 28. The heart valves are then formed between week five and eight. 
The fetal heart starts to beat around day 22, only 3 weeks after fertilization [44].

Fig. 2.1 Fetal heart development stages [46]. In the top subfigure the development of the fetal 
heart during the first eight weeks is displayed and in the bottom subfigure the formation of the 
heart chambers. Blue and red color represent blood inflow and outflow.
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Fig. 2.2 Anatomy of the fetal heart. Image adapted from [47]. 

2.1.2 Fetal heart anatomy

The heart is a muscular organ whose primary role is to pump blood and distribute 
oxygen and nutrients through the whole body. The heart has four champers: the left 
and right atria at the top, and the left and right ventricles at the bottom (Fig. 2.2). 
A wall, called septum, divides the heart into right and left sides. In adults, the right 
side pumps deoxygenated blood to the lungs to receive oxygen, while the left side 
pumps oxygenated blood to the rest of the body through the main cardiac artery 
called aorta [8]. In the adult circulation, deoxygenated blood reaches the heart 
through the right atrium, it fills the  right ventricle through the tricuspid valve, and 
reaches the lungs through the pulmonary artery. In the lungs, gas exchange occurs, 
and the deoxygenated blood is replenished with oxygen. Afterwards, the oxygenated 
blood enters the heart through the pulmonary veins in the left atrium and passes 
through the mitral valve to the left ventricle, which will pump it again to the aorta 
and the systemic circulation reaching the whole body. The blood delivers oxygen and 
nutrients to the organs and tissues and then returns to the heart for the next round 
of the adult circulation.

The anatomy of the fetal heart is illustrated in Fig. 2.2. The fetal heart exhibits some 
functional differences with respect to the adult heart that originate from the fact that 
the fetal circulation differs from the adult one [48], [49], [50]. Fetuses receive oxygen 
and nutrients from the mother via the placenta and the umbilical cord [50]. The waste 
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products produced by the fetuses are carried back to the placenta and end up in the 
maternal circulation to be cleared. Since the lungs of the fetus are not yet functional, 
blood is pumped into them much less compared to adults. Instead, both ventricles 
pump together most of the blood through the systemic circulation [50]. Two shunts 
in the fetal heart play an important role with shunting blood away from the lungs: 
the foramen ovale and the ductus arteriosus. The foramen ovale allows blood from 
the right atrium to enter the left atrium while the ductus arteriosus allows blood 
from the pulmonary artery to enter the aorta. There is also a third shunt, the ductus 
venosus, which shunts a portion of umbilical vein blood flow directly to the inferior 
vena cava. Thus, it allows oxygenated blood from the placenta to bypass the liver.

At birth the umbilical cord is clamped and snipped, and the baby does no longer 
receive oxygen and nutrients from the mother. As soon as babies are born, they need 
to use their lungs to breathe and receive oxygen from the air.  Soon after birth, the 
shunts close since they are no longer needed (in healthy babies).

A network of specialized muscle cells is found in the cardiac walls that transmits 
signals to the rest of the heart causing it to contract. This group of cells is called the 
cardiac conduction system. The main parts of this system are the sinoatrial node (SA 
node), atrioventricular node (AV node), bundle of His, bundle branches and Purkinje 
fibers (Fig. 2.2). The SA node, which is situated in the walls of the right atrium, is 
known as the heart’s pacemaker because it generates impulses (action potentials) 
and initiates the contraction of the cardiac muscles, thereby producing a heartbeat. 
The SA node contains the highest number of cells with the ability to produce a cardiac 
impulse by auto-depolarization. These cells also have the fastest depolarization rate 
than all the cardiac cells; therefore, due to the presence of a refractory period,  the SA 
node controls the rhythm of the heart [51]. Other heart cells have also the ability to 
act as pacemakers but, normally, because the cells of the SA node produce impulses 
at a faster rate, these other cells are dominated by the SA node. 

After the SA node initiates an electrical impulse, the impulse travels throughout the 
left and right atria and depolarizes the myocardial cells, causing the contraction of 
the atria. From the atria the electrical impulse travels to the AV node and to the 
ventricles via the bundle of His. The bundle of His splits into two pathways, known 
as right and left bundle branch, to stimulate the right and left ventricles. However, 
before the impulse moves to the bundle of His, it is delayed strategically to allow 
the atria to empty their contents into the ventricles before starting the ventricular 
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contraction.  The Purkinje fibers, which are situated on the ventricular walls, allow the 
ventricles to contract simultaneously, and are, therefore, necessary for maintaining 
an effective cardiac contraction. Every cycle of atrial and ventricular contractions 
represents one heartbeat.

Fig. 2.3 Representation of the cardiac electrical activation sequence, resulting in the typical 
ECG waveform. Image adapted from [47].

2.1.3 The fetal electrocardiogram

At rest, the cells of the cardiac muscle are in polarized state, meaning that the 
outer surface of the cell membrane has a positive charge, while the inner surface 
is negatively charged [51], [52]. When the cells are stimulated externally, the 
polarity reverses and the intracellular potential becomes positive. This is referred 
to as depolarization. Once one cell is depolarized, it causes its neighboring cells to 
depolarize, producing a self-propagating wave through cells of the cardiac muscle 
[52]. After the depolarization, a slower recovery phase follows, called repolarization, 
until the cell reaches again the polarized rest state. The process of depolarization and 
repolarization is called action potential. 

An ECG recording is the sum of all action potentials generated by all heart cells 
as a function of time. More correctly, in general the ECG measures the potential 
differences between two electrodes at the skin level. Fig. 2.3 illustrates how the 
sequence of the cardiac electrical activation translates into the characteristic waves 
that we encounter in a typical ECG, while some useful nomenclature about the ECG 
is shown in Fig. 2.4. The ECG has a pattern, the so-called PQRST complex, which 
was named by Einthoven in 1895 [53]. The first wave encountered in the ECG is the 
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P-wave, which is associated with the depolarization (contraction) of the atria. In the 
next 50 ms approximately, only very weak signals are recorded as it takes some time 
for the depolarization wave to travel through the AV node while the number of heart 
cells that take part in the atrioventricular conduction is very small [54]. After that, 
the QRS complex follows, which is associated with the ventricular depolarization. 
The amplitude of the QRS complex is  significantly larger than the P-wave amplitude 
because the amount of muscle fibers that are located in the ventricular walls is much 
higher than the fibers found in the atrial walls. This is explained by the fact that the 
ventricles need to pump the blood through most of the body while the atria only need 
to pump the blood to the ventricles. While the ventricles are depolarized, the atrial 
repolarization (relaxation) occurs, which is masked by the large ventricular activity. 
The recovery of the cells in the ventricles produces the T-wave.

Fig. 2.4 Nomenclature of the ECG.

The electrical cardiac activity can be modeled using a dipole model. As the 
depolarization front travels through the cardiac muscle, it can be modeled by 
a rotating electrical dipole. The travelling dipole generates an electrical field 
in the heart that can be approximated by a single vector, called the electrical 
heart vector [56], [57]. The path that this vector follows over time in the three-
dimensional space is known as the fetal vectorcardiogram (VCG) (Fig. 2.5). In 
this context, an ECG can be regarded as the projection of the electrical field 
produced by the rotating dipole onto the lead vector of two electrodes [55]. 
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The fetal and adult heart are rather similar; however, some differences exist in the 
morphology of their ECG and in their HR [58]. The amplitude of the fetal ECG is 
lower, while the fetal heart beats two to three times faster than the adult heart. 

Fig. 2.5 2-D illustration of the fetal vectorcardiogram (gray) and the projection of the dipole 
vector onto the three leads of the Einthoven triangle (black) [55], [23]. 

The fetal and adult heart are rather similar; however, some differences exist in the 
morphology of their ECG and in their HR [58]. The amplitude of the fetal ECG is 
lower, while the fetal heart beats two to three times faster than the adult heart. 
Moreover, the HR variability of fetuses is lower [59] and the normal ranges for the 
HR and the HR variability vary throughout the pregnancy [60]. Another significant 
difference between the fetal and adult hearts is the electrical heart axis, i.e. the 
major direction of the overall electrical activity of the heart. For adults, the electrical 
axis points towards the left ventricle, while for fetuses it points towards the right 
ventricle due to its larger relative mass [61]. Thus, the ECG representation for the 
fetus differs from the same ECG representation for the adult, i.e., if it were possible 
to place electrodes on the fetal body in the same configuration as placed on the adult 
body, the fetal ECG would still look different due to these physiological differences.
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2.2 Fetal Monitoring

Several methods exist for monitoring the fetal well-being so that obstetricians and 
midwifes can better assess the fetal health status. Ultrasound echocardiography is 
a widely adopted non-invasive technology that produces images of the fetal heart’s 
interior and is mainly used for diagnosis of congenital heart defects, typically during 
the second trimester of pregnancy [62]. The disadvantages of this technique are in 
the cost of high-end equipment and the need for highly trained operators to acquire 
high-quality images and perform accurate assessment [63]. Moreover, with fetal 
echocardiography it is difficult to detect specific abnormalities, like coarctation of 
the aorta or ventricular septal defects [64].

A popular and relatively simpler method is cardiotocography (CTG), which is 
routinely used both during pregnancy and labor to monitor the fetal HR together 
with the uterine contractions [65].  The focus of CTG monitoring is to identify fetal 
HR patterns associated with inadequate oxygen supply to the fetus. CTG monitoring 
can be performed by four methods: Doppler ultrasound, phonocardiography (PCG), 
magnetocardiography (MCG) and electrocardiography (ECG) [27]. Currently, 
the most widely adopted method in clinical practice is Doppler CTG, which uses 
ultrasound technology and the Doppler principle to interpret changes in frequency of 
sound waves that are reflected from pulsating tissue in the fetal heart. As highlighted 
in the Introduction section, the Doppler ultrasound method has many limitations, 
including its high sensitivity to motion, frequent signal loss, and limited applicability 
(i.e. it cannot be applied 24/7).

An alternative approach to fetal HR extraction is fetal PCG, which is a recording of the 
sounds and murmurs made by the heart. These sounds accompany the mechanical 
activity of the heart and are related to changes in the blood flow and the opening 
and closing of the cardiac valves, and thus could provide diagnostic information 
[66]. Typically, the heart sounds are picked up by sound transducers (microphones) 
placed on the maternal abdomen [67]. Fetal PCG is an inexpensive and passive 
methodology, since no energy is transmitted to the fetus, enabling long-term fetal 
monitoring. However, fetal HR extraction from PCG recordings is very challenging 
because of the large amount of noise that is present, impeding the adoption of the 
method in clinical practice. Noise is produced by several sources including maternal 
heart, respiratory and digestive sounds and fetal movements resulting in PCG signals 
of very low signal-to-noise ratio (SNR) [68].
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Another method used for fetal HR monitoring is the fetal MCG, which is a noninvasive 
recording of the magnetic fields generated by the electrical activity of the fetal heart 
[69], [27]. It is a passive and safe means of fetal monitoring that uses superconducting 
quantum interference device (SQUID) sensors placed on the maternal abdomen. 
MCG signals have high quality allowing for beat-to-beat HR variability analysis 
and waveform information extraction. Nevertheless, fetal MCG is a very expensive 
technique that requires trained staff. Moreover, it requires a dedicated shielded 
environment to avoid electromagnetic interference. As a result, this method is not 
used in clinical practice.

CTG measurements can also be performed with electrocardiography, both invasively 
and non-invasively. Invasive recordings are performed through an electrode placed 
on the fetal scalp, but they are limited to the intrapartum period and only after the 
completion of 32 weeks of gestation. Non-invasive measurements are done through 
electrodes placed on the maternal abdomen. Therefore, the fetal signal has much 
lower intensity than the maternal signal and is additionally contaminated by various 
other noises and interferences resulting in low-quality fetal ECG signals. However, 
the passive nature of the ECG-based CTG monitoring enables long measurements 
that can be utilized for studying beat-to-beat HR variability. Moreover, these fetal 
ECG measurements are much cheaper than fetal MCG. Finally, ECG recordings, 
similar to MCG, offer the possibility to study the fetal ECG signal morphology. 

In general, CTG measurements often result in unnecessary interventions and 
significantly increase the number of Caesarean deliveries [70]. Despite the fact 
that CTG is preferred by most healthcare providers, this type of monitoring has 
not demonstrated consistent improvements in perinatal outcomes [71]. To avoid 
unnecessary operative deliveries and prevent fetal hypoxia, adjunctive techniques 
have been developed to further assess fetal oxygenation.

One of these techniques is fetal scalp blood sampling. During this procedure, a 
sample of blood is taken from the fetus to evaluate whether the pH is low, which 
indicates the presence of acidosis. However, systematic reviews have demonstrated 
no benefit of using fetal blood sampling in reducing unnecessary interventions and 
influencing long-term outcomes [15]. Fetal pulse oximetry [72] is used to measure 
oxygen saturation of fetal blood as an adjunct to CTG monitoring, similar to fetal 
blood sampling.  It utilizes a probe that is placed on the fetal head through the 
dilated cervix during labor. According to studies, the addition of fetal pulse oximetry 
does not reduce overall Caesarean section rates and better methods are required 
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to evaluate the fetal well-being [72], [73]. ST analysis (STAN, Neoventa Medical 
Ab Mölndal) was introduced in the 1990s to detect metabolic acidosis and improve 
perinatal outcome [17]. The STAN method analyses the ST waveform of the fetal 
ECG, acquired through an invasive scalp electrode during labor. ST analysis together 
with CTG monitoring showed promising results in reducing the rate of operative 
deliveries and metabolic acidosis [16], [17]. However, subsequent randomized trials 
did not reproduce these original findings [19], [18], [20], [21].

2.3 Clinical significance of the fetal electrocardiogram

2.3.1 Fetal heart rate and fetal heart rate variability

The most frequently used feature of the fetal ECG is the QRS complex, which is 
employed for the extraction of the fetal HR through calculation of the RR intervals. 
The range of normal fetal HR varies significantly with gestational age. At 20 weeks 
of gestation the baseline fetal HR ranges from 110 to 160 bpm [4]. However, the 
HR varies continuously under normal physiological conditions. This beat-to-beat 
variation in the RR time interval is referred to as fetal HR variability (HRV).

The clinical importance of the fetal HRV was first recognized in 1965 [74], when fetal 
distress was found to be preceded by variations in interbeat intervals before noticing 
remarkable changes in the fetal HR. In 1978, it was found in adults that lower HRV 
is associated with a higher risk of mortality after myocardial infarction [75]. Later, 
HRV analysis was used apart from the cardiology domain in other applications such 
as prediction of diabetic neuropathy [76].

According to the opinion of clinicians, monitoring the fetal HR is of utmost importance 
both during pregnancy and labor. During pregnancy, analysis of fetal HRV and the 
patterns of the fetal HR can be used to estimate the fetal brain development [77] and 
predict developmental outcomes in early childhood [78]. During labor, according to 
several studies, fetal distress can be detected by using HRV features and examining 
abnormal fetal HR patterns [31], [30], [29], [79]. Fetal distress typically occurs when 
the fetus does not receive enough oxygen and, if not managed in time, this can 
lead to complications, such as  hypoxic-ischemic encephalopathy (HIE), cerebral 
palsy (CP) and even fetal mortality [79]. Analysis of the HRV is currently limited 
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by the use of Doppler ultrasound CTG, which does not allow to study beat-to-beat 
variability. Unlike Doppler ultrasound CTG, fetal electrocardiography does not have 
this limitation.

2.3.2 Congenital heart defects

Congenital heart defect (CHD) is defined as a clinically significant structural heart 
defect present at birth and is a major cause of serious morbidity and mortality [80]. 
Timely detection of CHD during pregnancy has several advantages including prompt 
treatment after birth, preparation of the parents for the arrival of their sick child and 
the option to terminate the pregnancy in case of severe defects. Moreover, it was 
indicated that prenatal CHD diagnosis increases survival rates and reduces long-
term morbidity [81], [82]. Currently, detection of CHD is done in mid-pregnancy via 
ultrasound examination. However, approximately half of the severe cases are still 
missed [83], [84]. 

Fetal electrocardiography could be an additional tool for fetal heart assessment. 
It was demonstrated that the waveform of the fetal ECG changes in the presence 
of CHD [40], [41]. It was recently shown that it is possible to standardize the fetal 
ECG for the fetal orientation in mid-pregnancy for a healthy fetus and that in 
fetuses with specific CHD the standardized ECG clearly differs [85]. Moreover, a 
deep neural network was able to detect CHD from a fetal vectorcardiogram at 20 
weeks of gestation with accuracy of 76%, higher than fetal echocardiography [6].  In 
that case noninvasive fetal ECG measurements were initially processed to yield a 
3-dimensional vectorcardiogram.

2.3.3 ST interval

The ability of the fetal heart to pump blood depends on a balance between energy-
producing and energy-consuming processes. Normally, the available oxygen exceeds 
its request and the fetal heart utilizes oxygen-dependent aerobic metabolism to 
produce energy. In such a case, the energy balance is positive, and the ST waveform 
is normal [86]. If the amount of oxygen happens to be insufficient, the energy balance 
becomes negative and this results in hypoxia. Hypoxia produces changes in the 
morphology of the ST interval, which is normally characterized by a horizontal or 
upward sloping ST segment and a T-wave with stable amplitude. During hypoxia, 
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the ST segment becomes depressed, exhibiting a downward slope [86]. The fetus 
responds to the negative energy balance with an increase in adrenaline production, 
that further decreases the energy balance and initiates the use of stored glycogen for 
energy production [87]. Therefore, the aerobic metabolism of the fetus is supported 
by the anaerobic metabolism to restore the energy balance to equilibrium [87]. The 
breakdown of glycogen causes an increase in the height of the T wave. Changes 
in ST interval basically reflect the fetal defense mechanisms against hypoxia, and 
monitoring of these changes in clinical practice adds value to the current CTG 
monitoring approach.

2.3.4 QT interval

The QT interval is determined from the beginning of the QRS complex until the end of 
the T wave, and thus includes both the ventricular depolarization and repolarization. 
In a number of studies, changes in the duration of the QT interval were associated 
with an increased risk of death due to myocardial ischemia [88]. In fetuses, the QT 
interval has been of interest for monitoring fetal hypoxia. During labor, alterations 
in the length of the QT interval were found to be associated with hypoxia resulting in 
metabolic acidosis [89].

2.3.5 Fetal movement

Fetal movement is a valuable indicator of fetal health, as a marked movement 
decrease can be a precursor to fetal death [90]. The oldest and most commonly 
used method to assess fetal movement is maternal counting of fetal activity based 
on her perception [91]. However, it is possible to perform automatic and long-term 
detection of fetal movement based on the non-invasive fetal ECG.  

In abdominal recordings, the fetal ECG is the projection of the VCG on the electrode 
lead vectors on the maternal abdomen. In the absence of maternal abdominal 
movement, the lead vectors are stationary and changes in the morphology of the 
fetal ECG can be associated with fetal movement [23], [90], [92]. Undoubtedly, 
also changes in the physiological condition of the fetus result in changes in the 
ECG morphology. However, normally these changes happen in larger time scales 
comparing to fetal movement, which is expected to take place in small time scales. 
Therefore, the time scale of the changes can be used to discriminate the causes of the 
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morphological ECG changes. Moreover, movement causes coherent changes in the 
ECG of the various electrodes. Different type of coherence among the different ECG 
channels exist when the changes in ECG morphology originate from e.g. hypoxia. 
Therefore, spatial effects can also be explored to distinguish movement from 
physiological changes. It is important to point out that movement of the fetal limbs 
does not alter the morphology of the abdominal fetal ECG, so the application of fetal 
ECG is limited to detection of thoracic movement.  

2.4 Noninvasive fetal ECG extraction

2.4.1 Noise in the fetal ECG

Besides the fetal ECG signal, several other physiological and non-physiological 
interferences and noises are recorded by the abdominal electrodes [23]. These include, 
but are not limited to, the powerline grid, maternal ECG, abdominal muscle activity 
(electromyogram, EMG) and electrical activity from the uterus (electrohysterogram, 
EHG).  An example of an abdominal recording is shown in Fig. 2.6, where for the 
sake of clarity the powerline interference has been removed.  

Fig. 2.6 Example of an abdominal recording. Apart from the fetal ECG, several interferences 
and noises are also recorded and some of them are indicated in the figure [23].
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The ECG of the mother has about ten times larger amplitude than the fetal ECG, 
and the frequency content ranges approximately from 0 Hz to 80 Hz, similar to the 
fetal ECG [93]. The EHG includes frequencies from 0 Hz to roughly 3 Hz, while the 
EMG from 0 Hz to 200 Hz [23]. Lastly, the powerline interference has a frequency 
component of either 50 Hz or 60 Hz, along with  its harmonics. The fact that these 
interferences and noises overlap in frequency with the fetal ECG makes their 
suppression a rather challenging task.

2.4.2 Signal preprocessing

Before extracting and analyzing the fetal ECG, the first steps in the signal processing 
pipeline usually involve the removal or suppression of  interferences and noises such 
as the powerline interference (PLI) and baseline wander. There are several works 
in the literature for their removal or suppression, with the main challenge being to 
preserve the fetal ECG components.

The PLI is a common interference in biomedical signals and is determined by the 
power supply network. It occurs due to differences in electrode impedances and 
parasitic currents through the patient body and electrode cables. PLI is a problem in 
fetal ECG analysis as it can reach amplitudes much greater than the abdominal fetal 
ECG signal [94]. Solutions exist for reducing the PLI, such as cable shielding and 
proper skin preparation, but these are often insufficient to suppress it. The review 
of Ţarălungă et al. [94] describes the main methods for removing the PLI, which are 
notch filters, Kalman filters, wavelets, adaptive filters, neural networks and blind 
source separation.

Baseline wander is a strong noise component, which can be caused by factors such 
as respiration, changes in electrode impedance and motion. Baseline wander can 
mask important information from the fetal ECG and thus its removal is an essential 
preprocessing step. The simplest method for baseline wander suppression is the use 
of a high-pass filter that blocks the low-frequency components characteristic of the 
noise, while allowing the main fetal ECG components to pass through the filter. The 
frequency of the high-pass filter is usually set to roughly 0.5 Hz, slightly affecting the 
low-frequency fetal ECG components such as the ST segment [95]. Other methods 
were also investigated in the literature such as techniques based on average and 
median filtering [58], wavelet-based and spline approximation algorithms [95]. 
However, for medical applications, high-pass filtering is typically the best choice 
because of its low computational complexity and relatively high accuracy [95]. 
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2.4.3 Fetal ECG extraction

After preprocessing the abdominal recordings, the main signal processing step 
follows, which involves the removal of the maternal ECG and the extraction of the 
fetal ECG signal. Several methods have been proposed in the literature for extraction 
of the fetal ECG signal [43]. One popular category of methods is template subtraction, 
which refers to approaches where the maternal component  is (dynamically) 
estimated (template) and then subtracted from the signal mixture [96], [97], [98], 
[99]. Kalman filtering and extended Kalman filtering have also been used to filter 
the maternal ECG component [100], [101]. Wavelet transform is another widely 
used method for fetal ECG extraction that, because of the spectral overlap of the 
signal and the several noises, is usually used in combination with other techniques 
such as adaptive filtering [102] or blind source separation [103]. When using blind 
source separation methods for fetal ECG estimation, the latent sources of the signal 
mixture, one of them being the fetal ECG, are estimated assuming that they are 
statistically independent [104], [105], [106], [107]. Several methods have been also 
developed that use one or more additional reference inputs from electrodes placed 
on the maternal chest. These inputs are assumed to contain the maternal ECG and 
different techniques have been proposed for estimating and subtracting it from the 
mixture [108], [109], [110]. In general, each method has strengths and weaknesses 
and combination of different techniques can potentially improve the fetal ECG 
extraction performance [111].

2.4.4 Signal postprocessing

Even after the maternal ECG removal step, the extracted fetal ECG is still substantially 
contaminated by residual noises that are often non-stationary, complex, and have 
spectral overlap with the fetal ECG. Despite the vast literature on the separation 
of maternal and fetal ECG, very few works focused on the postprocessing step for 
enhancing the quality of the fetal ECG signals so as to enable accurate analysis of 
the fetal ECG morphology. The oldest, simplest and more extensively used method 
consists of averaging of consecutive ECG complexes, at the expense of losing individual 
variations in pulse shape [112], [113]. Different wavelet denoising techniques have 
also been investigated for improving the SNR of the fetal ECG signals [114], [115]. In 
this thesis, Chapters 4, 5 and 6 are dedicated to developing postprocessing techniques 
for fetal ECG enhancement that aim at improving the performance of the existing 
methods tackling their main shortcomings.
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2.4.5 Complications in fetal ECG analysis

Apart from the various noises and interferences that corrupt the noninvasive fetal 
ECG, the analysis of the fetal ECG signals is further complicated due to changes in 
the volume conductor between the fetal heart and the abdominal electrodes. The 
volume conductor consists of several anatomical layers with different electrical 
conductivities that surround the fetus and through which the cardiac signals must 
pass to reach the maternal body surface. These layers include the amniotic fluid, 
vernix caseosa, skin of the mother and fat [4]. The volume conductor is not constant 
and its changes can distort, attenuate or amplify the fetal ECG [116], [117], [47], 
[58]. These changes mainly originate from the development of vernix caseosa layer 
[23]. Between the 28th and 32nd week of gestation, the vernix caseosa, which is a thin 
protective layer,  is formed [58]. This layer with very low conductivity introduces an 
electrical shield around the fetus, making the recording of the fetal ECG through 
abdominal electrodes very difficult. When the pregnancy is normal, the vernix 
caseosa slowly dissolves around the 37th and 38th week of gestation. However, since 
the 32nd week the vernix caseosa starts breaking down and some holes are formed 
which restore the possibility to perform abdominal recordings [23]. In general, 
limitations in fetal ECG analysis caused by this layer are mostly expected between 
28th  week and 37th  week of pregnancy.

2.4.6 Devices for fetal ECG monitoring

Fig. 2.7 Commercial fetal monitors based on noninvasive fetal ECG. (a) Monica AN24, (b) 
Monica Novii Wireless Patch System, (c) MERIDIAN M110 Fetal Monitoring System and (d) 
Nemo Fetal Monitoring System [43].

The first commercial fetal HR monitor, which was approved  in the United States by 
the Food and Drug Administration (FDA) was the Monica AN24 monitor (Monica 
Healthcare, Nottingham, UK) in 2011. After Monica AN24 monitor, more commercial 
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fetal monitors appeared such as Monica Novii Wireless Patch System in 2014, 
MERIDIAN M110 Fetal Monitoring System in 2017 (MindChild Medical, Inc., North 
Andover, MA, USA) and Nemo Fetal Monitoring System in 2018 (Nemo Healthcare, 
Veldhoven, The Netherlands). These devices can measure uterine activity and fetal 
HR. Each device uses a different number of electrodes and different ways of applying 
them on the maternal abdomen as demonstrated in Fig. 2.7. 
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Abstract. Objective: Fetal heart rate monitoring is routinely used during pregnancy 
and labor to assess fetal well-being. The non-invasive fetal electrocardiogram (ECG), 
obtained by electrodes on the maternal abdomen, is a promising alternative to 
standard fetal monitoring.  Subtraction of the  maternal ECG from the abdominal 
measurements results in fetal ECG signals, in which the fetal heart rate can be 
determined typically through R-peak detection. However, the low signal-to-
noise ratio and the nonstationary nature of the fetal ECG make R-peak detection 
a challenging task. Approach: We propose an alternative approach that instead 
of performing R-peak detection employs deep learning to directly determine the 
fetal heart rate from the extracted fetal ECG signals. We introduce a combination 
of dilated inception convolutional neural networks (CNN) with long short-term 
memory networks to capture both short-term and long-term temporal dynamics 
of the fetal heart rate. The robustness of the method is reinforced by a separate 
CNN-based classifier that estimates the reliability of the outcome. Main results: 
Our method achieved a positive percent agreement (within 10% of the actual fetal 
heart rate value) of 97.3% on a dataset recorded during labor and 99.6% on set-A of 
the 2013 Physionet/Computing in Cardiology Challenge exceeding top-performing 
state-of-the-art algorithms from the literature. Significance: The proposed method 
can potentially improve the accuracy and robustness of fetal heart rate extraction in 
clinical practice. 
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3.1 Introduction

Hypoxia that occurs when the brain does not receive adequate oxygen poses a 
significant risk for fetuses. The failure of oxygen delivery to the fetus can cause 
permanent brain damage, developmental delays, or even death in severe cases. 
Although oxygen deficiency can happen at any stage during pregnancy most injuries 
typically occur during labor. The heart rate (HR) pattern of the fetus changes as 
a response to reduced oxygenation [118], [119]. Therefore,  the fetal HR must be 
monitored during labor but also pregnancy, especially in high-risk pregnancies.

Many hospitals routinely use continuous electronic fetal HR monitoring during 
pregnancy and labor. Electronic fetal HR monitoring measures fetal HR in response 
to the contractions of the uterus and can be performed internally or externally. 
External fetal HR monitoring is the most common method and can be performed by 
placing an ultrasound transducer on the maternal abdomen. However, this method 
often provides inaccurate results, as it is affected by the movement of the mother 
and the fetus and suffers from signal loss in case of obese patients [43]. Internal 
monitoring is carried out by placing an electrode on the fetal scalp [118]. It provides 
a more accurate and consistent HR because factors such as movement have a smaller 
impact on the quality of the measurement. However, scalp fetal HR measurements 
can only take place during labor after the membranes have ruptured and there is 
sufficient dilation of the cervix. Additionally, the scalp electrode may cause injury to 
the fetus.

An alternative way of measuring the fetal HR externally is by measuring the  
noninvasive fetal electrocardiogram (ECG) by placing electrodes on the maternal 
abdomen. This method has the potential to provide accurate measurements and 
can be performed both during pregnancy and labor. As opposed to ultrasound 
measurements, the fetal ECG recordings enable beat-to-beat HR extraction, 
necessary for reliable analysis of the HR variability [120]. To extract the fetal HR 
from the fetal ECG recordings, one needs to detect the fetal R-peaks since the HR is 
related to the distance between two successive peaks. However, the noninvasiveness 
of the fetal ECG comes at the cost of a reduction in signal-to-noise ratio (SNR) [121]. 
The noninvasive abdominal recordings are severely contaminated by electrical 
interferences and noises such as the maternal ECG, powerline interference, muscle 
noise, equipment noise, etc., thus complicating the detection of the fetal R-peaks. 
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Several methods have been proposed in the literature in the area of fetal ECG and 
fetal HR extraction from noninvasive abdominal recordings. The 2013 Physionet/
Computing in Cardiology Challenge aimed to encourage fetal HR estimation from 
abdominal recordings [122]. Along with the challenge, a database became publicly 
available to allow for the comparison of different algorithms. The methods presented 
in the challenge were unique but, as pointed out in the review of Clifford et al. [123], 
most followed a five-step approach. This includes preprocessing of the abdominal 
signals, estimation, and suppression of the maternal ECG signal, R-peak detection, 
and postprocessing of the fetal HRs. A variety of algorithms were proposed for 
maternal ECG subtraction, such as adaptive filtering [108], [109], [58], template 
subtraction [98], [99],  blind source separation [105], [124], [106], [107] or a 
combination of different algorithms [125], [102], [103]. For an extensive review of 
fetal ECG extraction methods see [121] or [126]. However, even after the maternal 
ECG is removed, the SNR of the extracted fetal ECG signals is usually low, and this 
can result in faulty R-peak detections.

The winner of the challenge, Varanini et al. [104],  used two QRS detectors in forward 
and backward directions after enhancing the extracted multichannel fetal ECG signal 
with independent component analysis. Afterwards, the fetal ECG channel with the 
best R-R series was selected for HR estimation. However, since the orientation of the 
fetus can change, causing variations to the SNR of each channel, using multichannel 
information can be more robust. Warmerdam et al. [127] suggested an adaptive 
multichannel R-peak detection method that combines HR information and ECG 
waveform. However, a linear autoregressive model was used as an HR model that is 
not able to describe complex accelerations and decelerations that occur during labor. 
When tested on set-A of the 2013 Physionet/Computing in Cardiology Challenge 
[122], Warmerdam et al. achieved 99.6% accuracy in R-peak detection while Varanini 
et al.  98.6%. Since the challenge, more research has been performed in the area of 
fetal HR extraction with promising results [128], [129].

Deep learning methods have achieved remarkable success in tasks such as image 
classification [130] and speech recognition [131] and the expectations on how this 
technology could help to improve health care are high [132]. Several works have 
been reported in the area of ECG processing such as adult ECG denoising [133], 
[134], adult arrhythmia detection [135], prediction of fetal acidemia [136], fetal ECG 
denoising [137], [138] and fetal ECG signal reconstruction [139]. Present signal 
processing algorithms for fetal HR extraction have limited performance because 
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there are no accurate models for the noise that remains after the maternal ECG is 
suppressed. However, complex deep learning models might be more efficient in 
HR estimation especially in low-SNR signals. Two works in the literature already 
attempted fetal QRS detection with deep learning methods. Zhong et al. [140] 
proposed a convolutional neural network (CNN) model for QRS complex detection 
from noninvasive abdominal recordings without canceling the maternal ECG. 
Subsequently, Lee et al. [141] advanced this approach by using multichannel signals, 
deeper architecture, and postprocessing, leading to an improved positive predictive 
value of 92.77%. However, both methods did not manage to reach the performance 
of conventional signal processing algorithms. Moreover, there is a limitation in the 
validation of both approaches to only 7 subjects of the set-A of the 2013 Physionet /
Computing in Cardiology Challenge dataset [122].

Recently, the authors proposed a deep learning model that directly estimates the fetal 
HR from the extracted fetal ECG signals [142]. The model, which combines CNNs 
with long short-term memory (LSTM) networks, achieved comparable performance 
with a top-performing state-of-the-art HR extraction algorithm. A limitation of 
the method was that it failed to correctly estimate the HR in cases of extremely 
low-quality signals obtained during the second stage of labor, especially when 
decelerations happened. In clinical practice, absence of information  is unfavorable 
but wrong information is  worse as it might lead to misdiagnosis.

In this chapter, we further improve and extend our previous work aiming at more 
robust and efficient HR estimation. Inspired by [143], we propose to use a dilated 
inception CNN encoder in our network to achieve multiscale feature extraction and 
a variety of receptive fields. An LSTM decoder network is chained to the encoder 
to learn long-term temporal feature relations and extract the fetal HR. Our main 
contributions are outlined as follows:

 ■ A deep hybrid dilated inception CNN-LSTM (DICNN-LSTM) encoder-
decoder network that extracts the fetal HR from noninvasive abdominal 
recordings. To the best of our knowledge, we are the first that employed deep 
learning to estimate the fetal heart HR without explicitly detecting the QRS 
complexes.

 ■ The reliability of our method is reinforced by a classifier, which uses a CNN 
network to identify the periods of time that the extracted fetal HR is inaccurate, 
increasing the suitability of our method for clinical application.
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 ■ Experimental results demonstrate the advantage of our method over top-
performing state-of-the-art algorithms. 

The rest of the chapter is organized as follows. Section 3.2 presents the proposed fetal 
HR extraction method, the HR reliability classifier and the data used. Experimental 
results are provided in Section 3.3. Finally, the results are discussed in Section 
3.4 and conclusions are drawn in Section 3.5.

3.2 Materials and methods

3.2.1 Data

Two different datasets were used in this study. The first one is a private dataset 
obtained in a collaboration between the Eindhoven University of Technology and 
the Máxima Medical Center, Veldhoven, The Netherlands. This dataset is a part 
of the study described in [144]. It contains 28 abdominal recordings measured 
by 4 electrodes during labor at a sampling frequency of 500 Hz. The data were 
collected from 28 women with a gestational age between 36 and 42 weeks with a 
total duration of roughly 91h. Each recording was partially obtained during the first 
and second stage of labor. Simultaneous scalp HR recordings were performed and 
stored at 4 Hz. In nearly all recordings, clock drift was present between the scalp 
fetal HR and the fetal ECG, leading to desynchronization after a certain amount 
of time. To limit this desynchronization, the fetal HR was resampled using a 
manually determined resample factor. The fetal ECG signals were extracted from 
the abdominal measurements by the methods described in [98], [145]. According 
to [145], a fixed-lag Kalman smoother with adaptive noise estimation was used to 
filter the powerline interference. After this step, the maternal ECG was suppressed 
by a template subtraction technique, known as weighted averaging of maternal ECG 
segments (WAMES) [98]. WAMES method dynamically segments the maternal ECG 
complex in separate parts and generates an individual template for each part. Each 
template is determined by linearly combining time-shifted, offset-compensated, and 
scaled corresponding parts in previous complexes. The individual templates are then 
combined to yield a maternal ECG template, which is subsequently subtracted from 
the recorded, preprocessed data. At the moment of conducting the study, the authors 
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were provided merely with the extracted fetal ECG data, while access to the raw data 
was not available. Fig. 3.1 illustrates two examples of fetal ECG signals contained in 
this dataset. Fig. 3.1(a) presents a signal recorded during the first stage of labor, while 
Fig. 3.1(b) a signal obtained during second stage of labor. Note that the vertical axis 
limits for the signals in Fig. 3.1(a) and (b) differ for better visualization. Notably the 
signal in Fig. 3.1(a)  has significantly higher quality than the signal in Fig. 3.1(b). All 
the signals of this dataset obtained during second stage of labor have high amounts 
of noise, making it virtually impossible to distinguish the fetal R-peaks. 

The second dataset is the set-A of the 2013 Physionet/Computing in Cardiology 
Challenge [122]. It consists of 75 1-minute noninvasive abdominal signals sampled 
at 1000 Hz. The data were obtained from multiple sources, using a variety of 
instrumentation with different frequency response, resolution and configuration, 
although in all cases they are presented at 1000 samples per second. Reference 
annotations of the fetal QRS complexes were made available as well which enabled 
us to determine and evaluate the fetal HR. The reference annotations were produced, 
usually  with reference to a direct scalp fetal ECG signal. Following the suggestion 
of Behar et al. [146], organizer of the challenge, seven recordings (a33, a38, a47, a52, 
a54, a71, and a74) were discarded due to inaccurate annotations. The algorithm of 
Varanini et al. [104] was used to extract the fetal ECG signals from the abdominal 
recordings. According to the method of Varanini et al., first the baseline wander 
and the powerline interference were removed. Afterwards, the maternal ECG was 
estimated through independent component analysis (ICA) and singular value 
decomposition and subsequently subtracted from the signals. Finally, a second ICA 
was employed to enhance the fetal ECG signal. We need to note that since our fetal HR 
extraction framework was developed for signals sampled on 500 Hz, before applying 
our algorithm on the Physionet dataset, but after applying Varanini’s method, the 
signals were resampled to 500 Hz.

16 (54h) out of the 28 recordings of our private dataset were randomly selected 
and used to train the fetal HR extraction network. 6 recordings of 22.5h were kept 
as validation set to tune the parameters of the network. The remaining 6 (14.5h) 
recordings of our private set, together with the  set-A of the Physionet database (68 
min) [122], were kept as a test set to evaluate the performance of the network. The 
scalp fetal HR was used as the desired output of the network (labels).
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Fig. 3.1. Two example 4-channel fetal ECG signals from our private dataset [144], where  the 
signal presented in  (a) was obtained during first stage of labor and in (b) during second stage 
of labor.

3.2.2 Fetal heart rate extraction

In this section, we present our DICNN-LSTM model for fetal HR extraction from 
noninvasive fetal ECG signals. The model, which is illustrated in Fig. 3.2, is comprised 
of two main blocks. The DICNN network block (encoder) consists of six stacked dilated 
convolution inception modules,which are depicted in detail in Fig. 3.3. The DICNN 
network is used as a feature extractor and the extracted features are fed to the LSTM 
network block (decoder) that is responsible for estimating the fetal HR.  
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Fig. 3.2. Overview of the proposed DICNN-LSTM network. A dilated inception CNN network 
extracts features from the input 4-channel fetal ECG signal (1-minute duration), which are 
then fed to an LSTM network for the estimation of the fetal heart rate (4values/s). Next to each 
layer the output layer size is provided. The Inception(i,j) block is given in more detail in Fig. 
3.3, while i indicates the number of filters of the convolutional layers and j the size of the max 
pooling window. FC stands for a fully connected layer.
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HR.

Fig. 3.3. The dilated inception block used in the DICNN-LSTM network of Fig. 3.2. Conv 
stands for a convolutional layer, DL for dilation rate, and BN for a batch normalization layer.

3.2.2.1 Network description

3.2.2.1.1 Dilated convolution

Dilated convolutions were originally developed for wavelet transforms [147] and 
later proposed for multiscale context aggregation in [148]. Given a 1-D signal u and 
a kernel h, the output v of a dilated convolution is defined as: 

              v[n]=∑_(k=0)^(K-1)))h[k]u[n-dk] ) ,                     (3.1)

where K and d are the kernel size and the dilation factor respectively. Notice than 
when d is 1, then the dilated convolution is the same as the conventional convolution. 
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Fig. 3.4 illustrates the 1-D dilated convolution operation with dilation rates 1, 2, and 
4 and kernel size 3. As shown in the figure, d-1 signal samples are skipped during the 
dilated convolution.

Dilated convolutions are used to increase the receptive field of the network, i.e. the 
region in the input space that a CNN feature is affected by. When using conventional 
convolutions, the receptive field is linearly related to the depth of the layer. Dilated 
convolutions can achieve a receptive field that is exponentially related to the layer 
depth when exponentially increasing dilation rates (d=1,2,4…) are used.

Fig. 3.4. 1-D dilated convolution with a kernel size of 3 and dilation rates 1, 2, and 4. The green 
block in the input signal (first row) indicates the unit of interest. In the output signals (second, 
third, and fourth row) the green blocks show the receptive field for each different dilation rate.

3.2.2.1.2 Encoder network

Szegedy et al. [149] proposed an inception model for image classification, intending 
to capture multiscale information in the input images. Salient signal parts can have 
large variations in size and thus choosing the right kernel size is not easy. Larger 
kernel sizes are preferred for more globally spread information, while smaller sizes 
are preferred for local information. Moreover, very deep networks are susceptible to 
overfitting and are computationally expensive. To address these issues, the original 
inception module was developed that uses a wider instead of deeper network by 
allowing filters of different kernel sizes to operate on the same level. More recently, 
Shi et al. [143] presented a dilated convolution inception model for single image 
super-resolution. In their model, instead of using convolutions with different kernel 
sizes, they employed convolutions of different dilation rates to learn multiscale 
information.
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Inspired by both works we propose a stacked dilated inception convolutional 
encoder network to extract useful features for fetal HR extraction from noninvasive 
fetal ECG signals. We found that for our problem varying the dilation rate rather 
than the kernel size leads to better performance (in the validation dataset). As shown 
in Fig. 3.3, each inception module of the encoder consists of three parallel branches 
of two convolutional layers of different dilation rates (1, 4, and 8). Since our data 
are temporal, we use 1-D convolutions. Batch normalization layers are used after 
the convolutions to speed up the training process by normalizing the intermediate 
outputs. The outputs of these layers are subsequently concatenated together with 
the input of the module through a residual connection. The role of the residual 
connection is twofold. First, it allows the input features to be reused, leading to 
better performance. Second, it allows the gradients to propagate easier across our 
deep network preventing the vanishing gradient problem. A convolutional layer is 
applied after the concatenation of the features to select the most meaningful features 
and reduce the dimension of the feature vector. At the end of the module, a max-
pooling layer is used to reduce the temporal dimension of the signal.

The parametric rectified linear unit (PReLU) [150] is used as an activation 
function between the layers. In contrast to the rectified linear unit (ReLU), in 
which the negative part is completely dropped, PReLU assigns a nonzero slope to 
it. The output of PReLU,  f(z), for an arbitrary input z, is defined as:   
  

                               ,            (3.2) 

where the slopes b are optimized during the training of the network. The motivation 
to use PReLU is that it solves the “dying ReLU” problem when ReLU neurons become 
inactive and output zero for any input. Moreover, when tested in the validation 
set, we noticed a slight increase in our HR estimation accuracy when using PReLU 
instead of ReLU.

Six of these dilated convolution-based inception modules are stacked together 
to form the encoder of our model. We tried also different numbers of inception 
modules but six gave the best performance based on tests on our validation dataset. 
The encoder is both wide and deep and thus relatively complex, which is necessary 
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to extract relevant information from the typically very noisy fetal ECG signals. A 
240x256 feature vector is extracted from the fetal ECG signals at the output of the 
encoder. 

3.2.2.1.3 Decoder network

The extracted feature vector is sent to the decoder network that is responsible for 
estimating the fetal HR. The first layer of the decoder is a dropout layer with a dropout 
rate of 0.2. This layer randomly ignores 20% of the neurons in the corresponding 
layer during training.  This means that the weights for these neurons will not be 
updated on the backward pass. As a result, the network becomes less sensitive to the 
specific weights of the neurons and consequently can generalize better and is less 
likely to overfit.

Then, an LSTM layer with 512 nodes is used to model the temporal dynamics of the 
extracted features. LSTMs [151] were developed as an improved form of recurrent 
neural networks (RNNs) to handle the problem of vanishing and exploding gradient. 
Instead of simple RNN neurons, LSTMs are characterized by more complex memory 
blocks that consist of several gates to control the information flow in the internal 
memory cells. They were explicitly designed for learning long-term dependencies in 
sequential data, meaning that they can remember and associate past with present 
information. Thus, an LSTM layer is stacked after the feature extraction step and 
dropout to learn dependencies in the feature sequence. The LSTM output is fed to 
two fully connected layers with 128 and 1 neurons respectively that output the fetal 
HR. PReLU activation functions are applied also to the decoder of our network. The 
parameters of both the encoder and decoder of our network were determined such 
that the fetal HR estimation performance was maximized on our validation dataset. 
Due to the large number of parameters cross validation to tune them was prohibitive.

3.2.2.1.4 Input and output signals

The input signal of the network is a 4-channel ECG signal of one-minute duration. 
Since the average normal fetal HR is 100 to 160 bpm, the input signal typically 
contains 100 to 160 heartbeats. Because our reference HR from the scalp electrode is 
4 HR values/s (Section 3.2.1), the output of the network is set to 240 fetal HR values 
(60s x 4values/s). 
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To speed up the training process, the input signal X is normalized over the four 
channels separately by subtracting the mean and dividing by  the standard deviation 
of the signals through:

                                                    ,                                         (3.3)  

where E[X] and Var[X] are the mean and the variance of the input signal respectively. 
A small constant ϵ, chosen as 0.001, is added to the denominator to prevent division 
by zero. The output signals (labels) are not normalized.

3.2.2.1.5 Loss function

Mean square error (MSE) is the most commonly used loss function in regression 
problems. As the name suggests, MSE measures the square difference between the 
HR estimations and the actual observations. Due to the squaring, estimations that 
are far away from their actual values are penalized more heavily. However, when 
estimating the fetal HR less importance should be given to clear outliers because 
these will be ignored by the clinicians in their visual inspection of the fetal HR traces. 
For this reason, the mean absolute error (MAE) was selected as a loss function for 
our problem. MAE is defined as         

  ,                   (3.4)

where Q is the length of the output sequence (Q=240), FHRpredicted  is the estimated 
fetal HR and  FHRtarget is the fetal HR measured by the scalp electrode. 

3.2.2.1.6 Training

The Adam algorithm [152] was selected as an optimization algorithm while the 
learning rate was set to 0.0001. The batch size was set to 8. At each training iteration, 
8 random one-minute segments were chosen from the 54h training sequences. The 
scalp fetal HR was used as the desired output of the network. The network was 
trained for 1000 epochs and the model that minimized the loss on the validation set 
was finally chosen.
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3.2.2.2 Performance Evaluation

3.2.2.2.1 Evaluation metrics 

The accuracy of the proposed method was assessed by measuring the mean absolute 
error (Equation 3.4) and the mean squared error defined by:

    2.                    (3.5)

We determined the reliability of our method in terms of positive percent agreement 
(PPA), which is the percentage of fetal HR outputs that were within 10% of the 
actual HR value [153].We also present results where we used a smaller tolerance 
of 5% for the calculation of PPA (we will call this PPA_5).In addition, we used a 
second reliability metric, the coverage, that corresponds to the time that the method 
outputted a nonzero fetal HR value.

3.2.2.2.2 Reference methods

The performance of our method was compared to the performance of the algorithm 
of Warmerdam et al. [127], that outperformed the algorithms of Varanini et al. 
[104] and Behar et al. [125], when tested in set-A of the 2013 Physionet /Computing 
in Cardiology Challenge dataset [122]. Warmerdam proposed a multichannel 
hierarchical probabilistic framework for detecting the fetal R-peaks. Two models 
are incorporated in this framework, a gaussian QRS model and an autoregressive 
HR model. Their framework consists of three inference levels for inferring each 
next R-peak location: state estimation, QRS and HR model estimation, and noise 
estimation. Initially, the QRS model is used to determine the next R-peak location. A 
sanity check is performed to evaluate if this is indeed an R-peak location and if not, 
the location is extrapolated based on the HR model. In addition to R-peak detection, 
the algorithm of Warmerdam et al. identifies the periods of time that the extracted 
fetal HR is unreliable and does not output an HR value for these. The code of the 
algorithm was provided by the authors for our experiments.

We performed an additional comparison of our method with the algorithms of 
Varanini et al. [104] and Behar et al. [125] in the Physionet dataset. Both [104] and 
[125] are fetal ECG extraction approaches that also calculate the fetal HR. We did not 
compare on our private dataset because we have access only to the extracted fetal ECG 
signals and not the raw data. For both algorithms we used online implementations 
provided by the authors in the Physionet website.
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After the fetal ECG extraction process (section 3.2.1), the method of Varanini 
performs R-peak detection on individual channels using a two-step approach. First, 
a derivative filter is used for R-peak detection. Second, a forward and backward 
autoregressive model is trained from the obtained  RR-series. The autoregressive 
model is subsequently used in combination with the derivative signal to detect the 
fetal R-peaks. In the end, the channel with the best RR-series is chosen based on 
some statistical features of the RR-series.

Behar uses a combination of various source separation techniques to cancel the 
maternal ECG such as template subtraction and blind source separation methods. 
Fetal R-peak extraction is then performed using a Pan and Tompkins R-peak 
detector on each separate fetal ECG channel. Finally, the channel with the smoothest 
RR-series is selected.

3.2.3 Fetal heart rate reliability estimation

When the fetal ECG signals have extremely low quality it is difficult to accurately 
estimate the fetal HR. To increase the robustness of our network, we propose to use 
a simple classification framework that determines whether the extracted fetal HR  is 
reliable or not. In fact, the classifier determines if a fetal ECG segment could yield a 
reliable fetal HR depending upon its signal quality. Fig. 3.5 illustrates the proposed 
classifier for fetal HR reliability estimation. The input 4-channel fetal ECG signal is 
initially segmented in parts of 3000 samples that correspond to 6s. Each segment 
passes through a CNN network that produces a value between 0 (unreliable) and 1 
(reliable) indicating the reliability of the fetal HR. For each 6-second segment, one 
output value is obtained. However, since the DICNN-LSTM network outputs 4 fetal 
HR values/s, we copy the same value 24 times to obtain consistent outputs. 
Afterwards, we concatenate all outputs obtained from the 6-second signal segments. 
A median filter of size 101 (26s) is subsequently applied to smoothen the reliability 
result for the whole input signal. Filtering removed some outliers and was found to 
slightly improve the classification performance on the validation dataset. The 
reasoning about our choice to filter the output as well as about the relatively large 
filter size is that it prevents the output from jumping between reliable and unreliable. 
Towards a clinical application we want to avoid  such jumping as we want to prevent 
frequent raising of alarms. It is preferable to have more sustained alarms that could 
encourage the hospital staff to take measures to improve signal quality by e.g. asking 
the patient to move less. After the filtering operation, we set a cut-off threshold to 



Fetal heart rate estimation

57   

3

determine if the final outcome will be 0 (unreliable) or 1 (reliable) for each fetal HR 
value.  

Fig. 3.5. (a) Illustration of the fetal heart rate reliability classifier. A CNN  network is used to 
classify each 3000-sample-long segment of the 4-channel fetal ECG (M samples) and the 
outputs are subsequently concatenated and filtered to obtain the final result. (b) Description 
of the CNN network used to classify each fetal ECG segment. Conv stands for convolutional 
layer and FC for fully connected. 

3.2.3.1 Fetal heart rate reliability network 

The fetal HR reliability network, shown in Fig. 3.5(b), consists of 10 1-D convolutional 
layers followed by 2 fully connected layers. After every two convolutional layers 
subsampling by two is applied to the input (convolutional layers with stride 2). We 
empirically determined that employing 32 filters in each convolutional layer achieves 
a satisfactory result and avoids overfitting. The kernel size was set to 15 for all the 
convolutional layers. The two fully connected layers have 32 and 1 units respectively.  
All layers except for the last are followed by a ReLU activation function, while the 
last is followed by a sigmoid function. The latter produces a score between 0 and 1 
indicating if the input will produce an unreliable (value close to 0) or reliable result 
(value close to 1). 
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3.2.3.1.1 Training

The same training data that were used to train the DICNN-LSTM model were 
employed for the training of the fetal HR reliability network, i.e 16 recordings of 
our private dataset. However, the labels of the data were different because in this 
case we are not estimating heart rates but reliabilities. To obtain the training 
labels, the data were initially passed through the DICNN-LSTM network and 
the heart rates were estimated. Afterwards, the HR estimations were compared 
with the actual HR values obtained by the scalp electrode. When the estimations 
were close to the target values , 
then the data were labeled as reliable with label 1, otherwise unreliable with label 0. 

We trained the network by minimizing the binary cross-entropy between the HR 
estimations and the labels using the Adam optimizer with learning rate 0.0001. The 
batch size was 32, comprising 16 positive (reliable) and 16 negative (unreliable) 
stochastically selected examples. After training the network for 1000 epochs, the 
model that minimized the validation loss was selected.

3.2.3.2 Performance evaluation

The performance of the HR reliability classification network was assessed in terms 
of area under the receiver operator characteristic curve (AUC), true negative rate 
(TNR) or specificity, and true positive rate (TPR) or sensitivity. AUC metric ranges 
from 0 to 1, with 0 meaning that all estimations are wrong and 1 that all estimations 
are correct.

3.3 Results

In this section, we apply our proposed model for fetal HR extraction and report 
the experimental results for both our private and the Physionet datasets.  The 
effectiveness of our method is validated both quantitatively as well as  qualitatively. 
The results are presented in three parts. In the first part experiments regarding the 
DICNN-LSTM are provided. In the second part the fetal HR reliability classifier is 
evaluated and in the third part the results of the combined system are presented.
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3.3.1 DICNN-LSTM Network Experiments

3.3.1.1 Kernel size

Fig. 3.6. Performance of the DICNN-LSTM network when varying the kernel size of all the 
convolutional layers on the validation set. At each data point the standard deviation error 
bars show variations in performance due to differences in the initialization of the weights and 
random selection of training samples.
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By changing the size of the kernels different features could be learned and the 
complexity of the network changes. We are interested in investigating if the 
detection accuracy changes when the dimensions of the convolutional window are 
altered. Thus, we performed experiments where we varied the kernel size of all the 
convolutional layers in the encoder of our DICNN-LSTM network but kept all the 
other parameters fixed. The experiments were performed on our validation dataset. 
The different kernels sizes that we tried are the following: 5, 11, 15, 19, 25, 35, and 
50. For each one of them we repeated training the network three different times and 
then we averaged the performances of these three networks. The reason for this is 
that there is some randomness in the training process caused by differences in the 
initialization of the weights and random selection of training samples. Therefore, 
even when two networks are trained with the same architectural- and hyper-
parameters, these trained networks will not be identical. 

Fig. 3.6 illustrates the performance of our network in terms of MSE, MAE and PPA 
when varying the kernel size. We notice that for smaller kernel sizes (up to 19) the 
performance of the network is relatively stable. This means that the kernel size does 
not seem to strongly affect the accuracy of the network and using any kernel size up 
to 19 is a good choice. However, for kernel sizes larger than 19 the performance starts 
to drop and becomes worse as the kernel size increases. This means that probably 
with large kernel sizes we miss details of some smaller features  that are relevant for 
heart rate detection. Contrary to that, when using smaller kernel sizes, we detect not 
only smaller features but also larger ones since we have a relatively deep network 
with many convolutional layers stacked on top of each other. In addition, with the 
dilated inception scheme of our network we achieve a variety in  the receptive fields 
of the network.

3.3.1.2 Model ensemble

Deep neural networks (DNNs) learn via a stochastic training algorithm that makes 
them sensitive to  the training data and may learn a different set of weights each time 
they are trained that consequently produce different estimations. A way to reduce 
this high variance of the DNNs is to train multiple models and combine their outputs 
i.e. to use ensemble learning. Ensemble learning typically results in more stable and 
improved estimations when compared to a single model. There are many ensemble 
learning techniques like varying the training data or the model architecture and the 
combination of the estimations. We decided to choose the combination of the three 
best models, trained with different kernel sizes, and average their outputs.
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Table 3.1  shows the performance of the three best performing models together with 
the performance of the model ensemble. The best performances are marked in bold. 
The convolutional layers of these three models have kernel sizes of 5, 15, and 19. 
The performance of the three models is comparable while the combination of the 
separate models leads to more accurate results.

Table 3.1 Performance of the best performing DICNN-LSTM models and the ensemble of 
them on the validation set.

Model MSE (bpm^2) MAE (bpm) PPA (%)

Model1_kernel5 101.5 3.9 92.6

Model2_kernel15 107 3.8 93.1

Model3_kernel19 111.6 4 93

Model Ensemble 98.7 3.7 93.4

3.3.2 Fetal Heart Rate Reliability Classifier Performance

Fig. 3.7 illustrates the performance of the fetal HR reliability estimations for the 
validation dataset. The classifier achieved AUC of 0.91. We additionally calculated the 
95% AUC confidence interval but since our sample size is very large (approximately 
300,000) the upper and lower limits differ less than 0.01 from the AUC. By changing 
the threshold for our classifier, we can achieve the desired sensitivity and specificity 
for our problem. By choosing a high threshold we achieve higher sensitivity, meaning 
that most of the reliable data are indeed classified as reliable. Contrary to that, with 
a lower threshold higher specificity is obtained, leading to correctly identifying most 
of the unreliable data. We selected a threshold of 0.55 for our classifier and provided 
the TPR (sensitivity) and false positive rate (FPR) values as well in Fig. 3.7. The 
specificity can be calculated as 1-FPR. With the selected threshold the classifier can 
identify 91% of the reliable HRs and 61% of the unreliable ones.  

We give slightly more importance to having a higher sensitivity than specificity for 
two reasons. First, we do not want to miss a lot of correctly estimated information 
to achieve a high coverage in the detection of the fetal HR values. Second, in clinical 
practice, even if some unreliable values are displayed on the screens of the clinicians, 
most of them look more like outliers, unconnected to the correct heart rate trace, and 
as such not taken into considerations in the clinical decision-making process.
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Fig. 3.7. Receiver operator characteristic curve (true positive rate (TPR) plotted against false 
positive rate (FPR)) of the fetal HR reliability classifier for  the validation set. The area under 
the curve (AUC) is specified in the plot. The 95% confidence margin of error was less than +/-
0.01. The red dot on the plot indicates the operating point when the classifier threshold is set 
to 0.55. In that case sensitivity and specificity  have values 0.91 and 0.61 respectively.

Table 3.2 provides the classification performance for the two test datasets. The 
classifier achieved AUC of 0.92 for our private test dataset and 0.83 for the Physionet 
dataset. This means that the classifier can differentiate relatively well between the 
reliable and unreliable fetal heart rates. The AUC of our private test dataset is similar 
to the one of the validation set but the AUC of the Physionet dataset is lower. The 
reason for this is that the Physionet dataset is highly unbalanced, containing 98.6% 
positive and only 1.4% negative examples. However, an AUC of 0.83 is still quite high 
meaning that our classifier generalized well to this dataset. The 95% AUC confidence 
interval for our private test set is very narrow (<+-0.01 difference from AUC) because 
of the large sample size. For the Physionet dataset, that is relatively small in size, the 
confidence interval for the AUC is [0.78, 0.86]. The TPR and TNR when the classifier 
threshold is set to 0.55 are also provided in Table 3.2. According to the evaluation on 
the test sets the classifier can identify 82-92% of the reliable heart rates and 66-75% 
of the unreliable ones.
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Table 3.2 Performance of the fetal HR rellability classifier (for determining FPR and TPR 
classification threshold was set to 0.55) 

Private Test Dataset Physionet Dataset

AUC TPR TNR AUC TPR TNR

0.92 0.92 0.66 0.83 0.82 0.75

3.3.3 Fetal Heart Rate Extraction Performance

Table 3.3 shows the performance of the fetal HR extraction network in comparison 
with the algorithm of Warmerdam et al. [127] for our private test dataset. In the 
table, we provided results both with and without incorporating the fetal HR reliability 
classifier. Our model achieved a PPA of 93.9% (91% for PPA_5), comparable with

Table 3.3 Fetal HR extraction performance on our private test dataset

Algorithm MSE 
(bpm^2)

MAE 
(bpm)

PPA (%) PPA_5 (%) Coverage (%)

DICNN-LSTM 104.5/59.6* 3.3/2.4* 93.9/96* 91/93.6* 100

DICNN-LSTM + Fetal HR 
Reliability 
Classifier

49.4 2 97.3 95.4 87.9

Warmerdam et al. [127] 129.7 3.4 93.6 91.5 94.5

*Calculated only in the periods that warmerdam et at. [127] outputs a heart rate value.

the method of Warmerdam with a PPA of 93.6% (91.5% for PPA_5). However, 
the algorithm of Warmerdam identifies the periods of time that the extracted HR 
is unreliable and does not output an HR value for these. Thus, for this dataset it 
has coverage of 94.5%. To have a fair comparison we evaluated the performance of 
our method also for the case where we excluded exactly the same periods. In this 
case the PPA achieved by our network is 96%, clearly outperforming the algorithm 
of Warmerdam. In addition, the proposed method achieved significantly lower 
MAE and MSE, (2.4 vs 3.4 bpm for MAE and 59.6 vs 129.7 bpm2 for MSE). When 
we discarded the unreliable fetal HR values, estimated by our reliability classifier, 
our PPA increased to 97.3% and the MAE and MSE decreased to 2 bpm and 49.4 
bpm2. However, our coverage fell to 87.9%, lower than Warmerdam’s method. We 
additionally calculated the percentage of the time that the two methods in comparison 
agree on estimating the reliability of a fetal HR segment and we found that it is 90.1% 
on our test set.    
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We should note here that our private dataset is very challenging because it is partially 
obtained during the second stage of labor. At this stage, the uterine contractions are 
stronger and more frequent, and the woman is actively pushing leading to additional 
interferences from the abdominal muscles. As a result, the extracted fetal ECG signals 
have very low quality as they are strongly contaminated by noises. The significantly 
low SNR of the signals complicates the heart rate extraction, but by identifying 
these periods as unreliable, we are more confident that correct information will be 
presented to the clinicians. As an example, our reliability classifier labelled the fetal 
HR extracted from the signals of Fig. 3.1(a) as reliable and from the lower quality 
signals of Fig. 3.1(b) as unreliable. 

Fig. 3.8. Four fetal heart rate (FHR) segments from our private test set of 7.5 minutes duration 
each. For each case a-d: the first subplot (red) depicts the scalp FHR, the second (blue) 
the estimated FHR from the DICNN-LSTM network, the third (yellow) the estimated FHR 
from the DICNN-LSTM network in combination with the reliability classifier (only reliable 
FHR values are displayed) and the fourth (green) the FHR obtained from the algorithm of 
Warmerdam et al.  [127] (only when an FHR value is outputted).
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Fig. 3.8  depicts the fetal HR extraction by our network in comparison to the ground 
truth HR measured by the scalp electrode and the algorithm of Warmerdam. Four 
cases (a)-(d) of 7.5 min fetal HR segments are presented in the figure. Results are 
demonstrated both with and without employing the HR reliability classifier. Note that 
the vertical axis limits for each case (a)-(d) are not the same for better visualization. 
As can be seen in Fig. 3.8(a) our method follows very precisely the reference HR 
obtained by the scalp electrode and so does the method of Warmerdam. The 
reliability classifier determined successfully that the estimations for this segment 
were reliable. Fig. 3.8(b) is another example of almost perfect estimation. Here, the 
reliability classifier wrongly classified merely small signal portions as unreliable. 
In the case of Fig. 3.8(c) both methods failed to correctly determine the fetal HR 
deceleration parts. However, they successfully identified that the estimation was 
wrong. Fig. 3.8(d) depicts a case that was partially wrongly estimated by our network 
with the reliability classifier being also partially successful in that case.

Table 3.4 demonstrates the performance of the fetal HR extraction on set-A of the 
Physionet/Computing in cardiology dataset for our network in comparison to the 
methods of Warmerdam, Varanini and Behar. Our network slightly surpasses the 
methods of Warmerdam and Varanini for this dataset, achieving a PPA of 98.6% as 
opposed to 97.9% and 98.4% respectively. The algorithm of Behar achieved lower 
performance with  PPA of 91%. However, when we lowered the tolerance for the 
calculation of PPA the algorithm of Warmerdam was the one to achieve the best 
performance.   

Table 3.4 Fetal HR extraction performance on set-A of 2013 Physionet/Computing in 
cardiology challenge.

Algorithm MSE (bpm^2) MAE (bpm) PPA (%) PPA_5 (%) Coverage (%)

DICNN-LSTM 14.2 1.6 98.6 95.6 100

DICNN-LSTM + Fetal 
HR 
Reliability 
Classifier

6.9 1.1 99.6 98.7 82

Warmerdam et al. 
[127]

30.8 1.5 97.9 96.5 100

Varanini et al. [104] 23.8 1 98.4 95.4 100

Behar et al. [125] 172 5.7 91 78.8 100
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When we incorporated the reliability classifier our PPA increased to 99.6% but our 
coverage fell to 82% even though this dataset does not contain particularly low-
quality fetal ECG signals.  Moreover, our method achieved significantly lower MSE 
than the other methods, indicating that it provides fewer outliers. In terms of MAE 
the performances of all the methods are similar, apart from the one of Behar that is 
less accurate.

3.4 Discussion

Fetal R-peak detection in noninvasive fetal ECG recordings is demanding due to 
the low quality and the non-stationarity of the fetal ECG signals. In this work, we 
employed deep learning for directly determining the fetal HR from fetal ECG signals, 
without the need of R-peak detection. We proposed a deep hybrid dilated inception 
CNN-LSTM network that captures both short-term as well as long-term temporal 
HR patterns. To increase the reliability of our method, a classifier based on a CNN 
network was developed that estimates the accuracy of the detected fetal HR.

Initially, we performed experiments where we varied the kernel size of the 
convolutional layers of our DICNN-LSTM network. According to the results, we 
concluded that smaller kernel sizes are preferred, probably because features on 
smaller timescales are relevant for fetal HR extraction. Moreover, even when using 
small kernels, larger features are still exploited by our network due to the large 
receptive field achieved by using dilations in combination with a relatively deep 
network. In addition, we found that a model ensemble of several trained models 
with different kernel sizes leads to better performance than a single model.  We 
decided to use the average of the three best performing models that we trained in 
our experiments as our fetal HR estimator.

The network achieved accurate estimations of the fetal HR for the most cases tested. 
However, mainly during the second stage of labor, there were cases that our method 
failed in the fetal HR extraction. Presenting false information to the clinicians can be 
very dangerous as this can lead to wrong decision making in critical moments during 
labor. Therefore, we developed a simple classifier that decides if the output of the 
DICNN-LSTM network is reliable so that in case of clinical application of the method 
only reliable information is presented to the clinicians. The developed classifier that 
is based on a simple deep CNN network managed to differentiate relatively well 
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between the reliable and unreliable HRs (AUC of 0.92 and 0.83 for our private and 
the Physionet test dataset respectively). However, since the hyperparameters of the 
classifier were not fully optimized, we are confident that the classification accuracy 
can be improved, and an even more robust system can be achieved. 

Our DICNN-LSTM network achieved a positive percent agreement (PPA) of 93.9% on 
a dataset obtained during labor similar to a top-performing state of the art algorithm 
[127] (PPA of 93.6%) in the area of fetal HR extraction. However, since [127] excludes 
some unreliable fetal HR signal parts, when we also excluded the same parts our PPA 
increased to 96%.  It is remarkable that Doppler ultrasound, which is widely adopted 
in clinical practice, according to the literature, achieves much lower PPA. In a study 
conducted to a population of 75 women in labor [153], Doppler ultrasound obtained 
a PPA of 73%, while abdominal fetal electrocardiography 81.7%. In a second study 
[154], which recruited 71 women in labor, PPA for ultrasound was measured as 63%, 
while for noninvasive fetal ECG it was 84.4%.

When we combined the DICNN-LSTM network with the HR reliability classifier the 
PPA was raised to 97.3%, while the coverage of our method dropped to 87.9%. We 
should note here that we selected a threshold of 0.55, however, this might not be the 
optimal threshold according to a clinician. For clinical applications, the threshold 
could be adapted so as the desired importance should be given to the sensitivity 
and specificity of the classifier.  Moreover, as an alternative to the binary output of 
the classifier (i.e. suppress fetal HR output or not),  the classifier could also be used 
to provide reliability of the fetal HR and have clinicians appraise this information 
themselves to trust or distrust the provided fetal HR. We could also use a different 
approach to assess the reliability of the fetal HR.  The variance of the estimations of 
the different models used in the ensemble might give some information about  the 
reliability of the outcome. Possibly for that we need a bigger ensemble than the one 
used in this work.

Next to our private dataset, we tested our network on a public set of Physionet 
achieving a PPA of 98.6% outperforming the algorithms of Warmerdam, Varanini 
and Behar that scored 97.9%, 98.4% and 91% respectively. However, the algorithm 
of Warmerdam achieved the best performance when computing the PPA metric with 
lower tolerance. As reported in [127], in the same dataset of Physionet, Warmerdam 
scored 99.6%, Varanini 98.6% and Behar 92.9% in terms of accuracy in R-peak 
detection. This implies that even though R-peaks can be detected accurately, the 
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resulting fetal HR that is calculated from the R-peaks can be inaccurate. The main 
reason for this is the relatively wide range around an annotated R-peak during which 
a detected R-peak is still considered accurate. In combination with the HR reliability 
classifier the PPA achieved by our network increased to 99.6% for the Physionet 
database. However, the coverage of our method fell to 82% because many correctly 
estimated heart rates were wrongly classified as unreliable. 

Comparing the results obtained on the two different datasets we notice that the 
accuracy of the detection on the Physionet dataset is better. We believe that this 
is mainly due to the fact that our private dataset was partially obtained during the 
second stage of labor resulting in fetal ECG signals of lower quality as compared to 
the Physionet dataset. In addition, the Physionet dataset is significantly smaller in 
size than our dataset (68 min vs 14.5 h). Lastly, the algorithms used to extract the 
fetal ECG were different between the two datasets. We do not believe that this is the 
cause of the difference but can possibly account for a small part of it. Moreover, we 
notice that our approach clearly outperforms the  one of Warmerdam on our private 
set (when compared in the same fetal HR signal parts) but in the Physionet dataset 
the performances are comparable. We believe that this is due to the limited ability of 
the model of Warmerdam to describe complicated accelerations and decelerations 
during labor. The DICNN-LSTM method, being capable of modeling more complex 
dynamics, provided consistent results in both datasets. However, we believe that 
even in cases when the performances are comparable, there is still value in our work 
because we demonstrate that a neural network can achieve similar performance to 
complex signal processing methods.

Finally, we have built a deep neural network to estimate fetal HR directly from the 
extracted fetal ECG signals. An alternative strategy would be to first extract features 
of the fetal HR manually and then apply a network on them for estimating the fetal 
HR. Although we believe that the encoder of our network can extract informative HR 
features, it would be interesting to investigate also this option.

3.4.1 Limitations of the study

This study has several limitations. First, the proposed fetal HR extraction network 
has many parameters such as the number of layers, dilation rates, number of nodes 
for each layer, type of layers, size of input and output signals etc. To select these 
parameters, first we divided our private dataset into training, validation and test 
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sets. Then, we chose the parameter values that led to the best performance on the 
validation set. An alternative way to choose the parameters is leave-on-out cross 
validation that is appropriate in cases of small datasets like ours. The reason we did 
not chose this approach is that it is computationally very expensive. Moreover, due 
to the large number of parameters we did not perform sensitivity analysis by varying 
their values (apart from the kernel size), although it could potentially reveal erratic 
behavior resulting from overfitting to the training set. Our training set is relatively 
small for training such a complex model. The training recordings are long, leading to 
many available data (54h), but they come from 16 subjects and a single acquisition 
system. However, our method was successfully tested not only on a test set from the 
same database but also to a completely unseen set from Physionet. The Physionet 
data constitute heterogeneous data obtained from multiple sources with different 
acquisition systems. It is promising that, even though our network was trained 
on data obtained from a single system, it was able to generalize to the Physionet 
dataset obtained by different systems. Nevertheless, in order to confirm our findings, 
validation on more diverse datasets is needed. 

According to our results, as already mentioned, the DICNN-LSTM network sometimes 
failed to correctly estimate the fetal HR during the second stage of labor. The second 
stage of labor is the phase of labor that begins after full cervical dilatation and ends 
with the delivery of the baby. This phase lasts approximately 20 to 60 min. During 
this stage uterine contractions are stronger and more frequent, and the maternal 
abdominal muscles are particularly active due to intense pushing. The second 
stage is very critical for the fetus because exactly at this period it is often subjected 
to reduced oxygenation due to the increase in the intensity of the contractions. 
During this stage fetal HR decelerations often happen that are synchronous to the 
contractions. Our network frequently failed to precisely estimate these decelerations. 
Fortunately, the HR reliability classifier mostly classified these results as unreliable. 
However, it has been demonstrated that  prolongation of the second stage of labor 
and the fetal HR decelerations is correlated with perinatal mortality and morbidity 
[155]. Therefore, the study of the fetal HR during this period is extremely important. 
Merely excluding these parts as unreliable should be avoided as much as possible. 
Possibly the capacity of our network is not sufficient to handle these cases of extreme 
noise and a separate network should be trained particularly for this stage. It might 
also be that we need more training data obtained during this stage, so our network 
learns better how to handle those segments. Finally, the error could lie much earlier 
in our signal processing chain, in the fetal ECG extraction step from the abdominal 
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recordings. Considering the high amount of muscle noise, we could argue that the 
maternal-fetal ECG separation might not have been correctly performed. This has a 
strong impact on subsequent processing.

In general, regarding our fetal HR reliability classifier, we need to stress that it would 
benefit from further improvement. Our main purpose in this work was to show 
that it is possible to classify unreliable fetal HRs with a relatively simple network. 
According to our experiments in the heterogenous Physionet dataset we found 
that the classifier rejected too much data of good quality. Unlike our classifier, the 
algorithm of Warmerdam successfully estimated the reliability of the result in this 
dataset. Thus, our results suggest that more investigation is required for robust fetal 
HR reliability estimation. We might do need two separate classifiers, one trained 
for second stage of labor and one for pregnancy and first stage of labor due to the 
distinct characteristics of the different stages. On the other hand, one could argue 
that we do not need an HR reliability classifier outside the second stage of labor since 
the network estimations are already accurate during the first stage of labor. These 
hypotheses need to be confirmed with additional experiments and more data.

Our method extracts the fetal HR sampled at 4Hz. The non-invasive fetal ECG 
can  potentially provide beat-to-beat fetal HR information, while beat-to-beat HR 
variability analysis has been reported to provide important information about 
fetal distress [29].  However, according to a study [156], differences in variability 
indices between beat-to-beat and 4Hz sampled HR signals were found to not affect 
physiological changes observed during labor progression, while 4 Hz sampling 
provided better results in entropy indices. In addition, most central monitoring 
systems require the fetal HR values to be communicated at a frequency of 4 Hz and 
thus choosing for this frequency allows our method to be easier implemented in 
clinical practice. 

Moreover, we provided the performance of our method in terms of PPA as in [153], 
[154] and PPA_5 for assessing the fetal HR extraction reliability with lower error 
tolerance. For an actual fetal HR of 140 bpm, the PPA metric considers acceptable 
HR values in the range [126,154], while PPA_5 in the range [133,147]. We need to 
stress that this error of 7 bpm (accepted by PPA_5) might still be relatively high for 
reliable calculation of fetal HR variability.

Another important issue to consider when developing a method intended to run 
online as well as when comparing different algorithms is computational complexity. 
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Our model ensemble is relatively complex having 137M trainable parameters and 
our reliability classifier has 237k. The advantage of our method is that it is a neural 
network and as such its deployment can exploit  massive parallelization, which can 
be exploited via GPU computation. The other algorithms that we compared to might 
be less complex but do not have this benefit and consequently might be even slower 
in practice

3.5 Conclusion

In this study, we presented a deep dilated inception CNN-LSTM network for fetal 
heart rate extraction from noninvasively obtained fetal ECG signals. A quality 
assessment method, based on a CNN network, was additionally developed to exclude 
signal parts that will yield an unreliable fetal heart rate. The proposed method 
achieves accurate heart rate detection outperforming top-performing methods 
proposed in the literature.  Our method  may be used to achieve more reliable heart 
rate monitoring and contribute to the spread of noninvasive electrocardiography in 
clinical practice. Our results indicate  that more complex algorithms and more data 
are needed to also make accurate fetal heart rate estimations during the second stage 
of labor.
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Abstract. Extraction of a clean fetal electrocardiogram (ECG) from noninvasive 
abdominal recordings is one of the biggest challenges in fetal monitoring. An ECG 
allows for the interpretation of the electrical heart activity beyond the heart rate 
and heart rate variability. However, the low signal quality of the fetal ECG hinders 
the morphological analysis of its waveform in clinical practice. The time-sequenced 
adaptive filter has been proposed for performing optimal time-varying filtering of 
non-stationary signals having a recurring statistical character. In our study, the 
time-sequenced adaptive filter is applied to enhance the quality of multichannel 
fetal ECG after the maternal ECG is removed. To improve the performance of the 
filter in cases of low signal-to-noise ratio (SNR), we enhance the ECG reference 
signals by averaging consecutive ECG complexes. The performance of the proposed 
augmented time-sequenced adaptive filter is evaluated both in synthetic and real 
data from PhysioNet. This evaluation shows that the suggested algorithm clearly 
outperforms other ECG enhancement methods, in terms of uncovering the ECG 
waveform, even in cases with very low SNR. With the presented method, quality of 
the fetal ECG morphology can be enhanced to the extent that the ECG might be fit 
for use in clinical diagnostics.
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4.1 Introduction

The fetal electrocardiogram (ECG) can be used to monitor the fetal condition from 
early pregnancy until delivery [157]. Analysis of its waveform provides information 
that can assist clinicians in making more appropriate and timely decisions during 
labor [36]. This can be applicable in the case of fetal hypoxia that occurs as a 
result of oxygen deprivation of the fetus during parturition. The condition is often 
accompanied by acidosis and is life-threatening unless prompt interventions are 
undertaken to restore well-oxygenated blood to fetus. Fetal hypoxia is found to 
be associated with changes in the ECG waveform [158].  The recording of the fetal 
ECG can be carried out by an invasive electrode or by placing skin electrodes on the 
maternal abdomen. Unfortunately, in abdominal recordings the obtained signals are 
substantially contaminated by interferences and noise that vary depending on the 
gestational age, position of electrodes, skin impedance, etc. [157]. The main sources 
of interferences and noise include the maternal ECG, maternal and fetal muscle 
noise, powerline interference, base-line wander, movement artifacts and multiple 
layers of dielectric biological tissues through which the electrical signals must pass. 
The signals from some of these interferences and noises overlap both in time and 
frequency with the fetal ECG, complicating the extraction of the fetal ECG through 
conventional filtering techniques.  

Despite the difficulties in acquiring fetal ECG signals noninvasively, a number of 
different techniques has been proposed in the literature such as neural networks 
[110], [159], wavelet based methods [160], [161], singular value decomposition 
[124], blind source separation [105], [106], [107], [162], adaptive filtering [108], 
[163], [100], [101], [109], as well as combinations of different algorithms [164], [103], 
[102]. Clifford et al. [123] reviews the key achievements and the follow up research 
generated as a result of the PhysioNet/Computing in Cardiology Challenge 2013 
[122]. The challenge focused on fetal heart rate estimation and QT measurement 
in an automated way and managed to accelerate algorithm development in these 
areas [165], [146], [166], [104]. However, the extracted fetal ECG signal usually has 
a low signal-to-noise ratio (SNR) and additional processing is required to further 
enhance its quality. Beat-to-beat averaging [113]  can be employed to improve the 
SNR of the signal. This approach however has the disadvantage that individual 
variations in pulse shape can be lost. In [101] an adaptive Kalman filter is developed 
that varies the number of complexes to be averaged according to the characteristics 
of the ECG signal. The filter is able to infer whether the ECG signal is corrupted by 
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noise or dynamic variations and adapt the number of averages accordingly, in that 
way preserving the pulse variations. However, the filter is not extensively evaluated 
in fetal ECG signals with low SNR. 

The proposed method focuses on the postprocessing of the extracted fetal ECG 
signals, for enhancing their quality, based on adaptive filtering. Adaptive filters 
[167], [168], [109] have the ability to adjust their parameters autonomously and 
have been widely used to remove uncorrelated noise components when the noise 
characteristics are a priori unknown. Since the fetal ECG is a time-varying signal, 
adaptive filtering seems appropriate for estimating the fetal ECG. However, a Least 
Mean Squares (LMS) adaptive filter [169] has been proven inadequate to fulfill this 
role due to the low SNR, complexity, and non-stationarity of the fetal ECG. Despite 
the substantial background noise removal achieved by the LMS adaptive filter, the 
signal distortion was too severe, causing relevant ECG morphology to disappear.

The fetal ECG signal is highly non-stationary and an LMS filter is typically unable to 
track these rapidly varying non-stationarities. In [170], the time-sequenced adaptive 
filter (TSAF) has been suggested for the estimation of a class of non-stationary 
signals having a recurring statistical character and has shown good performance for 
detecting fetal ECG [108], [163]. The TSAF can be conceptualized as a bank of LMS 
adaptive signal enhancers that can achieve a rapidly varying impulse response. Fetal 
pulses differ among each other but have similar statistical properties. When the 
pulses are aligned according to a fiducial point, the statistics can be computed over 
the ensemble of pulses. The fiducial point at which the statistical properties of the 
signal renew is called the regeneration time. Each adaptive signal enhancer becomes 
an expert at filtering a specific signal segment between the regeneration times. The 
advantage of the method is that it does not require a priori knowledge of signal 
characteristics. However, an external input is needed to determine the regeneration 
times. In [163] and [108], the R-peak locations were detected to determine the 
regeneration times; [163] used a matched filter followed by peak detection, whereas 
[108] used a synchronized Doppler ultrasound signal.

The results of applying the TSAF to fetal ECG enhancement, presented in [163] and 
[108], show that, in case of poor SNR, the characteristic waves of the ECG cannot 
be distinguished after filtering. Moreover, as mentioned in [108], when the input 
SNR is relatively low, the effect of the filter’s regeneration time can be seen in some 
cardiac cycles. This chapter presents an improvement of the TSAF for fetal ECG 
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enhancement and demonstrates the feasibility of time-sequenced adaptive filtering 
for enhancing the quality of the fetal ECG to the extent that the morphology of the 
signal is preserved. This improvement involves the enhancement of the reference 
inputs prior to their use in the TSAF, yielding an increase in the SNR of the TSAF 
output, and the elimination of aforementioned effects of the regeneration time via 
the use of overlapping filters.

  

  

Fig. 4.1 Structure of the time-sequenced adaptive filter. The filter is realized as a bank of LMS 
adaptive filters. The sequence number determines which LMS filter is used at each point in 
time.

4.2 Materials and methods

4.2.1 The time-sequenced adaptive filter

The TSAF provides a separate LMS enhancer for each signal sample in an ECG cycle, 
as opposed to the original adaptive signal enhancer [167] that consists of a single 
LMS filter. Thus, there is a number of adaptive filters equal to the length of an ECG 
complex and each one is updated in every ECG cycle. The structure of the filter is 
depicted in Fig. 4.1. An external input, known as the sequence number, determines 
which LMS enhancer to be used at each point in time. The LMS adaptive filter is a 
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stochastic gradient-based algorithm that utilizes the gradient vector of the filter tap 
weights to converge to the optimal Wiener solution [109]. Each iteration of the LMS 
algorithm consists of the following steps:

1. Calculation of the filter output y(n). 

                          y(n)=wT(n)u(n),                                                (4.1)

where u(n)  is the filter input and w(n)  are the filter weights. The size of both u(n) and 
w(n) is equal to Px1, where P is the filter order. 

2. Estimation of the error signal which is needed to update the filter coefficients 
in the next step.

                            e(n)=d(n)-y(n)              (4.2)

where d(n) corresponds to the n-th sample of the desired solution (in our case the 
signal to be enhanced X1, see Fig. 4.2).

3. Update of the filter weights for the next iteration.

                             w(n+1)=w(n)+μe(n)u(n)                           (4.3)

          where μ is a step-size parameter.

The weights w(n) are initialized as zero. The step-size parameter controls the rate 
at which the weights change. The choice of this parameter is critical for balancing 
the convergence of the filter versus its stability. Selecting a step-size that guarantees 
stability and ensures fast enough convergence is difficult due to the sensitivity of the 
LMS algorithm to scaling of its input [167]. To resolve this issue, in this work we 
use the Normalized Least Mean Squares (NLMS) filter instead of the LMS. NLMS is 
an extension of the standard LMS algorithm with the difference that it uses a time-
varying step-size, yielding a faster convergence as opposed to the LMS algorithm 
[171]. The step-size used by the NLMS filter is defined as:

                           (4.4)

where is a scalar which allows for a change in the adaptation speed. The 
normalization of the step size with the power of the input signal  u(n) makes the 
algorithm insensitive to scaling.
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4.2.2 Proposed method

4.2.2.1 Enhancement of reference signals

 

Fig. 4.2 Block diagram of the proposed L-channel time-sequenced fetal ECG enhancement 
method. The reference channels (#2-#L) are enhanced prior to filtering. The filter output is an 
estimate of the denoised fetal ECG signal of channel #1.

In this study, we have performed preprocessing and maternal ECG removal following 
the method developed by Varanini et al. [104]. The residual signals comprise of 
fetal ECG and a significant amount of remaining noise. Typically, the fetal ECG 
components among different channels are correlated, whereas some remaining 
noise components such as muscle noise are mostly uncorrelated. We propose the use 
of an augmented TSAF (aTSAF) to enhance the quality of multichannel fetal ECG by 
attenuating the uncorrelated noise (Fig. 4.2). The channel to be denoised is considered 
as the primary channel and the other channel(s) as the reference channel(s).  In Fig. 
4.2, the use of channel 1 as primary channel is just an example. Every channel that 
we wish to denoise can be considered as primary channel.   The reference channels 
should be correlated with the primary one and should have sufficiently high SNR 
to yield satisfactory performance of the TSAF. To ensure an acceptable SNR of the 
reference inputs, in this work we enhance the quality of the reference channels 
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by ensemble averaging, prior to using them in the TSAF. The ensemble averaging 
includes the detection of the R-peak locations by the method described in [104], the 
alignment of successive complexes according to these locations, and the ensemble 
averaging of aligned ECG complexes.  In the ensemble averaging, we used the ECG 
of 30 consecutive heartbeats, to preserve clinically relevant variations in the ECG and 
at the same time produce substantial enhancement of the ECG [172].

4.2.2.2 Scheme for faster algorithm convergence

After the reference channels have been enhanced, the TSAF combines them via a 
dynamic linear combination, where the weights in this linear combination are 
optimized for minimizing the error between the TSAF output and the primary input. 
To maintain a high rate of convergence, without risking instability of the process, 
a scheme is employed that is described in the work of Cano et al. [173]. According 
to it, the filter weights w are updated not just in the prior ECG cycle but also in the 
current cycle where they are used for filtering. The scheme makes the assumption 
that immediate neighboring data samples are highly correlated and can be used to 
approximate each other; thus, the weights can be updated in the cycle being filtered. 
It is only employed for a given number of ECG cycles to assist the algorithm to 
achieve faster convergence.

4.2.2.3 Reduction of the regeneration time effect

The TSAF requires the knowledge of the location of the fetal ECG fiducial points 
in order to determine the regeneration times. The sequence number at each 
regeneration time is (re)set to 1 and increases by one for each data sample. Since 
the fetal PR interval is approximately 100 ms [174], the regeneration times are 
chosen to occur 160 ms before the detected R-peaks. In such a way, the start of the 
sequence occurs before the P-wave starts. The sequence length defines how many 
adaptive signal enhancers constitute the TSAF. Ideally, we want the sequence 
length to be equal to the ECG complex length, but this varies from cycle to cycle. 
Hence, we defined the sequence length to be 110% of the mean interval between 
the fetal R-peaks. In this way, it is ensured that in most cases the sequence length 
is bigger than the length of the ECG cycle, allowing all the samples in the cycle to 
be processed by a separate adaptive filter. This implies, however, that in most cases 
there are overlapping signal parts that are filtered twice. These parts are smoothed 
by averaging the contributions of both overlapping complexes. To be more specific, 
the contribution of the first ECG complex is gradually reduced while the contribution 
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of the second complex is gradually increased. Inevitably, there are cases where the 
length of the sequence is smaller than the size of the ECG complex. In this situation, 
gaps exist between successive complexes. The samples in these gaps are filtered by 
the same LMS adaptive filter that was used for the last sample in the sequence. The 
weights of this filter are updated only once in the current cycle. This guarantees that 
all the filters in a cycle converge with similar speed. By selecting the start and length 
of the sequence in the way described before, we avoid that the characteristic waves of 
the ECG complex fall outside the borders of the sequence in cases of ECG complexes 
longer than the sequence length. This is very important since the waves contain 
all the useful information about the physiological state of the fetus. Following the 
described approach, the regeneration time effect noticed in [108] can be significantly 
reduced.

4.2.3 Data description

The fetal ECG signals, even after the maternal ECG has been removed, are still affected 
by noise. It is hence impossible to have a gold reference (i.e. clean signal) that can be 
used to quantitatively validate the proposed algorithm. As a surrogate, in this study 
the proposed method is extensively validated based on simulated signals of the Fetal 
ECG Synthetic Database (FECGSYNDB) of PhysioNet [175], [176]. To illustrate the 
potential of our method on real data, we have included results obtained from data 
in the Abdominal and Direct Fetal Electrocardiogram Database of PhysioNet [177].

The FECGSYNDB consists of 1750 synthetic abdominal signals with 34 channels, 
sampling frequency of 250 Hz and duration of 5 minutes. The database includes 10 
simulated pregnancies with seven different physiological events as shown in Table 
4.1. The signal-to-noise ratio (SNR) of the simulated signals varies from 0 to 12 dB 
in steps of 3dB. In each simulation, signals are generated five times for statistical 
purposes. In this work, we use 6 channels (i.e. (1, 8, 11, 22, 25 and 32) for evaluation 
of our algorithm, as suggested by Andreotti et al. [175]. The signals simulating twin 
pregnancy (5th case, Table 4.1) are excluded from our analysis, since the proposed 
algorithm is not developed to handle this case. 

The Abdominal and Direct Fetal Electrocardiogram Database contains multichannel 
fetal electrocardiogram recordings obtained from 5 different women in labour, 
between 38 and 41 weeks of gestation. Each recording contains 4 signals acquired 
from maternal abdomen and one scalp ECG signal. The recordings have duration of 
5 minutes and are sampled at 1000 Hz.
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Table 4.1. Description of the seven cases of physiological events of the synthetic signals of the 
Fetal ECG Synthetic Database

Case Description

Baseline Abdominal mixture (no noise or events)

Case 0 Baseline (no events) + noise

Case 1 Fetal movement + noise

Case 2 Acceleration or deceleration of maternal and fetal heart rate + noise

Case 3 Uterine contraction + noise

Case 4 Ectopic beats for both fetus and mother + noise

Case 5 Twin pregnancy + noise

Fig. 4.3 An example of simulated signals of FECGSYNDB. First row shows the simulated 
maternal ECG, second the simulated fetal ECG, third the abdominal mixture, where noise 
is also added, and last the extracted fetal ECG after the method of Varanini [104] is applied. 
The displayed segment corresponds to the 3rd channel (3rd of the 6 channels in use) of the 10th 
simulated pregnancy, SNR 0, case 0 and 2nd repetition.
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The signals of both databases are preprocessed before the proposed method is applied 
to them. First the signals are resampled to 500Hz to have a common reference. Then, 
the open-source algorithm of Varanini et al. [104] is applied to the signals. According 
to this algorithm, first the baseline wander and the powerline interference are 
removed. After that, the maternal ECG is estimated through Independent Component 
Analysis (ICA) and singular value decomposition and subsequently subtracted from 
the signals. Finally, a second ICA is employed to enhance the fetal ECG signal and 
two QRS detectors are applied in forward and backward directions to obtain the 
R-peak locations. Fig. 4.3 and Fig. 4.4 show an example of simulated data and real 
data respectively together with the result of the aforementioned preprocessing. 
In both cases the extracted fetal ECG after the maternal ECG removal contains a 
significant amount of remaining noise.

Fig. 4.4 An example of real signals of Abdominal and Direct Fetal Electrocardiogram Database. 
The first row shows a segment of the abdominal mixture of channel 1 for recording ‘r07’. The 
second displays the simultaneously recorded scalp fetal ECG, while the last the extracted fetal 
ECG after the method of Varanini [104] is applied.
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4.2.4 Performance measure

The performance of the method is assessed based on the SNR improvement in the 
filter output when compared to the input signal. The metric is computed as follows:

                                           (4.5)

 
where Xclean  denotes the original clean fetal ECG signal,  Xnoisy the noisy signal,  Xdenoised 
the enhanced one and M the length of the signals. The metric is measured for each 
channel and subsequently summed over all ECG channels and over all signals.

The proposed method is compared to several other ECG enhancement algorithms. 
The first one is a wavelet denoising method that decomposes the signal, thresholds 
the detail coefficients and reconstructs the signal to obtain its enhanced version. The 
order 6-Daubechies wavelet is selected as mother wavelet because of its similarity 
to an actual ECG. A fixed threshold is used which is estimated by the minimax 
principle [178]. Secondly, our algorithm is compared to the ensemble averaging over 
30 consecutive ECG complexes. The next reference method is the adaptive Kalman 
filter described in [101], where the number of the ECG complexes to be averaged is 
adapted according to the signal characteristics. An additional comparison is made 
with the multichannel NLMS adaptive signal enhancer [167] and with the NLMS 
adaptive signal enhancer for which the reference channels are enhanced via our 
suggested averaging method (we will refer to this method as augmented NLMS; 
aNLMS), as described in subsection 4.2.2.1. Finally, our method is also compared 
to the time-sequenced adaptive filter (TSAF) without preprocessing of the reference 
channels but including compensation for regeneration time effects.

4.3 Results 

4.3.1 Parameter optimization

The proposed algorithm has few parameters that must be chosen: the parameter  
that is used in the calculation of the step size of NLMS algorithm and P, the length of 
the adaptive filters. The value of  is critical for the algorithm’s performance since a 
wrong choice will restrain the algorithm from convergence. However, once 
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chosen appropriately, this parameter does not need further readjustments because 
of the scaling-tolerance of the NLMS algorithm. The choice for P is less critical. 

In order to select these two parameters, the simulated signals of the FECGSYNDB 
are separated in a training and a test set. The first 5 simulated pregnancies are 
used as training data while the last 5 as test. The training set is used to optimize 
the parameter values, while the test set is used to evaluate the performance of the 
algorithm. An iterative procedure is performed over several parameter values and 
the ones that produce the highest SNR improvement in the training set are finally 
selected. For    a search is performed between the values 0.0005 and 0.1 with 8 
logarithmic steps. Regarding the filter length the values of 50 and 100 to 800 with 
steps of 100 are used. For TSAF, NLMS and aNLMS the parameter values are selected 
similarly. The parameter values that produce the best results for all the algorithms 
are 0.005 for     and 100 for P. 

Table 4.2. The number of the signals with successful R-peak detection for each different case 
of FECGSYNDB (125 synthetic signals per case of the test simulated pregnancies, 6-10).

Case Number of signals 

Baseline 121

Case 0 94

Case 1 106

Case 2 84

Case 3 78

Case 4 30

Total 513

4.3.2 Evaluation on Fetal ECG Synthetic Database

Our method is evaluated on data from the Fetal ECG Synthetic Database 
(FECGSYNDB) described in Section 4.2.3. Since the proposed algorithm requires 
the knowledge of the fetal R-peaks, only the signals for which at least 80% of the 
fetal R-peaks are detected within an error of 50ms from the actual R-peak [179] are 
included in the evaluation of the algorithm. Table 4.2 shows the number of signals 
with successful R-peak detection for each different case of the FECGSYNDB. The 
numbers correspond to the simulated pregnancies 6-10. As expected in the baseline 
case, where no noise is added to the abdominal mixture, the extracted fetal ECG 
signals are of relatively good quality and the R-peak detection succeeds in almost all 
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the cases. Case 4, where ectopic beats are simulated, is the most challenging one and 
the R-peak detection succeeds only in 30 out of 125 occurrences.

Fig. 4.5 illustrates the performance of the proposed method in comparison to the 
denoising algorithms mentioned in Section 4.2.4 for the different SNR values of the 
input signals. The input SNR refers to the SNR of the signals after the maternal ECG 
has been removed and this SNR is averaged over all channels and measurements. 
From Fig. 4.5, it can be observed that, for very low SNR values of the input signals, 

Fig. 4.5 Performance of different fetal ECG enhancement algorithms in comparison with the 
proposed algorithm by means of improvement in SNR of the output when compared to the 
SNR of the input signal. The results correspond to the average over all channels and cases for 
the synthetic signals of FECGSYNDB (simulated pregnancies 6-10).

the proposed algorithm clearly outperforms the other algorithms. For input SNR less 
than -15 dB the suggested method provides an additional SNR improvement of at least 
3 dB over the best performing other method. For high SNR values (more than 0dB) 
the conventional TSAF algorithm produces a similar result with our algorithm since 
there is no need to filter the reference channels. It is worth observing the increase 
in performance of the aNLMS algorithm over the conventional NLMS. Without our 
proposed preprocessing of reference signals, NLMS performs significantly worse. 
From Fig. 4.5, it can be seen that the averaging of ECG complexes produces good 
results when the SNR is higher than -10. However, for lower SNR values of the 
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input signals, the SNR improvement is significantly lower than that of the proposed 
algorithm. Apparently, different ECG segments should be considered separately to 
truly enhance the ECG. Plain averaging works on the entire ECG complex and treats 
it as a whole. On the other hand, our method uses different filtering schemes for 
different parts of the ECG.

Fig. 4.6 Performance of the proposed aTSAF algorithm for each different case and input SNR 
of the synthetic signals of FECGSYNDB. The input SNR corresponds to the average of all 
channels and after the maternal ECG is removed. The circles, ‘o’, show the performance only 
for the cases that there are available input signals with the specific SNR (-32dB to 8 dB). 

Fig. 4.6 depicts the performance of the suggested method for each different case 
separately and for all the range of available input SNRs. The input SNR values are 
clustered in 6 groups of values -32 dB to 8 dB in steps of 8. Input signals with SNR 
from all these groups are not available for every case, since the SNR is measured after 
the maternal ECG is removed from the simulated signals. As we can see in Fig. 4.6, 
the efficiency of aTSAF for each specific input SNR is similar for the different cases 
apart from case 4 and the baseline case. Case 4, as mentioned before, is a challenging 
case that simulates the presence of ectopic beats. In this case, abrupt changes in the 
morphology of the ECG signals occur, for short amount of time, making it relatively 
impossible for the algorithm to adapt fast enough. In this case, our algorithm adapts 
to regular heartbeats but is incapable of tracking the sudden changes. Regarding the 
baseline case, less improvement in SNR is achieved compared to the other cases. 
The reason is that this case does not contain added noise that can be removed by the 
aTSAF.  
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Fig. 4.7 Enhancement result of the different algorithms for the simulated signals described in 
Fig. 4.3. In the first row the simulated clean fetal ECG signal is displayed for comparison. Only 
the proposed method (aTSAF) provides high quality result in this challenging case of low-SNR 
input signals (-18dB on average).
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The results of processing the simulated signals, which were described in Fig. 4.3, by 
our aTSAF method are illustrated in Fig. 4.7. For the depicted recording, the average 
SNR of the 6 channels after the maternal ECG has been removed is -18dB. The figure 
demonstrates that the proposed aTSAF method is capable of suppressing the noise 
to the extent that the individual waves in the ECG complex become distinguishable. 
Moreover, there is virtually no distortion of the ECG signal. In this particular case, 
the suggested algorithm clearly outperforms the other methods. The additional step 
of enhancing the quality of reference channels – which is the main contribution 
of this study – makes a significant difference in the performance of the TSAF 
algorithm, especially for cases with low-quality signals. For the other algorithms, 
the ECG complex averaging and the aNLMS produce the best results but show still 
a significant amount of noise in the filtered signals. For the other methods, the 
morphological information of the ECG cannot be seen.

4.3.3 Evaluation on the Abdominal and Direct Fetal ECG Database

In this subsection, the performance of the same algorithms evaluated in Section 
4.3.2 is evaluated on actual data from the Abdominal and Direct Fetal ECG database. 
Concerning the algorithm parameters, the same parameters that were optimized in 
FECGSYNDB are used. In the real data, because of the lack of ground truth data, 
the performance of the various methods is evaluated qualitatively, as opposed to 
quantitatively for the simulated data. To demonstrate the potential of abdominal 
ECG recordings, we have shown the scalp ECG, after high-pass filtering for baseline 
wander removal, as well in our figures (see e.g. Fig 4.8). It should be noted that the 
scalp ECG is a different ECG lead than the abdominal leads and that they should not 
be identical, even in case of perfect enhancement. Nevertheless, the individual ECG 
segments should coincide between abdominal leads and scalp lead.

Fig. 4.8 illustrates the results of various algorithms for the fetal ECG enhancement 
of channel 1 of recording ‘r07’, which was already depicted in Fig. 4.4. As seen in 
Fig. 4.8, the ECG signal filtered by the proposed aTSAF algorithm is relatively free 
from noise and the individual waves correspond well to those in the scalp ECG.  
Preprocessing of the reference channels appears to have a substantial contribution 
to the performance of both the TSAF and NLMS algorithms, making even the small 
waves distinguishable. Without our proposed preprocessing these characteristic 
waves are often not visible, either because they were suppressed by the filter or 
because the noise was not suppressed enough. 
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Fig. 4.9 demonstrates the results of the processing of the 4 other recordings of 
Abdominal and Direct Fetal ECG database with the proposed algorithm. The 
corresponding scalp ECGs are presented together with the results for channel 1 of 
each recording. In all cases the suggested method produces a relatively clean ECG 
signal with morphology that corresponds relatively well to that of the scalp ECG, 
especially for the P-wave and QRS-complex. 

Fig. 4.8 Comparison of the enhancement results of the different algorithms for channel 1 of 
recording ‘r07’ of Abdominal and Direct Fetal Electrocardiogram Database. In the first row the 
simultaneously recorded scalp ECG is presented. The noisy signal is shown in Fig. 4.4. In the 
output of the proposed method (aTSAF) the characteristic ECG waves are clearly visible and 
correspond well to those of the scalp ECG.
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4.4 Discussion

A method is presented here for postprocessing of the extracted fetal ECG after the 
maternal ECG is removed. In most cases, the extracted fetal ECG still contains a 
substantial amount of noise that impedes the interpretation of the morphology of the 
ECG signal by clinicians. Usually, the QRS complex  can be detected without further 
processing of the fetal ECG, due to the high amplitude of the R-peak. However, the 
smaller waves, like the P and T waves, can often not be readily distinguished. Thus 
postprocessing of the extracted fetal ECG signal, to enhance its quality, becomes 
of paramount importance. For this purpose, in the proposed method, the TSAF 
is improved by increasing the quality of the reference channels and by exploiting 
overlapping filters to minimize the effect of regeneration times. The improved filter 
is found to be effective in reducing major components of noise. But more than that, 
the main contribution of the filter is that after the filtering the signal morphology is 
retained to the extent that even the small signal waves can be visually distinguished. 
As a plus, the method is relatively insensitive to the choice of parameters and as such 
is rather generally applicable.  

A limitation of the method is that an estimate of the R-peak locations is required to 
determine the regeneration times of the filter. However, this does not necessarily 
impede the use of our filter. First of all, a lot of valuable work has been already 
done in the area of fetal R-peak estimation [165], [146], [166], [158], [104] with very 
promising results. Second, in a practical application the user could be informed 
to, in case of missing R-peaks, distrust the output of the filter. Also, there is the 
possibility of using other measurement modalities to yield the regeneration times, 
like synchronous Doppler echocardiography as was proposed by Adam et al. [108].

Another shortcoming of the method is in cases of arrhythmia and ectopic beats. In 
these cases, sudden and brief changes are happening to ECG signal morphology 
and the filter is not able to adapt fast enough. As a consequence, it will only adapt 
to the morphology of regular beats and would be incapable of tracking the abrupt 
changes. This effect is also caused because of the averaging of ECG complexes for 
the enhancement of reference channels. Because of the averaging, brief variations 
in the ECG morphology are filtered out. However, without this enhancement step 
the TSAF is unable to efficiently remove the noise. Moreover, the target application 
of this work is to enhance the fetal ECG quality for detecting hypoxia. The STAN 
method [172] that is used for fetal monitoring with an invasive electrode, averages 
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30 consecutive heartbeats for ECG signal enhancement. For a typical fetal heart rate 
of about 140 bpm, 30 heartbeats correspond to a time interval of 13s. Transient or 
structural changes in the ECG waveform that have clinical relevance with respect to 
developing hypoxia are hypothesized in the STAN methodology to occur over longer 
time scales. Consequently, averaging 30 consecutive ECG complexes preserves 
clinically relevant variations in the ECG and at the same time yields a substantial 
enhancement of signal quality. Based on the same reasoning, we also average 30 
consecutive ECG complexes to enhance our reference channels, while maintaining 
relevant information for detecting hypoxia.

The high-quality signals that the proposed method delivers can give the opportunity 
to clinicians to measure the exact timing of different morphological features of the 
ECG signal. Besides, it can facilitate and advance the research towards automated 
detection of fetal ECG intervals and segments. Extracting morphological features 
from the ECG signal allows for the estimation of the wellbeing of the fetus. Fetal 
acidosis is known to affect ECG morphology [36], [180], while asphyxia of the fetus 
is thought to be associated with changes in the P wave, PQ interval and ST segment 
[181]. Moreover, fetal growth might also influence the timing of ECG waves [182]. 

4.5 Conclusion

This chapter presented a method to improve the performance of the time-sequenced 
adaptive filter for fetal ECG enhancement. In the proposed method, the quality of the 
reference channels is enhanced prior to filtering via ensemble averaging of multiple 
consecutive ECG complexes. The evaluation of our filter, both on simulated and real 
fetal ECG signals, shows that the proposed algorithm outperforms the conventional 
time-sequenced and the NLMS adaptive filtering techniques. Our results indicate 
that preprocessing of the reference channels provides a more accurate estimate of 
the underlying fetal ECG signal. The proposed algorithm can reveal the characteristic 
waves of the fetal ECG signal, even in cases with relatively low SNR.  A limitation of 
our method it that, in case of rapidly changing ECG morphology, for instance in 
presence of ectopic beats, our algorithm is unable to track these changes, yielding 
a suboptimal performance. Moreover, an estimate of the position of the fetal pulse 
locations is required to determine the regeneration times of the filter. Future work 
could focus on performing automated extraction of relevant morphological features 
such as PR intervals, QT intervals, and ST segments.
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Abstract. Objective: Noninvasive fetal electrocardiography has the potential of 
providing vital information for evaluating the health status of the fetus. However, 
the low signal-to-noise ratio of the fetal electrocardiogram (ECG) impedes the 
applicability of the method in clinical practice. Quality improvement of the fetal ECG 
is of great importance for providing accurate information, enabling support in medical 
decision making. In this chapter, we propose the use of artificial intelligence for the 
task of one-channel fetal ECG enhancement as a postprocessing step after maternal 
ECG suppression. Approach: We propose a deep fully convolutional encoder-
decoder framework, learning end-to-end mappings from noise-contaminated 
fetal ECGs to clean ones.  Symmetric skip-layer connections are used between 
corresponding convolutional and transposed convolutional layers to help recovering 
the signal details. Main results: Experiments on synthetic data show an average 
signal-to-noise ratio (SNR) improvement of 7.5dB for input SNR in the range of 
-15 to 15dB. Application of the method on real signals and subsequent ECG interval 
analysis demonstrates a root mean squared error of 9.9 and 14ms for the PR and 
QT interval, respectively, when compared with simultaneous scalp measurements. 
The proposed network can achieve a substantial noise removal both on synthetic 
and real data. In cases of highly noise-contaminated signals some morphological 
features might be unreliably reconstructed. Significance: The presented method has 
the advantage of preserving individual variations in pulse shape and beat-to-beat 
intervals. Moreover, no prior knowledge on the power spectra of the noise or the 
pulse locations is required. 
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5.1 Introduction

During pregnancy and labor, monitoring of the fetal heart condition is of paramount 
importance. Fetal monitoring can support medical decision taking, while an early 
disease diagnosis can increase the effectiveness of the appropriate treatment. 
Since the fetus is well protected within the woman’s womb, it is inaccessible for 
direct measurements. Nowadays, the gold standard for fetal heart assessment is 
cardiotocography that provides visual representation of the fetal heart rate together 
with uterine contractions [183].  However, cardiotocography is prone to signal loss 
and does not provide the heart rate with beat-to-beat variations. The noninvasive 
fetal ECG, derived from abdominal electrodes, has the potential to provide beat-
to-beat heart rate information [120] with the added possibility of assessing ECG 
morphology such as the PR and QT intervals or ST segments. Despite the ease of 
its applicability, fetal ECG signals are substantially contaminated by interferences 
and noises that vary depending on the gestational age, position of electrodes, skin 
impedance etc. [157]. Most significantly, the signals are masked by the maternal 
ECG and background noises caused by the abdominal and uterine electromyogram. 
Additional noises and interferences, such as electrode movement and powerline 
interference and the multiple layers of dielectric biological tissues that the signals 
must pass further lower the signal-to-noise ratio (SNR) of the fetal ECG. The high 
amount of the interfering sources that are typically non-stationary and overlap with 
the fetal ECG in time and frequency domain, render the fetal ECG extraction and 
heart rate detection challenging signal processing tasks and limit the applicability of 
the method in clinical practice. 

Despite the advances in adult ECG signal processing, analysis and interpretation of 
the fetal ECG is still in its infancy. Various techniques were proposed in the literature 
for extracting the fetal ECG from noninvasive abdominal recordings. The main 
methods include adaptive filtering [108], [100], [109], [58], blind source separation 
[105], [106], [107], [162] and template subtraction [98], [99], [97] . Clifford et al. 
[123] gave a thorough review of the key achievements and the follow-up research as 
a result of the PhysioNet/Computing in Cardiology Challenge 2013 [122].  The aim of 
the challenge was to encourage heart rate estimation and QT interval measurements 
in an automated manner and succeeded in stimulating research in these areas [165], 
[146], [104], [166]. In general, a five-step approach is followed by most algorithms 
that includes preprocessing, maternal ECG estimation and subtraction, fetal heart 
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rate estimation, and postprocessing of heart rates. Usually, the extracted fetal ECG 
has still a low SNR and additional processing is required to further enhance its 
quality. A traditional approach of improving the SNR of the signal is beat-to-beat 
averaging [113] at the expense of loss in the individual variations in pulse shape. 
In a previous work [184] the authors used a time-sequenced adaptive least mean 
squares (LMS) filter, as a postprocessing step, to enhance the quality of the extracted 
multichannel fetal ECG. Despite the substantial noise removal, the method requires 
the knowledge of the R-peaks location prior to use and is not designed to handle 
arrhythmia cases.

Recently, deep neural network models (DNNs), like stacked denoising autoencoders, 
recurrent neural networks (RNNs) and convolutional neural networks (CNNs) have 
been widely used in the area of signal and image denoising with great success [185], 
[186], [187], [188], [189]. Several attempts were also made in the field of ECG signal 
processing such as adult ECG denoising [134], [133], adult arrhythmia detection 
[135] and fetal QRS complex detection [190], [141]. Xiong et al. [134] used an 
improved denoising autoencoder (DAE), reformed by a wavelet transform method 
to remove baseline wander noise, electrode contact noises, and motion artifacts from 
adult ECG signals. Antczak in his work [133] trained an RNN model for denoising 
synthetic ECG data and subsequently used transfer learning to enhance the quality 
of real data. 

To the best of our knowledge, so far there is no work attempting fetal ECG denoising 
using CNNs. Inspired by the work of Mao et al. [189] on image restoration, we propose 
the use of a deep convolutional encoder-decoder network with symmetric skip-layer 
connections for single channel fetal ECG denoising. Residual noise in the fetal ECG, 
after the maternal ECG has been removed, is often non-stationary, complex and 
has spectral overlap with the fetal ECG. Our method removes the residual noise by 
capturing the structure of the fetal ECG by the convolutional layers and recovering 
the signal details with the help of the transposed convolutional layers. 

The rest of the chapter is organized as follows: Section 5.2 presents the proposed fetal 
ECG enhancement method and the data used. Experimental results are provided 
in Section 5.3. Finally, the results are discussed in Section 5.4 and conclusions are 
drawn in Section 5.5.
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Fig. 5.1. The architecture of the proposed fetal ECG denoising network. The network consists 
of an encoder of 8 convolutional layers and a decoder of 8 transposed convolutional layers. 
Symmetric skip connections are added between every two corresponding convolutional and 
transposed convolutional layers.

5.2 Methods and data

5.2.1 Network Architecture

In this section, we present the proposed CNN model for removing the residual 
noise after extracting fetal ECG from antenatal abdominal recordings. We adopt the 
network architecture of Mao et al. [189], developed for image restoration, and modify 
it to make it suitable for ECG signal denoising. The proposed method, as shown in 
Fig. 5.1, aims to learn an end-to-end noise removal function from noise-corrupted 
fetal ECG to its clean version. The network contains two stages: an encoding and a 
decoding stage. The encoder acts as a feature extractor that removes the noise while 
preserving the primary ECG components. The decoder recovers the signal details 
and delivers a “clean” ECG as an output. Skip-connections are added between every 
two corresponding convolutional and transposed convolutional layers to help with 
recovering a clean ECG while also tackling the optimization difficulty caused by 
gradient vanishing in deep architectures.

5.2.2 Network Parameters

The network depth, together with the selection of kernel size and the use or not of 
subsampling or dilation in the convolutional layers define the receptive field of the 
network. Increasing the receptive field size can make use of the context information 
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in a larger signal region. It was indicated that the effective patch size of the denoising 
methods is highly correlated with the receptive field of the network [187], [191]. A 
simple strategy to achieve large receptive field is to increase the number of layers in 
the network. However, this becomes computationally very intensive. Alternatively, 
subsampling operations can be performed by the network, but this is not generally 
preferred in denoising tasks for the sake of preserving the signal details [188].

The fetal ECG usually exhibits high levels of noise and thus it requires a large effective 
patch size to capture more information for efficient denoising. Moreover, in order 
to exploit the self-similarity of the underlying fetal ECG signal the network should 
permit correlations to extend to several heartbeats. In the proposed framework we 
selected to use a relatively deep network of 8 convolutional and 8 mirrored transposed 
convolutional layers. Both the convolutions and the transposed convolutions are one-
dimensional. Furthermore, subsampling by 2 is employed after every convolutional 
layer apart from the first one. We found that including subsampling operations in 
the convolutional layers helps rather than harms in terms of denoising performance 
since the receptive field of the network is drastically increased. Without subsampling 
a huge number of convolutional layers should be added to obtain the same receptive 
field. Moreover, in case of a practical implementation of the network, employment 
of the network should be fast, and the subsampling is also beneficial as it reduces the 
size of feature maps. It should be noted here that the additional skip-connections 
account for the lost signal details introduced by the subsampling in a great extent. 
Regarding the kernel size we use 15 in all layers, which for the case of signals sampled 
with 500 Hz corresponds to 30ms. With the above choices an effective receptive field 
of roughly 3.6s is achieved that corresponds to 5 to 10 heartbeats. For the sake of 
computational efficiency, we selected not to add more layers, even though this would 
increase even further the receptive field.  

The input of the network is fixed to 1920 samples, slightly higher than the effective 
receptive field (1800 samples), to facilitate the subsampling operations. The number 
of filters applied to produce the feature maps is [64, 128, 256, 256, 512, 512, 1024, 
2048] for the 8 convolutional layers respectively. Consequently, considering that the 
encoder subsamples the input signal by 2 in 7 layers, the dimension of the bottleneck 
feature vector is 2048x15. The transposed convolutional layers use mirrored 
numbered of filters. Leaky rectified linear units (Leaky ReLU) are utilized for non-
linearity after each layer. The implementation of the network was done in Keras.
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5.2.3 Skip Connections

In deep networks, transposed convolution does not work very well in recovering the 
details of the input data from only the data abstraction, possibly because too much 
detail is already lost in the convolution [189]. The suggested network is not only 
deep but, as mentioned above, the encoder heavily downsamples the input signal. To 
address this problem, skip connections are added from every two convolutional layers 
to the corresponding mirrored transposed convolutional layers. The feature maps 
passed by the skip connections carry much signal detail, which helps transposed 
convolution to recover an improved clean version of the fetal ECG. In addition, skip 
connections facilitate training of deep networks as they aid in back-propagating the 
gradient to the bottom layers [192], [193]. The way that the skip connections are used 
in the network is demonstrated in Fig. 5.2. As can been from the figure, the output 
of a convolutional layer is added to the output of the corresponding transposed 
convolutional layer and subsequently an activation function is applied to their sum.

Fig. 5.2. The way that the skip connections are used in the proposed network. Only the first 
two skip connections are shown for simplicity. Conv stands for convolution and ConvT for 
transposed convolution.

5.2.4 Data

The fetal ECG signals, even after the maternal ECG has been removed, are still 
affected by noise. It is hence impossible to have real fetal ECG pairs (noisy and 
clean) to train the network. Thus, we used a rich dataset of simulated fetal ECG for 
training. The algorithm was then extensively validated in a separate simulated test 
dataset, while results are additionally provided for real signals and compared with 
simultaneously performed scalp fetal ECG recordings. 

5.2.4.1 Simulated Data

For the creation of an extensive simulated dataset we used the fecgsyn toolbox [175]. 
By employing fecgsyn, fetal-maternal mixtures can be created while there is the 
possibility to model a number of non-stationary events that affect the morphology 
and dynamics of the abdominal ECG by rotating, translating and modulating 
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the available sources. The synthetic abdominal signals consist of 34 channels (32 
abdominal and 2 maternal ECG reference channels). With the use of the toolbox, 
we created a dataset where different physiological events are considered, such as 
ectopic beats, uterine contraction, noise, fetal movement etc., similar to the Fetal 
ECG Synthetic Database (FECGSYDB) [175]. Unfortunately, the data simulated with 
the fecgsyn toolbox is based on 9 different vectorcardiograms (VCGs) only. This 
means that training merely on this dataset has the risk of overfitting to these specific 
VCGs since there in relatively small variation in the timing of the ECG intervals. 
One possibility to introduce more variety in the dataset is to model more VCGs but 
we have chosen a different approach. Our approach includes modifying the fecgsyn 
toolbox to obtain a big variety of ECG morphologies based on the already available 
VCGs. The modified fecgsyn toolbox is able to receive a VCG and then apply random 
modifications of the lengths of the VCG intervals and segments, as well as of the 
amplitudes of the waves, such that a new VCG is created. This VCG was then used as 
a base to create the abdominal fetal ECG. The ranges of modifications were selected 
to cover a wide range of variations of the ECG morphological features, while still 
ensuring physiologically plausible ECGs. 

To further increase the diversity of ECG patterns in our dataset we generated one 
additional set of data. For this set, adult ECG signals were used to simulate the 
fetal ECG. Morphologically, adults and fetuses have rather similar ECG patterns; 
they both comprise a PQRST complex, yet the amplitudes and lengths of adult ECG 
segments and intervals are large compared to those of the fetal ECG. The adult ECGs 
were collected from 3 different databases of Physionet [176], the PTB Diagnostic 
ECG Database [194], the St.-Petersburg Institute of Cardiological Technics 12-lead 
Arrhythmia Database [176] and the QT database [195]. The signals were preprocessed 
to remove baseline wander and noise and to resemble fetal ECG. A high-pass filter 
with cut-off frequency at 1 Hz was first applied to the signals, followed by a Savitzky-
Golay filtering of order 8 and length 31. Based on the fact that the speed of the fetal 
heart rate is two to three times faster than the adult heart rate, the adult ECG signals 
were resampled at half frequency to look similar to fetal ECG signals. Amplitude 
scaling of the ECG was not necessary, as the data was normalized before entering the 
network. As a final step, noise was added to the signals. For this purpose, a number 
of 6-channel abdominal recordings, for which the study protocol is described in 
[174], was employed. In some recordings, after the maternal ECG suppression, the 
fetal ECG was impossible to be detected in any electrode or a subset of them. This 



Deep CNNs for single-channel fetal ECG denoising

103   

5

was caused either by the shielding of the fetus by the vernix caseosa or because some 
electrodes were too far from the fetal heart. In these cases, we assumed that the 
electrodes recorded only noise (apart from the maternal ECG that is subtracted) and 
this noise was added to the preprocessed adult ECG to simulate noisy fetal ECG. The 
advantage of using real noise recordings is that the data used for training the network 
is highly similar to the data we aim to use in testing and ultimately employment of 
the network. By learning how to remove real noise, the network is likely to perform 
better in real data. 

5.2.4.2 Real Data

To investigate the impact of training with synthetic data on denoising in a real 
dataset, we used the Abdominal and Direct Fetal Electrocardiogram Database [177]. 
This database contains multichannel fetal ECG recordings obtained from 5 different 
women in labor, between 38 and 41 weeks of gestation. Each recording contains 4 
signals acquired from maternal abdomen and one scalp ECG signal. The recordings 
have duration of 5 minutes and are sampled at 1000 Hz.

5.2.4.3 Data Preprocessing

The signals of all datasets were preprocessed before entering the network either 
for training or for testing. Regarding the abdominal recordings, the open-source 
algorithm of Varanini et al. [104] was initially applied to them. According to this 
algorithm, first the baseline wander and the powerline interference were removed. 
After that, the maternal ECG was estimated through Independent Component 
Analysis (ICA) and singular value decomposition and subsequently subtracted from 
the signals. Finally, a second ICA was employed to enhance the fetal ECG signal.

The fetal ECG signals of all datasets were resampled to 500Hz to have a common 
reference. Then, they were divided in segments of 1920 samples and finally normalized 
to have zero mean and unity standard deviation. The normalization was performed 
in each segment separately. 

5.2.5 Network Training

In order to train the weights of the convolutional and the transposed convolutional 
kernels a loss function was minimized. A standard loss function used in denoising 
optimization problems is the mean squared error (MSE):
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                                   (5.1)

where N is the number of the training data in a batch, M the length of the signals, 
Xdenoised is the denoised fetal ECG and Xclean  is the clean version of it, used as ground 
truth. We found, that even when we normalized our data with zero mean and 
standard deviation one, still there were some scale differences among the data, since 
we combined different datasets. To avoid favoring the data with the higher scale 
instead of MSE we adopted as loss function the normalized mean squared error 
(NMSE):                         

                                                                                                                                                 (5.2)

where we normalized the MSE by the mean squared amplitude of the target signal 
. We found that training with NMSE led to an improved network performance. 

The Adam algorithm [152] was selected as optimization algorithm. 

The simulated dataset was separated in two parts for test and training. In the training 
set we added the signals generated with the modified fecgsyn toolbox based on the 
VCGs 1-7, while the data based on VCG 8-9 was assigned to the test set. The data 
simulated from adult ECG were also carefully separated into training and test set. 
In addition, since the VCGs from the fecgsyn toolbox came from fitting a model on 9 
subjects from the PTB Diagnostic ECG Database, only these subjects were excluded 
to avoid any mixing of the training and test sets. Finally, the total number of training 
segments used in our experiments was 840000 and of test segments 200000. The 
network was trained on data with noise from -15dB to 15dB for 75 epochs until 
convergence was reached.

5.2.6 Performance Measure

The performance of the network was assessed based on the SNR improvement 
achieved after the denoising comparing to the SNR of corrupted fetal ECG. The 
metric is computed as follows:           

              

                           (5.3)

 
where  Xnoisy denotes the corrupted fetal ECG signal.
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The proposed method was compared to two other ECG enhancement algorithms. The 
first one is beat-to-beat averaging, where we averaged 30 successive ECG complexes, 
similar to STAN method [25]. The R-peaks were detected before the averaging with 
the Pan Tompkins algorithm [196] in the clean signals. In this way, the averaging 
performance was not affected by the performance of the R-peak detector.  The second 
method is a wavelet denoising method that decomposes the signal, thresholds the 
detail coefficients, and reconstructs the signal to obtain its enhanced version. The 
symlet wavelet with 6 vanishing moments was selected as a mother wavelet because 
of its similarity to an actual ECG. A fixed threshold was used which was estimated by 
the minimax principle [178].

5.3 Results

5.3.1 Evaluation on Simulated Data

The denoising network was evaluated in the simulated test dataset. Fig. 5.3 illustrates 
the performance of the developed fetal ECG denoising network in comparison to 
the 30-complex averaging and wavelet denoising methods. The input SNR refers 
to the SNR of the fetal ECG signals prior to denoising. As we can see in Fig. 5.3, 

Fig. 5.3. Performance of the proposed fetal ECG denoising network in comparison with other 
denoising methods in terms of SNR improvement of the denoised signal when compared with 
the noisy one.
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the denoising network provides a considerable amount of SNR improvement 
throughout the whole range of input SNR. In higher SNR ranges (more than 0dB) 
our network outperforms wavelet denoising and averaging techniques.  This was 
expected since the averaging method does not preserve individual variations in 
the ECG complexes while our method is capable of doing so. Moreover, wavelet 
denoising distorts the signal amplitude, whereas the denoising network does a 
better job in preserving it, especially in cases of low noise.  For lower SNR values 
averaging performs slightly better comparing to our method. The averaging method 
uses a larger signal segment for denoising (30 complexes) comparing to the network 
(5-10 complexes). Apparently, an even larger effective denoising patch is needed 
for cases of heavy   noise. On the other hand, unlike the averaging, the proposed 
network does not make use of any prior information about the input signal. It should 
be mentioned here that the averaging method assumes that the R-peaks are known. 
However, it is not guaranteed that the R-peaks can be accurately estimated in very 
noisy signals. The strength of our method is that no prior processing of the signals, 
such as detecting the R-peaks, is required and consequently errors in denoising 
originating from wrong peak detection are avoided.  

Fig. 5.4 depicts some typical results obtained in the test dataset for a wide range of 
SNR values. For relatively high SNR values (cases (a)-(c)) the network suppresses 
the noise to an extent that the ECG waves become distinguishable. Moreover, there 
is no or little distortion in the signal amplitude. For lower SNR values, around -5dB, 
usually the QRS complexes are successfully recovered as it can be observed in Fig. 
4(d) and 4(e). However, there are cases that some P or T waves are created by the 
network where they do not actually exist. As example, in Fig. 5.4(d) the P-waves in 
the denoised signal differ from the ground truth ECG both in location and polarity. 
In other instances, the waves are difficult to recover, or their amplitude is distorted 
(Fig. 5.4(e)). Finally, in very low SNR (less than -10dB) even the QRS complexes 
appear challenging to be recovered (Fig. 5.4(f)). Thus, in low SNR ranges of the input 
signals even though the SNR of the output signal is significantly increased, some 
morphological features might not always be reliably extracted.   

Fig. 5.5 illustrates the potential of our denoising method in a case with arrhythmia. 
The quality of the output signal has been enhanced to a great extent and nearly all 
the individual variations among the complexes are preserved. Unlike our algorithm, 
the averaging of successive complexes fails in maintaining abrupt changes in signal 
morphology.
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5.3.2 Performance on Real Fetal ECG Signals

The fetal ECG denoising network was merely trained on simulated data. Therefore, it 
is interesting to examine how well it performs in terms of enhancing the quality of real 
fetal ECG.  Since ground truth real signals are not available, the performance of the 
network was tested by comparing the denoised signals of the Abdominal and Direct 
Fetal Electrocardiogram Database with the simultaneously recorded scalp ECG. It 
should be noted that the scalp ECG is a different ECG lead than the abdominal leads 
and that they should not be identical, even in case of perfect denoising. Nevertheless, 
the individual ECG segments should coincide between the abdominal leads and 
the scalp lead. Two intervals were computed and compared between the denoised 
signals and the scalp ECG in our analysis: the QT interval and the PR interval. The 
QT interval is defined as the interval from the onset of QRS complex to the end of 
the T wave (offset of ventricular repolarization). The PR interval corresponds to the 
period that extends from the beginning of the P wave (onset of atrial depolarization) 
to the beginning of the QRS complex (onset of ventricular depolarization).

The scalp measurements contain considerable amount of noise that made it 
challenging to determine the intervals. To enable the interval detection, quality 
enhancement of the scalp ECG was necessary. For this purpose, we performed 
averaging of 7 successive ECG complexes. To have a fair comparison, the same 
procedure was applied to the denoised signals. Even after 7 complex averaging there 
was substantial noise left in some segments of the scalp ECGs and therefore, we had 
to exclude them from the comparison. However, by averaging more complexes we 
risked assessing the performance of the averaging method rather than our proposed 
denoising. Choosing to use 7 complexes was a compromise between sufficient quality 
enhancement of the scalp ECGs and preservation of variations among consecutive 
complexes. 

The end of the T wave is difficult to define [197] and to calculate it we adopted the 
tangent technique. According to this technique, a tangent line is determined down 
the steepest slope of the terminal limb of the T wave. Afterwards, the end of the T 
wave is defined by the intersection of this line with the baseline. In a similar way the 
beginning of the P wave was determined. The intervals were calculated first in an 
automated way and then checked manually by an expert to correct for errors. From 
each recording, only the channel with the least amount of noise was analyzed. Since 
the recordings are 5 minutes long this corresponds approximately to 620 intervals 
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per recording (~3100 in total). The signal parts, where the amount of noise was too 
high, or the intervals were not recognizable, were excluded from the comparison 
(both for the scalp and denoised signals). After this exclusion, 2000 intervals were 
compared. 

Fig. 5.6. Interval comparison between the denoised noninvasive fetal ECG signals and the 
simultaneously recorded scalp ECG: (a), (c) correlation plots and (b), (d) Bland Altman plots 
for the PR and QT interval respectively. In (a) and (c) line fit is given by y = intercept + gradient 
x and R2 is the corresponding squared Pearson correlation coefficient.

The root mean squared error (RMSE) and the squared Pearson correlation coefficient 
(R2) were computed to measure how well the intervals match between the scalp and 
the denoised fetal ECG signals. Moreover, we evaluated the RMSE95 and R295 where 
the extreme 5% values were excluded. This was done to ensure that the outliers did 
not bias the estimation of the metrics. Table 5.1 displays the calculated values for 
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the two intervals. The RMSE for the PR interval was estimated to be 9.9ms, while 
after the exclusion of the extreme values 7.4ms. For the QT interval RMSE is equal 
to 14ms and RMSE95 11ms. We should note here that in the scalp measurements the 
average value for the PR interval was found 120ms and for the QT interval 270ms. 
For the PR interval the squared correlation coefficient is 0.77 while for the QT 0.81. 
The removal of the extreme values raised the value to 0.86 for the PR and 0.87 for 
the QT interval respectively. We provide additionally the correlation and the Bland 
Altman plots for the estimated intervals in Fig. 5.6. The Bland Altman plot shows 
that the PR interval was measured on average 6ms shorter in the denoised signals 
when compared to the scalp electrode. Regarding the QT interval, it was computed 
6.1ms longer in the noninvasive fetal ECG signals.  Moreover, we observe that the 
limits of agreement are not very wide, especially for the QT interval, but there are 
measurements falling outside them. This means that the denoising does not provide 
consistently good results but also some outliers.

Table 5.1. Comparison of the PR and QT interval between the denoised fetal ECG signals and 
the scalp ECG. All the values are expressed in ms.

Interval RMSE R2 RMSE95 R295

PR 9.9 0.77 7.4 0.86

QT 14 0.81 11 0.87

Finally, a visual result of the denoising is provided in Fig. 5.7 for channel 2 of the 
recording “r04” of the Abdominal and Direct Fetal Electrocardiogram Database. For 
better visualization the scalp ECG was high-passed filtered to remove the baseline 
wander. The denoised ECG signal is free from noise and the individual waves 
correspond relatively well to those in the scalp ECG.
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5.4 Discussion

This chapter presented a deep CNN network for denoising fetal ECG signals. Fetal 
ECG signals, obtained from noninvasive recordings, contain a substantial amount 
of noise even after the maternal ECG is suppressed. This renders it difficult for the 
clinicians to examine and interpret the morphology of the ECG signals. Usually, the 
QRS complex can be detected without further processing, due to the high amplitude 
of the R-peak. However, the smaller waves, like the P and T waves, can often not be 
readily distinguished. The proposed CNN network was developed to postprocess the 
extracted fetal ECG signals in order to further enhance their quality. The network 
was trained merely on simulated data and its performance was examined both on 
synthetic and real signals.

The network was found to be efficient in reducing residual noise in the synthetic 
ECG dataset. When the SNR of the signals was relatively high the T and the P waves 
were mostly reconstructed with no or little distortion. In most of these cases the 
waves in the noisy input signals were impossible or too difficult to detect. However, 
in cases with low SNR, even if a significant SNR improvement was achieved, some 
morphological features were distorted, absent or “fake”. This means that the 
network cannot reliably reconstruct the ECG morphology when the signals are 
severely corrupted by noise. Possibly longer signal segments are needed rather than 
4s to capture more information about the underlying signal structure. This finding 
suggests that if the developed network is intended to be used in practice, then prior 
quality assessment of the input signal is necessary as a reliability measure of the 
result. If the quality of the signals is assessed as low, then the network should not be 
used for denoising. Alternatively, possibly longer signal segments can be considered 
and more layers should be added to the network to achieve a larger effective 
denoising patch at the expense of higher computational intensity and possible need 
of even more data. Moreover, in our analysis we have experimented only with single 
channel ECG. However, modifying our network to handle multichannel fetal ECG is 
straightforward by employing 2D convolutions. Allowing the convolutions to extend 
both in space and time might lead to more accurate results.

In a real dataset we measured how well the PR and QT intervals of the denoised 
signals correspond to those measured in the scalp ECG. The intervals were extracted 
in the signals created as a running average of 7 heartbeats. There is a limitation in 
this comparison, since there is some further denoising performed because of the 
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averaging. However, the need to remove the noise in the scalp, for obtaining reliable 
intervals, outweighs the mentioned limitation. We found a RMSE of 9.9ms for the 
PR interval and 14ms for the QT interval. These values show high similarity between 
the two measurements especially if we consider errors and high ambiguity in the 
computation of the intervals. The RMSE value for the QT interval is similar to the one 
found by Behar et al. [198] (13.6ms) where annotations of several cardiologists were 
combined and compared to the scalp ECG. However, compared to [198], we used 
less subjects in our comparison.  Furthermore, the running average computation in 
[46] was different from ours since they selected only the ECG complexes with high 
similarity for the averaging in 1-minute segments. They found that the QT interval 
can be reliably extracted only if computed as a running average of several heartbeats. 
In our case the averaging is less necessary since most of the noise is removed by the 
denoising network. 

It bears mentioning, however, that validation in a more extensive real dataset is 
needed to confirm our findings. Moreover, the signals in our study were recorded 
between 38 and 41 weeks of gestation. This is because it is impossible to have scalp 
measurements before birth. However, it would be interesting to assess the accuracy 
of the method in earlier gestational ages also. 

Despite the limitations in the validation of our method, this is the first study to show 
the potential of deep CNNs in efficiently removing noise from noninvasive fetal ECG 
signals. The principal advantage of the method over the widely used running average 
method is that no prior R-peak detection is necessary and that individual variations 
in pulse shape and beat-to-beat interval are retained. This is especially beneficial in 
arrhythmia cases. Nowadays, the averaging performed in the fetal ECG precludes 
its use in real time arrhythmia analysis and hence fetal arrhythmia can only be 
assessed through echocardiography. This work brings us a step closer to broadening 
our understanding of mechanisms of fetal arrhythmia by examining the fetal ECG. 
Moreover, the quality of the denoised signals is high enough to allow for measuring the 
exact timing of different morphological features of the ECG signal by the clinicians.  
Besides, it can facilitate and advance the research towards automated detection of 
fetal ECG intervals and segments. Extracting morphological features from the ECG 
signal allows for the estimation of the well-being of the fetus. Metabolic acidosis 
was found to be associated with QT length variations [89]. Several studies have also 
demonstrated a physiologically negative correlation between the PR interval and RR 
interval which becomes positive with evolving acidosis [199], [200]. However, the 
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role of the ECG intervals in fetal monitoring is yet to be established, but for this to 
be achieved the technological limitations related to the noninvasive ECG should be 
overcome.

5.5 Conclusion

In this chapter, we proposed a deep encoder-decoder framework for noninvasive 
fetal ECG signal denoising. Convolutions and transposed convolutions are combined 
to remove the noise by extracting primary signal content and recovering details. 
Experimental results in synthetic signals showed that the network is able to achieve 
a substantial quality improvement of the noisy signals. However, when the signals 
are heavily corrupted by noise, some morphological features are unreliable, urging 
the need for reliability measure of the network’s output. Experiments on real signals 
demonstrated high correlation of the PR and QT interval in the denoised signals 
when compared with the scalp ECG. The principal advantage of the method is that 
individual variations among different pulses can be preserved and that, opposed to 
most other fetal ECG denoising methods, the method does not require knowledge on 
R-peak locations.
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Abstract. Noninvasive fetal electrocardiography represents a valuable alternative 
continuous fetal monitoring method that has recently received considerable 
attention in assessing fetal health. However, the noninvasive fetal electrocardiogram 
(ECG) is typically severely contaminated by a considerable amount of various noise 
sources, rendering fetal ECG denoising a very challenging task. This work employs 
a deep learning approach for removing the residual noise from multichannel fetal 
ECG after the maternal ECG has been suppressed. We propose a deep convolutional 
encoder-decoder network with symmetric skip-layer connections, learning end-to-
end mappings from noise-corrupted fetal ECG signals to clean ones. Experiments on 
simulated data show an average signal-to-noise ratio (SNR) improvement of 9.5 dB 
for fetal ECG signals with input SNR ranging between -20 and 20 dB. The method 
is additionally evaluated on a large set of real signals, demonstrating that it can 
provide significant quality improvement of the noisy fetal ECG signals. We further 
show that employment of multichannel signal information by the network provides 
superior and more reliable performance as opposed to its single channel network 
counterpart. The presented method is able to preserve beat-to-beat morphological 
variations and does not require any prior information on the power spectra of the 
noise or the pulse location.
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6.1 Introduction

The fetal electrocardiogram (ECG) can be used to monitor the condition of the 
fetal heart from early pregnancy until delivery [157]. Nowadays, fetal monitoring 
is mainly performed by cardiotocography or by ECG recordings where an electrode 
is directly placed on the fetal scalp. Cardiotocography records the fetal heart rate 
together with the uterine contractions. The advantages of the method are that it is 
performed noninvasively and is safe for the patient. On the other hand, it is prone to 
signal loss, while recorded changes of the heart rate are not always precise [16]. Scalp 
ECG recordings are a more reliable means of monitoring the fetal health. However, 
they are invasive, may pose a health risk to the fetus, and can only be performed 
during labor, when the membranes have ruptured. 

Noninvasive fetal electrocardiography, performed by placing electrodes on the 
maternal abdomen, is a promising alternative to standard fetal monitoring. In 
comparison with cardiotocography, it provides more accurate information because it 
does not need to average over multiple beats for the heart rate extraction. Moreover, it 
provides the possibility to assess the ECG morphology, related to the electrical activity 
of the fetal heart. The advantage of the method over the scalp ECG measurements 
is that it can be performed already during pregnancy, it is safe for the fetus and 
comfortable for the mother. However, the difficulty to extract a clean fetal ECG 
from the abdominal mixture is the main reason that the application of the method 
in clinical practice is still limited. The interferences and noises in the abdominal 
recordings among others include the maternal ECG, powerline interference, 
baseline wander, muscle noise from the fetus and mother and movement artifacts. 
Considering that the signals of some of these interferences and noises overlap both 
in time and frequency with the fetal ECG, the extracted fetal ECG signals usually 
have very low signal-to-noise ratio (SNR). Therefore, the noninvasive recordings are 
in practice merely used for heart rate analysis. 

There are typically three main steps in the fetal ECG extraction process: preprocessing, 
separation and postprocessing [201]. Preprocessing includes removal of unwanted 
noise and interferences such as powerline interference and baseline wander.  In 
the separation step, the maternal ECG is estimated and then subtracted from the 
signals to obtain the fetal ECG. Finally postprocessing is employed to enhance 
the quality of the extracted fetal ECG signals. The work on noninvasive fetal ECG 
analysis has mainly targeted the first two steps, together with the improvement of 
the acquisition devices [121], while only few works focused on the postprocessing 
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of the obtained signals. Beat-to-beat averaging is a traditional method which is 
often used to improve the SNR of the extracted signals, at the expense of losing 
individual variations in pulse shape [113]. Different wavelet denoising techniques 
were additionally proposed in the literature for the postprocessing of the extracted 
fetal ECG signals [114], [115].  In a previous work [184], the authors employed an 
augmented time-sequenced adaptive filter to enhance the quality of the extracted 
fetal ECG. Despite the significant quality improvement that the method achieves, 
the location of the fetal pulses is required to synchronize the filter and the method 
cannot handle abrupt changes in fetal ECG morphology, e.g. in cases of arrhythmia.

Recently, deep neural network models such as convolutional neural networks 
(CNNs), recurrent neural networks (RNNs) and stacked denoising autoencoders 
have been successfully applied for a variety of purposes including signal and image 
denoising [189], [188], [187], [186], [185]. Moreover, few works reported adult ECG 
signal denoising [133], [134], fetal QRS detection [140], [141] and fetal ECG signal 
reconstruction [139]. Zhong et al. [202] presented a deep convolutional encoder-
decoder framework for preprocessing abdominal recordings to remove noise. 
However, they did not extract the fetal ECG from the preprocessed signals to ensure 
that it is not suppressed by the network.  The authors were the first to propose a 
deep convolutional encoder-decoder network for postprocessing noninvasive single 
channel fetal ECG [203], [137], achieving a substantial quality improvement of the 
noisy signals. The method tackled some of the shortcomings of the state-of-the-art 
noninvasive fetal ECG postprocessing methods, since it can preserve beat-to-beat 
morphological variations and does not require prior knowledge about the location 
of the fetal pulses. However, in cases of heavily corrupted signals, the method was 
unable to reliably reconstruct some relevant morphological features of the ECG, 
sporadically even causing presence of “fake” waves, i.e. waves in the reconstructed 
ECG that should not have been there or should have had opposite sign. For a practical 
application this might be dangerous, leading to wrong diagnosis.

In this work, we are dealing with the aforementioned problem by extending our model 
to handle multiple fetal ECG channels. Multiple electrodes measure the electrical 
activity of the heart from different angles. We propose to use a deep convolutional 
encoder-decoder network with symmetric skip connections that learns how to 
optimally combine the input channels to deliver a reliable clean, multichannel ECG 
as output. The method eliminates the residual noise in the fetal ECG by capturing 
the signal structure in the convolutional layers and recovering the details by the 
transposed convolutional layers.
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6.2 Materials and Methods

6.2.1 Data

6.2.1.1 Simulated Data

For the training, but also for the evaluation of the proposed network, we created an 
extensive simulated fetal ECG dataset that consists of two parts. The first part was 
built by employing the fecgsyn toolbox developed by Behar et al. [204], [176]. The 
toolbox enables the creation of abdominal mixtures with adjustable noise sources, 
heart rate, heart rate variability, fetal movement, ectopic beats and contractions. 
A Gaussian model is used to simulate the ECG beats, as originally developed by 
McSharry [205] and further improved by Sameni [206]. Any number of electrodes 
can be positioned on the maternal abdomen for the simulations. Unfortunately, the 
simulated fetal ECGs are based merely on 9 available vectorcardiograms (VCGs). 
Since there is limited variation in the shape and lengths of the individual PQRST 
waves in these VCGs, there is an increased risk of overfitting the network. This 
means that the network might learn to reproduce these limited morphologies and 
enforce resemblance of the denoised signals with the training data. In fact, what 
happened in our initial  experiments is that the P and T waves of the denoised 
signals were shifted with respect to their ground truth data to match the locations 
of the training data. For this reason, we built a modified version of the toolbox that 
creates a variety of new ECG morphologies based on the already available VCGs. 
The modified toolbox receives a VCG as input, alters the length of the VCG intervals 
along with the amplitudes of the PQRST waves and subsequently uses it as a base to 
form the abdominal fetal ECG. Initially, for all 9 VCGs, the points of interest, which 
are the beginning and end of the P wave, T wave, and QRS complex were annotated 
and saved to be later available to the simulator. In every iteration of the modified 
simulator, one of the 9 VCGs is randomly selected and subsequently the start and 
the end of the waves are randomly shifted in position. Since the shift of the start 
and shift of the end point of each wave are not identical, also the length of the waves 
is automatically varied this way. The amplitude of each wave is changed as well by 
random scaling. The modified VCG is the starting point that the abdominal fetal ECG 
can be created. With the help of the modified toolbox we created a large dataset of 
4-channel abdominal mixtures, where different physiological events were considered, 
such as heart rate decelerations and accelerations, fetal movement, ectopic beats, 
uterine contraction etc., similar to the Fetal ECG Synthetic Database [175]. The VCG 
alterations were chosen so as to include an ample range of variations of the ECG 
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morphological features, while still ensuring their physiological plausibility. When 
obtaining the simulated data, we varied the placement of the four electrodes to make 
the method invariant to variations in the electrode position.

To further enrich the ECG morphologies in our dataset and reduce the risk of 
overfitting to the training data we generated an additional set of simulated signals 
based on adult ECG from the PTB Diagnostic ECG Database of Physionet [194]. The 
database comprises of both normal and pathological signals with 15 leads, sampled 
at 1000 Hz. 549 records from 290 male and female subjects are available. Adult and 
fetal ECG have similar morphology, but the adult ECG intervals and amplitudes 
are larger compared to the fetus. The adult ECG was preprocessed to remove 
noise and resemble the fetal ECG. First, a high-pass filter with cut-off frequency 
of 1 Hz was applied followed by Savitzky-Golay filtering of order 8 and length 31. 
Afterwards, considering that the fetal heart beats two to three times faster than the 
adult heart, the signals were resampled to half frequency. Adjustment of the signals 
amplitude was not necessary because they were, in a later data preparation step, 
anyway normalized before entering the network. As a next step, 4-channel signals 
were created by making random combinations of four leads, where a maximum of 
two was chosen out of the six first limb leads. Finally, “real” noise was added to the 
signals. For the “real” noise we employed a set of 6-channel abdominal recordings 
of an ongoing study of which the protocol is described in [174]. In a subset of these 
recordings we found it impossible to detect the fetal ECG, either because of the 
shielding of the fetus by the vernix caseosa or because the fetal heart was far from 
some electrodes. We considered that these measurements, after the maternal ECG 
suppression and powerline interference removal, consist of pure noise and added 
them to the preprocessed adult ECG to generate our simulated fetal ECG signals. 

6.2.1.2 Real Data

In order to evaluate how well our algorithm performs in real signals we employed 
two databases. The first one is a private set of noninvasive fetal ECG measurements, 
obtained in collaboration with the Máxima Medical Center, Veldhoven, the 
Netherlands [174], [85]. The dataset contains 462 6-channel recordings of different 
women, at least 18 years old, between 18 and 24 weeks of gestation. The fetal ECG 
was recorded with adhesive Ag/AgCI electrodes on the abdomen of the pregnant 
women while they were in semi-upright position. Six electrodes were placed around 
the navel to produce six channels of electrophysiological measurements, while 
two additional electrodes, placed close to the navel, served as common reference 
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and ground.  Each recording lasted from 5 up to 50 minutes and was digitized and 
stored at 500 Hz sampling frequency by a fetal monitoring system (Nemo Healthcare 
BV, The Netherlands). Since the signals were measured through six electrodes, we 
selected the first, third, fourth and fifth dimensions to form the 4-channel fetal ECG 
signal.

The second real dataset is the Abdominal and Direct Fetal Electrocardiogram 
Database which consists of 4-channel abdominal fetal ECG recordings obtained by 
five women in labor, between 38 and 41 weeks of gestation [177]. Each recording 
comprises four different signals acquired from the maternal abdomen together 
with a reference direct fetal ECG registered from the fetal head. The configuration 
of the abdominal electrodes consisted of four electrodes placed around the navel, 
a reference electrode placed above the pubic symphysis and a common reference 
electrode placed on the left leg. The recordings have duration of five minutes and are 
sampled at 1000 Hz.

Fig. 6.1.  The architecture of the proposed multichannel fetal ECG denoising network. The 
network consists of an encoder of eight convolutional layers and a decoder of eight transposed 
convolutional layers, which are linked symmetrically by skip connections.

6.2.1.3 Data preprocessing

The signals of all the datasets were preprocessed before entering the network. The 
fetal ECG extraction was performed with the help of the open-source algorithm of 
Varanini et al. [104] and the signals were resampled to 500 Hz to have a common 
reference. Finally, the fetal ECG signals were divided in segments of 1920x4 samples 
and normalized to have zero mean and unity standard deviation. The normalization 
was performed along each channel separately.
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6.2.2 Network description

The proposed fetal ECG denoising CNN network is illustrated in Fig. 6.1. It consists 
of an encoder of eight convolutional layers and a decoder of eight symmetric 
transposed convolutional layers. The network receives a noisy fetal ECG signal as 
input and delivers a denoised one as output. The convolutional layers act as a feature 
extractor which captures the abstraction of the fetal ECG while eliminating the noise. 
Subsequently, the transposed convolutional layers decode the fetal ECG abstraction 
to recover the signal details. The convolutional layers are symmetrically connected 
with the transposed convolutional ones via skip connections. The role of the skip 
connections is twofold. First, they help back-propagating the gradients to bottom 
layers, facilitating the training of our deep network. Second, they pass signal content 
from the bottom to top layers to aid in recovering the signal details. 

Fig. 6.2. Detailed illustration of the way that the skip connections (represented by the arrows) 
are applied in the network. Only two skip connections are shown for simplicity. Conv stands 
for convolution and ConvT for transposed convolution.

The noninvasive fetal ECG typically contains a high amount of noise and thus a large 
denoising patch can lead to more efficient noise removal by using context information 
from a larger signal region. It was indicated in the literature that the denoising patch 
is highly correlated with the receptive field of the network, i.e. the region in the input 
space that a CNN feature can be affected by [187], [191]. The receptive field of the 
network is determined by the kernel size, the depth of the network and whether 
subsampling or dilation is used in the convolution operations. A common approach 
to increase the receptive field is to increase the number of layers in the network but 
this is computationally expensive. We chose to use a relatively deep network of eight 
convolutional and eight transposed convolutional layers. Since our data are temporal, 
we adopt one-dimensional convolutions and transposed convolutions. In addition, 
subsampling by two is performed after each convolutional layer, apart from the first, 
and upsampling by two after the transposed convolutional layers, apart from the 
last one. Subsampling operations are not generally preferred in denoising tasks in 
order to preserve the signal details [188]. On the other hand, in our case they lead to 
a significant increase of the receptive field, necessary for removing the large amount 
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Table 6.1. Detailed overview of the proposed network architecture.

Layer Output Size Filter Size Kernel Size

En
co

de
r

Convolution (stride=1)
LeakyRelu(0.2)

Convolution (stride=2)
LeakyRelu(0.2)

Convolution (stride=2)
LeakyRelu(0.2)

Convolution (stride=2)
LeakyRelu(0.2)

Convolution (stride=2)
LeakyRelu(0.2)

Convolution (stride=2)
LeakyRelu(0.2)

Convolution (stride=2)
LeakyRelu(0.2)

Convolution (stride=2)
LeakyRelu(0.2)

1920x64

1920x64

960x128

960x128

480x256

480x256

240x256

240x256

120x512

120x512

60x512

60x512

30x1024

30x1024

15x2048

15x2048

64

128

256

256

512

512

1024

204

15

15

15

15

15

15

15

15

D
ec

od
er

Transposed Convolution(stride=2)
LeakyRelu(0.2)

Transposed Convolution(stride=2)
Addition

LeakyRelu(0.2)
Transposed Convolution(stride=2)

LeakyRelu(0.2)
Transposed Convolution(stride=2)

Addition
LeakyRelu(0.2)

Transposed Convolution(stride=2)
LeakyRelu(0.2)

Transposed Convolution(stride=2)
Addition

LeakyRelu(0.2)
Transposed Convolution(stride=2)

LeakyRelu(0.2)
Transposed Convolution(stride=1)

Addition
Linear Activation

30x1024

30x1024

60x512

60x512

60x512

120x512

120x512

240x256

240x256

240x256

480x256

480x256

960x128

960x128

960x128

1920x64

1920x64

1920x4

1920x4

1920x4

1024

512

512

256

256

128

64

4

15

15

15

15

15

15

15

15

of noise present in the fetal ECG signals. Moreover, in order to exploit the self-
similarity of the ECG signals the network should permit the convolutions to extend 
to several heartbeats. Regarding the kernel size we empirically determined that 
15 achieves satisfactory results by being large enough  to include sufficient signal 
information without excessively increasing the number of network parameters. 
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The input and output of the network have dimension 1920x4 which corresponds to 
4-channel ECG of 3.84 s. For non-linearity after each layer, leaky rectified linear units 
(LeakyRelu) with a slope of 0.2 are utilized. The aforementioned parameter choices 
led to a receptive field of roughly 4 sec that corresponds to 5-10 heartbeats. A detailed 
description of the network architecture and the parameters is given  in Table 6.1.

6.2.2.1 Skip connections

In shallow networks transposed convolutions work well for recovering the signal 
details but as the network goes deeper, they do not longer work satisfactory [189]. 
Our network is deep and heavy subsampling is performed for the sake of increasing 
the receptive field of the network, resulting in significant loss of signal information. 
To address this issue, skip connections are added between every two convolutional 
and mirrored transposed convolutional layers as shown by the arrows in Fig. 6.1. 
The skip connections carry signal information and account to a great extent for the 
lost signal details introduced by the subsampling. Moreover, these skip connections 
allow the gradient update rules to back-propagate to the bottom layers directly, 
dealing with the gradient vanishing problem occurring in deep architectures. The 
way that the skip connections are used in the network is depicted in Fig. 6.2. 

6.2.2.2 Network training

For training the network the normalized mean squared error loss was minimized, 
which is defined as:    

     ℒ ,             (6.1)

 
where N is the number of the training data in a batch, L is the number of channels, 
M is the length of the signals, X represents the fetal ECG and  is the mean squared 
amplitude of X. In our experiments N=64, L=4 and M=1920. The Adam algorithm 
was selected [152] as an optimization algorithm while the learning rate was set to 
0.00001. The training method that we followed is supervised, meaning that we need 
clean fetal ECG signals as labels together with the noisy signals. For this reason, the 
training of the network was performed based only on simulated data. The simulated 
data were separated in two sets for the training and testing of the method. The 
training set contains the signals simulated by the modified fecgsyn toolbox based 
on VCG 1-7 and 449 preprocessed records from 212 subjects of the PTB dataset. The 
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test set contains the simulated signals based on VCG 8-9 from the modified fecgsyn 
toolbox, plus 100 preprocessed records of 78 subjects of the PTB dataset. The SNR 
of the training set ranges from -15 to 15 dB.  The network was trained for 21 epochs 
until convergence was reached.

6.2.3 Performance Evaluation

In the simulated dataset, the performance of the method was evaluated based on the 
SNR improvement of the fetal ECG signals achieved by the network. The metric is 
estimated for a channel,  l,of a signal as:

.                             (6.2) 

 
The metric was computed for each channel and subsequently averaged over all the 
ECG channels and test signals.

For real fetal ECG signals there is no ground truth available, because even after 
the maternal ECG suppression there is still noise present in the signals. Thus, 
it is impossible to have a gold reference to quantitatively validate the results. 
Simultaneous scalp recordings may help but they can be performed only during 
labor. Unfortunately, since our real private dataset was obtained during the second 
trimester of pregnancy, it was not possible to measure the scalp ECG to have a clean 
reference. For this dataset, in order to provide some quantitative results along with 
the qualitative, we decided to generate a surrogate “clean” ground truth signal by 
calculating the running median of 100 heartbeats. We then measure how well the 
quality of the denoised signals was enhanced by computing the improvement in SNR 
performance defined by Equation (6.2). The metric was calculated for 455 cases, 
where sufficient QRS complexes were detected for the generation of the “ground 
truth” signal.

In the Abdominal and Direct Fetal Electrocardiogram Database, since simultaneous 
scalp measurements are provided together with the noninvasive fetal ECG, the 
performance of our method was evaluated by comparing with the scalp electrode. The 
scalp ECG is however a different lead than the abdominal ones and we cannot compare 
them directly since, even in case of perfect denoising by our method, the morphology of 
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the ECG will not be the same between different leads. Instead, we estimated a denoised 
scalp ECG as a linear combination of the four abdominal fetal ECG channels:     

 ,            (6.3)

where   is the [1 x 250] scalp ECG and  the [1 x 250] estimation of the 
scalp ECG from the abdominal fetal ECG channels. The coefficients of the [4 x 1] 
linear combination, a, were computed on windows of half a second that corresponds 
to 250 samples. The dimension of  is 4x250. Because the scalp ECG 
measurements contain considerable amount of noise and this could affect the 
comparison, we denoised the scalp ECG by high pass filtering followed by averaging 
of 30 ECG complexes. Nevertheless, we provided comparative results both when the 
estimation was done based on the noisy scalp ECG as well as on the denoised scalp 
ECG.   

Four different quantitative measures were employed for the comparison, the Pearson 
correlation coefficient (R), the mean squared error (MSE), the mean absolute error 
(MAE) and the signal-to-noise ratio (SNR). The metrics are defined by the following 
equations: 

 

where  cov stands for the covariance, σ the standard deviation and K the length of 
the signals. The metrics were computed for the five signals of the database and 
subsequently averaged to obtain one final value.

6.2.4 Reference methods

Our method was evaluated in comparison with 3 other ECG denoising methods. The 
first method is the single channel CNN denoising network, where each fetal ECG 
channel is denoised separately [137]. The second method is a wavelet denoising 
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algorithm that removes the noise by thresholding the detail coefficients after the 
signal decomposition. The symlet wavelet was selected due to its resemblance with 
an ECG, while a fixed threshold was used, estimated by the minimax principle [178]. 
The last method is the widely used beat-to-beat averaging method. We selected to 
average 30 beats similar to the averaging performed by the STAN method [25]. The 
QRS complexes were detected by a Pan Tompkins detector in the clean fetal ECG 
signals and not the noisy ones because we do not intend to assess the performance of 
the QRS detector but the performance of the averaging method. However, we should 
note that it is not guaranteed that the QRS complexes can be accurately estimated in 
the presence of acute noise.

6.3 Results

6.3.1 Performance on Simulated Signals

The improvement in SNR performance of the proposed network in comparison to the 
other denoising algorithms, for input SNR from -20 to 20 dB, is illustrated in Fig. 6.3. 
As demonstrated in this figure, the CNN network provides a considerable amount of 
SNR improvement throughout the whole range of input SNR. The proposed method 
outperforms the beat-to-beat averaging and the wavelet denoising methods for all 
the input SNR values. This was anticipated because the averaging method does not 
preserve individual variations among complexes, while our method is capable of 
doing so. Moreover, the wavelet denoising distorts the signal amplitude, whereas 
the proposed network preserves it  better. The multichannel network additionally 
outperforms the single channel nearly for the whole range of input SNR values. More 
specifically, for input SNR less than 0 dB the multichannel algorithm provides an 
SNR improvement of at least 10 dB with respect to the input signal and at least 2 
dB further improvement as compared to the single channel method. As the input 
SNR increases the performances of the two methods become gradually comparable, 
while for input SNR more than 11 dB the single channel network slightly surpasses 
the multichannel. This was something to expect because for signals of lower quality, 
information from multiple channels will be beneficial for recovering the ECG 
structure. On the other hand, if a fetal ECG channel has sufficiently high quality not 
only the other channels are unnecessary for denoising it but could also slightly affect  
the quality of the denoised fetal ECG, especially in case their SNR is low. This can be
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Fig. 6.3. Performance of the proposed multichannel convolutional network in comparison 
with other denoising methods in terms of improvement in SNR of the denoised fetal ECG 
signals when compared with the noisy ones.

explained better by the following: By using any set of three linearly independent ECG 
leads, the VCG can be constructed, which is the three-dimensional representation of 
the electrical activity of the heart. A VCG can explain about roughly 90% of an ECG 
signal [57]. This means that when a signal is reconstructed from different channels, 
10% of the signal information should be considered as not reconstructable.  In case 
of very high signal quality, the single channel denoiser can perform better than the 
multichannel since it could theoretically reconstruct 100% of the signal.

By observing Fig. 6.3, we see that, for all methods, there is an input SNR for which 
the denoisers decrease the SNR. This input SNR value is 9,12, 18 and 20 dB for the 
wavelet, averaging, multichannel network and single channel network denoising 
methods respectively. Since it is not common to obtain fetal ECG signals of  very high 
quality (more than 18dB), we do not consider it as a limitation of our method. We 
additionally noticed that there is a upgoing trend for the SNR improvement metric 
as the input SNR decreases. However, we did not test for signals of quality even 
lower than -20 dB because real fetal ECG signals typically do not have quality less 
than -20dB. 
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Fig. 6.4. Denoising results by the proposed method for two simulated signals (SA and SB) 
of the test dataset. For both signals: each panel in the left presents one channel of the noisy 
4-channel fetal ECG signal (red), in the middle the    corresponding channels of the clean 
signal (blue) are shown and in the right the denoised fetal ECG signal by our network (green). 
The horizontal axis depicts the samples at 500 Hz, while the vertical the amplitude of the 
signals. The SNR values of the noisy and the denoised fetal ECG for both signals are given in 
Table 6.2 (SNRin and SNRout respectively).

Fig. 6.4 depicts two typical denoising results from our test dataset. The SNR values 
of the signals before and after denoising are provided in Table 6.2. Note that in Fig. 
6.4 the vertical axes limits for the noisy signals differ from those of the ground truth 
and denoised signals for better visualization. However, the axes limits for the clean 
and denoised fetal ECG are the same to allow for their comparison. As can be noted, 
the network suppresses the noise in a great extent for both signals simulated-A (SA) 
and simulated-B (SB). In the case of signal SA the similarity of the network’s output 
with the clean signals is very high for all channels and all ECG waves are clearly 
distinguishable. 
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Table 6.2. The SNR values in dB for the four channels of the simulated signals depicted in Fig. 
6.4, before (SNRin) and after (SNRout) denoising.

Channel Signal SA Signal SB

SNRin SNRout SNRin SNRout
1 1 17 -9 5

2 -2 13 -9 4
3 -3 14 -10 3
4 -12 8 0 3

Fig. 6.5. Performance of the proposed fetal ECG denoising method in a large real dataset [174] 
in terms of improvement in SNR of the denoised signals.

Even for channel 4, with input SNR of -12 dB, the network provides a high-quality 
result, since it combines all channels to reconstruct it. For signal SB the majority of 
ECG channels have very low quality (around -9 dB). The SNR after denoising with 
our network is significantly higher (3.75 dB on average). However, we notice some 
distortion on the signal amplitude, while particularly the P-waves are suppressed by 
the network. Moreover, despite channel 4 having the least amount of noise before 
entering the network, we observe the least improvement after denoising, evidencing 
that indeed the network’s output is obtained through combination of information 
from all leads.
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6.3.2 Evaluation on Real Fetal ECG Signals 

The proposed method was evaluated on our extensive noninvasive fetal ECG dataset 
[174] and the  results are presented in Fig. 6.5. Fig. 6.5 illustrates the improvement 
in SNR for input SNR ranging from -17 to 1 dB. The input SNR corresponds to the 
SNR of the noisy fetal ECG signals when we assume that the ground truth signal 
is the running median of 100 heartbeats. We need to stress that this is not the 
actual SNR of the signals but merely an approximation of it. In fact, the more noise 
is present in the signals or the more physiological variation, the less accurate the 
constructed “clean” signal is. Examining the Fig. 6.5 and 6.3, where the performance 
in the simulated dataset is illustrated, we observe an analogy between them. In both 
graphs the multichannel denoiser surpasses the single channel for lower input SNR 
while for higher SNR values the two methods perform comparably. The performance 
improvement as compared to the single channel approach is lower for the real signals 
than for the simulated ones, but this might be due to the lack of actual ground truth 
signals for comparison. By all means the evaluation in this dataset is suboptimal but 
it provides a performance indicator on a large real dataset. 

Fig. 6.6 demonstrates the result of denoising two signals of this database, while 
Table 6.3 provides the corresponding SNR values before and after denoising. Note 
that the vertical axes limits for the noisy signals differ from the ones of the “clean” 
and denoised ones for clearer visualization. Both signals in Fig. 6.6, especially 
signal real-B (RB), have a significant amount of noise before denoising (see Table 
6.3). The “clean” reference signals as well contain few noise but in most of them the 
ECG morphology is relatively clear. On the other hand, all the possible variations 
among the successive complexes is lost due to the heavy averaging performed. The 
multichannel network achieved a fairly remarkable result in denoising those signals. 
Comparing the morphology of the denoised with the “clean” reference signals, the 
various ECG waves and segments correspond relatively well. In this comparison, 
we acknowledge that the running median of 100 heartbeats is not the gold standard. 
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Fig. 6.6. The results of denoising two signals (RA and RB) from our private real fetal ECG 
dataset [174]. For each signal: the noisy 4-channel fetal ECG signal extracted from the 
abdominal measurements is presented in the left (red), the running median of 100 heartbeats 
for each channel in the middle (blue) and the denoised fetal ECG signal by our network in 
the right (green). The horizontal axis depicts the samples at 500 Hz, while the vertical the 
amplitude of the signals in μV. The SNR values of the noisy fetal ECG signals (SNRin) together 
with the values for the denoised ones (SNRout) are given in Table 6.3.

However, taking the median of the heartbeats brings evidence for the location of 
the ECG waves, especially the P-waves, information that cannot be seen in the noisy 
signals. It is important to recognize that in the denoised signals by our network, these 
locations seem to correspond with the locations in the median signals. As a matter 
of fact, the denoised signals appear to exhibit better quality and clearer morphology 
than the reference. Some morphological features seem to be distorted, as we can 
see in Fig. 6.6 for signal RB. However, the overall performance in those low-quality 
signals is relatively good.
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Table 6.3. The SNR values in dB for the four channels of the real signals depicted in Fig. 6.6, 
before (SNRin) and after (SNRout) denoising.

Channel
Signal RA Signal RB

SNRin SNRout SNRin SNRout

1 -8 3 -13 3

2 -3 3 -8 5

3 -8 2 -6 6

4 -1 6 -14 1

Fig. 6.7 illustrates the performance for a fetal ECG signal of our noninvasive fetal 
ECG dataset in comparison to the single channel network, 30-complex averaging 
and wavelet denoising. For simplicity we present only one channel out of the four. 
As shown in the figure, all methods provide a noise-free result. However, our 
method retains the individual ECG complex differences as opposed to the averaging 
method and does not distort the signal amplitude as opposed to wavelet denoising. 
In addition, the morphology of the denoised ECG is clearer in our case. The single 
channel network provided a similar result to the multichannel for this signal.

The performance of the network on the Abdominal and Direct Fetal ECG Database 
is illustrated in Table 6.4. The scalp ECG was compared with the aforementioned 
linear combination of abdominal signals, as described in Equation (6.3). In Table 
6.4 we provide the results of this comparison for 2 cases; when we used the original 
scalp ECG and when we denoised it. For each performance metric the values before 
and after denoising with the multichannel and single channel network are presented, 
while with bold the best performing method is marked.

First, we believe that denoising of the scalp ECG was important to allow for better 
comparison with the scalp ECG estimation from the denoised abdominal leads. By 
averaging 30 successive ECG complexes we might have lost some morphological 
variations among the successive beats of the scalp lead but achieved significant quality 
improvement. Even the scalp ECG approximated by the noisy fetal ECG signals has 
better resemblance with the denoised scalp lead, e.g.  correlation coefficients of 0.74 
vs 0.53. Second, we observe that both the multichannel and single channel networks 
achieve significant quality improvement of the fetal ECG signals for all the metrics 
presented in Table 6.4. We should note here once more that by no means the scalp 
estimation is expected to be the same with the scalp ECG even after perfect denoising, 
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because the latter is a different lead than the abdominal leads. Last, the multichannel 
network outperforms the single channel in terms of all computed performance metrics. 

Fig. 6.7. The result of denoising a real fetal ECG signal from our private dataset [174] with 
different denoising algorithms. For simplicity, only one channel is displayed. The panels 
show: (a) the noisy extracted fetal ECG, (b) the denoised signal by the proposed method, (c) 
the denoised signal by the single-channel denoising network [137], (d) the result of 30-complex 
averaging and (e) the result after wavelet denoising. The horizontal axis depicts the samples at 
500 Hz, while the vertical the amplitude of the signals in μV.

However, the differences are relatively small. It might be because the extracted fetal 
ECG signals already have decent quality and, as we have already found in simulated 
signals, employing multiple channels is more advantageous in cases of signals 
exhibiting lower SNR. Larger difference was found regarding the MSE metric (62.1 
vs 68.4 μV2), indicating that the single channel network may provide more outliers, 
while the multichannel a smoother outcome.
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Table 6.4. Performance of the multichannel CNN network vs the single-channel one [137] on 
the Abdominal and Direct Fetal ECG Database [177] in terms of comparison of the scalp ECG 
with a scalp estimated from the denoised abdominal fetal ECG.  

Metric Original scalp ECG Denoised scalp ECG

Noisy 
Input

Multichannel 
Output

Single-channel 
Output

Noisy 
Input

Multichannel 
Output

Single-channel 
Output

R 0.53 0.66 0.65 0.74 0.87 0.85

MSE (μV2) 555.8 440.7 449.3 116 62.1 68.4

MAE (μV) 15 12.9 13 7.3 5.4 5.5

SNR (dB) 1.5 2.7 2.5 3.7 6.4 6.1

Fig. 6.8 provides two qualitative results of the scalp estimation, when fetal ECG 
denoising is performed with the proposed multichannel method. In both cases, the 
scalp estimated by the denoised fetal ECG is free from noise and the individual waves 
and intervals correspond relatively well to those of the scalp ECG. We do not expect 
absolute correspondence, not only because the scalp ECG is a different lead, but also 
because it was averaged over 30 complexes.

Fig. 6.8. Comparison of the scalp ECG with an estimation of it as a linear combination of 
the abdominal fetal ECG for 2 records (r10 and r08) of the Abdominal and Direct Fetal ECG 
Database [177]. In the first row (red) the scalp ECG estimated from the noisy fetal ECG is 
presented, in the second (blue) the ECG as measured by the scalp electrode (running average 
of 30 complexes) and in the last one (green) the scalp ECG estimated from the denoised fetal 
ECG by the proposed network. The horizontal axis depicts the samples at 500 Hz, while the 
vertical the amplitude of the signals in μV.
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6.4 Discussion

We have proposed a CNN network for postprocessing noninvasively extracted 
multichannel fetal ECG signals to improve their quality. The noninvasive fetal ECG 
is substantially contaminated by various noises, even after the application of various 
signal processing tools proposed in literature, such as maternal ECG suppression. 
The low quality of the fetal ECG is the principal reason that the applicability of 
noninvasive fetal electrocardiography in clinical practice is limited.The suggested 
multichannel network was trained on a wide dataset of simulated 4-channel ECG 
signals, with SNR ranging from -15 to 15 dB, while it was extensively validated both 
on simulated as well as on real datasets.

Experiments on simulated data showed a significant improvement in the quality 
of the noise-corrupted fetal ECG signals. The network combined information 
from all the channels to efficiently remove the noise and uncover the ECG signal 
morphology even in the presence of acute noise. However, the network suppressed 
some morphological characteristics in cases there was not sufficient content for 
denoising i.e. when most signal channels were severely corrupted. The multichannel 
network outperformed the single channel [137] in cases of low SNR of the input 
signals, while for SNR more than 11 dB the single channel network exhibited 
slightly better performance. This behavior could be anticipated. A multi-lead signal 
configuration captures the spatiotemporal nature of the cardiac electrical activity. 
For low quality signals this is beneficial as more signal information can be exploited 
to better reconstruct each channel. However, if we wish to denoise a channel that 
already has high quality, using spatiotemporal content may be not always the best 
choice. Nevertheless, it is very uncommon in practice to obtain fetal ECG of such 
high quality.  Yet, in case this would happen, the output of the multichannel network 
would still be of such quality that it could be used for further clinical interpretations.

The evaluation of our network on a large real fetal ECG dataset showed an analogous 
behavior to that  on the simulated data; for low quality fetal ECG the multichannel 
network outperformed the single channel, while for higher SNR the performances 
of the networks were comparable. We cannot make a direct comparison because 
the evaluation method for the real signals was suboptimal. We are aware that the 
approximation of the ground truth signals with the running median of 100 heartbeats 
was not very accurate. However, it gave us an indication that the method is efficient 
in real data too. We additionally presented some qualitative denoising results for two 
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signals of this database in Fig. 6.6 to support our claim. The network outputted clean 
denoised signals with good correspondence of the individual ECG waves between the 
reference and denoised signals. A few recordings in our dataset had input SNR that 
was even lower than -17 dB. Based on visual analysis of the output of our proposed 
denoiser, we could argue that the performance of the denoiser breaks down at these 
very low signal quality levels and the network is no longer capable of reconstructing 
a reliable fetal ECG. This limitation probably comes from the fact that the network 
was trained for input SNR range of -15 to 15 dB. Thus, the network did not learn 
to remove efficiently the noise when the quality of the signals is even lower. This 
indicates that we might need to perform experiments for a wider SNR input range. 
However, the capacity of the network might no longer be sufficient for handling such 
an ample range of signal qualities and further research is needed to evaluate this.

The CNN network was additionally evaluated in the Abdominal and Direct Fetal 
ECG Database. Simultaneously recorded scalp ECGs were compared to an estimated 
scalp ECG from the denoised abdominal channels, also here demonstrating  that 
the method can provide significant quality improvement of the noisy fetal ECG 
signals. Comparison of the performances of the multichannel and single-channel 
networks for this database, revealed that they achieve comparable results, probably 
because the input signals were of relatively good quality. It is difficult to compare the 
performances between the two real datasets for several reasons. Most importantly, 
the sizes of the two datasets differ a lot (455 vs 5) and so do the gestational ages of the 
subjects (18-24 vs 38-41 weeks).

As mentioned in the introduction and also in [137], the shortcoming of denoising 
single channel fetal ECG with a convolutional network is that the network can 
output signals that look as if they were ideally denoised, but that can have “fake” 
waves that can differ both in location and polarity when compared to the actual ECG 
waves. This happens mostly when the quality of the input signals is relatively low 
and the network, not having enough signal information, reconstructs a clean signal 
from unreliable information in the encoded latent space. We demonstrated that by 
employing multichannel signals this problem is eliminated to a large extent. When 
the quality of the signals is very low, the amplitude of the small signal waves, like 
the P-wave and T-wave, and less often of the R-peaks in the denoised signals can be 
distorted rather than “fake”. This means that some waves may be virtually absent, or 
the output does not even resemble an ECG anymore. This makes the method safer 
to use in clinical practice, because clinicians will typically discard a distorted signal 
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but a signal that looks like a high-quality ECG but in fact contains “fake” information 
might lead to erroneous decision-making.

To summarize, we have shown the potential of deep CNNs for removing noise from 
noninvasive multi-lead fetal ECG. We validated the method on a wide dataset of 
simulated but also real recordings with both early as well as late gestational ages (18 
to 24 and 38 to 41 weeks). Primarily, we demonstrated that employing multichannel 
information for denoising  does not only lead to more clean signals but also to more 
reliable results, when compared to single-channel information. The main advantage 
of the method is that, as opposed to the widely used averaging method, no prior 
processing of the signal is needed to extract the locations of the R-peaks and variations 
in ECG morphology among consecutive heartbeats are preserved. This is especially 
important in case that arrhythmias are present. Up to now, arrhythmia is assessed 
through echocardiography because the averaging that was performed to enhance the 
quality of the fetal ECG hinders its application for arrhythmia analysis. Moreover, 
the quality of the denoised signals is high enough to allow for measuring the timing 
of intervals, like the PR and QT interval. However, in order to confirm this, we need 
to perform a thorough comparison of the ECG intervals between the denoised and 
the clean  signals. If we wish to obtain reliable results, a large annotated dataset is 
necessary, but this requires time and experts to perform these annotations.  

Certainly, there is room for improvement of our method. Most importantly, the 
capacity of the network could be further increased to handle even more noisy signals. 
Moreover, we can explore denoising directly the raw abdominal signals, without 
cancelling the maternal ECG. Most probably a more complex network architecture is 
needed for such a task and appropriate data for training. 

6.5 Conclusion

An end-to-end trained deep CNN network was presented for denoising of fetal 
ECG signals. Convolutions and transposed convolutions were combined in the 
network, modeling the denoising problem as an encoding of primary signal 
content and subsequent decoding to recover details.  Essentially, we proposed to 
employ spatiotemporal information in the ECG signal by using multiple ECG leads 
simultaneously as input to the network. The network then learned how to combine 
the input channels and deliver a reliable clean ECG as output. Our experiments 
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showed an SNR  improvement of 9.5 dB for simulated fetal ECG signals with input 
SNR in the range [−20 ,20] dB and 8.7 dB for real fetal ECG signals with input SNR 
in the range [-17,1] dB. The proposed network can achieve a substantial quality 
improvement of the noisy signals and outperform a single-channel alternative.
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7.1 Discussion

Monitoring the condition of the fetus is of vital importance for timely detection of 
fetal distress and appropriate treatment or intervention. Currently, fetal monitoring 
is performed through cardiotocography (CTG), the simultaneous registration of fetal 
heart rate (HR), averaged over a number of cardiac cycles, and uterine contractions. 
However, while CTG is associated with an increase in interventions, it has shown 
no remarkable improvement in perinatal death and cerebral palsy rates. Moreover, 
Doppler ultrasound, which is mainly used in CTG monitors, suffers from signal loss 
due to fetal motion and in preterm pregnancies. This is especially evident in obese 
women because of the higher attenuation of ultrasound. It has been demonstrated 
that CTG in combination with fetal electrocardiogram (ECG) significantly reduces the 
rates of metabolic acidosis and operative deliveries [207]. Unlike Doppler ultrasound, 
more reliable beat-to-beat fetal HR can be obtained by the fetal ECG. Next to this, 
analysis of the fetal ECG  waveform provides additional diagnostic information for 
assessing the fetal condition [12], [36], [16]. However, usually in clinical practice the 
fetal ECG is obtained invasively and therefore can only be used during labor, after 
sufficient cervical dilatation and after the membranes have ruptured.

The fetal ECG can be measured noninvasively by placing electrodes on the 
maternal abdomen. In this way, fetal monitoring with fetal electrocardiography 
can be performed during both pregnancy and labor and may represent a valid an 
alternative to conventional monitoring methods. Currently, the use of noninvasive 
fetal electrocardiography in clinical practice is limited by the fact that the abdominal 
recordings are severely corrupted by many electrical interferences and noises 
resulting in fetal ECG signals of low signal-to-noise ratio (SNR). Extensive research 
focused on removing the maternal ECG, which is the dominant interference [43]. 
However, even after the maternal ECG has been removed, the extracted fetal ECG 
signals typically have low quality. The low signal quality hampers the analysis of 
the fetal ECG waveform and in many cases even the reliable extraction of the fetal 
HR, despite the highest amplitude of the fetal R-peaks. In the first part of this thesis 
we focused on improving the reliability of fetal HR detection. In the second part 
we focused on postprocessing of the extracted fetal ECG signals for enhancing their 
quality. 

In many practical situations, maternal ECG signal removal is not sufficient to ensure 
reliable extraction of the fetal HR from noninvasive fetal ECG recordings. As an 
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example, during labor the maternal abdominal muscles are particularly active,  
causing interferences that exceed in amplitude the fetal ECG  while overlapping 
with it in the frequency domain. Fetal HR extraction typically requires fetal R-peak 
detection, which is very challenging especially in these cases of low SNR. Moreover, 
since there are no accurate models to characterize the residual noise in the extracted 
fetal ECG signals, traditional signal processing methods show relatively limited 
performance in determining the fetal HR. In Chapter 3, an inception network was 
presented that directly estimates the fetal HR from the extracted fetal ECG signals 
without the intermediate step of fetal R-peak detection.  The network combines 
convolutional neural networks (CNNs) with long short-term memory networks 
(LSTMs) to capture both short-term and long-term temporal relations of the fetal 
HR. Despite the good performance of this network in the first stage of labor, when 
the fetal ECG signals have extremely low quality, e.g. during second stage of labor, 
it is very challenging to reliably estimate the fetal HR. During the second stage 
of labor uterine contractions are stronger and more frequent, and the woman is 
actively pushing, contaminating even further the abdominal recordings with intense 
muscle noise. To increase the reliability of the method and its suitability for clinical 
application,  a CNN-based classifier was developed that estimates the accuracy of 
the detected fetal HR. The proposed method outperformed other state-of-the-art 
methods proposed in the literature in terms of fetal HR detection accuracy.

To widely adopt noninvasive fetal electrocardiography in clinical practice, quality 
improvement of the extracted fetal ECG signals is of key relevance. Even after 
the application of powerful fetal ECG extraction algorithms, several instrumental 
and physiological noise sources are still present in the extracted fetal ECG signals  
obscuring  the morphology of the signals. Adaptive filters have been extensively used 
to remove uncorrelated noise components in cases that the noise characteristics 
are a priori unknown.  Typically, in noninvasive fetal ECG recordings the fetal 
ECG components measured by different electrodes are correlated, while the noise 
components, such as muscle noise, are mostly uncorrelated. However, since the 
fetal ECG signals are highly non-stationary a least mean squares (LMS) adaptive 
filter cannot track these rapidly varying non-stationarities, resulting in severe 
signal distortion when applying LMS adaptive filters. In Chapter 4, an augmented 
time-sequenced adaptive filter (aTSAF) was presented to address the limitations 
of the LMS filter on enhancing the quality of the extracted multichannel fetal ECG 
signals. Fetal ECG complexes that originate from consecutive heart beats have 
similar statistical properties. The aTSAF exploits this property and uses a separate 
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adaptive filter for each separate segment of a fetal ECG complex. Since we need to 
align the ECG complexes in time, the R-peak locations need to be a priori known 
to apply this method.  The aTSAF enhances the quality of each separate fetal ECG 
channel by using the other channels as reference, meaning that the denoising 
performance highly depends on the quality of the reference channels. Based on 
this reasoning we enhanced the quality of the reference channels by ensemble ECG 
complex averaging, prior to the filter application. According to experiments on both 
simulated and real signals the aTSAF method was found to be efficient in reducing 
major noise components and revealing the ECG signal morphology. Moreover, 
aTSAF outperforms other fetal ECG enhancement methods, especially in cases of 
signals with low SNR. 

The aTSAF method requires the R-peaks locations to synchronize the filter but 
as mentioned above it is not always possible to obtain an accurate estimation of 
them. Moreover, the filter needs time to adapt its coefficients, making it inefficient 
in adapting to abrupt changes of the fetal ECG morphology that may occur e.g. in 
the presence of arrhythmia or ectopic beats. Besides that, short-term variations in 
the ECG waveform are lost because of the averaging filters applied to the reference 
channels. However, aTSAF can be used when we are interested in detecting fetal 
hypoxia, as changes in the fetal ECG waveform that are caused from developing 
hypoxia happen at longer times scales. Next to that, structural heart malformations 
affect similarly each fetal ECG complex and thus screening of congenital heart defects 
(CHDs) should be also possible. 

Yet, to address the issue related to the need for a priori knowledge of fetal R-peak 
locations by the aTSAF, in Chapter 5, another fetal ECG denoising method was 
proposed that is based on deep learning. The presented method does not need any 
prior knowledge on the location of the fetal ECG complexes and is able to preserve 
beat-to-beat variations in the ECG signal morphology. A deep fully convolutional 
encoder-decoder network was developed that learns end-to-end mappings from 
noise-contaminated single-channel fetal ECG signals to clean ones. The encoder of 
the network captures the ECG signal abstraction while eliminating the corruptions 
and the decoder upsamples the feature maps and recovers the signal details. Since 
our network is deep and difficult to train, we added skip connections between the 
corresponding layers of the encoder and decoder to achieve faster convergence and 
better denoising results. Our method is supervised, meaning that we need noisy 
fetal ECG data together with the corresponding clean data for training the network. 
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However, the fetal ECG signals even after maternal ECG suppression are still affected 
by noise and, as such, we do not have clear reference data. To address this issue, we 
decided to train the network on simulated data and evaluate its performance both on 
real and simulated data. To minimize risks of overfitting, we created a large simulated 
fetal ECG dataset for training where we incorporated many variations in the fetal 
ECG morphology and added noise. The large capacity of our network allowed us to 
cope with different levels of noise in a single model. Experiments on simulated and 
real data showed that the network can achieve substantial quality improvement of 
the noisy fetal ECG signals. However, in cases of very low SNR, the method failed to 
reliably reconstruct the fetal ECG signal morphology, occasionally causing artificial 
(i.e. fake) ECG waves. 

To address the latter issue, in Chapter 6 our network was adapted to deal with multiple 
fetal ECG channels. Multiple electrodes measure the electrical activity of the heart 
from different angles, leading to distinct fetal ECG signals yet with corresponding 
locations of ECG segments and waves. By combining information from different 
channels, convolutions can extend also in space rather than in time only, exploiting 
the correlations among the different channels and, therefore, leading to more reliable 
signal reconstruction. Indeed, we demonstrated that by employing multichannel 
signals the limitation of the single channel denoising network was eliminated to 
a large extent. Our experiments showed a significant quality improvement of the 
noise-corrupted signals both in simulated and real data.  In cases when the majority 
of the channels were severely corrupted the network distorted some morphological 
characteristics but did not create any fake information. The proposed method 
outperformed not only its single-channel network counterpart but also other widely 
used fetal ECG denoising algorithms such as ECG complex averaging and wavelet 
denoising. The main advantage of our method is that it retains individual variations 
among different ECG complexes that is necessary for the study and detection of fetal 
arrhythmias and that is does not require a priori knowledge on fetal R-peak locations.

7.2 Future directions

Fetal electrocardiography exists for more than one century as the first recordings 
were made by Cremer in the early 1900s [208]. However, difficulties in acquiring 
and processing the electrophysiological signals but also lack of availability of gold 
standard databases limited the development of this technique. Nowadays in clinical 
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practice the fetal ECG is mainly monitored using an invasive scalp electrode and 
used to extract the fetal HR and perform ST segment analysis. To overcome the 
limitations of the invasive measurements, over the last years the field of noninvasive 
fetal electrocardiography has regained some interest as an alternative to electronic 
fetal monitoring. Few solutions have already been introduced in clinical practice for 
CTG acquisition based on noninvasive electrophysiological measurements. However, 
the performance of these devices can be rather poor in some cases, e.g. during the 
second stage of labor. Moreover, there are no available solutions for unobtrusive 
extraction and analysis of ECG morphological parameters. Thus, there is still ample 
room for improvement in the area of noninvasive fetal electrocardiography and 
significant advances should be made before its clinical uptake as standard monitoring 
technique. The methods presented in this thesis are intended to make a step in this 
direction. However, several improvements need to be made before the proposed 
methods can be used in clinical practice. The most critical improvement points for 
each method are discussed below.

The fetal HR extraction method, presented in Chapter 3, sometimes fails to 
make correct estimations during the second stage of labor. At this stage the fetal 
ECG signals have extremely low quality, making the fetal HR extraction very 
challenging, especially during HR decelerations. This was the reason why we 
additionally developed a fetal HR reliability classifier to identify the periods with 
correct estimations. However, our classifier was found to reject too many data of 
good quality (i.e. it has low sensitivity), especially when tested on a public dataset 
of Physionet. This Physionet dataset is rather small, comprising 68 1-minute 
recordings and containing only relatively good quality data that lead to correct fetal 
HR estimations. Since this set is small and contains mostly good-quality examples, 
it is difficult to make conclusions about the generalizability of our classifier. Thus, 
we do need a larger and more diverse test dataset, also including data from second 
stage of labor, to evaluate our classifier. Having more data available, the parameters 
of the classifier network can also be optimized, and the architecture can be refined 
to achieve improved classification performance. Nevertheless, we should improve 
not only the classification of the accuracy of fetal HR estimations, but also the 
accuracy of the estimations themselves. Accurate fetal HR estimations during the 
second stage of labor are very important because during this period the fetus is often 
subjected to reduced oxygenation. With a larger dataset, it might be worth training 
a separate network that will exclusively target the second stage of labor and perhaps 
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achieve more accurate estimations during the deceleration periods. Moreover, it is 
worth investigating the performance of a hybrid approach combining our method 
with a model-based approach, such as the method of Warmerdam et al. [127]. Such 
an approach could benefit from the strengths of both approaches; for instance, the 
method of Warmerdam has a robust mechanism for detecting unreliable fetal HR 
outcomes, while our method has high accuracy. In any case, we should ensure the 
feasibility of implementing the final system in a medical device. 

The method for postprocessing the extracted fetal ECG signals, presented in Chapter 
4, can significantly increase the signal quality even for low SNR and is relatively 
insensitive to the filter parameters. However, the filter is dependent on accurate 
estimation of the R-peak locations which, as already mentioned, is not always feasible. 
Thus, for application of the filter in clinical practice the user needs to be informed that 
the filter output should not be trusted in the absence of detected R-peaks. Moreover, 
the filter cannot be applied in cases when there is interest in abrupt or short-term 
changes in the fetal ECG morphology, such as in cases of arrhythmia, because of 
the averaging performed on the reference channels and the fact that the filter needs 
time to adapt its coefficients. Perhaps the averaging of the reference channels could 
be replaced with another enhancement method that retains the variations among 
different complexes. To this end, wavelet denoising could be considered, although it 
still shows limitations to deal with strong non-stationarity. However, the proposed 
filter may be suitable for applications such as detecting hypoxia were ST changes in 
the ECG waveform happen occur at longer time scales. Nevertheless, a large patient 
study should be performed to assess whether ST segment analysis can be performed 
on our filtered data from noninvasive ECG recordings as accurately as on invasive 
scalp ECG recordings. In that case, as shown before [38], the fetal orientation 
should be taken into account. Fetuses in different positions will have different ECG 
waveforms and thus the amount of ST elevation will differ depending on the position 
of the fetus. Therefore, normalization of the fetal orientation is crucial before 
performing ST analysis; this could be done with the help of ultrasound imaging as 
suggested in [85].

The denoising methods presented in Chapter 5 and 6 do not need any prior 
information on the locations of the ECG complexes and most importantly are 
able to preserve morphological variations among them. Although we proved that 
significant improvement in the quality of the extracted ECG signals can be achieved, 
the validation of our denoising network in real signals was suboptimal. Before 
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using the method in clinical practice, a thorough validation in a large real dataset 
is needed. For this we need noninvasive fetal ECG data together with simultaneous 
scalp recordings annotated by experts. In this way it will be possible to compare the 
ECG intervals. If the intervals are proven to have a good agreement with the scalp 
recordings, the method will be suited for use in clinical practice. In addition, we will 
need to establish the minimum signal quality leading to  reliable reconstruction of 
the clean signals. It would also be interesting to train a similar network to perform 
the fetal ECG extraction directly from the abdominal signals. However, this problem 
is extremely complex and requires large datasets for training a deep network with 
sufficient  capacity.

Since the denoising network retains variations among successive ECG complexes, 
it is worth performing a study to assess if fetal arrhythmias can be detected from 
the noninvasive fetal ECG signals. For such a study, additional data obtained from 
fetal echocardiography could be used as ground truth. Moreover, the denoised ECG 
data obtained from the denoising methods presented in this thesis could be used 
to define normal ranges for the fetal ECG in different stages of pregnancy. Having 
established the normal ranges, deviations from them could indicate the presence of 
abnormalities, such as CHD. When abnormal ECGs are recognized, referral should 
be given to more specialized centers, hopefully increasing the current detection 
rate of CHD, which is rather low (~60% [83]). Also, for this study, a large patient 
population is needed that will possibly include fetuses with different types of CHD.    

Over the last years, noninvasive fetal electrocardiography has shown remarkable 
advances and its potential has been demonstrated to complement the fetal monitoring 
techniques that are currently used in clinical practice. Developments both in signal 
processing and in hardware design resulted in few commercial solutions for CTG 
acquisition based on noninvasive abdominal recordings. Yet, these applications are 
still in their infancy. We believe that the methods proposed in this thesis can help 
to further advance and spread this technology in clinical practice. Most importantly, 
we hope to achieve more reliable signal analysis and also morphological analysis of 
the fetal electrocardiogram, which today is only possible using the invasive scalp 
electrocardiography method. 

This morphological ECG analysis could improve the perinatal outcome in several 
ways. For example, it could be implemented in a portable CTG device with several 
additional functionalities. First, an automated algorithm could indicate the presence 
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of fetal arrhythmias. This could serve like a screening method referring patient 
suspected of having arrhythmias to a perinatal cardiologist for further diagnosis. 
Severe cases of arrhythmia can lead to fetal death but if detected during pregnancy 
can be monitored closely and in some cases treated in utero. A second algorithm 
could be incorporated in the device that detects presence of CHD. This could also 
serve as a screening method and referral to a specialized center should be then 
given, leading to an increase in the detection rate of CHD. Prenatal CHD diagnosis 
significantly increases survival rates and decreases long-term morbidity. Moreover, 
the device could measure beat-to-beat HR variability and/or perform ST segment 
analysis in order to detect fetal hypoxia, helping obstetricians eventually to perform 
proper interventions.
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