270 research outputs found

    Security hardened remote terminal units for SCADA networks.

    Get PDF
    Remote terminal units (RTUs) are perimeter supervisory control and data acquisition (SCADA) devices that measure and control actual physical devices. Cyber security was largely ignored in SCADA for many years, and the cyber security issues that now face SCADA and DCS, specifically RTU security, are investigated in this research. This dissertation presents a new role based access control model designed specifically for RTUs and process control. The model is developed around the process control specific data element called a point, and point operations. The model includes: assignment constraints that limit the RTU operations that a specific role can be assigned and activation constraints that allow a security administrator to specify conditions when specific RTU roles or RTU permissions cannot be used. RTU enforcement of the new access control model depends on, and is supported by, the protection provided by an RTU\u27s operating system. This dissertation investigates two approaches for using minimal kernels to reduce potential vulnerabilities in RTU protection enforcement and create a security hardened RTU capable of supporting the new RTU access control model. The first approach is to reduce a commercial OS kernel to only those components needed by the RTU, removing any known or unknown vulnerabilities contained in the eliminated code and significantly reducing the size of the kernel. The second approach proposes using a microkernel that supports partitioning as the basis for an RTU specific operating system which isolates network related RTU software, the RTU attack surface, from critical RTU operational software such as control algorithms and analog and digital input and output. In experimental analysis of a prototype hardened RTU connected to real SCADA hardware, a reduction of over 50% was obtained in reducing a 2.4 Linux kernel to run on actual RTU hardware. Functional testing demonstrated that different users were able to carryout assigned tasks with the limited set of permissions provided by the security hardened RTU and a series of simulated insider attacks were prevented by the RTU role based access control system. Analysis of communication times indicated response times would be acceptable for many SCADA and DCS application areas. Investigation of a partitioning microkernel for an RTU identified the L4 microkernel as an excellent candidate. Experimental evaluation of L4 on real hardware found the IPC overhead for simulated critical RTU operations protected by L4 partitioning to be sufficiently small to warrant continued investigation of the approach

    Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5

    Get PDF
    Most of the world’s power grids are controlled remotely. Their control messages are sent over potentially insecure channels, driving the need for an authentication mechanism. The main communication mechanism for power grids and other utilities is defined by an IEEE standard, referred to as DNP3; this includes the Secure Authentication v5 (SAv5) protocol, which aims to ensure that messages are authenticated. We provide the first security analysis of the complete DNP3: SAv5 protocol. Previous work has considered the message-passing sub-protocol of SAv5 in isolation, and considered some aspects of the intended security properties. In contrast, we formally model and analyse the complex composition of the protocol’s three sub-protocols. In doing so, we consider the full state machine, and the possibility of cross-protocol attacks. Furthermore, we model fine-grained security properties that closely match the standard’s intended security properties. For our analysis, we leverage the Tamarin prover for the symbolic analysis of security protocols. Our analysis shows that the core DNP3: SAv5 design meets its intended security properties. Notably, we show that a previously reported attack does not apply to the standard. However, our analysis also leads to several concrete recommendations for improving future versions of the standard

    Security Operation Modes for Enhancement of Utility Computer Network Cyber-Security

    Get PDF

    Multi-Source Data Fusion for Cyberattack Detection in Power Systems

    Full text link
    Cyberattacks can cause a severe impact on power systems unless detected early. However, accurate and timely detection in critical infrastructure systems presents challenges, e.g., due to zero-day vulnerability exploitations and the cyber-physical nature of the system coupled with the need for high reliability and resilience of the physical system. Conventional rule-based and anomaly-based intrusion detection system (IDS) tools are insufficient for detecting zero-day cyber intrusions in the industrial control system (ICS) networks. Hence, in this work, we show that fusing information from multiple data sources can help identify cyber-induced incidents and reduce false positives. Specifically, we present how to recognize and address the barriers that can prevent the accurate use of multiple data sources for fusion-based detection. We perform multi-source data fusion for training IDS in a cyber-physical power system testbed where we collect cyber and physical side data from multiple sensors emulating real-world data sources that would be found in a utility and synthesizes these into features for algorithms to detect intrusions. Results are presented using the proposed data fusion application to infer False Data and Command injection-based Man-in- The-Middle (MiTM) attacks. Post collection, the data fusion application uses time-synchronized merge and extracts features followed by pre-processing such as imputation and encoding before training supervised, semi-supervised, and unsupervised learning models to evaluate the performance of the IDS. A major finding is the improvement of detection accuracy by fusion of features from cyber, security, and physical domains. Additionally, we observed the co-training technique performs at par with supervised learning methods when fed with our features

    ICT Technologies, Standards and Protocols for Active Distribution Network Automation and Management

    Get PDF
    The concept of active distribution network (ADN) is evolved to address the high penetration of renewables in the distribution network. To leverage the benefits of ADN, effective communication and information technology is required. Various communication standards to facilitate standard-based communication in distribution network have been proposed in literature. This chapter presents various communication standards and technologies that can be employed in ADN. Among various communication standards, IEC 61850 standard has emerged as the de facto standard for power utility automation. IEC 61850-based information modeling for ADN entities has also been presented in this chapter. To evaluate the performance of ADN communication architecture, performance metrics and performance evaluation tools have also been presented in this chapter

    Formally designing and implementing cyber security mechanisms in industrial control networks.

    Get PDF
    This dissertation describes progress in the state-of-the-art for developing and deploying formally verified cyber security devices in industrial control networks. It begins by detailing the unique struggles that are faced in industrial control networks and why concepts and technologies developed for securing traditional networks might not be appropriate. It uses these unique struggles and examples of contemporary cyber-attacks targeting control systems to argue that progress in securing control systems is best met with formal verification of systems, their specifications, and their security properties. This dissertation then presents a development process and identifies two technologies, TLA+ and seL4, that can be leveraged to produce a high-assurance embedded security device. The method presented in this dissertation takes an informal design of an embedded device that might be found in a control system and 1) formalizes the design within TLA+, 2) creates and mechanically checks a model built from the formal design, and 3) translates the TLA+ design into a component-based architecture of a native seL4 application. The later chapters of this dissertation describe an application of the process to a security preprocessor embedded device that was designed to add security mechanisms to the network communication of an existing control system. The device and its security properties are formally specified in TLA+ in chapter 4, mechanically checked in chapter 5, and finally its native seL4 architecture is implemented in chapter 6. Finally, the conclusions derived from the research are laid out, as well as some possibilities for expanding the presented method in the future

    Moving target defense for securing smart grid communications: Architectural design, implementation and evaluation

    Get PDF
    Supervisory Control And Data Acquisition (SCADA) communications are often subjected to various kinds of sophisticated cyber-attacks which can have a serious impact on the Critical Infrastructure such as the power grid. Most of the time, the success of the attack is based on the static characteristics of the system, thereby enabling an easier profiling of the target system(s) by the adversary and consequently exploiting their limited resources. In this thesis, a novel approach to mitigate such static vulnerabilities is proposed by implementing a Moving Target Defense (MTD) strategy in a power grid SCADA environment, which leverages the existing communication network with an end-to-end IP Hopping technique among the trusted peer devices. This offers a proactive L3 layer network defense, minimizing IP-specific threats and thwarting worm propagation, APTs, etc., which utilize the cyber kill chain for attacking the system through the SCADA network. The main contribution of this thesis is to show how MTD concepts provide proactive defense against targeted cyber-attacks, and a dynamic attack surface to adversaries without compromising the availability of a SCADA system. Specifically, the thesis presents a brief overview of the different type of MTD designs, the proposed MTD architecture and its implementation with IP hopping technique over a Control Center–Substation network link along with a 3-way handshake protocol for synchronization on the Iowa State’s Power Cyber testbed. The thesis further investigates the delay and throughput characteristics of the entire system with and without the MTD to choose the best hopping rate for the given link. It also includes additional contributions for making the testbed scenarios more realistic to real world scenarios with multi-hop, multi-path WAN. Using that and studying a specific attack model, the thesis analyses the best ranges of IP address for different hopping rate and different number of interfaces. Finally, the thesis describes two case studies to explore and identify potential weaknesses of the proposed mechanism, and also experimentally validate the proposed mitigation alterations to resolve the discovered vulnerabilities. As part of future work, we plan to extend this work by optimizing the MTD algorithm to be more resilient by incorporating other techniques like network port mutation to further increase the attack complexity and cost
    • …
    corecore